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Abstract—Real-time mapping of the surroundings plays a
pivotal role in ensuring the success of autonomous vehicles.
Among the technologies showing promise for depth mapping is
Single Photon Light Detection and Ranging (SPL) which offers
impressive long-range capabilities, superior depth resolution, and
energy-efficient laser sources. However, the adoption of high-
resolution, high frame-rate SPL systems results in significant data
volumes, often reaching several Gbit/s. This creates a throughput
bottleneck that impedes real-time applications and necessitates
the development of effective compression schemes. This paper
addresses the challenges associated with SPL compression and
provides a comprehensive overview of recent advancements in
this domain. The review encompasses various compression meth-
ods, including algorithmic and/or hardware-based approaches,
spatial and/or temporal compression techniques. We also discuss
future directions, such as integrating deep learning and fusion
techniques with other sensing modalities.

Index Terms—Single Photon LiDAR (SPL), compression, depth
imaging, deep learning, compressive learning, compressive sens-
ing.

I. INTRODUCTION

Accurately mapping and responding to surroundings in real-
time is crucial for the success of autonomous vehicles, making
SPL a promising technology for depth mapping due to its long-
range capabilities, excellent depth resolution, and low-power
laser sources [1]-[4]. However, the remarkable sensitivity of
single-photon detectors introduces challenges such as noise
modeling [5] and managing the massive data throughput [6].
This article focuses on the latter issue by reviewing and
analyzing the current state of LiDAR compression methods.

SPL is composed of two sub-systems: the laser rangefinder
system and the scanning or beam-steering system. The laser
rangefinder system, illustrated in Figure 1, emits a pulse
signal using a laser transmitter, which is reflected back from
objects to a signal photon detector such as the Single-Photon
Avalanche Diode (SPAD) photodetector. However, due to
electronic timing uncertainty and photons from the background
and ambient light sources, the process is repeated several
times for each pixel. Time-Correlated Single-Photon Counting
(TCSPC) is then, used to generate a time of flight (ToF)
histogram, which is used to estimate the depth and reflectivity
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Fig. 1: LiDAR rangefinder system conceptual diagram.

of objects. Meanwhile, the scanning system, such as mechan-
ical spinning, flash, or optical phased array, is responsible for
steering the beams to explore a larger area and achieve spatial
resolution. By the end of the SPL system, a massive LiDAR
data cube, usually hundreds of Gigabyte (GB) per second,
consisting of a histogram per pixel is produced, which poses
a significant challenge for real-time applications [6]-[8]. To
address this challenge, algorithmic and hardware compression
of SPL measurement is necessary.

To overcome the massive LiDAR data challenge, algorith-
mic and hardware compression is necessary. Different com-
pression methods involving trade-offs between compression
ratio, information loss, and computational complexity need
to be carefully evaluated based on the specific application
requirements. This article aims to review and analyze the cur-
rent state of LIDAR compression methods to provide insights
into their effectiveness, limitations, and potential for future
development.

II. SPL BACKGROUND
A. SPL Raw Data

In the SPL system, the SPAD sensor array with spatial
dimension of M x N collaborates with timing electronics
to produce ToF timestamps for each laser pulse. These ToF
timestamps are subsequently processed using the TCSPC
technique, resulting in a ToF histogram for each pixel. Raw
data from the system may exist in two forms: a timestamp cube
y € RMXNXP_ where p represents the number of timestamps,
or more commonly a histogram cube y € RM*Nxd \where d
denotes the histogram resolution determined by the number of
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TABLE I: LiDAR Compression Literature®

Author (Year) Method Description TC SC
Henderson et al. [9], Coarse Hardware solution: a gated procedure to compute a coarse histogram. v
[10] (2018-19)
Ren et al. [11](2018) Coarse Hardware solution: a sliding detector gate to achieve high-resolution depth. v v
Gyongy et al. [12] Coarse Hardware solution: coarse histogram with wide pulse for better depth resolution. v
(2020)
Della Rocca et al. [13], Coarse & Activity Hardware solution: only collect measurements based on activity changes.
[14] (2019-20)
Hutchings et al. [15] Coarse & Activity Hardware solution: discard photon detections based on activity.
(2019)
Zhang et al. [16] (2018)  Coarse-to-fine Hardware solution: a coarse to fine approximation of the ToF data.
Rapp et al. [17], [18] Coarse & dithering Hybrid solution: solution: coarse histogram followed by subtractive dithering for higher =~ v
(2018-20) depth resolution.
Kadambi and  Compressive sensing Algorithmic solution: use coded aperture with compressed sensing to improve spatial X v
Boufounos [19] (2015) resolution.
Halimi et al, [20] Adaptive sampling Algorithmic solution: scene-dependent adaptive sampling approach by iteratively focus- X v
(2019) ing on interest regions and reducing the acquisition time.
Bergman et al. [21]  Adaptive sampling Algorithmic solution: adaptive sampling based on an end-to-end deep learning-based
(2020) depth completion algorithms.
Zhang et al. [22] (2022)  First arrival differential ~ Hybrid solution: record a temporal differential measurement between pairs of pixels v v
followed by depth reconstruction algorithm.
Sheehan et al. [8] Compressive learning Algorithmic solution: follow compressive learning by sampling the characteristic v X
(2021) function of the ToF model to obtain a compressive statistic of the histogram sufficient
for depth and distance and intensity estimation.
Tachella et al. [23] Compressive learning Algorithmic solution: similar to [8] with additional penalty to capture spatial correlation. v v
(2022)
Sheehan et al. [24] Compressive learning Algorithmic solution: an extension of [8] using piece-wise polynomial splines to form v X
(2022) a hardware-friendly compressed statistic.
Gutierrez-Barragan et  Linear coding Algorithmic solution: on-the-fly linear compression of the detected photons to form a v/ X
al. [25] (2022) compressed histogram.
Poisson et al. [26] Linear coding & deep  Algorithmic solution: compute ToF histogram compressive sensing (CS) with a deep v v

(2022)

learning recovery

generative model reconstruction.

* TC and SC stand for Temporal and Spatial Compression, respectively.

bins. While the conversion between the two formats is algo-
rithmically simple, the selection of using either the timestamp
cube or the histogram cube depends on factors such as noise
level and the ratio of timestamps to the histogram resolution.
Ultimately, the data cube is processed to estimate the depth
and reflectivity of the scene. However, in high-resolution
and high-frame-rate scenarios, the significant volume of data
generated by the SPL system can pose challenges for real-time
applications.

B. SPL Observation Model

The photon counts measured for each pixel, assuming a
single depth per pixel [5], [27]-[31], are represented by a
Poisson distribution:

vi,; = Poisson (v j h(t — 75,5) + b) (1)

Here, y; ; refers to the i*" and j'* pixel of the data cube y.
The parameter 0 < «; ; < 1 represents the surface reflectivity,
h(t) represents the pulse shape, 7; ; represents the ToF, and
b represents the background noise originating from ambient
light or dark counts. To maintain clarity, the pixel index will
be omitted unless specifically needed. In synthetic examples, a
Gaussian pulse shape is assumed, but in practical settings, the
pulse shape is empirically measured. Furthermore, this model

can be extended to accommodate scenarios involving multiple
depths per pixel [32]-[36].

Alternatively, the timestamps cube y can be modeled as a
mixture model. For instance, [37] models the detected photon
timestamp Probability Mass Function (PMF) as:

(¥ [p,7) = prs(y | 7) + (1= p) m(3), 2)

Here, p represents the mixture model weight, while 7, and
m, denote the PMF of signal and background detected photon
timestamps, respectively. The signal component is proportional
to the transmitted pulse, while the background component is
typically modeled as a discrete uniform distribution

III. SPL COMPRESSION METHODS TAXONOMY

In this section, we delve into the topic of compression
methods that effectively address the data deluge challenge
in SPL. To better understand and classify these compression
methods, we consider various aspects, including spatial and/or
temporal techniques, as well as hardware and/or algorithmic
approaches. To provide an overview of the existing literature
on LiDAR compression, we present Table I, which summarizes
key references in the field. Subsequently, we delve into several
compression methods that represent the main themes in SPL
compression.
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A. Coarse Histogram

One approach to compression is to balance the computa-
tional resources and depth resolution by employing a coarse
histogram [9], [10]. This method involves using a smaller value
of d in the SPL data cube y, thereby reducing memory require-
ments at the expense of sacrificing depth accuracy. A similar
implementation where adjacent pixels are merged to get a sin-
gle output can also be applied to the spatial dimensions. While
this approach is straightforward to implement in hardware, it
does not yield substantial compression ratios. To overcome the
coarse histogram disadvantages, [16] proposed a coarse-to-fine
approach. Also, [17], [18] investigated subtractive dithering to
improve the depth resolution without increasing the temporal
resolution.

B. Linear Compression

Focusing on a single pixel, recall that SPL system measure
timestamps y € R, that are then converted into a histogram
y € R9. The conversion is achieved by summing up one-hot
coding vectors, denoted as e(y), for each timestamp:

y = e 3)
i=1

To compress this histogram representation while retaining
important information, a technique called linearly compressed
histogram was proposed by [25]. It involves using a coding
matrix, denoted as C, with dimensions m x d, where m is
significantly smaller than d. The compressed histogram can
be obtained as:

g = Z Ce(}). 4)

By employing this linear compression, it becomes possible to
represent the original histogram more efficiently, effectively
reducing its dimensions. This approach provides flexibility,
as the linearly compressed histogram offers various instances
depending on the chosen coding matrix. Notable examples of
these instances include:

o Classical histogram: Utilizing an identity coding matrix
and recovers (3),

o Coarse histogram: Employing a downsampling coding
matrix that implements block summing,

o Truncated discrete Fourier transform (T-DFT): A compo-
sition of two linear operators, namely the downsampling
and DFT.

The selection of the coding matrix depends on factors such as
scene complexity, pulse shape, and noise level. For instance,
when assuming a Gaussian pulse, T-DFT is suitable as it
captures most of the low frequencies.

After the linear compression stage, the compressed repre-
sentation g is processed by a decoder to infer depths. [25]
proposed a simple correlation-based decoding method:

7 =argmax CL, g. ®)
€ ,

In the decoding stage, the decoder seeks the column of
the coding matrix that exhibits the highest correlation with
the compressed histogram. The linear compression approach,
implemented by the simple encoder, offers a balance between
simplicity and compression ratio. However, it is important to
note that the current discussion of linear compression has been
confined to the temporal dimension. To achieve even higher
compression ratios, it becomes imperative to explore spatial-
temporal redundancies.

C. Compressive Learning

The Compressive Learning (CL) framework leverages a
nonlinear feature mapping and averaging to generate a lower-
dimensional representation, termed a sketch, of SPL times-
tamps. This sketch is computed as:

1 p
g=->Y o) 6)
p i=1

where ® : R — R™ is a nonlinear feature map, and m is
significantly smaller than the total number of timestamps, p.
It is noteworthy that the linear compression method can be
seen as a specific case within the broader CL framework.

Additionally, the sketch can be interpreted from a statistical
viewpoint as generalized moments. To see that, note that as
the number of detected timestamps, p, tends to infinity, the
sketch approaches the expected value E{g} due to the strong
law of large numbers. The choice of the feature map leads to
the recovery of classical probability concepts including:

o The k' moment: E{7*} where ®(j) = 7,

o Characteristic function (CF): ¥(w) = E{e/“Y} where

() = e/*¥ and w denotes the frequency.

Assuming the closed-form existence of E{g}, which is only
valid under simple distributions of ¢ and specific feature maps
®, the decoder stage aims to estimate the depth and reflectivity
by minimizing the distance between the sketch and the closed-
form expectation:

1& ’

IR 1(7) I o )3 R )
P

where @ and T represent the estimated depth and reflectivity,
respectively. This non-convex optimization problem is solved
iteratively to obtain accurate estimates.

In [8], [38], the compressive learning (CL) framework was
applied to SPL using the ToF mixture model (2). The authors
employed the CL framework by utilizing a complex expo-
nential feature map, denoted as ®. Consequently, the resulting
sketch can be interpreted as an empirical approximation of the
Fourier transform of the density function associated with the
SPL timestamps. It is worth noting that this specific choice of
the feature map is equivalent to linear compression with a DFT
and downsampling coding matrix. However, the distinction
lies in the decoder stage. The CL framework is limited by
the requirement of a closed-form expression for the expected
value, which is only available for simple feature mapping. This
limitation affects the achievable compression ratio.
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The discussion so far has focused on exploiting temporal
correlation. In [8], spatial correlation was exploited by adding
a penalty term that models the spatial correlation between pixel
depths and reflectivity. The penalty is implemented through a
PnP (Plug-and-Play) approach called RT3D [35].

D. Compressive Sensing

Compressive Sensing (CS) is a technique that aims to
decrease the data acquisition rate by capturing a limited
number of linear measurements and employing reconstruc-
tion algorithms that leverage the inherent structure of the
underlying signal, such as sparsity. In [19], the utilization
of a coded aperture was suggested to acquire these linear
measurements using a smaller sensor array. Subsequently,
depth reconstruction algorithms were employed to restore a
higher-resolution depth map. It should be noted, however,
that in the aforementioned example, CS solely exploits spatial
redundancy and does not take into account the temporal aspect.

E. Adaptive Sampling

The objective of the adaptive sampling approach is to reduce
memory demand by selectively collecting measurements based
on a specific metric. The authors in [13]-[15] proposed adap-
tive sampling based on significant changes in the activity of
the scene. This technique minimizes the amount of data being
transferred since it is only necessary in specific instances.
However, it is important to note that these approaches may
remain inactive in situations where there is only a slight al-
teration in activity. In a similar vein, [20] proposed enhancing
sampling by utilizing depth image statistics to create a map
of important areas. This map influences the choice of sample
positions and acquisition timing. It is worth noting that while
adaptive sampling reduces memory demand, it often comes
at the cost of additional computational overhead for real-time
applications.

F. Deep Learning Methods

Deep Learning (DL) has made significant advancements in
addressing various conventional challenges in image process-
ing and computer vision. Notably, there is an observable surge
in the adoption of DL techniques for SPL compression. In [26],
the authors introduced an end-to-end encoder-decoder neural
network architecture. The encoder module employs one-hot
coding, followed by a random linear transformation sampled
from the Rademacher distribution. On the other hand, the
decoder module utilizes a deep generative model that has been
trained to accurately reconstruct both the depth and reflectivity
attributes. In [21], the authors proposed adaptive sampling
for depth completion at low sampling rates. The proposed
system exhibits differentiability, enabling seamless end-to-end
training of both the sparse depth sampling and depth inpainting
components. The authors’ work highlights the significance of
adaptive sampling.

IV. CONCLUSION

In conclusion, this paper emphasizes the significance of
real-time mapping for autonomous vehicles. Single Photon
Light Detection and Ranging (SPL) technology offers im-
pressive long-range capabilities and superior depth resolution
but generates substantial data volumes, creating a throughput
bottleneck. The paper addresses SPL compression challenges,
provides a comprehensive overview of recent advancements,
and discusses various compression methods, including algo-
rithmic and hardware-based approaches. Looking ahead, the
expansion of SPL’s capabilities will involve the utilization
of multiple wavelengths, thereby increasing the importance
of addressing the compression challenge. One promising di-
rection is to optimize lidar acquisition resources and fuse
additional information from other sensing modalities, such
as standard red—green-blue images and radar. Deep neural
networks are anticipated to play a significant role in SPL
compression by exploring spatial-temporal redundancies and
facilitating the fusion of diverse modalities. By overcoming
compression challenges and leveraging emerging technologies,
SPL can greatly advance real-time mapping for autonomous
vehicles.
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