
Pulsed ToF LiDAR-based Depth Imaging: SPAD

Circuit Considerations and Simulation Study

Utku Noyan1, Sheung Lu1, Abdullah Al-Shabili2, Marc Dandin3, Stanley H. Chan2, and Pamela Abshire1

Abstract—Pulsed Time-of-Flight (ToF) LiDAR is a crucial
technology for acquiring depth information in various applica-
tions, including autonomous vehicles, robotics, and 3D mapping.
Single-Photon Avalanche Diodes (SPADs) are widely employed
as detectors in these systems due to their fast response and
high sensitivity. This paper investigates pulsed ToF LiDAR-based
depth imaging to clarify the hardware design considerations that
affect depth estimation accuracy. We present a simulation study
that investigates the performance of SPAD-based LiDAR systems
under various conditions, offering insights into the design of
SPAD circuits for improved depth imaging performance. We find
that, as expected, accuracy and depth resolution depend strongly
on the fill factor, with accuracy decreasing as the fill factor drops,
gradually at first and then more steeply for fill characteristics of
less than 50%. Lastly, we discuss the outcomes of our simulations
and suggest directions for future research in this area.

Index Terms—Depth imaging, Pulsed Time-of-Flight (ToF)
LiDAR, Single-Photon Avalanche Diodes (SPADs), Autonomous
vehicles Circuit considerations

I. INTRODUCTION

Depth imaging plays a pivotal role in various fields, in-

cluding robotics, autonomous vehicles [1], and 3D mapping.

Among the depth imaging technologies, Pulsed Time-of-Flight

(ToF) LiDAR systems have gained substantial recognition due

to their ability to deliver accurate, high-resolution depth infor-

mation. These systems predominantly employ Single-Photon

Avalanche Diodes (SPADs) [2], recognized for their rapid

response and high sensitivity stemming from the avalanche

effect. SPAD circuit considerations are therefore critical in

determining the accuracy and performance of depth estima-

tion [3]. Despite the importance of these considerations, the

tradeoffs related to the design and performance of SPAD

circuits in LiDAR systems remain under-explored. One notable

application of LiDAR systems with optimized fill factors and

sensitivity is autonomous driving, where accurate, reliable,

and timely depth sensing is essential for safe navigation and

obstacle detection [4]. This paper attempts to bridge this gap

by investigating the tradeoffs in pulsed ToF LiDAR-based

depth imaging, focusing on SPAD hardware factors. This
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simulation study offers new insights into the influence of

hardware design factors on system performance, with a view

to optimizing depth, accuracy, and efficiency.

The paper is organized as follows: Section II briefly intro-

duces pulsed ToF LiDAR-based depth imaging. Section III

discusses these systems’ circuit considerations for SPADs.

Section IV presents the simulation study methodology and its

assumptions. Section V discusses the results obtained from

the simulations and their implications. Finally, Section VI

concludes the paper and suggests future research directions.

II. PULSED TOF LIDAR-BASED DEPTH IMAGING

Pulsed ToF LIDAR systems, as illustrated in Figure 1,

utilize short laser pulses to illuminate a scene and measure

the time required for light to travel from the source to the

target and back to the detector - the time of flight (ToF). These

short pulses are beneficial as they allow for higher-resolution

measurements and are less likely to be affected by ambient

light. The time-of-flight is then used to calculate the distance

between the LIDAR system and the target, providing precise

depth information.

A typical pulsed ToF LIDAR system, as illustrated in

Figure 2, comprises a light source, a detector array, a timing

circuit, and signal processing components. The light source

emits short laser pulses, and the detector, typically a SPAD

array, captures the photons reflected from the scene. SPADs

are particularly favored in this setting due to their fast response

time and high sensitivity. The timing circuit measures the time-

of-flight for each detected photon, while the signal processing

components transform the raw data into depth information to

construct a detailed depth map of the scene.

The relationship between time-of-flight and distance is given

by:

d =
c× t

2
(1)

where d is the distance to the target, c is the speed of light,

and t is the time of flight. Pulsed ToF LIDAR systems offer

several advantages over other depth imaging technologies such

as structured light and stereo vision. They are less affected

by ambient lighting conditions, can work at longer ranges,

and provide higher depth resolution [1]. Performance can be

degraded by atmospheric conditions such as fog, as these can

affect the transmission of the LIDAR light pulse. This point is

particularly relevant when considering real-world application

scenarios. Design of an efficient pulsed ToF LIDAR system

requires careful consideration of various factors, including
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Fig. 1: TOF-LIDAR illumination schemes: 2D raster scan with

single spot and a 2D array detector. Adapted from SPADs and

SiPMs Arrays for Long-Range High-Speed Light Detection

and Ranging (LIDAR) by Villa et al. [5] (available from [6],

used under CC BY 4.0.

the choice of detectors, light sources, and signal processing

techniques. In particular, the performance of SPAD-based

detectors significantly impacts the overall depth estimation

accuracy and system performance.

Fig. 2: Communication Channel Model of Pulsed ToF LIDAR

Front End including Circuit Considerations

III. SPAD CIRCUIT CONSIDERATIONS

Single-Photon Avalanche Diodes (SPADs) are P-N junctions

operated in avalanche with high sensitivity, allowing them

to discern individual photons with high temporal resolution.

A simplified schematic for a SPAD detector is depicted in

Figure 3, including the avalanche photodiode and the asso-

ciated circuits responsible for active quenching, reset, and

event readout. The SPADs operate in Geiger mode, where an

avalanche of charge carriers, detectable as a current pulse,

is triggered by an incoming photon. Several circuit factors

can affect the performance of SPADs in pulsed ToF LIDAR

systems, as outlined below:

• Dead Time: The detection of each photon prompts an

avalanche event. Until this avalanche is quenched and the

device reset, the SPAD remains incapable of detecting ad-

ditional photons. This quench/reset time is known as dead

time, a period of inactivity for the SPAD. This results in a

temporal asymmetry, as initiating the avalanche is faster

than quenching and restting. Consequently, dead time can

lead to a loss of photons and a decreased dynamic range,

especially under high-flux conditions.

• Fill Factor: Defined as the ratio of the SPAD’s active

sensing area to the total circuit area, the fill factor

is typically reduced by the circuitry within the pixel,

including quench and reset circuits. This reduction, in

turn, decreases the detector’s overall sensitivity. While

higher fill factors are generally favored, they may also

elevate the risk of crosstalk.

• Dark Count Rate: This refers to the frequency at which a

SPAD triggers an avalanche in the absence of an incident

photon. The dark count rate occurs due to the incident

photons and thermally generated carriers in the diode’s

breakdown region. Higher dark count rates can amplify

the background noise in depth measurements.

• Background Illumination Rate: This metric denotes

the incident flux of photons unrelated to the pulsed ToF

LIDAR system’s illumination, such as sunlight or other

artificial light sources, are detected. This rate can increase

noise and reduce SNR in depth measurements.

• Atmospheric Transmission: As portrayed in Figure 1,

the LIDAR signal travels from the source to the detector

through the atmosphere. This journey can weaken the sig-

nal due to the atmosphere’s absorption and scattering of

the emitted light. This attenuation can affect the system’s

overall sensitivity, especially at greater distances.

• Afterpulsing: This phenomenon, where one photon de-

tection event triggers subsequent detections, can also

impact system performance. The present study did not

consider this factor, focusing instead on situations with

long dead times where after-pulsing effects will be less

significant.
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Fig. 3: Simplified Schematic of SPAD Pixel Circuit

IV. SIMULATION STUDY

We conducted a simulation study to explore the impact of

various factors on the performance of SPAD-based pulsed ToF

LIDAR systems. The study models key system components

and their interactions using a custom simulation framework in

Python. It considers the SPAD circuit considerations outlined
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Fig. 4: Layout View of examplar SPAD array [7] where SELx

is the column select line and SELy is the row select line

in Section III and models light propagation, photon detec-

tion, and depth estimation processes. We used Monte Carlo

sampling techniques to incorporate the stochastic nature of

photon arrivals and detection events [8]. We ran numerous

simulations to gather statistically meaningful results. We based

our parameter estimation and models for the SPAD array

on values from [9]. The simulation includes the following

assumptions, variables and parameters:

• Number of SPADs (N) in the detector array: We

assume that the total area of the detector array is fixed at

0.1236 cm2 and that this area can be allocated as a single

SPAD or an array of SPADs with separate avalanche

detection regions. In this work, the number of SPADs

in the detector array varies from 1× 1 to 64× 64. Given

a fixed area required for the in-pixel circuitry determined

from the SPAD array in [9], the number of SPADs thus

sets the pixel area, fill factor (as depicted in Figure 6),

and incident photon count for a given light intensity.

• Fill factor (FF): We use a simple model shown in

Figure 6 reflecting how the fill factor varies with pixel

size. The model assumes a fixed area devoted to in-pixel

circuits, with the remainder allocated to the sensor area.

Larger sensors have a higher fill factor.

• Number of emitted photons per pulse (E): We vary

the intensity of the transmitted light from 1000 to 10000

photons/sec.

• Pulse width and repetition rate: We vary the pulse

width from 1e-8 to 1e-10 s and the repetition period from

1e-3 to 1e-4 second.

• Reflectivity of the scene: We have used reflectivity val-

ues ranging from 0.15 to 0.99 from the Middlebury2006

Dataset [10], [11].

• Detector dead time (DDT) and dark count rate (DCR):

We assume a fixed dead time of 1e-9 s. Thermally gener-

ated carriers are assumed to follow a Poisson distribution,

with the density of dark counts scaling with sensor area.

• Atmospheric transmission(AT) and background illu-

mination(BI): We assume a fixed atmospheric transmis-

sion factor of 1.0 and background illumination of 100

photons/sec impinging on the array.

The optical components in our simulation define the raster

scanning Field of View (FoV) to match the SPAD array’s

area. This setup allows for modeling different SPAD array

sizes (1x1m through NxN), influencing the system’s coverage

and resolution. With a fixed sensor area and illumination,

increasing the number of SPADs reduces the incident signal

and increases the noise per SPAD. This is due to the light being

distributed across more detectors and each SPAD contributing

noise (mostly from dark counts). Thus, while larger SPAD

arrays can potentially improve LIDAR spatial resolution, there

is an associated tradeoff due to reduced signal and increased

noise. Balancing these factors is an important consideration in

SPAD-based LIDAR systems.

V. RESULTS AND DISCUSSION

Fig. 5: Simulation Study: Comparison of Simulated Middle-

bury2006 Bowling Scene [10], [11] and Detected/Estimated

Scene Depths

In this simulation study, the depth resolution of a pulsed

LIDAR system is explored concerning the number of SPADs

(single-photon avalanche diodes) incorporated into the array.

The fill factor and dead time are critical considerations in this

study. We model the dark count and background photons using

Poisson-based interarrival times to simulate photon statistics.

Simulation results reveal that the SPAD array configuration

and the aforementioned factors strongly influence the perfor-

mance of the pulsed LIDAR system. We utilized the bowling

scene from Middlebury2006 [10], [11] to evaluate the accuracy

of our simulation study, as shown in Figure 5. Raster scanning

is employed for depth estimation, with the number of SPADs

in the array determining the field of view. Reflected photons

from the scene are generated according to pixel reflectivity

and time of flight based on pixel depth values. The photons

are simulated as Poisson events. To account for the dead

time effect, we model the SPAD as unable to detect new

photons during the dead time. We have also considered the
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Fig. 6: Trade-off between fill factor for

single SPAD and array configurations.

Fig. 7: Depth Resolution Fig. 8: Trade-off between depth

accuracy and time resolution

quantum efficiency of the SPAD, which influences the number

of photons detected by the sensor and, consequently, the

overall performance of the depth estimation in the LIDAR

system. The depth is estimated by determining the peak time

of detected photons within the histogram, which represents

the time of flight for the emitted light pulse to reach the

target and return to the detector. The peak time is linearly

related to the the distance to the target according to Eqn. (1).

This simulation does not consider any limitations due to signal

processing or readout, assuming that all events are detectable

(except for those arriving during the detector dead time as

discussed above).

We find that increasing the number of SPADs in an array

decreases the depth resolution accuracy compared to single

SPAD configurations, as depicted in Figure 7. The accuracy

of the depth estimation can be quantified by comparing the

simulated depth values with the actual depth values. Accuracy

can be defined as:

Accuracy =

√

1

n

∑n

i=1
(Pi −Oi)2

Omax −Omin

(2)

where Pi represents the predicted depth values, Oi represents

the observed (actual) depth values, and n is the number of

depth values compared. While in this simulation single SPADs

offer better depth resolution due to their higher fill factor, this

comes at the expense of increased time required for raster

scanning in order to obtain an image of the scene.

The total time spent to obtain as image scales as:

O

(

P 2

N2

)

(3)

where P is the number of pixels in the scene and N is

the number of SPADs in the array. The time is inversely

proportional to the square of the number of SPADs since it

is in terms of P/N squared. To determine the ideal number of

SPADs in the array, we employ the F-measure to explore the

tradeoff between the accuracy of depth resolution and imaging

time in SPAD-based LIDAR systems.

F -measure =
2× Accuracy × Total Time Spent

Accuracy + Total Time Spent
(4)

When the number of SPADs is less than this optimal number,

the reduction in depth accuracy dominates, causing a decrease

in the F-measure. Conversely, when the number of SPADs

exceeds the optimal number, the increase in time complexity

outweighs the gains in depth accuracy, leading to a decrease

in the F-measure.

This finding suggests that for a SPAD array of fixed total

sensor area, there exists an optimal number of SPADs that

offers the best balance between depth accuracy and imaging

time, which, in the case of our simulation study, is approxi-

mately 40 as seen in Figure 8.

This simulation study provides insight into the performance

of SPAD-based pulsed ToF LIDAR systems under various

conditions. The results highlight the importance of optimizing

SPAD array design to achieve accurate depth measurements

and minimize the impact of noise and other unwanted effects.

VI. CONCLUSION

This paper has presented a commnuication channel model

for pulsed ToF LIDAR-based depth imaging, emphasizing the

role of SPAD circuit considerations in precise depth estima-

tion. Through simulation, we have examined the influences

of various factors on the operation of SPAD-based LIDAR

systems, underscoring the necessity to optimize SPAD array

configurations for superior depth imaging performance.
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