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Selt-Healing Distributed Swarm Formation Control
Using Image Moments

C. Lin Liu

Michael Rubenstein ¥, Randy A. Freeman

Abstract—Human-swarm interaction is facilitated by a low-
dimensional encoding of the swarm formation, independent of
the (possibly large) number of robots. We propose using image
moments to encode two-dimensional formations of robots. Each
robot knows its pose and the desired formation moments, and
simultaneously estimates the current moments of the entire swarm
while controlling its motion to better achieve the desired group
moments. The estimator is a distributed optimization, requiring no
centralized processing, and self-healing, meaning that the process is
robust to initialization errors, packet drops, and robots being added
to or removed from the swarm. Our experimental results with a
swarm of 50 robots, suffering nearly 50% packet loss, show that
distributed estimation and control of image moments effectively
achieves desired swarm formations.

Index Terms—Distributed control, formation control, image
moments, multi-agent systems, robot swarms.

I. INTRODUCTION

WARMS of hundreds or thousands of robots, each imple-
menting simple behaviors, can generate complex and useful
group behaviors [1], [2].In applications such as environmental
monitoring and search and rescue, humans may need to control
the swarm formation in real time [3]. To facilitate this one-to-
many interaction, the interface should impose a low cognitive
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Fig. 1. Left image specifies a desired two-dimensional swarm distribution.
White indicates zero robot density and purple indicates a constant positive
density. Top row: Standard computer vision image reconstruction using repre-
sentations of the desired distribution based on Legendre moments of up to fifth,
tenth, 15th, and 20th order, respectively. Bottom row: The final configurations
of 1000 simulated robots after moving so their collective Legendre moments,
up to fifth, tenth, 15th, and 20th order, respectively, approximately match the
desired Legendre moments.

burden, and the human should not need to directly specify each
robot’s motion [4]. In other words, the intended formation should
be representable using a small number of variables, independent
of the number of robots.

In this letter, we introduce low-dimensional representations
of swarm formations based on finite sets of moments of a density
distribution. Such moments can describe the center of mass lo-
cation of a distribution (first-order moments), the principal axes
of the distribution (second-order moments), and increasingly
fine, high-frequency features of the distribution as the moment
order increases. These distributions can be defined on spaces
of arbitrary dimensions; for example, a drone formation can be
described as a distribution over the six-dimensional space of
rigid-body configurations. In this letter, we focus on formations
of robots modeled as points in a plane. This allows us to take
advantage of image moment representations of planar distribu-
tions (Section II), an image compression technique pioneered in
computer vision (Fig. 1).

In our setup, image moments, representing a desired forma-
tion, are transmitted to the robots via broadcast. Each robot
continuously senses its position and communicates with neigh-
bors to estimate the moments of the entire swarm. Using these
estimated moments, the robot locally calculates a motion control
that drives the swarm to achieve the desired moments, and
therefore the desired formation. We require the robots’ estima-
tion and control to be (a) distributed, meaning that there is no
centralized controller that can be a single point of failure; (b)
scalable, meaning that the length of the messages between the
robots is constant (independent of the number of robots); and
(c) self-healing [5], which imparts robustness to packet loss and
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transient computation errors, and allows robots to be added to
or subtracted from the swarm at any time.

A. Related Work

1) Human-Swarm Interaction: A human can influence
swarm shape through neighbor interactions by controlling the
motion of one robot [6], [7] or a subgroup of robots using
beacons that broadcast desired local behaviors such as attracting
and repulsing motions [8]. These methods are not scalable since
the human’s influence decreases as the swarm size increases.
Kira and Potter describe a bottom-up control scheme with virtual
agents to influence the swarm through local interactions, and a
top-down control scheme that changes global swarm character-
istics to influence individual robot behaviors [9]. Egerstedt et
al. describe one approach where a human controls leader robots
to change the configuration of a leader-follower swarm, and a
second approach where swarm robots are treated as particles
suspended in a fluid comprised of regions that a human can
influence [10].

A human can specify regions of interest for the robots rather
than individual robot locations [11]. Prabhakar et al. specified
regions of interest by shading map areas on a tactile tablet for
robots to optimally cover using ergodic control [12]. A human
can also specify time-varying density distributions [13].

2) Image Moments: Image moments encode a density distri-
bution over a plane, f(x,y) : R x R — R, using the weighted
sum of low-degree basis polynomials on the plane [14], [15]. The
weights are called moments. Example orthogonal basis poly-
nomials include Legendre polynomials, Zernike polynomials,
and pseudo-Zernike polynomials. The higher the degree of the
polynomials included in the representation, the greater the detail
of the encoded distribution [16].

In general, pseudo-Zernike moments (PZMs) represent
greater detail than Zernike moments (ZMs) of the same or-
der [17], [18], [19]. The performance of PZMs vs. Legendre
moments (LMs) depends on the image. When reconstructing
the letter “E,” PZMs have lower reconstruction error and higher
robustness to image noise [16]. For an eye iris image, LMs are
more robust to white Gaussian noise [19].

3) Low-Dimensional Representations of Formations and
Distributed Formation Control: A shape can be defined by goal
locations that are assigned to each robot in a swarm [20]. This
approach is not scalable since each robot needs a defined posi-
tion. A different, more scalable approach is to use attractive and
repulsive potential functions to create desired formations [21],
[22]. Fu et al. use a consensus algorithm to keep robots in a
consistent distribution relative to a virtual leader that moves
along a given trajectory [23].

In previous work, a decentralized swarm of eight robots was
used to achieve first- and second-order inertial moments with
convergence guarantees [24], [25]. The robots were also able to
achieve a series of goal formations to move past an obstacle.

B. Contributions

We present simultaneous distributed estimation and control of
a swarm formation using LMs and PZMs. The approach is scal-
able and self-healing in theory, simulation, and experiments with
up to 50 robots. Compared to previous work (e.g., [24], [25]),
the proposed approach gives moments higher than second-order
and therefore greater detail in specifying the formation; provides
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robustness to packet loss; capitalizes on a recent method for
distributed optimization that reduces the amount of robot-robot
communication needed for estimation [5]; and has been verified
on large experimental swarms.

II. DISTRIBUTIONS USING IMAGE MOMENTS

A. Legendre Moments (LMs)

The Legendre polynomials [16], [26], [27] P, (x) of order
m =0,1,...,00 are defined on the domain [—1, 1] recursively
using Bonnet’s recursion formula [27],

Py(z) =1, Pi(z) = x,

~ 2m—1
om

m—1
xpmfl(x) - T m72(:17)7

P ()
(D

With these polynomials, the orthogonal basis functions of order
n = p + ¢ over the square (z,y) € [—1,1] x [—1, 1] have the
form P,(z)P,(y) where p,q =0,1,...,00. Any distribution
f(x,y) can be written as a linear combination of these basis
functions

F@y) =YD My Py(z)Py(y), 2

p=0g=0

where the Legendre moments (LMs) M,,, for a distribution
f(x,y) are calculated as

(2p+1)(2¢+1) [P [T . ) di
Mpq——[llle< \Py () (. ) d dy.

4
3
For a discrete distribution represented by point masses at the
centers of (R x (') “pixels,” the LMs can be written

C R
2p+1)(2¢+1)
Myq = -1 Z Z Py () Py(y;) iz, (4)
i=1j=1
where (z;,;) is the location of pixel (i, j) and y;; represents
the mass at pixel (¢, 7). Similarly, for a set of N point robots
of unit mass at locations (z;,y;),¢ = 1,..., N, the LMs can be
written as

N
(2p+1)(2¢+1)
My = LS B Py )
i=1
A distribution f(z, y) can be approximately reconstructed using
its LMs truncated at order n,

n P

[l y) = Z Z My q,q4Fp—q(x) Py (y), (6)

p=14=0

where the fidelity of the reconstruction improves as n increases.
The single zeroth-order moment is the total mass of the distribu-
tion, the two first-order moments correspond to the location of
the center of mass, and the three second-order moments relate to
the principal axes of the distribution. We do not use zeroth-order
moments in our representations to allow them to be independent
of the number of robots. At each order n, there are n + 1 LMs,
so a formation represented by all moments from first to nth has
m = n(n + 3)/2 elements.
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B. Pseudo-Zernike Moments (PZMs)

Zernike polynomials form an orthogonal basis for functions
defined on the unit disk z? + y2 <1 [16]. Pseudo-Zernike
polynomials form a related orthogonal basis on the unit disk
while providing improved image reconstruction properties [16].
A pseudo-Zernike polynomial W, is defined as [17]

Wq(r,0) = Spq(r)e’™, @
where p = 0,1,...,00 is the order of the radial polynomial,
q=0,1,...,pis the degree of angular repetition, < 1 is the

radius, € is the angle, and j is the imaginary unit. The radial
function Spq(r) is

p
r) =Y Bpur", ®)

where the coefficients B, are

(1)@ P(p+k+1)!
(p—k)l(g+k+ 1)k —q)

Any distribution f(r,0), » < 1, can be expressed as a linear
combination of the pseudo-Zernike basis functions W, (r, 0)

0) = Z Z MpqWpq(r,6),

(€))

Bpgr =

(10)
p=0 q=0
where the pseudo—Zernike moments (PZMs) M,,, are
1 2m
M, =27 W2, (r,0)f(r,0) rdrdo, (1)
and * indicates the complex conjugate [16].
Analogously, the PZMs are
p +1

My, = ZZW (rij, 0i) i (12)

i=1 j=1

for an (R x C)-pixel distribution, where r;; = (7; + yfj)%,
0;; = atan2(y;;, x;;), the mass y;; is zero for r;; > 1, and L,,
is the total number of pixels satisfying r;; < 1. For IV unit-mass
robots, the PZMs are

1
Mpq = p—|- Z 7’27 i)

A distribution f(r, ) can be approximately reconstructed using
its PZMs truncated at radial order n,

13)

n

Z Z MypgWpqy(r, ),

p=1 :

(14)

where the fidelity of the reconstruction improves as n increases.
Just like the LMs, there are n + 1 PZMs at radial order n, and
the total number of PZMs from first- to nth-orderis m = n(n +

3)/2.

III. ESTIMATION AND CONTROL

The position of the ith point robot in a swarm of N robots is
i = [Siz, Siy] " € R?, and the swarm configuration is the col-
umn vector s = [s{,8q,...,55] € R?>™N. Each robot senses
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Fig. 2. Block diagram for robot .

its own position and knows the desired formation expressed as
a finite set of image moments. All robots estimate the current
swarm moments based only on local measurements and mes-
sages from neighbors. The size of these messages depends on
the number of image moments used in the representation, but
not the number of robots. This is important for scaling up to
formations of thousands or millions of robots. Robots calculate
their own motions based on their estimated moments.
The error between distributions can be expressed as:
® Moment vector error: Given m-vector moments for
two formations, M; = [Myy,..., Min]" and M, =
[May, ..., May]", this error is defined M7 — My € R™.
® Mean-square reconstruction error (MSRE): The MSRE is
defined using pixel-based image reconstructions from the
moment vectors M and M- as
2o 2oy (fan (i, yi) — for (4, 94))°
MSRE = 5 ,
> Zj sz(a?i, Y;)
where M, corresponds to the desired moments. To cal-
culate this error, we evaluate the two reconstructions at
41 x 41 points corresponding to increments of 0.05 in each
dimension on the domain (z,y) € [—1,1] x [-1, 1]. For
PZMs, points outside the unit circle are not used.
Assumption 1: We assume m < 2 N so a moment vector
M e R™ is a compressed representation of a distribution.
Remark 1: Note that the distribution reconstruction for a
given moment vector M is unique, but since M is a compressed
representation of a formation, in general there are infinitely many
robot formations that have the same moments.

5)

A. Distributed Moment Estimation

The network of NN robots in a swarm is represented as a
directed graph consisting of edges £/ and verticesV =1,..., N.
An edge FE;; exists between any two robots 7 and j when ¢ can
send messages to 7. Each robot ¢ knows the number of robots it
sends a message to, i.e., its out-degree d‘i’”t. The out-Laplacian
is £ = D" — A,q4, where the out-degree matrix D" is the
diagonal matrix D9 = d?™ for all ¢ € V, and an element A,;
of Ay is 1if E;; exists and zero otherwise.

Robot 7’s estimator and controller is illustrated in Fig. 2.
The estimator maintains two local signals, w; € R™*! and
v; € R™*1 The robot broadcasts wj to its neighbors, receives
communications wy, , . . . , Wy, fromits neighbors k; . . . k;, mea-
sures its own position s; € R?, and uses s; to construct its input
vector

wi(s:) = F’(Si)} c R™1 (16)

1
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where ¢(s;) € R™ is the moment-generating function that gen-
erates robot 7’s contributions to the swarm moment vector, i.e.,
m components of the form M, from (5) (LMs) or (13) (PZMs)
for the single robot i.

For the purpose of analysis, we model estimation and control
as synchronous discrete-time processes. Based on our recent
work on self-healing distributed optimization [5], [28], the robot
runs a push-sum algorithm [29] to estimate the swarm’s cur-
rent moment vector. At each time step ¢, v;[t] and w;[t] are
calculated as

vilt] = wilt] — d™wilt] + > wi[t]
keNn

7)

w;t + 1] = w;[t] + yvilt], (18)

where ./\fii“ is the set of in-neighbors of robot ¢, and the constant
gain y, which is the same for all robots, is chosen to satisfy
yd$" < 1,Vi.! Robot i’s estimate of the swarm’s moments is

N 1
M; = ( ) vi1..m € R,
Vi,m+1

where v; 1..m € R™ refers to the first m components of v; and
Vi,m+1 € R refers to the last component of v;.
The individual robots’ signals can be stacked as

19)

ua [t] wt] v1t]
ult] = , wlt] = , v[t] = (20)
up[t] wy [t] o [t]
to write the updates of the whole system as
v[t] = ut] — (£ @ Nwlt] 21
wlt + 1] = wlt] + yvlt], (22)

where £ is the out-Laplacian, ® is the Knonecker product, and
1 is the identity matrix.

Theorem 1: For a strongly-connected constant digraph net-
work, the estimator of (21)-(22), and a constant input u[t] = u,
each v; converges exponentially to

‘ ZiN ’
where z; is the ith component of the vector z € RY that satisfies
£72=0 and 1"z = 1. Therefore Ml (19) converges to the
correct moments M (s).

Proof: The proof follows from Theorem 1 of [28]. (|

Remark 2: The convergence described in Theorem 1 resumes
after transients caused by network changes, sensing errors, or
packet drops. If the input w is continuously changing, a bound
on the convergence error grows with the maximum rate of change
of u [30].

To address the practical issue of packet drops in a fielded
system, we can add memory to the estimator [31]. The memory
state 1y, stores the last message robot ¢ received from neighbor
k. If no message was received from neighbor £ this iteration, its
previous message is used in estimation. (17) can be rewritten as

ult] = wile] = dwile] + 3 Ml

keN®

(24)

ISince d‘i’llt < N — 1, abound on N suffices to place a bound on ~.
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Fig. 4. Time to convergence for eighth-order PZM estimation.

OMy.i[t — 1] if packet lost

25
wi[t] if packet received. 25

il = {

If a robot has not heard from a neighbor after a set number of
consecutive iterations, that neighbor’s value in the memory state
is removed. This forgetting factor allows the estimator to adjust
to changes in the communication network.

To test the performance of moment estimation, we simulated
a network of 50 stationary robots randomly distributed over
an arena of size [—1,1] x [—1,1]. The estimators were tested
using all-to-all communication networks and networks defined
by a communication radius of 0.5, and for varying levels of
packet loss, with and without memory. A packet loss rate of
30%, for example, indicates that each individual message has a
30% chance of being dropped. The estimator gain wasy = 1/N.

Ten trials were conducted for each packet loss level and
network type. The robot positions were the same across all
trials. The convergence times of estimating LMs and PZMs
up to eighth-order are reported in Figs. 3 and 4, respectively.
Convergence is considered to be achieved when the error relative
to the desired moments is less than 0.01. If convergence is not
reached within 500,000 steps, the trial is terminated. For trials
with memory, a neighbor’s message is kept in the memory state
until 75 consecutive iterations passed without receiving a mes-
sage from the neighbor. The all-to-all network results are shown
in black while the radius-limited results are shown in red. The
point represents the median convergence time of the ten trials
and the vertical line indicates the range of convergence times.
Memory reduces the convergence time by orders of magnitude
when packets are lost and the all-to-all communication network
has faster convergence times for both LMs and PZMs.

B. Control of Swarm Moments

The control goal is to minimize the error between the esti-
mated and desired moments as given by the quadratic cost

C(s) = =[M(s) — M]TT[M(s) - M),

5 (26)

Authorized licensed use limited to: Northwestern University. Downloaded on September 15,2024 at 20:19:50 UTC from IEEE Xplore. Restrictions apply.



6220

where M (s) is the vector of moments of the swarm’s current
configuration s, I € R™*™ is a symmetric positive-definite gain
matrix, and M™ is the vector of desired moments.

Each robot moves according to the gradient control law

8= —[ 7 (¢(s))] 'TIM; — M7,

where Ml is robot 7’s current estimate of the swarm moments
and _Z (¢) is the Jacobian of the moment-generating function ¢
with respect to s;.

To analyze the collective behavior of the control law (27),
we consider the case where each robot has a perfect estimate
of the current swarm moments, M; = M (s), and we define the
moment error e(s) = M(s) — M*. Let J(s) = % ¢ R™2 N,
The N copies of (27) can be stacked to give

§=—J"(s)Te(s) € R*V,

27)

(28)

Clearly every point s. for which e(s.) = 0 is an equilibrium
for (28). We will call these the “good” equilibria, in contrast
to equilibria where the error is nonzero. To analyze the local
behavior of the system (28) near a good equilibrium, we first
note that the time derivative of e is
de
dt
Theorem 2: Let s. be a good equilibrium for the dynam-
ics (28), and suppose rank(.J(s.)) = m. Then s, is stable in the
sense of Lyapunov. Moreover, if the initial configuration s(0) is
sufficiently close to s, then e converges asymptotically to zero.
Proof: By assumption rank(J(s.)) = m and I" > 0, which
together imply that the matrix A.(s.) in (29) is Hurwitz. There-
fore there exists a unique positive definite solution P to the
Lyapunov equation

PA.(s50) 4+ Ae(se) P =—1.

Let A(s) = A.(s) — Ac(s.); then we can write the derivative
of the Lyapunov function V,(e) = e’ Pe along solutions to
(29) as

Ac(s)e where A.(s) = —J(s)J ' (s)T. (29)

(30)

Ve = —[lel? + eT[PA(s) + A(s)T Ple. 31

Because rank(J(s.)) = m, there existsa (2N — m) x 2 N ma-
trix 7" such that [T'" J(s.)"] is invertible. This implies that the
mapping from s to (T's — T's., e(s)) is a diffeomorphism in a
neighborhood of s.. Setting y = T's — T's., we can write the
system (28) in the local (y, e)-coordinates as

(32)
(33)

where B.(0,0) = 0. Because A.(s.) is Hurwitz, we can use
a Lyapunov function of the form ||y||? + 1/V (e) to show that
the point (y, e) = (0,0) is stable in the sense of Lyapunov for
the system (32)—(33) (see [32, Corollary 8.1] for details). Thus
the equilibrium s, for the system (28) is stable in the sense
of Lyapunov, which means if s(0) is sufficiently close to s,
then A(s) will remain small in forward time. Thus from (31)
we obtain V < 0 for e # 0, and we conclude that e converges
asymptotically to zero. 0

To analyze the global behavior of the system (28), we first
note that it is a gradient flow. Hence if e is real analytic and
proper, which it is for LMs and PZMs, then every trajectory

Y= Ce(eay)e
é = A.(se)e+ Bele,y)e,
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Fig. 5. 2-norm of the moment vector error for varying maximum orders of

LMs and PZMs using the controller with perfect moment estimates.

of this gradient system converges to an equilibrium [33]. Thus
from Theorem 2 we see that any sufficiently small perturbation
away from a good equilibrium will cause the system to converge
to a (possibly different) good equilibrium. Moreover, it follows
from (28) that rank(J(s.)) < m at any “bad” equilibrium s.,
i.e., any equilibrium s, for which e(s.) # 0. Thus the bad
equilibria occur only at singular configurations where J loses
rank. Nevertheless, it may be possible for a bad equilibrium to
be a local minimum of the cost in (26) and thus be a stable
equilibrium for the flow (28). While we have not found this to
be an issue in practice, the problem of how to choose the gain
matrix I' to make bad equilibria unstable, or at a minimum to
shrink their regions of attraction, is a topic for future research.
The controller was tested by simulating a network of 50 robots
in an arena of size [—1, 1] x [—1, 1]. Each robot had access to
the correct swarm moments, Mi = M(s), and its motion was

simulated using a discretized version of the control law (27):

The gain matrix I" was determined experimentally, with the
observation that higher-order moments should have smaller
associated gains for faster convergence. We define I' = G as

G = diag(g) € R™™, (35)
g= ({171.7’ 171.7}’ {271.7’ 271.7’ 271.7}7 o {d71.7}2n71)3

d=1

d=2 d=n

i.e.,d 4 1 copies ofd V" ford=1,... , n, the maximum degree
in the moment vector. The exponent —1.7 was found experimen-
tally and is a tunable parameter chosen to create smaller control
gains for higher-order moments.

LMs and PZMs up to orders 2, 4, 6, and 8 were calculated
for the “bunny head” distribution depicted in Fig. 7(a) and were
used as the goal moment vectors. Each control trial consisted
of 200,000 iterations from the same initial robot configuration.
Fig. 5 shows the robots’ convergence to the desired distribution.

C. Simultaneous Estimation and Control

Even if each robot’s estimator is guaranteed to converge to
the formation’s actual moments and the controller is guaranteed
to converge to the desired moments using perfect estimates of
the swarm moments, when we couple estimation and control
the system may lose these properties and exhibit more complex
behaviors. As an example, for N = 7 robots (2N = 14) and
third-order LMs (m = 9 moments), we simulated: the estimator
alone (stationary robots) with estimator gain v = 1/(10 N),
memory state, and no packet loss; the controller alone with
perfect moment estimates and controller gains I'jy = 5G and

Authorized licensed use limited to: Northwestern University. Downloaded on September 15,2024 at 20:19:50 UTC from IEEE Xplore. Restrictions apply.
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Fig. 6. Comparing estimation alone, control alone, and combined estimation

and control for two different control gain matrices. Top left: The 2-norm of
the moment vector error converges to zero for one robot’s estimates vs. desired
moments. Bottom left: The motions of the robots (from x’s to 0’s) for control
gains 'y = G and perfect moment estimates. Middle column: Performance
of the controller with perfect moment estimates. The robots converge to the
desired moments for both control gains I'1 = 5G and I'2 = G. Right column:
Performance of the controller when each robot uses estimated moments. The
robots converge to the desired moments for the smaller control gains but not the
larger gains.

I'y = G, where G is given by (35); and combined estimation
and control with I'; = 5G and I'y = G.

Fig. 6 plots the results of 2000 iterations. The estimator con-
verges to the correct moment estimates with stationary robots.
The controller with perfect estimates drives the robots to the
desired moments for control gains I'y and I';. The combined
estimation and control system is unstable for control gains I'; but
convergent for I's. This is an example of aggressive control gains
coupled with estimator delay causing instability. Future work
may include a stability analysis, e.g., using small-gain theory
or passivity analysis, to better understand how aggressively
to choose motion control gains in light of delays inherent in
distributed estimation.

IV. EXPERIMENTAL IMPLEMENTATION

A. Coachbot V2.0 System

Experiments were performed with the Coachbot V2.0 swarm
setup, which consists of 100 differential drive robots and a high-
fidelity Docker simulation for testing robot control algorithms
before deployment [20]. The robots sense their positions and
orientations using time-varying infrared signals from a ceiling
mounted HTC VIVE lighthouse and communicate with each
other and a centralized workstation via Wi-Fi with an optional
artificially-imposed limited communication radius. In practice,
we found that 40-50% of communicated packets are dropped
due to the high density of communication.

Every 0.27 s, each robot executes the control loop of Fig. 2: it
senses its position, updates the estimator input (16), checks for
received messages, computes the estimator (17)-(18), broadcasts
estimator signals, and calculates the control velocity of a refer-
ence point on the robot away from the wheel axis (27). This
velocity is modified by a collision-avoidance filter (based on
three zones of varying repulsion around each robot that prevents
collisions with neighbors [25]) and then bounded. Velocities
below a minimum threshold are set to zero. The calculated
velocity of the robot reference point is transformed to wheel
speeds as described in [25], [34].

6221

Fig. 7. Experimental desired formations. (a) Left: Coachbot robot. Middle:
Uniform-density “bunny head” formation. Right: Formation described by two
identically-sized disks. The darker disk is twice the density of the lighter disk.
(b) Fifty Coachbots forming the bunny head using eighth-order LMs. (c) Thirty
Coachbot robots forming the disks using sixth-order PZMs.

The experimental system differs from the model in that (1)
there is no global clock and (2) the robots have nonzero extent
and implement collision avoidance and velocity saturation.

Below we report experimental distributed formation control
with two goal formations: a binary “bunny head” formation,
where the desired density inside the bunny head silhouette is
constant and zero outside, and a bimodal formation consisting
of two identically-sized solid disks, with the density of one
disk twice the other’s (Fig. 7(a)). The arena is 3 m X 3 m in
size, for a scale factor of 1.5 m relative to the [—1,1]> LM
and PZM representations. The communication radius was set
to 1.5 m. In all experiments, the robots started in a random
configuration centered around the arena origin. Multiple trials
were conducted for each experiment. The results shown in this
letter are representative of typical results. Due to limited space,
only the bunny head with LMs and the two-disks with PZMs are
reported; other experiments can be seen in the video [35].

Controller gains were I' = G from (35). The estimator gain vy
was chosen to be 1/N. Memory kept neighbor messages for up to
1.5 N consecutive iterations. Desired moments were calculated
from the images of the bunny head and two-disk formations.
The following results show the moment estimates of robot 15
(simulated or real), which are representative of each robot, as
eachrobot’s moment estimates converged to the actual moments.

B. Binary “Bunny Head” Formation

Fig. 7(b) shows snapshots of 50 Coachbots moving toward
the eighth-order LMs of the bunny head formation. Fig. 8 shows
the distributions reconstructed from LMs up to fourth-order
(14 moments), sixth-order (27 moments), and eighth-order (44
moments), respectively, as grayscale images; the final simu-
lated configurations of the robots using the estimator (17)-(18)
and control law (27), as well as the corresponding grayscale
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Fig. 8. Top row: Grayscale image reconstructions using the fourth, sixth,
and eighth-order LM representations of the bunny head formation. Middle
row: Grayscale image reconstructions of the final estimated moments after
distributed estimation and control by 50 robots in simulation (fourth-, sixth-,
and eighth-order moments) and experiment (eighth-order moments). Bottom
row: The final robot configurations.
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Fig.9. Absolute value of the difference between robot 15’s moment coefficient

estimates and the desired moments for increasing orders of LMs representing
the bunny head shape.
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Fig. 10. MSRE vs. control iterations for the bunny head using LMs of increas-
ing maximum order (fourth-, sixth-, and eighth-order moments) and experiment
8H (eighth-order moments).

representations of the reconstructions from the LMs; and the
final robot configurations and the reconstructed distribution for
a hardware experiment with eighth-order LMs.

The fidelity of the moment representation of the bunny head
increases as the moment order increases. The experiments also
show that distributed estimation and control is effective in driv-
ing the robots to achieve the desired moments. The individual
LM coefficient errors are shown in Fig. 9. The larger error in
the eighth-order hardware relative to the simulation is primarily
attributed to the velocity deadband in experiment.
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Fig. 11.  Top row: 50 simulated robots form the bunny head after 2000 itera-
tions using sixth-order LMs. Middle row: After instantly removing 15 robots,
the swarm self-heals, regrowing the bunny ears at 5000 iterations. Bottom row:
After instantly adding 25 robots (shown in red), the swarm adjusts to form the
bunny head at 10,000 iterations.
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experimental configuration of 30 robots.
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Fig. 13.  MSRE of the two-disks using sixth-order PZMs.

Fig. 10 shows the MSRE decreasing as the robots converge.
As the error decreases, the commanded velocities reach the
deadband, preventing further decrease of the MSRE.

To demonstrate the impact of self-healing moment estimation
on formation control, we simulate 50 robots forming the bunny
head using sixth-order LMs for 2000 iterations, then instantly re-
move 15 robots and continue the simulation (Fig. 11). The swarm
regrows the bunny ears. After 5000 iterations, we instantly add
25 robots, shown in red, to the bottom right quadrant. The swarm
adjusts to form the bunny head with the new robots.

C. Two-Disk Formation

Fig. 7(c) shows snapshots of 30 Coachbots moving toward the
sixth-order PZMs of the two-disk formation, and Fig. 12 shows
the reconstruction of the desired moments, the reconstruction of
the estimated moments, and the final configuration achieved by
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the 30 robots. The robots clearly segregate to the two regions,
with a higher number of robots (19 vs. 11) in the region with
twice the desired density. In the experiment, the size of the
robots, coupled with their collision avoidance, actually prevents
20 robots from fitting inside the boundaries of the denser disk.
Fig. 13 shows the robots converged to their final positions with
a small steady-state MSRE.

V. CONCLUSION

This letter presents a method for distributed, scalable, self-
healing swarm formation estimation and control based on image
moment representations, where the level of detail in the desired
formation representation is determined by the number of image
moments. In simulation and experiments with up to 50 robots,
the robots approximately achieve specified formations despite
nearly 50% packet loss.

Further work is needed to determine how to choose estimator
and controller gains that ensure good coupled performance.
The gains used in this letter were found empirically. Generally,
using smaller control gains on higher-order moments, which
encode high-frequency features, results in better convergence.
Beyond gradient control, distributed model predictive control
could improve the rate of convergence to desired moments.
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