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Abstract—Real-time mapping of the surroundings plays a
pivotal role in ensuring the success of autonomous vehicles.
Among the technologies showing promise for depth mapping is
Single Photon Light Detection and Ranging (SPL) which offers
impressive long-range capabilities, superior depth resolution, and
energy-efficient laser sources. However, the adoption of high-
resolution, high frame-rate SPL systems results in significant data
volumes, often reaching several Gbit/s. This creates a throughput
bottleneck that impedes real-time applications and necessitates
the development of effective compression schemes. This paper
addresses the challenges associated with SPL compression and
provides a comprehensive overview of recent advancements in
this domain. The review encompasses various compression meth-
ods, including algorithmic and/or hardware-based approaches,
spatial and/or temporal compression techniques. We also discuss
future directions, such as integrating deep learning and fusion
techniques with other sensing modalities.

Index Terms—Single Photon LiDAR (SPL), compression, depth
imaging, deep learning, compressive learning, compressive sens-
ing.

I. INTRODUCTION

Accurately mapping and responding to surroundings in real-

time is crucial for the success of autonomous vehicles, making

SPL a promising technology for depth mapping due to its long-

range capabilities, excellent depth resolution, and low-power

laser sources [1]–[4]. However, the remarkable sensitivity of

single-photon detectors introduces challenges such as noise

modeling [5] and managing the massive data throughput [6].

This article focuses on the latter issue by reviewing and

analyzing the current state of LiDAR compression methods.

SPL is composed of two sub-systems: the laser rangefinder

system and the scanning or beam-steering system. The laser

rangefinder system, illustrated in Figure 1, emits a pulse

signal using a laser transmitter, which is reflected back from

objects to a signal photon detector such as the Single-Photon

Avalanche Diode (SPAD) photodetector. However, due to

electronic timing uncertainty and photons from the background

and ambient light sources, the process is repeated several

times for each pixel. Time-Correlated Single-Photon Counting

(TCSPC) is then, used to generate a time of flight (ToF)

histogram, which is used to estimate the depth and reflectivity

This work was supported in part by COGNISENSE, one of seven centers in
JUMP 2.0, a Semiconductor Research Corporation (SRC) program sponsored
by DARPA.

Fig. 1: LiDAR rangefinder system conceptual diagram.

of objects. Meanwhile, the scanning system, such as mechan-

ical spinning, flash, or optical phased array, is responsible for

steering the beams to explore a larger area and achieve spatial

resolution. By the end of the SPL system, a massive LiDAR

data cube, usually hundreds of Gigabyte (GB) per second,

consisting of a histogram per pixel is produced, which poses

a significant challenge for real-time applications [6]–[8]. To

address this challenge, algorithmic and hardware compression

of SPL measurement is necessary.

To overcome the massive LiDAR data challenge, algorith-

mic and hardware compression is necessary. Different com-

pression methods involving trade-offs between compression

ratio, information loss, and computational complexity need

to be carefully evaluated based on the specific application

requirements. This article aims to review and analyze the cur-

rent state of LiDAR compression methods to provide insights

into their effectiveness, limitations, and potential for future

development.

II. SPL BACKGROUND

A. SPL Raw Data

In the SPL system, the SPAD sensor array with spatial

dimension of M × N collaborates with timing electronics

to produce ToF timestamps for each laser pulse. These ToF

timestamps are subsequently processed using the TCSPC

technique, resulting in a ToF histogram for each pixel. Raw

data from the system may exist in two forms: a timestamp cube

ỹ ∈ R
M×N×p, where p represents the number of timestamps,

or more commonly a histogram cube y ∈ R
M×N×d, where d

denotes the histogram resolution determined by the number of
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TABLE I: LiDAR Compression Literature∗

Author (Year) Method Description TC SC

Henderson et al. [9],
[10] (2018-19)

Coarse Hardware solution: a gated procedure to compute a coarse histogram. 6

Ren et al. [11](2018) Coarse Hardware solution: a sliding detector gate to achieve high-resolution depth. 6 6

Gyongy et al. [12]
(2020)

Coarse Hardware solution: coarse histogram with wide pulse for better depth resolution. 6

Della Rocca et al. [13],
[14] (2019-20)

Coarse & Activity Hardware solution: only collect measurements based on activity changes.

Hutchings et al. [15]
(2019)

Coarse & Activity Hardware solution: discard photon detections based on activity.

Zhang et al. [16] (2018) Coarse-to-fine Hardware solution: a coarse to fine approximation of the ToF data.

Rapp et al. [17], [18]
(2018-20)

Coarse & dithering Hybrid solution: solution: coarse histogram followed by subtractive dithering for higher
depth resolution.

6

Kadambi and
Boufounos [19] (2015)

Compressive sensing Algorithmic solution: use coded aperture with compressed sensing to improve spatial
resolution.

: 6

Halimi et al., [20]
(2019)

Adaptive sampling Algorithmic solution: scene-dependent adaptive sampling approach by iteratively focus-
ing on interest regions and reducing the acquisition time.

: 6

Bergman et al. [21]
(2020)

Adaptive sampling Algorithmic solution: adaptive sampling based on an end-to-end deep learning-based
depth completion algorithms.

Zhang et al. [22] (2022) First arrival differential Hybrid solution: record a temporal differential measurement between pairs of pixels
followed by depth reconstruction algorithm.

6 6

Sheehan et al. [8]
(2021)

Compressive learning Algorithmic solution: follow compressive learning by sampling the characteristic
function of the ToF model to obtain a compressive statistic of the histogram sufficient
for depth and distance and intensity estimation.

6 :

Tachella et al. [23]
(2022)

Compressive learning Algorithmic solution: similar to [8] with additional penalty to capture spatial correlation. 6 6

Sheehan et al. [24]
(2022)

Compressive learning Algorithmic solution: an extension of [8] using piece-wise polynomial splines to form
a hardware-friendly compressed statistic.

6 :

Gutierrez-Barragan et
al. [25] (2022)

Linear coding Algorithmic solution: on-the-fly linear compression of the detected photons to form a
compressed histogram.

6 :

Poisson et al. [26]
(2022)

Linear coding & deep
learning recovery

Algorithmic solution: compute ToF histogram compressive sensing (CS) with a deep
generative model reconstruction.

6 6

∗ TC and SC stand for Temporal and Spatial Compression, respectively.

bins. While the conversion between the two formats is algo-

rithmically simple, the selection of using either the timestamp

cube or the histogram cube depends on factors such as noise

level and the ratio of timestamps to the histogram resolution.

Ultimately, the data cube is processed to estimate the depth

and reflectivity of the scene. However, in high-resolution

and high-frame-rate scenarios, the significant volume of data

generated by the SPL system can pose challenges for real-time

applications.

B. SPL Observation Model

The photon counts measured for each pixel, assuming a

single depth per pixel [5], [27]–[31], are represented by a

Poisson distribution:

yi,j = Poisson (αi,j h(t− τi,j) + b) (1)

Here, yi,j refers to the ith and jth pixel of the data cube y.

The parameter 0 ≤ αi,j ≤ 1 represents the surface reflectivity,

h(t) represents the pulse shape, τi,j represents the ToF, and

b represents the background noise originating from ambient

light or dark counts. To maintain clarity, the pixel index will

be omitted unless specifically needed. In synthetic examples, a

Gaussian pulse shape is assumed, but in practical settings, the

pulse shape is empirically measured. Furthermore, this model

can be extended to accommodate scenarios involving multiple

depths per pixel [32]–[36].

Alternatively, the timestamps cube ỹ can be modeled as a

mixture model. For instance, [37] models the detected photon

timestamp Probability Mass Function (PMF) as:

π(ỹ | ρ, τ) = ρ πs(ỹ | τ) + (1− ρ)πb(ỹ), (2)

Here, ρ represents the mixture model weight, while πs and

πb denote the PMF of signal and background detected photon

timestamps, respectively. The signal component is proportional

to the transmitted pulse, while the background component is

typically modeled as a discrete uniform distribution

III. SPL COMPRESSION METHODS TAXONOMY

In this section, we delve into the topic of compression

methods that effectively address the data deluge challenge

in SPL. To better understand and classify these compression

methods, we consider various aspects, including spatial and/or

temporal techniques, as well as hardware and/or algorithmic

approaches. To provide an overview of the existing literature

on LiDAR compression, we present Table I, which summarizes

key references in the field. Subsequently, we delve into several

compression methods that represent the main themes in SPL

compression.
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A. Coarse Histogram

One approach to compression is to balance the computa-

tional resources and depth resolution by employing a coarse

histogram [9], [10]. This method involves using a smaller value

of d in the SPL data cube y, thereby reducing memory require-

ments at the expense of sacrificing depth accuracy. A similar

implementation where adjacent pixels are merged to get a sin-

gle output can also be applied to the spatial dimensions. While

this approach is straightforward to implement in hardware, it

does not yield substantial compression ratios. To overcome the

coarse histogram disadvantages, [16] proposed a coarse-to-fine

approach. Also, [17], [18] investigated subtractive dithering to

improve the depth resolution without increasing the temporal

resolution.

B. Linear Compression

Focusing on a single pixel, recall that SPL system measure

timestamps ỹ ∈ R, that are then converted into a histogram

y ∈ R
d. The conversion is achieved by summing up one-hot

coding vectors, denoted as e(ỹ), for each timestamp:

y =

p∑

i=1

e(ỹ). (3)

To compress this histogram representation while retaining

important information, a technique called linearly compressed

histogram was proposed by [25]. It involves using a coding

matrix, denoted as C, with dimensions m × d, where m is

significantly smaller than d. The compressed histogram can

be obtained as:

g =

p∑

i=1

Ce(ỹ). (4)

By employing this linear compression, it becomes possible to

represent the original histogram more efficiently, effectively

reducing its dimensions. This approach provides flexibility,

as the linearly compressed histogram offers various instances

depending on the chosen coding matrix. Notable examples of

these instances include:

• Classical histogram: Utilizing an identity coding matrix

and recovers (3),

• Coarse histogram: Employing a downsampling coding

matrix that implements block summing,

• Truncated discrete Fourier transform (T-DFT): A compo-

sition of two linear operators, namely the downsampling

and DFT.

The selection of the coding matrix depends on factors such as

scene complexity, pulse shape, and noise level. For instance,

when assuming a Gaussian pulse, T-DFT is suitable as it

captures most of the low frequencies.

After the linear compression stage, the compressed repre-

sentation g is processed by a decoder to infer depths. [25]

proposed a simple correlation-based decoding method:

τ̂ = argmax
i

CT
:,i g. (5)

In the decoding stage, the decoder seeks the column of

the coding matrix that exhibits the highest correlation with

the compressed histogram. The linear compression approach,

implemented by the simple encoder, offers a balance between

simplicity and compression ratio. However, it is important to

note that the current discussion of linear compression has been

confined to the temporal dimension. To achieve even higher

compression ratios, it becomes imperative to explore spatial-

temporal redundancies.

C. Compressive Learning

The Compressive Learning (CL) framework leverages a

nonlinear feature mapping and averaging to generate a lower-

dimensional representation, termed a sketch, of SPL times-

tamps. This sketch is computed as:

g =
1

p

p∑

i=1

Φ(ỹ) (6)

where Φ : R → R
m is a nonlinear feature map, and m is

significantly smaller than the total number of timestamps, p.

It is noteworthy that the linear compression method can be

seen as a specific case within the broader CL framework.

Additionally, the sketch can be interpreted from a statistical

viewpoint as generalized moments. To see that, note that as

the number of detected timestamps, p, tends to infinity, the

sketch approaches the expected value E{ỹ} due to the strong

law of large numbers. The choice of the feature map leads to

the recovery of classical probability concepts including:

• The kth moment: E{ỹk} where Φ(ỹ) = ỹk,

• Characteristic function (CF): Ψ(ω) = E{ejωỹ} where

Φ(ỹ) = ejωỹ and ω denotes the frequency.

Assuming the closed-form existence of E{ỹ}, which is only

valid under simple distributions of ỹ and specific feature maps

Φ, the decoder stage aims to estimate the depth and reflectivity

by minimizing the distance between the sketch and the closed-

form expectation:

α̂, τ̂ = argmin
α,τ

∥∥∥∥∥
1

p

p∑

i=1

Φ(ỹ)− Eα,τ{ỹ}

∥∥∥∥∥

2

, (7)

where α̂ and τ̂ represent the estimated depth and reflectivity,

respectively. This non-convex optimization problem is solved

iteratively to obtain accurate estimates.

In [8], [38], the compressive learning (CL) framework was

applied to SPL using the ToF mixture model (2). The authors

employed the CL framework by utilizing a complex expo-

nential feature map, denoted as Φ. Consequently, the resulting

sketch can be interpreted as an empirical approximation of the

Fourier transform of the density function associated with the

SPL timestamps. It is worth noting that this specific choice of

the feature map is equivalent to linear compression with a DFT

and downsampling coding matrix. However, the distinction

lies in the decoder stage. The CL framework is limited by

the requirement of a closed-form expression for the expected

value, which is only available for simple feature mapping. This

limitation affects the achievable compression ratio.
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The discussion so far has focused on exploiting temporal

correlation. In [8], spatial correlation was exploited by adding

a penalty term that models the spatial correlation between pixel

depths and reflectivity. The penalty is implemented through a

PnP (Plug-and-Play) approach called RT3D [35].

D. Compressive Sensing

Compressive Sensing (CS) is a technique that aims to

decrease the data acquisition rate by capturing a limited

number of linear measurements and employing reconstruc-

tion algorithms that leverage the inherent structure of the

underlying signal, such as sparsity. In [19], the utilization

of a coded aperture was suggested to acquire these linear

measurements using a smaller sensor array. Subsequently,

depth reconstruction algorithms were employed to restore a

higher-resolution depth map. It should be noted, however,

that in the aforementioned example, CS solely exploits spatial

redundancy and does not take into account the temporal aspect.

E. Adaptive Sampling

The objective of the adaptive sampling approach is to reduce

memory demand by selectively collecting measurements based

on a specific metric. The authors in [13]–[15] proposed adap-

tive sampling based on significant changes in the activity of

the scene. This technique minimizes the amount of data being

transferred since it is only necessary in specific instances.

However, it is important to note that these approaches may

remain inactive in situations where there is only a slight al-

teration in activity. In a similar vein, [20] proposed enhancing

sampling by utilizing depth image statistics to create a map

of important areas. This map influences the choice of sample

positions and acquisition timing. It is worth noting that while

adaptive sampling reduces memory demand, it often comes

at the cost of additional computational overhead for real-time

applications.

F. Deep Learning Methods

Deep Learning (DL) has made significant advancements in

addressing various conventional challenges in image process-

ing and computer vision. Notably, there is an observable surge

in the adoption of DL techniques for SPL compression. In [26],

the authors introduced an end-to-end encoder-decoder neural

network architecture. The encoder module employs one-hot

coding, followed by a random linear transformation sampled

from the Rademacher distribution. On the other hand, the

decoder module utilizes a deep generative model that has been

trained to accurately reconstruct both the depth and reflectivity

attributes. In [21], the authors proposed adaptive sampling

for depth completion at low sampling rates. The proposed

system exhibits differentiability, enabling seamless end-to-end

training of both the sparse depth sampling and depth inpainting

components. The authors’ work highlights the significance of

adaptive sampling.

IV. CONCLUSION

In conclusion, this paper emphasizes the significance of

real-time mapping for autonomous vehicles. Single Photon

Light Detection and Ranging (SPL) technology offers im-

pressive long-range capabilities and superior depth resolution

but generates substantial data volumes, creating a throughput

bottleneck. The paper addresses SPL compression challenges,

provides a comprehensive overview of recent advancements,

and discusses various compression methods, including algo-

rithmic and hardware-based approaches. Looking ahead, the

expansion of SPL’s capabilities will involve the utilization

of multiple wavelengths, thereby increasing the importance

of addressing the compression challenge. One promising di-

rection is to optimize lidar acquisition resources and fuse

additional information from other sensing modalities, such

as standard red–green–blue images and radar. Deep neural

networks are anticipated to play a significant role in SPL

compression by exploring spatial-temporal redundancies and

facilitating the fusion of diverse modalities. By overcoming

compression challenges and leveraging emerging technologies,

SPL can greatly advance real-time mapping for autonomous

vehicles.
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