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Abstract

Whole-body biometric recognition is an important area

of research due to its vast applications in law enforcement,

border security, and surveillance. This paper presents the

end-to-end design, development and evaluation of FarSight,

an innovative software system designed for whole-body (fu-

sion of face, gait and body shape) biometric recognition.

FarSight accepts videos from elevated platforms and drones

as input and outputs a candidate list of identities from a

gallery. The system is designed to address several chal-

lenges, including (i) low-quality imagery, (ii) large yaw and

pitch angles, (iii) robust feature extraction to accommodate

large intra-person variabilities and large inter-person sim-

ilarities, and (iv) the large domain gap between training

and test sets. FarSight combines the physics of imaging

and deep learning models to enhance image restoration and

biometric feature encoding. We test FarSight’s effectiveness

using the newly acquired IARPA Biometric Recognition and

Identification at Altitude and Range (BRIAR) dataset. No-

tably, FarSight demonstrated a substantial performance in-

crease on the BRIAR dataset, with gains of +11.82% Rank-

20 identification and +11.30% TAR@1% FAR.

1. Introduction

The aim of whole-body biometric recognition is to de-

velop a person recognition system that will surpass the per-

formance of state-of-the-art (SoTA) recognition of the face,

gait, and body shape alone, specifically in the challenging,

unregulated conditions present in full-motion videos (e.g.,

Capture Devices Imaged TargetCapture Conditions

Pitch > 20°

Distance > 1000m

Input

Core Algorithms

Face Gait Body Shape

Whole-body 

Biometric 

Feature Encoding

Rank: 1         2         3   …    X   

Figure 1. FarSight is a person recognition system that implements

and fuses SoTA face, gait and body shape recognition modules in

challenging conditions presented by full-motion videos.

aerial surveillance). It encompasses functionalities such as

person detection, tracking, image enhancement, the miti-

gation of atmospheric turbulence, robust biometric feature

encoding, and multi-modal fusion and matching. The wide-

ranging applications of whole-body recognition in fields

like law enforcement, homeland security and surveillance,

further underscore its importance [16, 48, 50, 66].

To achieve these goals, we design, prototype and evalu-

ate a software system called FarSight for whole-body (face,

gait and body shape) biometric recognition. As illustrated

in Fig. 1, FarSight accepts as input a video captured at long-

range and from elevated platforms, such as drones, and out-

puts a candidate list of identities present in the input video.

The design of FarSight confronts a number of novel chal-

lenges that have not been adequately addressed in existing

literature: i) Low-quality video frames due to long-range

capture (hundreds of meters) and atmospheric turbulence
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(with the refractive index structure parameter C2

n in ranges

of 10−17 to 10−14 m−2/3 [52]). ii) Large yaw and pitch

angles (> 20 degrees) due to elevated platforms (altitudes

of up to 400m). iii) Degraded feature sets due to low vi-

sual quality (the pixel range for Inter-Pupillary Distance is

around 15−100). iv) Limited domain and paucity of train-

ing data due to diversity in the operating environments re-

sulting in a large domain gap between training and test sets.

To address these challenges, the design of FarSight

heavily relies on modeling the underlying physics of im-

age formation, image degradation and human body models

throughout the recognition pipeline. Further, we integrate

the learned physics knowledge into the deep learning mod-

els for feature encoding. The four key modules of FarSight

are 1) image restoration, 2) detection and tracking, 3) bio-

metric feature encoding, and 4) multi-modal fusion.

• Image restoration: Video streams captured from long

distances suffer from atmospheric turbulence, platform

vibration, and systematic aberrations. Unlike most

SoTA approaches that rely on deep learning, we di-

rectly model the physics of turbulence. This model not

only provides better understanding of imaging limits

and turbulence parameters but also enables the creation

of datasets for training restoration modules. Conse-

quently, our approach ensures improved explainability

and requires fewer labeled samples, leading to superior

generalization in unseen environments.

• Detection and tracking: We develop a joint body and

face detection module, which is able to associate face

and body bounding boxes. Detected bounding boxes

can then be fed into an appropriate feature extractor

(embedding) without requiring a post-processing stage

to match face and body bounding boxes.

• Biometric (face, gait and body shape) feature encod-

ing. (i) Face: We leverage adaptive loss function, two-

stage feature fusion, and controllable face synthesis

models to effectively manage image quality variation,

frame-level feature consolidation, and domain gap. (ii)

Gait: We extract both local features and global corre-

lations to improve identification in diverse scenarios.

(iii) Body shape: We learn a robust 3D shape repre-

sentation that is invariant to clothing and body pose

variations, leading to improvements in body matching.

• Multi-modal fusion: This module performs score-level

fusion and score imputation in case of missing data

(when no features could be extracted for one or more

biometric modalities), which does occur due to the

challenging nature of long range and high angle of in-

clination videos.

The innovations of FarSight system are as follows:

� Explicitly modeling the physics of imaging through

turbulence and image degradation and integrating physics-

based models into deep learning for image restoration.

� Utilizing a joint body and face detection approach, eas-

ily integrated with upstream and downstream tasks.

� An effective feature encoding for face, gait and body

shape, along with a novel multimodal feature fusion ap-

proach, enabling superior recognition performance.

� Utilizing the Biometric Recognition and Identification

at Altitude and Range (BRIAR) dataset [10], we demon-

strate the superior performance of the proposed FarSight

system, and its robustness and effectiveness in whole-body

biometric recognition under challenging conditions.

2. Related Work

Whole-Body Biometrics Recognition. Whole-body bio-

metric recognition merges multiple physical traits, specif-

ically face, gait, and body shape, to bolster identification

accuracy, especially in challenging scenarios. Unlike tra-

ditional biometric systems focusing on a single trait [9, 12,

14, 17, 22, 26, 35, 61, 64], this comprehensive approach can

mitigate inherent weaknesses and exploit the strengths of

each individual trait, leading to enhanced recognition per-

formance. For example, while face recognition might strug-

gle with varying poses and lighting, gait can be affected

by walking speed and attire. Body shape remains a consis-

tent identifier, though it can vary with clothing and posture.

Recent literature [18, 25] have increasingly embraced this

multi-faceted approach, but many do not provide compre-

hensive solutions that include image restoration, detection,

tracking, and fusion of modalities. This gap indicates poten-

tial for further development in holistic biometric systems,

ensuring robust recognition in challenging video conditions.

Physics Modeling of Imaging through Turbulence. Tur-

bulence is modeled as a stochastic phenomenon with its

modern form largely based on Kolmogorov [28]. The at-

mosphere can be modeled as a turbulent volume that per-

turbs light propagating through it [47, 54]. Since the atmo-

sphere is a stochastic phenomenon, its effect on an image is

also stochastic. Drawing realizations from this distribution

requires a simulator. Simulating these effects most often

comes in the form of mirroring nature: a wave is numeri-

cally propagated through a simulated atmosphere. Methods

that utilize numerical wave propagation in this manner are

referred to as split-step propagation [4, 19, 20, 52]. Alter-

native methods combine empirical understanding and anal-

ysis [30, 43, 45, 46] with some recent modification and im-

provement [39,40]. Given the scarcity of open-source tools,

we introduce a unique modeling approach.

Image Restoration. Successful biometric recogni-

tion relies upon robust feature extraction from sensed im-

agery [23]. With poor-quality imagery, image restoration

serves as a way to extract robust and salient features and po-

tentially boost recognition accuracy. However, restoration

methods may change the person’s identity based on recon-
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Figure 2. The proposed FarSight system incorporates six components: detection and tracking, image restoration, face, gait, and body

shape feature extraction, and multi-modal biometric fusion.

structed features as shown in attack-based work [37]. Thus,

reconstruction in this biometric context is slightly different.

We prefer a reconstructed image that improves downstream

recognition performance. Face deblurring in the presence

of invariant blur has been shown to have positive results on

downstream classification [53]. Furthermore, some efforts

in restoration [29,41,59] have suggested that reconstruction

may indeed help in the case of atmospheric turbulence de-

graded images. These methods, however, rely only on sin-

gle frames, therefore, in the FarSight system we use multi-

frame fusion to improve the quality of degraded images.

Detection and Tracking. Face detection has been exten-

sively studied in the field of computer vision, with nu-

merous endeavors aimed at detecting faces across a di-

verse array of scenes. Various methodologies, as pre-

sented in [11, 31, 70], have successfully employed differ-

ent approaches for detecting faces in unconstrained settings.

Building upon this, pedestrian tracking is another signifi-

cant module in biometrics. A multitude of strategies have

been developed to improve both the efficiency and effec-

tiveness of tracking. Among them, tracking by detection

paradigms has emerged as the leading approach due to its

adaptability and superior performance. Motion-based meth-

ods [3, 63, 69] employ spatiotemporal information to en-

hance object association and improve tracking accuracy.

Appearance-based methods [56, 57, 62] introduce various

appearance features to facilitate accurate object matching.

Multi-Modal Biometric Fusion. Fusion relies on lever-

aging encoded biometric features or scores from multiple

matchers. An example of a score-level fusion method is

the sum rule, where normalized scores are weighted and

summed to generate the fused score to be used for perfor-

mance evaluation [21, 49].

3. FarSight: System Architecture

3.1. Overview of FarSight

As illustrated in Fig. 2, FarSight operates through six

modules: detection and tracking, image restoration, face,

gait, and body shape feature extraction, and multi-modal fu-

sion. These modules work within a scalable testing frame-

work, optimizing GPU usage via adaptable batch sizes. An

API utility facilitates communication between the frame-

work and external systems, transmitting video sequences

from configuration files to the framework via Google RPC

calls. Essential features extracted from these sequences are

stored in HDF5 files for performance evaluation.

The workflow starts with input video sequences under-

going detection and tracking. Regions of interest (RoI) are

identified and forwarded to gait and body modules, with

face images undergoing restoration. Gait and body modules

produce unique feature vectors via average pooling, while

the face module, using CAFace [27], consolidates features

across sequences. A probe comprises a single video seg-

ment per subject, while gallery enrollments – multiple video

sequences and stills – are merged into a singular feature vec-

tor for each modality.

3.2. Challenges in FarSight

The FarSight system faces distinct challenges. Captured

videos often suffer from poor quality due to long-range cap-

ture and atmospheric turbulence. Elevated platforms intro-

duce large yaw and pitch angles, making data analysis more

challenging. Extracting identity features is affected by low

visual quality, and the training data’s limited domain further

complicates the learning task. Further, the lack of trans-

parency in deep learning models poses a significant issue.

Fig. 3 illustrates these challenges with examples from close-

range, mid-range (100-500m), and UAV-captured scenarios.

3.3. Physics Modeling of Turbulence

Atmospheric turbulence is an unavoidable degradation

when imaging at range. It is often computationally modeled

by splitting the continuous propagation paths into segments

via phase screens as illustrated in Fig. 4. While accurate,

the spatially varying nature of the propagation makes this a

computationally demanding process [19, 20, 52].

More recent works have explored the possibility of

propagation-free models where the turbulence effects are

implemented as random sampling at the aperture [7, 8, 38].

As shown in Fig. 4, every pixel on the aperture is associ-

ated with a random phase function which has a linear rep-
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Figure 3. Example frames in the BRIAR dataset [10] showing

the same subject (identity) under various conditions, including

different standoff distances, clothing, and image quality due to

the turbulence effect. The columns represent different scenarios:

controlled conditions, close range, 100m-set1, 100m-set2, 200m,

400m, 500m, and UAV capture, respectively.

resentation using the Zernike polynomials [42]. By con-

structing the covariance matrix of the random process, we

can draw samples of the Zernike coefficients to enforce spa-

tial and modal correlations. Propagation-free simulation has

enabled 1000× speed up compared to the split-step propa-

gation methods while maintaining accuracy. Therefore, we

adopt this simulation approach in our system.

For the generation of training data, realistic optical and

turbulence parameters significantly influence the appear-

ance of the generated defects. Therefore, our datasets are

synthesized according to the metadata of various long-range

optical systems. Our training dataset also consists of both

dynamic and static scenes [24, 51, 68].

3.4. Detection and Tracking

Our detection module, based on [55], uses a two-stage R-

CNN detector [44] with a modified ResNet50 backbone to

associate face and body bounding boxes [55]. This is done

using associative embeddings to match faces and bodies,

learned via pulling and pushing loss functions [13]. The

pulling loss brings embeddings of the same subject closer in

the presence of intra-subject variations, calculated as body-

to-body, face-to-face, and face-to-body pairs. These are

combined using a weighted sum of body-to-face loss, and

the sum of face-to-face and body-to-body losses. Pushing

loss, in contrast, pushes away bounding boxes assigned to

different subjects to account for inter-subject variations. It

is divided into three losses between pairs of body boxes,

pairs of face boxes, and body-face pairs. These losses are

combined by a weighted sum. The final associative embed-

ding loss used to optimize these embeddings is a weighted

sum of the pulling and pushing losses.

The module also predicts “head hook” coordinates for

every subject to improve body and face association. The

Random phase screens are 

drawn from the Kolmogorov 

power spectral densities (PSD)

Turbulence is modeled as 

phase screens

object planee
aperture plane

Split-step propagation

local phase
PSF

Image

Collapsed phase screen

Zernike-based 

propagation-free 

simulation

Figure 4. Turbulence modeling. Comparing split-step [5, 19] and

Zernike-based simulations [7, 8, 38].

head hook loss is a weighted sum of the Smooth L1 loss [15]

and a scale-invariant angular loss. The final association be-

tween body and face bounding boxes is based on similarity

metrics, including embedding distance, head hook distance,

and confidence scores. The RBF kernel is used for both

the embedding distance and head hook distance. The confi-

dence scores factor directly into the association loss to miti-

gate associating low-confidence bounding boxes with high-

confidence ones. Finally, all these metrics are integrated

into a final association metric. If a face prediction’s maxi-

mum similarity score with any body is below a set thresh-

old, it is concluded that the subject’s face is not visible.

3.5. Image Restoration

Image restoration aims to reverse the image formation

process, as described by the equation [6]

I(x) = [B ◦ T ](J(x)), (1)

where, T is the tilt operator and B represents the blur oper-

ation, with J(x) and I(x) as the input and output images,

indexed by position x, respectively. In this work, we have

considered a single-frame image restoration method as well

as a multi-frame method, both aiming to invert T and B.

Our restoration methods for biometrics focus on preserv-

ing identity, using lightweight, real-time techniques. These

are divided into single-frame and multi-frame restorations.

The former provides lower throughput but relies on strong

priors without altering the subject’s identity. Multi-frame

restoration, on the other hand, utilizes temporal cues, al-

lowing weaker priors but requiring larger throughput.

Our multi-frame approach uses the Recurrent Turbulence

Mitigation network (RTM), a bi-directional, multi-scale

convolutional recurrent network with a novel Multi-head

Temporal Channel self-attention (MTCSA) layer (Fig. 5).

3.6. Multi-Modal Biometric Feature Encoding

We describe here our methods for obtaining biometric

features from the face, gait and body shape, as well as
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Figure 5. Multi-frame image restoration by the recurrent network

for turbulence mitigation (RTM).

the multi-modal fusion technique applied to generate fused

scores for evaluation on the metrics described in Sec. 4.

3.6.1 Face

Our face recognition pipeline integrates the techniques of

Adaptive Margin Function (AdaFace [26]), Cluster and Ag-

gregate (CAFace [27]), and Controllable Face Synthesis

Model (CFSM [34]), addressing the challenge of recogniz-

ing faces across variable image qualities and media types.

Initially, AdaFace [26], an adaptive loss function strat-

egy, helps manage low-quality face datasets. It adjusts the

emphasis on misclassified samples based on image qual-

ity, effectively dealing with a wide range of image qual-

ity levels. Next, CAFace [27], a two-stage feature fusion

technique, is crucial for integrating features from multiple

frames. By grouping inputs to a few global cluster centers

and subsequently fusing these features, CAFace maintains

order invariance while combining multiple frames. Lastly,

CFSM [34] helps bridge domain gaps between training and

testing scenarios. It replicates the target datasets’ distribu-

tion in a style latent space, generating synthetic face images

similar to the target evaluation datasets, thereby reconciling

the disparity between high-quality training data and lower-

quality surveillance images. The combination of AdaFace,

CAFace, and CFSM effectively navigates the challenges of

face recognition across diverse image qualities, leveraging

feature extraction, feature integration, and synthetic image

generation to improve face recognition performance.

3.6.2 Gait

We propose an innovative framework, GlobalGait, to ad-

dress the limitations of existing gait recognition models

that mainly focus on local features and often overlook vital

global correlations. GlobalGait enriches these local features

by factoring in global correlations across a gait sequence,

thereby boosting recognition accuracy.

Given an input sequence, GlobalGait uses a CNN back-

bone to extract local spatiotemporal features, and then di-

vides them into source and target features. These feature
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Figure 6. Overview of the proposed body shape feature encoding

framework (3DInvarReID [33]). In the body matching process, the

identity shape features zid are utilized for matching.

maps are projected into tokens for each joint, using sam-

pling around each 2D joint. We employ a stack of multi-

head self-attention layers to model the sequences’ spatial

and temporal correlations. Further, GlobalGait attempts to

reconstruct target frame pixels based on source sequences

and to choose the correct target sequence from a set of can-

didates. This approach harnesses the spatial and temporal

correlations in gait recognition, with these supervisory sig-

nals guiding the model to learn more distinct gait features.

3.6.3 Body Shape

Our method (3DInvarReID [33]) for encoding body features

harnesses the power of Person Re-ID [2,32,60,65], with the

primary aim to effectively capture static body features. We

posit that the most reliable cue for body matching is the

naked 3D body shape, despite the considerable challenges

in reconstructing it from a 2D image. Taking cues from ad-

vancements in 3D feature learning, we introduce a pipeline

to disentangle identity (naked body) from non-identity com-

ponents (pose, clothing shape and texture) of 3D clothed

humans. The core of our approach lies in a novel joint two-

layer neural implicit function that disentangles these com-

ponents in latent representations.

As illustrated in Fig. 6, given a training set of T images

{Ii}
T
i=1

and the corresponding identity labels {li}
T
i=1

, the

image encoder E(I) : I −→ (zid, zcloth, ztex) predicts the

identity shape code of naked body zid ∈ R
Lid , clothed

shape code zcloth ∈ R
Lcloth and texture code ztex ∈ R

Ltex .

A joint two-layer implicit model decodes the latent codes

to identity shape, clothing shape, and texture components,

respectively. Additionally, PoseNet P predicts the cam-

era projection Ω and SMPL body pose θ: (Ω, θ) = P(I).
Mathematically, the learning objective is defined as:

argmin
E,F ,C,T

T
∑

i=1

(∣

∣

∣
Îi − Ii

∣

∣

∣

1

+ Lcla(zid, li)
)

, (2)

where Lcla is the classification loss. Î is the rendered im-

age. This objective enables us to jointly learn accurate 3D

clothed shape and discriminative shape for the naked body.
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We utilize CAPE [36] and THuman2.0 [67] datasets to

train our model, generating individual identity shape code,

clothing shape code, and texture code for each training sam-

ple. For inference, the encoder processes body images to

extract identity shape features zid. The Cosine similarity of

two zid determines if two images belong to the same per-

son. This method, excluding the explicit 3D reconstruction

during inference, is highly efficient.

3.6.4 Multi-Modal Biometric Fusion

To produce a comprehensive probe-gallery score from

multiple biometric modalities, we initially calculate per-

modality scores for each probe-gallery pair. For the face,

gait, and body, we create a singular subject-level feature us-

ing CAFace (Sec. 3.6.1), mean fusion on video-only gallery

features, and mean fusion on whole-body media, excluding

face-only images, respectively. This exclusion is necessary

due to the prevalence of face-only gallery images and the

unsuitability of gait recognition on single images. Probe

features are then compared to gallery features, and an equal-

weighted sum score fusion is employed to generate a single

score from the cosine similarity scores of the three modal-

ities. When feature extraction fails for one or more modal-

ities, we impute missing scores to the middle of the score

range, which is zero for the cosine similarity metric used

in generating probe-gallery scores. This imputation method

was chosen after evaluating alternative techniques, with this

approach showing the least bias and greatest stability.

4. Experimental Results

All modules are run together in a configurable container

environment on PyTorch version 1.13.1. We perform exper-

iments on 8 Nvidia RTX A6000s, with 48 GiB of VRAM,

over the course of 48 hours on 2 dual-socket servers with

either AMD EPYC 7713 64-Core or Intel Xeon Silver 4314
32-Core processors.

BRIAR Datasets 1 and Protocols. The IARPA BRIAR

dataset [10], comprises two collections—BRIAR Govern-

ment Collections 1 (BGC1) and 2 (BGC2), is a pioneering

initiative to support whole-body biometric research. It ad-

dresses the necessity for broader and richer data repositories

for training and evaluating biometric systems in challeng-

ing scenarios. BRIAR consists of over 350, 000 images and

1, 300 hours of videos from 1, 055 subjects in outdoor set-

tings. The dataset, with its focus on long-range and elevated

angle recognition, provides a fertile ground for algorithm

development and evaluation in biometrics.

The dataset, in accordance with Protocol V2.0.1, has

been partitioned into a training subset (BRS, 411 sub-

jects) and a testing subset (BTS, 644 subjects), with non-

1All human data is collected in accordance with ethical standards and

received approval from IRB.

overlapping subjects. Regarding the test subjects, we uti-

lize the controlled images and videos as gallery, and the

field-collected data as probe. The protocol provides for

644 subjects for closed-set search and includes two sub-

sets of 544 subjects each for open-set search, both con-

taining 444 distractors who lack corresponding probe sub-

jects. The probes, totaling 20, 432 templates, are catego-

rized into FaceIncluded and FaceRestricted. FaceIncluded

ensures the face is discernible, with at least 20 pixels in head

height. FaceRestricted contains data with challenges like

occlusions and low resolution.

Metrics. We employ BRIAR Program Target Metrics [1]

to measure FarSight’s performance across multiple modali-

ties and their fusion: verification (TAR@1% FAR), closed-

set identification (Rank-20 accuracy), and open-set identifi-

cation (FNIR@1% FPIR), allowing for a thorough exami-

nation of its performance across various settings.

Baselines. In our study, we utilize established bench-

marks for each biometric modality to ensure a comprehen-

sive comparison: For facial recognition, we utilize AdaFace

coupled with an average feature aggregation strategy, a pop-

ular approach known for its excellent performance [26].

For gait recognition, we adopt GaitBase [14], a solution

known for its efficacy. For body shape modality, we employ

CAL [17], a SoTA cloth-changing person re-identification

method. These benchmarks provide an excellent basis to

fairly evaluate our proposed method.

4.1. Evaluation and Analysis

In Tab. 1, we provide a thorough comparison of our

approaches and the baselines for each modality. The de-

tailed comparison analysis clearly highlights the superior

performance of our proposed FarSight system across all

performance metrics when compared to the baselines. For

each modality, our module outperforms the baselines by a

significant margin. For instance, in the verification met-

ric (TAR@1% FAR) on FaceIncluded sets, FarSight (Face)

sees an increase of 11.81%. For gait, there’s an improve-

ment of 13.65%, and for body shape, we see an improve-

ment of 2.13%. Further, upon fusion, we gain an additional

improvement of 16.78% (69.15% −→ 85.93%).

The FarSight system’s effectiveness across various

modalities and distances is evident in Tab. 2, displaying

each modality’s distinct robustness at different ranges. Es-

pecially noteworthy is the integrated FarSight model, ex-

hibiting an outstanding accuracy consistently above 88%
across all investigated ranges. The observed increase in

face recognition accuracy with distance is tied to the grow-

ing similarity between sensors used in training and testing

data. As this sensor alignment increases with distance, it

reduces the domain gap, leading to enhanced performance.

This finding underscores the critical role of sensor type and

domain adaptation in optimizing biometric recognition.
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Method

Verification (1:1)

TAR@1% FAR ↑
Rank Retrieval (1:N)

Rank-20, Closed Search ↑
Open Search (1:N)

FNIR@1% FPIR ↓
FaceRestricted FaceIncluded FaceRestricted FaceIncluded FaceRestricted FaceIncluded

Baseline-AdaFace [26] 9.61 66.20 14.97 73.85 96.22 70.64
FarSight (Face) 25.04 78.01 31.78 84.12 92.11 57.39

Baseline-GaitBase [14] 44.33 45.55 64.90 68.03 98.53 98.79
FarSight (Gait) 56.23 59.20 72.55 74.64 95.24 95.31

Baseline-CAL [17] 48.58 51.87 66.27 71.18 96.98 96.17
FarSight (Body) 51.02 54.00 69.18 72.91 96.95 96.23

FarSight (Face+Gait) 57.30 83.98 75.15 91.19 87.64 54.55

FarSight (Face+Body) 54.68 85.93 73.97 93.13 89.57 58.99
FarSight (Gait+Body) 58.91 62.08 73.06 75.57 94.86 94.74

AdaFace+GaitBase+CAL 51.70 69.15 65.57 80.19 94.92 67.53
FarSight 63.00 81.88 77.39 91.74 90.66 67.77

Table 1. Whole body biometric recognition results on the BRIAR dataset (N=644 in retrieval and 544 in open-set search).

Probe Close range 100m 200m 400m 500m UAV

FarSight (Face) 68.57 66.07 89.47 90.78 86.32 72.51
FarSight (Gait) 75.25 73.49 76.53 74.23 71.41 72.89
FarSight (Body) 72.68 73.25 75.79 77.40 73.91 73.90

FarSight 88.55 88.01 93.26 93.92 91.81 88.15

Table 2. Rank-20 (%) on BRIAR at different altitudes and ranges.

FaceIncluded
TAR@

1% FAR

Rank-

20

FNIR@

1% FPIR

AdaFace [26] 66.20 73.85 70.64

+ CFSM [34] 67.38 77.22 68.51

+ CAFace [27] 71.54 78.57 61.77

+BRS1 FarSight (Face) 78.01 84.12 57.39

Table 3. Ablation of different parts in face recognition pipeline.

TAR@1% FAR FaceIncluded

Face w/o Restoration 72.39

Face w/ Restoration 72.57

Table 4. Face recognition with and without image restoration.

4.1.1 Face

The efficacy of including various modules in the face recog-

nition pipeline is shown in Tab. 3. We initially use the

combination of AdaFace IR101 backbone with the average

feature aggregation which has shown good performance in

low-quality imagery [26]. CFSM [34] adds performance

improvement by adopting training data to a low-quality im-

age dataset WiderFace [58] (+1.18 in TAR@1% FAR).

CAFace [27] is a feature fusion method that improves upon

the basic average pooling (+4.16). Lastly, finetuning the

model on the BGC1 training dataset further improves the

performance (+6.47). The inclusion of an RTM-based im-

age restoration model, as demonstrated in Table 4, leads to

noticeable performance enhancements

4.1.2 Gait

In our gait recognition experiments, we observe consis-

tent improvements compared to GaitBase [14], our base-

line, across all four metrics. Our findings demonstrate sig-

nificant enhancements in the model’s ability to accurately

verify individuals, with the TAR@1% FAR reaching an im-

pressive improvement of 11.90% in FaceRestricted verifica-

tion and 13.65% in FaceIncluded verification. Further, the

rank-20 metric exhibits notable advancement, showcasing

a remarkable increase of 6.61%. Lastly, our model show-

cases improved performance in open-set search, achieving a

noteworthy reduction of 3.29% in FNIR@1% FPIR. These

promising outcomes reaffirm the efficacy of FarSight (Gait)

to extract more discriminative features based on global fea-

tures and highlight its potential for reliable and robust bio-

metric identification in real-world applications.

4.1.3 Body

Tab. 1 clearly demonstrates that our FarSight (body) consis-

tently outperforms the CAL baseline on both FaceRestricted

and FaceIncluded sets, as evidenced in both verification and

Rank retrieval metrics. In Fig. 7, we show successful and

failed matches in body matching. Our method copes well

with clothing differences, but struggles with motion blur,

turbulence, or hairstyle changes. Misidentifications in im-

postor pairs often happen due to similar body shapes.

4.1.4 Multi-Modal Fusion

As seen in Tab. 1, the fusion of three modalities improves

over the next best-performing algorithm in the FaceRe-

stricted condition (+11.30 in TAR@1% FAR and +11.82
in Rank-20). We also see the strength of combining the face

and body modalities in the FaceIncluded condition, where

face and body fusion excels in both verification and rank re-

trieval (+1.95 TAR@1% FAR and +1.94 Rank-20) over the

next best algorithm. The open search metric performs best

when fusing face and gait, scoring 87.64% and 54.55% in

FNIR@1% FPIR for both the FaceRestricted and FaceIn-

cluded conditions, which is in part due to the challenge that

single body and gait modalities on open-set search.

4.2. System Efficiency

Template Size. Feature vectors for face, gait and body are

of sizes 512, 8704 and 6144. Multiplying these values by
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close range close range 400m close range

(a) Successful recognition of genuine pairs

close range close range UAV 400m

(b) Successful recognition of impostor pairs

500m 200m 500m 300m

(c) Failure cases for genuine pairs

UAV 100m close range close range

(d) Failure cases for impostor pairs

Figure 7. Successful and failure examples of body matching.

Module 1080p 4K Average Combined

Detection & Tracking 20.0 34.7 24.9
Restoration 6.1 5.3 5.9

Face 2.6 2.2 2.5
Gait 3.3 2.5 3.0
Body 3.7 3.1 3.5

FarSight System (fps) 8.4 6.3 7.8

Table 5. FarSight module processing times (sec.) and system effi-

ciency (fps) for 1080p (1920x1080) and 4k (3840x2160) probes.

8 and dividing by 1024 provides the template size: 4KB,

68KB and 48KB, respectively, and 120KB in total.

Processing Speed. The speed of our FarSight system, as

outlined in Tab. 5, is examined under stringent conditions

to gauge both the efficiency of individual components and

the overall pipeline. This system operates asynchronously

and concurrently, similar to the actual deployment condi-

tions. To precisely measure efficiency, the components are

assessed in a serialized manner, even though they typically

run in parallel. We conduct this assessment using represen-

tative sample videos, encompassing 2400 frames of 1080p

and 1200 frames of 4K video, each set originating from four

distinct subjects. The restoration process is primarily di-

rected towards detected faces, which implies that any in-

stances of undetected faces would naturally lead to reduced

restoration and face module processing times. A notable ob-

servation is that our system can successfully detect bodies

in 95% of all frames and faces in 26% of frames.

5. Future Research

Image restoration. We plan to expand our optical simula-

tion tool to handle higher levels of distortion and explore

“simulation-in-the-loop” techniques. Our goal is also to

balance fidelity and perceptual quality by integrating gen-

erative and discriminative restoration methods.

Detection and tracking. We plan to refine our current de-

tector or shift to YOLO-based detectors. We are also con-

sidering using separate face detectors on subject bounding

boxes to reduce latency.

Biometric feature encoding. In our face module, we are

exploring the potential of adaptive restoration based on the

available information from given frames, to avoid any neg-

ative impact on performance. For our gait module, our

goal is to delve further into the usage of 3D body shape

and pose information, which is currently under-explored in

gait recognition. This involves combining shape parameters

with global features to generate 3D-aware shape features

and enriching local features with 3D pose information. For

body analysis, we aim to refine 3D body reconstructions us-

ing multiple frames and assess the value of 3D poses com-

pared to 2D imagery. Future research will encompass addi-

tional baselines, including face, gait, and body shape.

Multi-modal fusion. We plan to further enhance our tech-

nique for fusing face, gait, and body features, to better ex-

ploit the strengths of each modality and alleviate challenges

from the long tail of body and gait scores in the non-match

open search distributions.

6. Conclusion

We develop and prototype an end-to-end whole-body

person recognition system, FarSight. Our solution attempts

to overcome hurdles such as low-quality video frames, large

yaw and pitch angles, and the domain gap between training

and test sets by utilizing the physics of imaging in harmony

with deep learning models. This innovative approach has

led to superior recognition performance, as demonstrated in

tests using the BRIAR dataset. With the far-reaching po-

tential to enhance homeland security and forensic identifi-

cation, the FarSight system paves the way for the next gen-

eration of biometric recognition in challenging scenarios.
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