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Abstract: In the rapidly evolving landscape of scientific semiconductor laboratories (commonly
known as, cleanrooms), integrated with Internet of Things (IoT) technology and Cyber-Physical
Systems (CPSs), several factors including operational changes, sensor aging, software updates and the
introduction of new processes or equipment can lead to dynamic and non-stationary data distributions
in evolving data streams. This phenomenon, known as concept drift, poses a substantial challenge for
traditional data-driven digital twin static machine learning (ML) models for anomaly detection and
classification. Subsequently, the drift in normal and anomalous data distributions over time causes
the model performance to decay, resulting in high false alarm rates and missed anomalies. To address
this issue, we present TWIN-ADAPT, a continuous learning model within a digital twin framework
designed to dynamically update and optimize its anomaly classification algorithm in response to
changing data conditions. This model is evaluated against state-of-the-art concept drift adaptation
models and tested under simulated drift scenarios using diverse noise distributions to mimic real-
world distribution shift in anomalies. TWIN-ADAPT is applied to three critical CPS datasets of Smart
Manufacturing Labs (also known as “Cleanrooms”): Fumehood, Lithography Unit and Vacuum
Pump. The evaluation results demonstrate that TWIN-ADAPT’s continual learning model for
optimized and adaptive anomaly classification achieves a high accuracy and F1 score of 96.97% and
0.97, respectively, on the Fumehood CPS dataset, showing an average performance improvement
of 0.57% over the offline model. For the Lithography and Vacuum Pump datasets, TWIN-ADAPT
achieves an average accuracy of 69.26% and 71.92%, respectively, with performance improvements
of 75.60% and 10.42% over the offline model. These significant improvements highlight the efficacy
of TWIN-ADAPT’s adaptive capabilities. Additionally, TWIN-ADAPT shows a very competitive
performance when compared with other benchmark drift adaptation algorithms. This performance
demonstrates TWIN-ADAPT’s robustness across different modalities and datasets, confirming its
suitability for any IoT-driven CPS framework managing diverse data distributions in real time
streams. Its adaptability and effectiveness make it a versatile tool for dynamic industrial settings.

Keywords: internet of things (IoT); cyber-physical systems (CPSs); concept drift; digital twins; online
anomaly classification; scientific laboratories; cleanrooms

1. Introduction

Digital twins are emerging as a pivotal technology in the landscape of Industry 4.0,
offering dynamic and real-time simulation capabilities that extend across various sectors
including manufacturing [1-5], healthcare [6], smart agriculture [7] and scientific research.
A digital twin is a real-time virtual model of a physical object or system that mirrors and
analyzes its behavior for optimization and decision making [5,8]. Digital twins can be
modeled using multiple approaches, each offering distinct advantages depending on the
application. One method involves using formal verification techniques that offer theoretical
guarantees on system performance by establishing a set of feasible working conditions
through sensitivity analysis and uncertainty decomposition [9,10]. These analyses assess
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the robustness of system models by identifying conditions where the models are valid
and stable. Any deviations from these established norms are leveraged for predictive
monitoring, enhancing system reliability through proactive anomaly detection. However,
these models require significant domain expertise and knowledge, which limits their appli-
cation across heterogeneous environments. Additionally, their effectiveness is constrained
by the accuracy of the initial assumptions and the feasibility of the working conditions
derived from the analyses. Alternatively, data-driven approaches utilize real-world data to
create virtual representations of physical systems [5,11]. These models require substantial
amounts of data to train effectively. Once deployed as a digital twin, they continuously
analyze incoming data to identify and report any deviations, anomalies, or faults in the
physical system. Both approaches aim to optimize system performance and reliability,
which makes them powerful tools for enabling preventive, predictive and reactive main-
tenance in varied application domains through real-time monitoring as well as informed
decision making.

In the context of scientific manufacturing laboratories (commonly known as “Clean-
rooms”), which are strictly controlled environments for industries like semiconductor, phar-
maceuticals, microelectronics and nanotechnology, data-driven digital twins play a vital
role. These digital twins provide a high level of data monitoring and operational control
to prevent contamination and ensure the integrity of sensitive manufacturing processes.
For example, a cleanroom’s critical infrastructure components such as Fumehoods and
high-end scientific equipment such as Electron Microscopes, Vacuum Pumps, and high-
resolution Photolithography Units like the Karl Suss MJB3 Contact Mask Aligner [12], all
require continuous monitoring to maintain the laboratory’s operational standards. Digital
twins facilitate this by enabling predictive, preventive and reactive maintenance within
industrial laboratories as follows: (1) by continuously monitoring system conditions to
predict potential failures before they occur, (2) through advanced analytics to anticipate
equipment malfunctions and optimize maintenance schedules and (3) by generating real-
time updates and alerts to control the physical environment. Figure 1 shows each of the
three critical components of cleanrooms that require real-time monitoring: (a) Fumehood
(b) Vacuum Pump and (c) the Karl Suss Lithography Unit.

Figure 1. Critical components of Cleanroom: (a) Fumehood, (b) Vacuum Pump and (c) Lithogra-
phy Unit.

Existing deployments of cyber-physical systems (CPSs) in cleanrooms enhance labo-
ratory functionality by deploying sensors, actuators and edge devices with the physical
infrastructure and scientific equipment of the cleanroom labs. For example, Senselet++ [13]
uses cost-effective sensors to monitor airflow in Fumehoods and track calibration drifts
caused by environmental changes to ensure it remains within safe limits [13]. Similarly, the
sensors within the Fumehood are used to monitor air leakage or chemical spillage causing
changes in air pressure or hazardous vapor concentrations. Edge devices, which may be
microcontrollers or microcomputers such as Raspberry Pis, facilitate the communication
of sensor data to the cloud. These edge devices also host the complex data processing
algorithms for real-time anomaly detection and identification. Actuators, then, provide
real-time alerts to lab managers (in the form of alert messages and alarms), informing
them of deviations so they can take immediate action to maintain the required cleanroom
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standards. Similarly, to monitor Vacuum Pump malfunctions, temperature and vibration
sensors are deployed to detect any changes caused by overheating from nearby thermal
furnaces. These sensors generate critical data that are required to be analyzed using various
anomaly detection and fault classification models to extract meaningful insights from
the data.

Despite the advancements in wireless communications and Internet of Things (IoT)
technologies facilitating real-time data acquisition in cyber-physical systems, significant
challenges persist in capturing and integrating this information. This is largely due to the
complexities involved in transforming vast quantities of data into actionable insights. Since
digital twins are the virtual representation of cyber-physical systems, they are enabled
with real-time monitoring and analytics. Digital twins, serving as virtual representations
of these CPSs, utilize data-driven models equipped with various machine learning and
deep learning techniques. These models are trained on extensive historical data to provide
robust anomaly detection and classification capabilities, ensuring continuous monitoring
and analytics within these dynamic environments. However, despite their advanced
monitoring capabilities, the effectiveness of these digital twins largely depends on the
underlying anomaly detection models that are used for analysis. The static ML models
used for data analysis and anomaly detection face several of the following limitations,
which can hinder their effectiveness in such controlled IoT-driven smart laboratories:

¢ Concept drift: Traditional ML models are typically trained on historical data represent-
ing specific, static conditions. These pre-trained models operate under the assumption
that the training data accurately represent the relationships within all data from the
target variables (anomaly or normal). This requires data stationarity throughout the
model training, testing and deployment phases. However, this assumption is often
not met in practical scenarios, particularly in CPS applications that involve streaming
data analysis. In numerous industrial contexts, data gathered from manufacturing
and operational processes inherently exhibit non-stationary characteristics [1]. For
example, over time, the physical components of Vacuum Pumps may wear down,
subtly changing their operational efficiency and characteristics. This wear and tear
can alter the vibration signatures, heat emissions, or other measurable parameters that
were initially used to train the anomaly classification models. Similarly, changes in the
operational parameters of the Pump, such as adjustments to speed, pressure settings,
or duty cycles to accommodate different scientific experimental tasks in cleanrooms,
can lead to concept drift. These operational changes can create new data patterns that
the original model was not trained to recognize or handle. This can lead the model
performance to deteriorate over time on new, unseen data of which its statistical char-
acteristics have changed significantly from the training dataset. This shift can make
the separation curve ambiguous for pre-trained models for correctly distinguishing
the normal and anomalous data instance, affecting performance. This phenomenon,
known as concept drift, can render previously trained models outdated or irrelevant.
Figure 2 illustrates the challenge of concept drift in a data-driven digital twin model
that has been trained on historical data distributions for anomaly classification. When
the real-time data conforms to the identical and independently distributed (iid) model,
the performance remains significantly high. However, as operational changes or
sensor variations lead to drifts in data distribution (due to the existence of concept
drift), the model’s performance drastically decreases. This highlights the critical need
for adaptive learning mechanisms within digital twins to fit the current concepts of
the new data streams.

¢ Lack of continuous learning: Traditional ML models require manual retraining and
fine-tuning to adapt to new data or changes within the environment, a process that is
resource-intensive and impractical for real-time applications. These models typically
do not support continuous learning, which is essential for adapting to unpredictable
changes within the non-stationary streams of data from CPSs within cleanrooms.
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¢ Data quality and volume: The performance of these models heavily depends on
the quality and volume of the data that they were trained on, often compromised
by missing values or noise due to the complex equipment and multidimensional
features involved.

To overcome these challenges, the integration of digital twins as adaptive anomaly
identification systems represents a transformative solution. We propose, TWIN-ADAPT,
a continuous learning framework for digital twin-enabled real-time anomaly classification
in IoT-driven smart manufacturing laboratories (cleanrooms). The digital twin frame-
work of TWIN-ADAPT consists of a continual learning-based gradient boosting clas-
sifier, LightGBM, known for efficiently handling complex data structures in dynamic
environments [14]. These models are deployed on edge devices within the cyber-physical
systems directly connected to the sensors. These sensors continuously produce real-time
data streams that are fed into the adaptive anomaly classification model of the digital
twin operating on the edge devices. The TWIN-ADAPT framework of the digital twin
leverages a dual-window strategy combining an adaptive sliding window and a fixed size
sliding window for concept drift detection, adaptation and data learning. The sizes of
these windows are determined based on the arrival of the data streams. When new data
arrive, both the adaptive and fixed windows slide forward, and the system evaluates the
classification accuracy of data within the current window against the previous window. If
a significant drop in accuracy is observed, surpassing a predefined threshold, it signals the
presence of concept drift. This detection triggers an immediate retraining of the classifier
using the most recent data captured in the adaptive window.

In addition, the framework also employs an optimization function using Particle
Swarm Optimization (PSO) for choosing optimal hyperparameters for the drift adaptation
algorithm as well as the anomaly classification model. The idea is based on the work by
Yang and and Shami [14] that was originally developed for high-dimensional (=80 features)
network traffic analysis, which we have adapted for the less complex, yet highly variable
data dimensions (features) of cleanroom CPSs. Comparing with [14], we also applied
off-the-shelf popular drift adaptation techniques (see details in Section 4.3) to compare
their performance against that of TWIN-ADAPT's continual learning framework. Other
significant contributions of this work include the following:

*  Designing a more comprehensive dataset featuring diverse anomaly distributions to
robustly train and evaluate the TWIN-ADAPT model under simulated drift conditions.

*  Leveraging the PSO enhanced continual learning models for real-time anomaly clas-
sification within a cleanroom’s CPSs, like Vacuum Pumps, Fumehoods and Lithog-
raphy Units. Each CPS component’s monitoring model represents its digital twin
that accurately reflects the current operational states and anomalies. When concept
drift is detected—indicating changes in operational conditions or emerging anomaly
patterns—the digital twin’s continual learning model dynamically adapts by retraining
on new data samples captured through an adaptive sliding window. This ensures that
the digital twin remains aligned with the dynamic and non-stationary data distribu-
tions, providing robust, up-to-date anomaly monitoring in the dynamic environment
of cleanrooms.

It is also worth mentioning that TWIN-ADAPT is primarily deployed within a super-
vised setting, tailored for anomaly (binary) classification. This approach holds similarity
to fault classification processes, where faults are identified through deviations from estab-
lished normal behaviors—similar to detecting anomalies. The rest of this paper is organized
as follows. Section 2 provides a comprehensive background on the concept and importance
of digital twins in Industry 4.0. In Section 3, we discuss related works pertaining to the
application of digital twins, concept drift detection, adaptation and continual learning
strategies for scientific cleanroom laboratories. Section 4 elaborates on this study’s method-
ology, including the dataset description, anomaly injection techniques, model selection and
optimization for online drift adaptation. Next, we present a complete system overview in
Section 5 that explains the proposed TWIN-ADAPT algorithm and experimental setup. Ex-
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perimental results are discussed in Section 6 followed by the Discussion, Future Directions
and Conclusion in Section 7, Section 8 and Section 9, respectively.
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Figure 2. Challenges posed by concept drift on data-driven digital twin anomaly classification.

2. Background
2.1. Concept of Digital Twins

A digital twin is defined as a dynamic digital representation of a physical entity
(which could be an object, a system, a process or a workflow) that allows for a two-way
automatic data exchange, ensuring that any changes in the physical entity are mirrored in
the virtual replica model and vice versa [8]. This integration facilitates real-time updates
and interactions, enhancing the accuracy and utility of the digital model in analyzing and
predicting the physical counterpart’s behavior. Digital twins originated from NASA in
the 1960s Apollo program to create a virtual twin of the spacecraft [8], and it was later
expanded for various applications in manufacturing processes to create virtual replicas of
factories [15]. A digital twin is different from the conventional concepts of digital model
and digital shadow. The former involves a mathematical or a theoretical model to study
the behavior and/or performance of an actual physical system (such as simulation, 3D
models and Computer-Aided Designs), whereas the latter represents an evolving digital
representation of an object, where a change in the physical object’s state is reflected in the
digital model but not vice-versa (such as emulators, anomaly detection and visualizations).
Superseding these capabilities, a digital twin represents a “personalized” virtual model
of the physical object instead of a generic model that is dynamically updated with real-
time data to make informed decisions to fully realize the physical object’s value. These
personalized models of a digital twin are built using behavioral and contextual (features)
data to track the performance variable of the system in real time. The autonomous exchange
of data between the physical object and digital twin requires continuous learning to keep
the twin in sync with the model under dynamic environments. Figure 3 illustrates digital
model, digital shadow and digital twin capabilities and the flow of information between
physical and digital counterparts.
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2.2. Importance of Digital Twins in Industry 4.0

In a conventional smart manufacturing setup, various sensors embedded in machines
collect operational and performance data. Engineers leverage these data to pinpoint causes
of machine failures and detect early signs of malfunctioning components to eliminate
unplanned downtime. But with the rapid growth in Artificial Intelligence (AI), Internet of
Things (IoT), cyber-physical systems (CPSs), edge computing and wireless communication
technologies, Industry 4.0 has evolved into bringing together a multitude of industrial
devices to create a complete digital ecosystem that can monitor, collect, share and analyze
data to provide valuable insights with advanced predictive and prescriptive capabilities.
Figure 4 outlines the levels of intelligence in Industry 4.0, progressing from descriptive to
prescriptive (reactive) intelligence, illustrating how complexity and value increase at each
stage. Descriptive intelligence involves analyzing historical data to understand past events.
Diagnostic intelligence focuses on identifying the reasons behind events using techniques
like root cause analysis. Predictive intelligence anticipates future events through trend
analysis and anomaly prediction. Prescriptive (reactive) intelligence uses real-time data
and continuous learning to provide actionable recommendations and adaptive responses,
crucial for proactive maintenance in Industry 4.0. Central to achieving these advanced
levels of intelligence is the concept of a “Digital Twin” that allows for real-time decision
making through accurate analytics. Digital twins provide comprehensive, real-time digital
replicas of physical entities, enhancing decision making and efficiency. The diverse capa-
bilities of digital twins, including system modeling, real-time monitoring, optimizations,
decision making and predictive and prescriptive maintenance, make digital twins a helpful
tool in various applications of Industry 4.0. In aerospace and automotive applications,
digital twins optimize performance, predictive maintenance and customization. In smart
manufacturing, digital twins provide virtual design verification, process control and real-
time fault prediction and diagnosis using machine learning. In healthcare, digital twins
enable personalized medicine and optimized hospital operations. The energy sector utilizes
digital twins for optimizing wind farms, power grids and nuclear plants. Smart cities and
construction industries leverage digital twins for urban planning, resource management
and building lifecycle management [16-18]. Thus, these digital twins serve as a powerful
tool for transforming traditional industrial manufacturing into intelligent, adaptive systems
capable of real-time analysis and decision making.
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Figure 4. Levels of intelligence in Industry 4.0: from descriptive to prescriptive analytics.

3. Related Works
3.1. Scientific Cleanroom Laboratories

Cleanroom laboratories are specialized workplace environments that are typically
used for manufacturing processes or scientific research in various disciplines including
semiconductor, nanotechnology, microelectronics, pharmaceuticals, aeronautics, food in-
dustry, etc. In scientific industrial research, it is highly important to maintain precise
experimental conditions and meticulous control of environmental parameters to ensure
accurate experimental results. These environments require minimal contamination from
dust, airborne particles, microbes, aerosol particles, chemical vapors and other pollutants
to deliver high-quality products and the maximum experimental reproducibility. This is
achieved through specialized ventilation systems, the use of high-efficiency particulate air
(HEPA) filters and strict procedural protocols. These controls are essential in environments
where even microscopic contaminants can affect the integrity of the research or manufac-
turing process. Governed by stringent guidelines, such as those set by the FDA [19], these
facilities provide a meticulously controlled environment. This standardization ensures the
optimal performance of sensitive instruments and adherence to environmental conditions
like temperature and humidity. For example, in a well-known integrated chip manufac-
turing laboratory of the Dalian Institute of Semiconductor Technology, the ultra-clean
laboratory room is maintained as a 1500 m? hundred-grade room with a temperature of
23 £1 °C, relative humidity of 45 £ 10% and indoor air pressure of +20 Pa, representing
the typical conditions of an industrial manufacturing environment [20]. However, beyond
these broad regulations, the specific monitoring and analysis of high-end equipment and
tools utilized in cleanrooms require a more detailed approach tailored to the needs of
individual researchers and lab managers. This fine-grained attention helps in maintaining
the integrity and precision necessary for advanced scientific research.

3.2. Anomaly Detection and Classification for Scientific Cleanroom Laboratories

In recent years, there have been several works that have employed machine learning-
and deep learning-based anomaly detection techniques for scientific cleanroom laboratory
cyber-physical systems. Senselet++ [13] utilizes Singular Spectrum Analysis (SSA)-based
real-time anomaly detection, which focuses on searching for known patterns in time series
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data. SSA decomposes a time series into a sum of components such as trend, oscillatory
components and noise that models time-series data to establish what constitutes a “normal”
behavior. In comparing new data against this model, anomalies or deviations from the
norm are flagged as anomalies. In another work [21], the authors developed a model-free
approach for anomaly detection using the well-known Isolation Forest method. However,
none of these methods incorporate concept drift detection or adaption techniques in a non-
stationary cyber-physical systems environment where the statistical properties of normal
or abnormal behavior may change with time. Table 1 presents a comparative analysis
of different anomaly detection models used in CPSs within cleanroom laboratories. It
highlights the capabilities of each method, such as online operation, adaptability to concept
drift and their effectiveness across various anomaly distributions. TWIN-ADAPT stands
out for its adaptability and comprehensive model evaluation in heterogeneous anomaly
distributions, showcasing advanced features not present in the other methods listed.

Table 1. Comparative analysis of related works on application of anomaly detection and identification
in smart cleanroom laboratories.

Characteristic SSA Model [13] Isolation Forest [21] TWIN-ADAPT
Online v X v
Concept drift adaptation X X v
Model evaluation on different anomaly distributions X X v
Type of learning Unsupervised Unsupervised Supervised 1

1 While TWIN-ADAPT is implemented in a supervised setting, it is extendable to unsupervised settings such as
using clustering or density estimation methods to determine drifts instead of classification accuracy in continuous
streams of data. However, this is not within the scope of this study.

3.3. Artificial Intelligence-Based Anomaly Detection Models for Digital Twins

Digital twin technology is increasingly recognized as a vital tool in real-time anomaly
detection and classification within CPSs, smart manufacturing, industrial plants, aircraft
systems [3,22] and other complex control environments [3-5,22-26]. The integration of digi-
tal twin allows for the seamless transition from static to dynamic, real-time data processing,
enhancing the detection and classification of anomalies before they escalate into more
severe issues. This shift is crucial due to the growing complexity and integration of modern
systems, which exposes them to new vulnerabilities and attacks. In building and civil
infrastructure management, the authors of [27] developed digital twins for anomaly detec-
tion, using Bayesian online change-point detection for asset management. A method to
detect anomalies by comparing digital twin fingerprints generated from side-channel emis-
sions (acoustic, vibration data) with physical system features was developed [2], but this
method depends on the presence of detectable side-channel emissions. Huang et al. [28]
introduced a digital twin-driven anomaly detection framework utilizing edge intelligence
for early failure detection and maintenance management in industrial systems. In [29], the
authors developed a two-phase fault diagnosis method assisted by digital twins, employing
deep transfer learning to enhance fault diagnosis in both the development and mainte-
nance phases of manufacturing. Booyse et al. [30] explored a deep digital twin (DDT) for
predictive health monitoring and automating maintenance scheduling using operational
data directly. In another work [31], the authors present a case study on the application
of a machine learning-based digital twin for anomaly detection in small-scale systems,
focusing on the omni wheels of soccer robots. They demonstrate that even with limited
data, ML-based digital twins can effectively identify anomalies, showcasing their potential
beyond large-scale industrial applications. State-of-the-art deep neural network models
such as Autoencoders, Multi-Layer Perceptrons, Transforms and CNNs have been heavily
explored for anomaly detection and classification tasks in time-series sensor data [6,32,33].
These models can capture complex patterns and improve the accuracy of anomaly detection
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in digital twin frameworks. Although these works demonstrate sophisticated anomaly
detection and identification frameworks for digital twins by employing advanced machine
learning or deep learning techniques, they do not explicitly discuss strategies for handling
concept drift wherein new types of anomalies may emerge over time or new ‘normality’
patterns are introduced in the equipment’s operational behavior. This opens avenues for
further exploration within the context of digital twin technology, especially to maintain the
robustness of anomaly detection systems in dynamic environments where system behavior
and conditions evolve over time.

3.4. Concept Drift Detection

Variability in new data from cyber-physical systems can be caused by various factors
such as aging sensors, system updates or external events affecting the data distribution,
leading to the problem of concept drift. Addressing this requires robust mechanisms for
both detection and adaptation [14]. Several methods exist for drift detection. Window-
based methods like Adaptive Windowing (ADWIN) [34] use sliding windows to track the
mean values of data over time. ADWIN adjusts window sizes dynamically, comparing the
means of two sub-windows. If their difference exceeds a set threshold, ADWIN detects a
change and resets the window to adapt to the new data conditions. These methods are quick
and simple to implement. Performance-based methods, such as the drift detection method
(DDM) [35], monitor the error rate of a classifier, adjusting it based on how well the classifier
predicts new data [36]. If the classifier correctly predicts an instance, the DDM lowers the
error rate; if incorrect, it increases the rate. The DDM signals a warning or identifies a drift
when the error rate crosses a predefined threshold. However, these approaches have their
drawbacks. Window-based methods might discard useful historical data, which can be
critical for maintaining context in data analysis. On the other hand, performance-based
methods, while effective in identifying sudden drifts do not perform well for slow and
gradual drifts [14,36,37]. Sakurai et al. [38] provide a benchmark evaluation for existing
drift detection algorithms, where their experimental results show that the DDM algorithm'’s
most pronounced limitation is its incapability to detect incremental (or gradual drifts).

3.5. Concept Drift Adaptation

Once drift is detected, it is crucial to effectively manage the observed changes so that
the learning model can seamlessly adapt to the new data patterns. There are two broad
categories for drift adaptation: incremental learning and online ensemble methods [39].
In the incremental learning strategy, data samples are processed sequentially in order to
update the learning model as new data arrive. The Hoeffding Tree (HT) [40] is a variant of
the decision tree that offers theoretical guarantees to make incremental drift adjustments
for data streams. Unlike traditional decision trees that wait to evaluate the best possible
split, HTs calculate the required sample size for choosing a splitting node, allowing for
timely updates with incoming data. However, HTs have limitations due to their static
internal nodes, which, once set, cannot be altered. Thus, their adaptability to concept drift
is confined to the creation of new nodes, limiting their flexibility and responsiveness. To
address these shortcomings, the Extremely Fast Decision Tree (EFDT) [41] was developed as
an advanced version of the HT. The EFDT improves adaptability by allowing for dynamic
adjustments to its decision nodes post creation. This means that an EFDT not only adds
new nodes but can also revise existing splits if subsequent data suggest a more effective
alternative. This approach enables the EFDT to respond more effectively to concept drifts
than its predecessor, though it may still lag in rapid adaptation. Some prominent models for
ensemble-based drift adaptation include Adaptive Random Forest (ARF) [42], Streaming
Random Patches (SRP) [43] and Leverage Bagging (LB) [44]. ARF and SRP, both utilizing
Hoeffding Trees as base learners and incorporating ADWIN for drift detection, aim to
dynamically adjust the model ensemble by replacing underperforming trees. While ARF
focuses on local subspace randomization, SRP employs a global strategy to enhance learner
diversity, often at the cost of increased computational time [37]. On the other hand, the
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online ensemble bagging method, LB, primarily utilizes a resampling technique, often
using a Poisson distribution to assign random weights to instances in the training data. This
approach enhances the diversity of the training samples that each model in the ensemble
sees, potentially increasing the robustness and accuracy of the ensemble. However, it falls
short in scenarios where data evolve rapidly and unpredictably, as simple resampling may
not be sufficient to capture and adapt to new patterns effectively.

3.6. Continuous Learning for Digital Twins

The importance of continual learning in digital twins (DTs) is highlighted in both the
lumber industry [45] and dynamic digital twin frameworks over wireless networks [46]. In
the lumber industry, Active Learning (AL) methods are leveraged to address the challenges
of dynamic environments, ensuring that DTs actively select and learn from new data
samples to remain adaptive and synchronized with real-world changes. Similarly, in
dynamic digital twins over wireless networks, a novel edge continual learning framework
has been proposed to accurately model the evolving affinity between physical and cyber
twins, emphasizing synchronization and minimizing de-synchronization, which is crucial
for robust and reliable real-world communication. Lombardo et al., in [47], developed
a digital twin-based architecture for Intelligent Location-Based Services (I-LBSs) with
continual learning (CL), integrating MLOps to manage dynamic updates and adapt to
evolving data and task conditions. In summary, a variety of continual learning strategies
have been explored in the digital twin space that are essential in maintaining the accuracy
and relevance of DTs across space and time. This emphasizes the need for efficient continual
learning strategies for digital twins, particularly in the context of anomaly detection and
identification in real-time streams, which is critical for industrial cyber-physical systems
that are susceptible to data distribution changes.

4. Methodology

The end-to-end workflow for TWIN-ADAPT comprises dataset preparation to sim-
ulate different types of drift behavior, followed by the choice of different off-the-shelf
models for online drift detection and adaption to compare their performances with that
of our proposed TWIN-ADAPT’s continuous learning model. Model optimization is an
integral part of TWIN-ADAPT’s continuous learning framework to select optimal values
for different thresholds and window sizes.

4.1. Dataset Description

In the Senselet++ platform [13], an IoT-driven end-to-end sensing platform was de-
signed for the University of Illinois Urbana-Champaign’s (UIUC) scientific cleanroom
laboratories (Figure 5 shows a cleanroom semiconductor lab at UIUC). This [oT sensing
platform consists of a CPS for the critical high-end components, including lab instruments
and infrastructure, within the cleanroom laboratory. It monitors various physical factors
such as temperature (in Celsius), humidity (in %), pressure (in Bar) and rate of airflow
(in meters/second to measure quantity of air being moved) using low-cost sensors. Each
cleanroom component is equipped with its own CPS, comprising a data acquisition system
tailored to the specific requirements of the component. For more details on the data acquisi-
tion unit, please refer to our previous work on Senselet++ [13]. Additionally, it is important
to note that our current work is not focused on building the IoT system itself. Instead, our
approach was designed to work with any existing IoT-driven CPS platform that exhibits the
existence of concept drift, which poses considerable challenges in developing ML models,
as their learning performance may progressively degrade due to data distribution changes.
Subsequently, our aim is to demonstrate a framework for an advanced, online adaptive
learning model that can detect and react to concept drift that occurs in IoT-driven CPS
data streams. We narrow down the scope of the extensive CPS subsystems to the three
most important components of cleanrooms: the Fumehood, Vacuum Pump, and Karl Suss
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Lithography Unit. The CPS connected to each of these cleanroom components collects
time-series data from various sensors, as discussed below:

*  Fumehood: Data from temperature, humidity, and airflow are recorded, providing
a comprehensive view of the environmental conditions within the Fumehood.

*  Vacuum Pump: Temperature sensor data (in Celsius) are aggregated to monitor the
operational health and detect any thermal anomalies that may indicate malfunctions
or efficiency issues.

*  Karl Suss Lithography Unit: Both temperature (in Celsius) and humidity sensor data
(in %) are gathered to ensure that the system operates within optimal conditions for
precise manufacturing processes.

These collected data form the basis for developing digital twins for each component’s
CPS, enabling real-time drift detection and continuous adaptive learning for highly precise
anomaly classification. Figure 6a—c illustrate the distribution of data for the Fumehood’s
temperature sensor and humidity sensor and the Vacuum Pump’s temperature data.

Figure 5. An overview of a scientific semiconductor laboratory (cleanroom) at UTUC.
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Figure 6. Sensor data distribution over one month for (a) Fumehood temperature, (b) Fumehood
humidity and (c) Vacuum Pump temperature.

4.2. Dataset Preparation with Anomaly Injection

To simulate drift in the equipment’s CPS behavior, we inject synthetic noise into the
sensor data values collected for each component of the cleanroom’s CPSs. Evaluating the
performances of adaptive learning models requires distinct differences between training
and testing data, which demonstrate changes in drift distributions. Consequently, we
introduce one type of noise within the training data and a different noise distribution for
the testing data. In the training dataset, Gaussian white noise is injected with a standard
deviation (o) of 0.1 to emulate anomalous operational variations. For the testing dataset,
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a combination of Gaussian and Uniform distribution anomalies is introduced, each with
a standard deviation (ox) of 0.5. This mixed approach in the testing set is designed to
challenge the classifiers” ability to distinguish between normal operations and anomalies,
where the latter follows a different distribution in the training and testing dataset.

Using a mixed-noise model (Gaussian and Uniform) in the testing data, we ensure a
variety of anomaly profiles: some will be obvious due to the higher deviation of the Uniform
distribution, while others will closely resemble the training dataset’s anomalies (Gaussian),
albeit with a different standard deviation. This setup provides a comprehensive assessment
of the classifier’s performance, evaluating its ability to detect anomalies across various
thresholds. It tests the classifier’s robustness against clear anomalies and its precision
in distinguishing between normal and anomalous conditions in a more ambiguous and
realistic operational environment. Figure 7 illustrates the probability density functions of
the added noise distributions. For each type of distribution, the mean (expected) value
of the noise is set to zero, and the standard deviation varies from 0.1 to 0.5 to simulate
different noise levels.

M Noise Type

[ Gaussian (0=0.1)

[ 1 Gaussian (0=0.5)
[ Uniform (-0.5 to 0.5)

. —_—

~1.5

-1.0 -05 0.0 0.5 1.0 1.5
Value

Figure 7. Probability density functions of the noise injected to simulate anomalies.

Two hyperparameters control the extent of anomalies in both the training and testing
sets: the noise ratio and the noise level. Specifically, these are defined as follows:

¢  Noise Ratio: Determines the proportion of data points in the dataset that are affected
by noise.

* Noise Level: Determines the intensity of the noise injected into the data. A higher
noise level means that the anomalies will deviate more significantly from the original
data points. For example, if noise_level = 0.1, the anomalies will be relatively close
to the original data, while noise_level = 0.5 will introduce larger deviations. This
parameter is used directly as the standard deviation for the Gaussian and Uniform
distributions of injected noise.



Future Internet 2024, 16, 239

13 0f 35

For instance, in the Vacuum Pump dataset, which primarily involves temperature
readings (a single-feature dataset), even a slight increase in noise level significantly de-
grades the model performance, due to the model’s sensitivity to small deviations in a
less complex feature space. Conversely, the Fumehood, equipped with multiple sensors
for temperature, humidity and airflow, requires a more substantial injection of anomaly
distribution to induce concept drift. This is because the presence of multiple features dilutes
the impact of noise on a single sensor, necessitating stronger noise ratios and levels in the
multiple-feature (multiple sensors) dataset in order to challenge the model’s performance
during the test phase. Then, Table 2 shows different values set for the noise level and noise
ratio for each type of cyber-physical system’s training and testing dataset.

Table 2. Type of noise distribution, noise level and noise ratio for training and testing datasets.

CPS Datasets Training Data Testing Data
Noise Noise Level . . Noise Noise Level . A
Distribution (o) Noise Ratio  y; tribution (o) Noise Ratio
Vacuum Pump Gaussian 0.1 10% Gauss.lan and 0.5 35%
Uniform

Lithography Unit Gaussi 0.1 10% Gaussian and 0.5 65%

ithography Uni aussian X o Uniform X o

. Gaussian and

Fumehood Gaussian 0.1 10% 0.5 80%

Uniform

4.3. Model Selection for Online Drift Detection and Adaptation

In our work, we present TWIN-ADAPT, a continuous learning framework for online
anomaly classification using digital twins. This framework incorporates advanced machine
learning models, optimization and adaptive algorithms to maintain the precision and
effectiveness of digital twins in classifying real-time anomalies. It is worth mentioning
that each digital twin is a specialized model designed for anomaly classification specific
to its respective CPS component of the cleanroom. For instance, the digital twin of the
Fumehood classifies anomalies in multivariate data, including temperature, humidity and
airflow, which are vital for maintaining stringent cleanroom standards. The digital twin
for the Vacuum Pump focuses solely on the temperature data for anomaly classification
to capture essential thermal dynamics of the Pump, while the digital twin for the Karl
Suss Lithography Unit integrates both temperature and humidity data, crucial for accurate
microfabrication process control.

Specifically, the TWIN-ADAPT framework integrates the LightGBM model into the
digital twin of each CPS component in order to enhance the system’s responsiveness and
adaptability to dynamic environments. This robust machine learning model, an off-the-
shelf gradient boosting decision tree (GBDT) system, is distinguished by its fast training
speed, low memory requirements, superior accuracy and parallel processing capabilities.
These attributes make LightGBM especially well suited for handling the vast and complex
data streams inherent in cleanroom operations, where small fluctuations in equipment
activity can significantly influence operational efficiency [14,48].

LightGBM'’s unique capabilities stem from its innovative Gradient-based One-Side
Sampling (GOSS) and Exclusive Feature Bundling (EFB). GOSS enhances model training
efficiency by focusing on data samples with large gradients that are more informative for
creating predictive models, thereby reducing the computational burden without compro-
mising model accuracy [49]. Concurrently, EFB optimizes feature handling by bundling
mutually exclusive features, significantly reducing the dimensionality of the data, which
is crucial for processing the high-dimensional data typically found in cleanroom’s cyber-
physical system sensors. These features of LightGBM are crucial for maintaining the digital
twin’s accuracy and reliability over time, enabling it to effectively detect and adapt to
concept drift within the data streams. In coupling LightGBM with a dual windowing
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strategy consisting of a sliding window and an adaptive window, the model is equipped
to dynamically adjust its parameters in response to changing data distributions. The
sliding window monitors the model’s performance on recent data, while the adaptive
window accumulates new data to update the model when drift is detected. The algorithm
operates by comparing the accuracy of the current observation window with that of the
previous window. If the accuracy drops below a certain threshold, it indicates potential
drift, prompting the system to adapt (see details for Algorithm 1 in Section 5.1). This
ensures that the digital twin continues to learn and evolve, maintaining a high anomaly
classification accuracy even as new patterns emerge within the cleanroom’s cyber-physical
systems’ operational data. Thus, compared to other online learning models, an optimized
and adaptive LightGBM model within its digital twin framework offers an efficient and
scalable solution for the continuous and real-time demands of cleanroom monitoring. This
empowers the continuous learning model as an indispensable tool in the domain of the
preventive and predictive maintenance of cyber-physical systems.

In addition to TWIN-ADAPT’s optimized and adaptive LightGBM model, we con-
sider several existing online drift detection and learning models to serve as baselines for
comparison. These online learning models include the following:

*  ARF-ADWIN: Adaptive Random Forest combined with ADWIN drift detection.

¢  ARF-DDM: Adaptive Random Forest combined with DDM drift detection.

¢ SRP-ADWIN: Streaming Random Patches model combined with ADWIN drift detection.

¢  SRP-DDM: Streaming Random Patches model combined with DDM drift detection.

¢  HTs: Hoeffding Trees that incrementally adapt to data streams using the Hoeffding
bound to determine the necessary samples for node splitting.

e  EFDT: Extremely Fast Decision Trees quickly adapt to concept drifts by splitting nodes
upon reaching confidence levels.

¢ LB: Leverage Bagging uses bootstrap samples and the Poisson distribution to construct
diverse online ensembles.

These models are selected for comparison due to their strong adaptability to concept
drift and their robust data stream analysis capabilities. Both ARF and SRP are state-of-
the-art drift adaptation methods that demonstrated superior performances in handling
concept drift, as demonstrated in various experimental studies. Both methods are online
ensemble models constructed with multiple HTs, which provide robust incremental learn-
ing capabilities. They do not require the tuning of data chunk sizes, which can lead to
delays in drift detection and increased execution times in block-based ensembles. The
choices of drift detection methods—ADWIN and DDM—are strategic: ADWIN excels at
detecting gradual drifts, while DDM is more effective for sudden drifts. By combining
these drift detection methods with ARF and SRP, we ensure that our base learners can
handle both types of drifts efficiently. Additionally, three well-known individual drift
adaptation models—EFDT, HT and LB provide a diverse range of mechanisms to adjust
to changing data dynamics, making them ideal benchmarks for assessing their relative
performances with our custom combination of online learning models and TWIN-ADAPT.
Specifically, EFDT’s rapid adaptation through immediate node splitting offers a contrast to
more gradual drift adjustments, while HT’s incremental learning approach and LB’s unique
leveraging of bootstrap samples offers unique perspectives on managing data variability
and drift. By comparing these established models with TWIN-ADAPT’s optimized and
continuous learning-driven LightGBM model, we aim to demonstrate the effectiveness
of our approach in classifying anomalies under varying conditions and drift scenarios in
evolving data streams.

4.4. Model Optimization

To optimize the anomaly classifier model’s (LightGBM) hyperparameters, drift detec-
tion and adaptation thresholds and sliding window sizes in TWIN-ADAPT, we employ
Particle Swarm Optimization (PSO). PSO, well known for its efficient global search capa-
bility and speed, is an ideal choice for this task due to its ability to operate without the
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need for gradient information, making it well suited for complex, non-linear optimization
problems often found in real-world applications [49,50].

The integration of PSO in our system focuses on optimizing several critical hyper-
parameters of the LightGBM model, such as the number of tree leaves, maximum tree
depth, minimum number of data samples in one leaf, learning rate and number of base
learners. By adjusting these parameters, the model can be finely tuned to accurately model
the data streams from various cleanroom CPS components, each represented by a dedicated
digital twin. Our implementation uses PSO to iteratively explore the hyperparameter space.
Each particle in the swarm represents a potential solution, i.e., a set of hyperparameters,
and moves through the solution space by updating its velocity and position based on
its own experience and that of its neighbors. This collective intelligence approach helps
quickly converge to the best solution, which is the set of hyperparameters that result in the
highest predictive accuracy for our LightGBM model. This approach not only improves the
performance of the LightGBM classifier model in detecting and adapting to concept drift in
the data streams of cleanroom’s CPS but also enhances the model’s efficiency by reducing
computational overhead.

In addition to optimizing the LightGBM model parameters, PSO is also utilized to
optimize the hyperparameters of TWIN-ADAPT’s adaptive and sliding window algorithm.
This includes finding the optimal values for the thresholds used to determine drift and trig-
ger adaptation by comparing the model accuracy across consecutive windows of samples
in a data stream (refer to Algorithm 2 in Section 5.1).

5. System Overview

The proposed TWIN-ADAPT system comprises an adaptive continuous learning-
driven digital twin specifically designed for anomaly classification on real-time streaming
data from a cleanroom’s cyber-physical system components such as the Vacuum Pump,
Fumehood and Photolithography Unit. Each component’s monitoring model (i.e., the
anomaly classifier model or the learner) is represented by its digital twin, comprising
both offline and online operational stages. Figure 8 presents an overview of the TWIN-
ADAPT framework.

During the offline stage, data from the CPS sensors of that component are aggre-
gated to create a historical dataset, which is utilized to train an (offline) initial model
using LightGBM. This model undergoes refinement through hyperparameter optimiza-
tion using Particle Swarm Optimization (PSO), ensuring that it is finely tuned to the
unique characteristics of each CPS component’s operational data. In the online stage,
the digital twin model processes live data streams that are continuously generated by
the cyber-physical system (sensors) of the cleanroom component. Initially, the Light-
GBM model trained during the offline phase is employed to monitor these data streams
for anomalies. Upon the detection of concept drift in the streaming data—signifying
operational changes or new anomaly patterns—by the optimized adaptive and sliding
windowing method, the proposed continuous learning model collects new data samples
through the adaptive window. These samples are reflective of the latest operational
states of the CPS. The model is then retrained on these new data to accurately align with
the latest patterns, ensuring that each component’s digital twin dynamically adapts to
maintain effective anomaly classification and continuous operational monitoring in the
non-stationary environment of cleanrooms.
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Figure 8. System overview of TWIN-ADAPT.

5.1. TWIN-ADAPT: Continuous Learning for Digital Twin-Enabled Online
Anomaly Classification

TWIN-ADAPT integrates two pivotal algorithms: Continuous Learning Model using
Adaptive and Sliding Window (Algorithm 1) and Hyperparameter Optimization for Continuous
Learning Model (Algorithm 2). The former dynamically adjusts to changing data from
cleanroom equipment sensors, while the latter fine-tunes the model settings using Particle
Swarm Optimization (PSO) for optimal performance. The continuous learning strategy for
real-time, adaptive anomaly detection in TWIN-ADAPT assigns a dedicated digital twin to
each critical CPS component of the cleanroom laboratory. This empowers precise preventive
monitoring and analytics under heterogeneous data distribution settings. Similar to many
sequential learning algorithms, TWIN-ADAPT’s adaptive and sliding window framework
operates in two distinct phases: the offline learning phase and the online continuous
learning phase. During the initial offline learning phase, a static classifier model (Light GBM)
is trained on historical sensor data. In the subsequent online continuous learning phase,
the pre-trained model’s performance is continuously monitored. The model’s performance
metrics are compared against previous observations, and the model is updated using new
concept data as they become available.

The continuous learning algorithm (Algorithm 1) operates by monitoring the perfor-
mance of a pre-trained model on incoming data and making adjustments as necessary
to maintain the prediction accuracy. The algorithm utilizes a dual-window strategy that
employs both adaptive and sliding windows. The sliding window is used for immediate
change detection, while the adaptive window accumulates data necessary for retraining
the models. The process begins by initializing an adaptive window AdaptWin and setting
the system CurrentState to a normal state. As new data points arrive in a streaming batch of
b samples, the last few samples from the batch are collected into an observation window
ObsWin consisting of a fixed size winSize such that winSize is a subset of b, specifically
designed to capture the most recent data points within the batch. The accuracy of the cur-
rent observation window ObsWin is compared with the accuracy of the previous window
PrevAcc consisting of b — winSize samples to detect any significant drops in performance
between the consecutive windows. In the normal state, if the accuracy drops below a



Future Internet 2024, 16, 239

17 of 35

defined threshold (7), it indicates a potential drift, and the system transitions to a warning
state (lines: 5 to 11). In this warning state, new data samples are collected into the adaptive
window AdaptWin (this process is illustrated in Figure 9). If the accuracy continues to drop
further, confirming the drift (), the model is updated using the samples in the adaptive
window, and the system returns to the normal state after clearing the adaptive window
(lines: 13 to 20). If the accuracy stabilizes before confirming the drift, indicating a false
alarm, the adaptive window is cleared without updating the model, and the system returns
to the normal state (lines: 21 to 24).

Adaptivre Window
|

Previous Observation Window Current Observation Window

r

v r 1

M.

T0

0

Last 'winSize' samples
J

Batch="b' samples

Figure 9. Continuous learning process for Algorithm 1. The “current” sliding observation window
(ObsWin) captures the performance metric for short concepts, and the previous observation window
(PrevObsWin) captures the feature—target relationship over the last complete window. In comparing
accuracy between two windows, the adaptive window (AdaptWin) starts to collect data samples as
new concept samples for potential drift adaptation.

The rationale behind aggregating samples in the adaptive window is to identify abrupt
changes in the data while being able to ignore spurious drifts. This approach ensures that
only significant and persistent changes trigger model updates, reducing the overhead of
adaptations to minor or transient data variations. The algorithm also includes a state for
monitoring the model performance in the drift state (State 2) to check if further adaptation
is required. If the model reaches State 2, it continues to collect new samples to compute the
accuracy of the current observation window CurrentAcc and compare it with the accuracy
from the drift starting point (new concept accuracy, NewConcept Acc). If this accuracy is
below the warning level of the new concept, it indicates that the model is outdated and
needs retraining with the new concept samples. The learner will be updated again on
the samples in the adaptive window, and the system will transition to the normal state,
emptying the adaptive window (lines: 35 to 41 of Algorithm 1). Similarly, the model will
also continue collecting samples for updating if the size of the adaptive window has reached
its maximum limit to ensure that the real-time constraints of memory and processing speed
are met.
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Algorithm 1 Continuous Learning Model using Adaptive and Sliding Windows

2
3
4
5:
6:
7
8
9

Input: DataFlow: stream of sensor data from CPS component
<: threshold for initiating detection, ¢: threshold for adaptation
winSize: size of the observation window (for detection), winSizeMax: maximum size
of the data collection window (for adaptation)
Model: pre-trained model on historical data
Output: New average accuracy of Model
1: function ADAPTMODEL(DataFlow, Model, y, 6, winSize, winSizeMax)

10:
11:
12:
13:
14:
15:
16:
17
18:
19:
20:

21
22:
23:
24
25

26:
27
28:

AdaptWin < @
CurrentState <— 0 > 0: Normal, 1: Warning, 2: Adaptation
for batch = b samples € DataFlow do
ObsWin < last winSize samples from batch b
PrevObsWin <— b — winSize samples
CurrAcc < calculate_accuracy (ObsWin)
PrevAcc <+ calculate_accuracy(PrevObsWin)
if CurrentState == 0 and CurrAcc < v X PrevAcc then
AdaptWin < AdaptWin U {batch}
CurrentState +— 1 > Enter warning state
end if
if CurrentState == 1 then
AdaptWinLen < |AdaptWin)|
if CurrAcc < § X PrevAcc then
> Accuracy of current observation window drops to drift level
CurrentState < 2
f < CurrAcc > Record accuracy at drift starting point
Model <+ UpdateModel(Model, AdaptWin)
> Update the model by retraining it on new concept samples
else if Curr Acc > 7y X PrevAcc or AdaptWinLen == winSizeMax then
> False alarm, accuracy increased back or max window size reached
AdaptWin «+ @
CurrentState < 0
else
AdaptWin < AdaptWin U {batch}
end if
end if
if CurrentState == 2 then > Within drift state
AdaptWinLen < |AdaptWin)|
if AdaptWinLen > winSizeMax then
b If sufficient new concept samples are collected
NewConcept Acc + calculate_accuracy (ObsWin([f : f + winSize])
> Calculate accuracy on new concept window starting from index f
: if CurrAcc < 6 x NewConcept Acc OR AdaptWinLen == winSizeMax
then
> When new concept accuracy drops to the warning level or sufficient
new concept samples are collected
Model < UpdateModel(Model, AdaptWin)
> Retrain the classifier on all the newly collected samples
AdaptWin «+ @ > Empty new concept window
CurrentState < 0 > Change to a normal state
else
AdaptWin < AdaptWin U {batch} > Keep collecting new samples
end if
end if
end if
end for
return New Average Accuracy of Model

49: end function
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Algorithm 2 Hyperparameter Optimization for Continuous Learning Model

Input: DataFlow: stream of sensor data, ConfigSpace: space for Hyperparameter
tuning, TimeLimit: maximum duration for optimization
Output: Optimal Params: detected optimal hyperparameter values, Best Accuracy: best
accuracy achieved
1: function HYPERPARAMETEROPTIMIZATION(DataFlow, Con figSpace, TimeLimit)
HighestAcc < 0
fori < 1 to TimeLimit do
7, 0, winSize, winSizeMax < OptimizeConfig(Con figSpace)
Acc < AdaptModel(DataFlow, Model, vy, §, winSize, winSize Max)
if Acc > Highest Acc then
HighestAcc < Acc
Optimal Params <« (7,6, winSize, winSizeMax)
end if
end for
11: return HighestAcc, Optimal Params
12: end function

Lo N DN

—
=

To ensure the model’s effectiveness, a hyperparameter optimization function is im-
plemented. Subsequently, the Hyperparameter Optimization function in Algorithm 2
iteratively tunes the thresholds and window sizes within a specified time limit. Specif-
ically, the digital twin model integrates Particle Swarm Optimization (PSO) within its
Hyperparameter Tuning function. This allows for the fine-tuning of key model parameters
like window sizes and sensitivity thresholds. In customizing hyper parameters such as
windowSize, maxWindowSize and the detection thresholds (4 and §), TWIN-ADAPT can
tailor the model’s responsiveness by finding the optimal values of hyperparameters that
can construct a highly accurate model. For each hyperparameter configuration space,
the optimization function runs the continuous learning model function and evaluates the
model’s accuracy (lines: 3 to 10 in Algorithm 2). The highest accuracy achieved and the
corresponding optimal parameters are stored and returned at the end of the optimization
process to generate an optimization anomaly classification model for the CPS. Specifically,
the parameters for optimization include the following;:

¢ Drift detection threshold (7): This threshold is used to compare the accuracy of the
current observation window (with the most recent winSize samples) with the previous
window (containing b — winSize samples from a batch of b samples). If the accuracy
drops below 7 times the previous accuracy, it indicates potential drift. Optimizing 7y
helps in accurately detecting when the data distribution changes.

e  Adaptation threshold (4): Once drift is detected, this threshold determines whether
the model should be adapted. If the accuracy of the current window of the most
recent samples drops below 4 times the previous accuracy, adaptation is triggered.
Optimizing § ensures that the model adapts appropriately to maintain performance.
A small adaptation threshold can lead to frequent retraining, harming the overall
prediction performance because it causes the model to react too sensitively to minor
fluctuations, resulting in a high false alarm rate.

e  Window sizes (winSize and winSizeMax): The size of the observation window (winSize)
and the maximum size of the adaptive window (winSizeMax) are crucial for the
algorithm’s performance. The observation window size affects how quickly changes
in data distribution are detected, while the adaptive window size determines how
much historical data are considered for retraining the model. A larger adaptive
window size implies a greater capacity for the model to retain past information, while
a smaller size facilitates quicker adaptation to recent changes. The winSizeMax value
sets the sensitivity to the forgetting rule, dictating when the adaptive window should
be emptied, effectively resetting the model’s memory.
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This strategic use of adaptive and sliding windows coupled with hyperparameter
optimization makes TWIN-ADAPT an advanced system capable of maintaining the high
standards required in smart laboratory operations. This approach allows the model to
dynamically adapt to changes in data patterns, maintaining high prediction accuracy even
in the presence of concept drift. By continuously monitoring performance and adjusting
the model as needed, the algorithm ensures robust and reliable analytics for dynamic
distributions in cleanroom environments.

5.2. Experimental Setup

In the experimental setup, we use the River Python module to implement and evaluate
various tree-based models and algorithms on evolving data streams. Python has been
widely adopted in scientific development in recent years due to its versatility, extensive
support for libraries in machine learning and active community support. Therefore, it is
used in this study. RiverML provides a robust framework for continuous learning and
concept drift detection, which are essential for handling real-time data streams. Three
CPS datasets are considered for the anomaly injection and adaptive online classification
models: Fumehood data, Vacuum Pump data and Lithography data. The data for each CPS
component consists of time-series data collected over a period of one month from different
sensors attached to each CPS, as discussed in Section 4.1. Each dataset is split into 70% for
training and 30% for testing. The raw data collected from the CPS sensors are considered
normal, and to simulate drifts with anomalies, we inject different distributions of anomalies
into the training and testing data as discussed in Section 4.2. The datasets are treated as
binary datasets with two labels: “normal” for the unaltered data and “abnormal” for the
samples where noise was injected in either the training or testing set.

To evaluate the performance of the proposed TWIN-ADAPT’s adaptive anomaly
classification framework, we use hold-out validation. The model is trained on the training
set and then evaluated on the test set. Given that the datasets are unbalanced, we utilize
four different metrics to assess the model’s performance: accuracy, precision, recall and
F1 score. These metrics provide a comprehensive evaluation of the model’s ability to
distinguish between normal and abnormal states, reflecting its effectiveness in identifying
CPS anomalies and attacks in real time.

6. Experimental Results

In this section, we present the results of various experiments, including anomaly
injection in the training and testing datasets, the performances of static (non-adaptive)
models on noise-induced datasets, the performances of baseline drift adaptation models
and the performance of TWIN-ADAPT compared to the offline model.

6.1. Anomaly Injection in Datasets

Figure 10 shows the distribution of anomalies and normal data for temperature,
humidity and airflow features of the Fumehood subsystem in both the training and testing
datasets. As expected, the anomalies (in red) are more frequent in the testing set compared
to the training set for each feature. Additionally, the anomalies in the testing dataset exhibit
a broader distribution, indicating greater variance in anomaly values compared to the
training dataset for each feature.

Figures 11 and 12 illustrate the distribution of temperature and humidity values in the
training and testing datasets for the Vacuum Pump and Lithography Unit CPSs, respectively,
distinguishing between normal readings and anomalies. For both CPS components of the
cleanroom, the training datasets show anomalies concentrated around specific values,
while the testing datasets exhibit a broader, more dispersed anomaly distribution. This
shift indicates changes in operational conditions or anomaly patterns between the training
and testing phases. The normal data distribution in the training datasets has pronounced
peaks, whereas the testing datasets show a flatter distribution.
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Training Data - temperature

Table 3 represents the Kolmogorov-Smirnov (KS) test’s p-values used to quantify
the difference in anomaly distributions between the training and testing datasets for each
feature of the three CPS components (Fumehood, Vacuum Pump and Lithography Unit).
The KS statistic is a non-parametric statistical method for measuring the equality between
two probability distributions with different shapes [51]. A p-value from the KS test indicates
the probability that the observed differences between the distributions could have occurred
by chance. In the literature [52-55], a p-value less than a conventional threshold (commonly
0.05 or 0.01) suggests a significant difference between the two distributions, implying that
the samples do not come from the same distribution. In Table 3, the results show significant
differences in the distributions of anomalies, particularly in features like temperature and
airflow, where very low p-values indicate substantial discrepancies, indicating the existence
of concept drift between anomalies of the training and testing datasets. These findings
highlight the impact of different noise injection methods on the anomaly distribution,
which is crucial for evaluating the performance and sensitivity of adaptive drift adaptation
models for accurate anomaly classification models under concept drift conditions.
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Figure 11. Distribution of anomalies and normal data for Vacuum Pump’s feature (temperature) in
both training and testing datasets.
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Figure 12. Distribution of anomalies and normal data for different Lithography Unit’s features
(temperature and humidity) in both training and testing datasets.
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Table 3. p-values for KS-Test to measure difference in anomaly distributions between training and
testing data for each feature of CPS dataset.

CPS Dataset Feature p-Value
Temperature 0.00066
Fumehood Humidity 0.016
Airflow 0.001
Vacuum Pump Temperature 0.0028
. . Temperature 8.789 x 10~%
Lithography Unit Humidity 0.079

6.2. Performances of Static ML Models

Three well-known tree-based machine learning models are utilized to benchmark the
performances of static ML models on the training and testing data. Specifically, we choose
the Decision Tree, Random Forest and LightGBM models. Each model is configured with
a maximum depth of 10 and a minimum samples split of 10, with a random state set to
42. The performances of these different static machine learning models were explored
to identify the best-performing algorithm based on accuracy for both the training and
testing datasets. These models are static, meaning that they do not adapt to changes in data
distributions. To assess whether a model’s performance deteriorates when subjected with
new test data that have a different distribution from the training data, we calculated the
cumulative accuracy over time. This approach helps in identifying how the accuracy of
predictions evolves as the model encounters more data points.

The cumulative accuracy at any given point is determined using the ratio of the
number of correct predictions up to that point to the total number of predictions made.
Mathematically, cumulative accuracy over time for the combined (training + testing) dataset
is defined as

Cumulative Accuracy =

Y Iyi=19)

where the variables are defined as follows:

*  y; is the true label for the k-th data point.

*  {j is the predicted label for the k-th data point.

*  I(y; = #;) is the correctness indicator that outputs “True” if the prediction is correct
(i.e., the predicted label matches the true label), and “False” otherwise.

*  iisthe current data point index, ranging from 1 to the total number of samples in both
the training and testing datasets combined.

Figure 13 shows the performances of the static ML classification models on Fumehood
dataset. As observed in Figure 13, the continuous learning model of TWIN-ADAPT
consistently outperforms Random Forest and Decision Tree in both the training and testing
phases, identifying it as the best static model. A notable drop in accuracy is observed
for all classifiers when transitioning from the training to the testing data. This decline
occurs because the samples in the training set have a similar statistical distribution, but
the test set introduces a different statistical distribution. Consequently, the models trained
on the training data cannot accurately detect anomalies or attacks in the test data. This
phenomenon, known as concept drift, results in a significant decrease in accuracy when
the test set begins. The performance is expected to degrade further if newer, more varied
distributions are introduced into the testing data, demonstrating the limitations of static
models in dynamic environment.

Figures 14 and 15 show the performances of the static models for anomaly classifica-
tion on the Vacuum Pump and Lithography Unit datasets. In both cases, the optimized
and continuous learning-driven LightGBM model of TWIN-ADAPT maintains an accu-
racy comparable to those of Random Forest and Decision Tree during the training phase.
However, a significant decline in accuracy is observed for all classifiers at the start of the
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testing phase, marked by the black dot. This drop indicates concept drift, as the test data
introduce a different statistical distribution in anomalies, causing all models to struggle
with maintaining their accuracy levels. Nonetheless, LightGBM still shows a marginally
better performance across all three datasets during the testing phase, suggesting that it
may generalize better than RF and DT in dynamic environments. Therefore, we select
LightGBM for optimization, drift detection and adaptation for online anomaly detection in
the TWIN-ADAPT.
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Figure 13. Static ML models’ performances on training and testing datasets of Fumehood.
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Figure 14. Static ML models” performances on training and testing datasets for Vacuum Pump.
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Figure 15. Static ML models’ performances on training and testing datasets for Lithography Unit.

6.3. Performance of Baseline Drift Adaptation Models for Anomaly Classification

As discussed in Section 4.3, we analyze the effectiveness of our adaptive and optimized
anomaly classification model of TWIN-ADAPT by comparing it with seven baseline models
for drift adaptation. Four of these models—including ARF-ADWIN, ARF-DDM, SRP-
ADWIN and SRP-DDM—are customized by combining drift detectors (ADWIN and DDM)
with drift adaptors (ARF and SRP) to create robust models capable of handling concept
drift. The other three individual models for online drift adaptation are EFDT, LB and HB.
The performances of the various baseline drift adaptation models on the testing datasets,
following their training on the respective training sets, are depicted in Figures 16-18. For
the Fumehood dataset, as shown in Figure 16, the SRP-DDM model achieves the highest
average accuracy of 97.01%, followed by the LB model at 96.45% and the SRP-ADWIN
model at 95.53%. The ARF-ADWIN and ARF-DDM models also maintain high accuracy
levels, whereas the EFDT and HT models perform significantly worse, with average
accuracies of 86.11% and 91.62%, respectively. On the Vacuum Pump dataset (Figure 17),
the SRP-DDM model again shows a superior performance with an average accuracy of
67.33%, closely followed by the LB model at 67.93%. The SRP-ADWIN and ARF-DDM
models also maintain competitive accuracy levels. However, the EFDT and HT models lag
behind, with average accuracies of 62.53% and 65.41%, respectively. For the Lithography
dataset (Figure 18), the results indicate that the SRP-DDM model leads with an average
accuracy of 64.82%, closely matched by the ARF-DDM and SRP-ADWIN models. The
ARF-ADWIN model also performs relatively well, while the EFDT model shows a lower
accuracy at 55.27%. The HT model achieves an average accuracy of 45.56%, indicating that
it struggles the most with this dataset.

To complement these results, Table 4 also presents the F1 scores, precision, recall
and accuracy for various models across the Fumehood, Vacuum Pump, and Lithography
Machine datasets. In observing the F1 scores and precision values, the SRP-DDM model
consistently achieves a high performance across all three datasets. For instance, the SRP-
DDM model has an F1 score of 0.97 for the Fumehood dataset, 0.705 for the Vacuum Pump
dataset and 0.678 for the Lithography Machine dataset, indicating its superior performance
in comparison to the other baseline drift adaptation models. It is worth noting that across
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all datasets, the models initially struggle to adapt but achieve stable performances after
processing a few samples, demonstrating their ability to handle concept drifts effectively
over time. This trend is evident in the initial fluctuations followed by stabilization in
the accuracy metrics. In summary, while the SRP-DDM and LB models generally exhibit
the highest performances across the datasets, the other baseline drift adaptation learners
such as ARF-ADWIN, ARF-DDM and SRP-ADWIN also maintain competitive accuracies.
Conversely, the EFDT and HT models consistently show low performances as they fail to
capture the intricate relationships within the data due to the models’ reliance on simpler,
rule-based structures for adaptation.

Table 4. Comparison of performance measures for different drift adaptation models.

Title 1 Metrics CPS Datasets
Fumehood Vacuum Pump Lithography Unit

Accuracy (%) 95.72 64.89 65.73

F1 Score 0.957 0.646 0.649

ARF-ADWIN Precision 0.957 0.643 0.645
Recall 0.957 0.649 0.6572

Accuracy (%) 95.47 66.52 67.01

F1 Score 0.955 0.663 0.664

ARF-DDM Precision 0.955 0.662 0.661
Recall 0.954 0.665 0.67

Accuracy (%) 95.98 70.21 67.30

F1 Score 0.959 0.691 0.668

SRP-ADWIN Precision 0.958 0.690 0.666
Recall 0.959 0.702 0.673

Accuracy (%) 97.34 70.53 67.84

F1 Score 0.973 0.692 0.671

SRP-DDM Precision 0.974 0.693 0.668
Recall 0.973 0.705 0.678

Accuracy (%) 94.52 61.33 58.75

F1 Score 0.948 0.544 0.569

EFDT Precision 0.955 0.548 0.56
Recall 0.945 0.613 0.588

Accuracy (%) 94.83 66.36 52.75

HT F1 Score 0.951 0.559 0.516
Precision 0.96 0.672 0.674

Recall 0.948 0.663 0.527

Accuracy (%) 97.19 70.0 65.28

LB F1 Score 0.972 0.638 0.629
Precision 0.973 0.719 0.628

Recall 0.972 0.70 0.653

Accuracy (%) 96.97 71.92 69.26

F1 Score 0.97 0.695 0.693

TWIN-ADAPT Precision 0.973 0.710 0.695

Recall 0.97 0.719 0.692
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Figure 16. Average accuracy comparison for baseline drift adaptation models on Fumehood dataset.
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Figure 17. Average accuracy comparison for baseline drift adaptation models on Vacuum
Pump dataset.
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Figure 18. Average accuracy comparison for baseline drift adaptation models on Lithography
Unit dataset.

6.4. Performance of TWIN-ADAPT

In order to obtain optimized TWIN-ADAPT models, their hyperparameters are auto-
matically tuned using a Particle Swarm Optimization (PSO) technique as already discussed
in Section 5.1 (Algorithm 2). The initial hyperparameter search range and the computed
optimal hyperparameter values for TWIN-ADAPT’s Algorithm 1 on the three experimen-
tal datasets are shown in Table 5. After using PSO, optimal hyperparameter values are
assigned to the LightGBM classifier to construct an optimized model for adaptive anomaly
classification under concept drift conditions.

The performance comparison of TWIN-ADAPT’s optimized and online LightGBM
model against the offline LightGBM model during the testing phase is shown in Figures 19-21.
For the Fumehood dataset, as illustrated in Figure 19, the online adaptive model achieves
a relatively higher average accuracy of 96.97% compared to the offline LightGBM model’s
accuracy of 96.41% (with an average performance improvement of 0.57%). For the Vacuum
Pump dataset, as illustrated in Figure 20, the adaptive model again shows a significantly
superior performance with an average accuracy of 71.92%, while the offline LightGBM
model achieves only 65.13% (with an average performance improvement of 10.42%). For the
Lithography dataset, Figure 21 reveals that the online adaptive LightGBM model outperforms
the offline model with an average accuracy of 69.26% compared to 39.57% accuracy from the
static LightGBM model (with an average performance improvement of 75.60%).

Table 5. TWIN-ADAPT's hyperparameter configuration.

Hyperparameters  Search Space Fumehood Vacuum Pump thh;iﬁphy
¥ [0.90, 1] 0.977 0.984 0.9711
6 [0.90, 1] 0.965 0.912 0.917
WinSize [100, 1000] 247 541 360
winSizeMax [500, 5000] 2892 4111 2443

From these results, it is evident that the presented TWIN-ADAPT’s optimized and con-
tinuous learning-driven LightGBM model consistently outperforms the offline LightGBM
model across all datasets, exemplifying the effectiveness of the adaptive learning approach
in dynamic industrial CPS environments. This is further supported by the performance
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metrics in Table 4, which show that the TWIN-ADAPT model also excels in precision, recall
and F1 score, indicating its robustness and reliability for online anomaly classification for
CPS datasets. It is also worth mentioning that the performance improvement for the Fume-
hood dataset is marginal because even the offline model performs well, indicating it has
already converged. In contrast, the significant improvements observed in the Lithography
and Vacuum Pump datasets demonstrate that adaptation in dynamic environments can sig-
nificantly enhance performance under concept drift conditions. The results emphasize the
necessity and advantage of incorporating adaptive learning mechanisms in CPS utilizing
anomaly and fault classification for online data streams.
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Figure 19. Average accuracy comparison of TWIN-ADAPT’s online adaptive LightGBM model vs.
offline LightGBM model for Fumehood test dataset.
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Figure 20. Average accuracy comparison of TWIN-ADAPT’s online adaptive LightGBM model vs.
offline LightGBM model for Vacuum Pump’s test dataset.
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Figure 21. Average accuracy comparison of TWIN-ADAPT’s online adaptive LightGBM model vs.
offline LightGBM model for Lithography Unit's test dataset.

7. Discussion

Performance of TWIN-ADAPT across different CPS datasets: TWIN-ADAPT works
well with the Fumehood dataset, which contains multiple features that offer suffi-
cient information to train the model accurately (average accuracy of 96.97% and F1
score of 0.97). In contrast, the significant performance improvements observed on
the Lithography and Vacuum Pump datasets demonstrate that TWIN-ADAPT signifi-
cantly enhances the performance under concept drift conditions compared to the older
offline model. These results could be further improved by exploring other advanced
deep learning-based classification models within the TWIN-ADAPT framework, such
as CNNs, MLPs or Transformers to enhance the performance on datasets with limited
features for learning or high-anomaly distributions.

Comparative analysis between TWIN-ADAPT and baseline drift adaptation mod-
els: As observed in Table 4, TWIN-ADAPT generally outperforms traditional drift
adaptation methods due to its more flexible adaptation strategy. While methods like
ADWIN rely on fixed-size sliding windows to manage data and detect drift and DDM
monitors degradation in model performance—which are not dynamically adaptive
to new or evolving data patterns—TWIN-ADAPT’s approach allows for more fine-
grained adjustments to both sudden and gradual concept changes, integrating drift
detection and adaptation into a singular process. This eliminates the need to pair
separate drift detectors with adaptation models, which typically increases computa-
tional and time overheads. TWIN-ADAPT seamlessly combines sliding and adaptive
windows, enhancing both the detection and adaptation to drift within a streamlined
framework. Additionally, instead of comparing the statistical properties of the data for
drift detection and adaptation, TWIN-ADAPT focuses on performance-based adapta-
tion. This ensures that model updates for retraining occur only when the performance
degrades significantly, rather than responding to every minor data fluctuation that
might not impact the model’s effectiveness.

Computational complexity of TWIN-ADAPT: The computational complexity of
TWIN-ADAPT’s continual learning model is determined by the operations within its
sliding and adaptive windows, and the hyperparameter optimization using Particle
Swarm Optimization. Specifically, the sliding window operation has a complexity of
O(NM), where N is the number of data samples in the every batch, and M represents
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the number of times that the hyperparameters are tuned within PSO. PSO itself is
relatively efficient, with a complexity of O(NlogN), supporting parallel execution to
enhance performance. This setup ensures that the TWIN-ADAPT model remains
computationally feasible for real-time applications in IoT-driven cyber-physical sys-
tems, balancing the need for accurate drift adaptation with the real-time constraints of
computational resources.

Cross-domain generalization: The integration of automated hyperparameter op-
timization using Particle Swarm Optimization (PSO) allows TWIN-ADAPT to be
effectively generalized across various domain datasets. This feature enables adaptive
anomaly classification without the need for manual tuning or intervention, which
reduces the risk of bias and enhances model applicability in diverse settings.

Impact of data quality check to prevent overfitting: The integrity of TWIN-ADAPT’s
performance is heavily reliant on high data quality. Spurious drifts and noisy data
can significantly distort the model performance due to frequent retraining and resets.
Implementing stringent data quality checks ensures that only relevant and precise data
influence the model’s training process, thereby avoiding overfitting and underfitting.

8. Future Directions

The following future enhancements to the TWIN-ADAPT system can focus on several

key areas to improve its robustness and adaptability:

Incorporating old concepts for retraining: A potential enhancement could involve
retaining the historical concepts within the adaptation model, rather than discarding
them from the adaptive window. This approach would enable the model to quickly
revert to previous configurations (of model hyperparameters) without the need for
retraining in cases where recurrent drifts occur, causing the old anomalous patterns to
re-emerge. Such a strategy would reduce the computational overhead of duplicated
retraining, improving the responsiveness in dynamic environments.

Alternate model learners for different drift scenarios: Incorporating a model zoo, or
an alternating learner framework [10], represents a significant potential enhancement
for TWIN-ADAPT. By maintaining a collection of models, each tailored to different
types of previously encountered concept drifts, the system can efficiently manage
recurrent patterns without needing to retrain from scratch each time an old pattern
resurfaces. This approach not only saves computational resources but also reduces
latency in response to drifts, ensuring that the digital twin can quickly switch between
models to match the current data scenario.

Testing in varied drift scenarios and noise distributions: Future developments
could involve the extensive testing of TWIN-ADAPT across a variety of concept drift
types—such as gradual, sudden, recurrent and incremental drifts—to enhance drift
detection and adaptation methodologies. This testing would help develop domain-
specific adaptation policies, potentially avoiding unnecessary adaptations in cases of
spurious drifts associated with specific tasks or processes. Additionally, exploring
the impact of different noise distributions like Power Law and Laplacian, beyond the
commonly used Gaussian and Uniform models, could provide deeper insights into
the robustness of TWIN-ADAPT against various types of data disturbances.
Adaptive feature selection: An adaptive feature selection mechanism can be de-
veloped to dynamically adjust the features used for model training based on their
correlations with the target variables, ensuring that the model remains effective despite
fluctuations in data streams.

Generative Al and LLMs for drift adaptation within digital twins: Generative
models such as GANs and VAEs can create synthetic data samples that mimic possible
future normal operational states, anomalies (or faults) of the monitored CPS not yet
seen in the real data. This capability is useful for training the digital twin model to
handle potential future scenarios, effectively preparing the system for “unseen” drifts
and anomalies. Moreover, LLMs can be used to generate explanatory narratives or
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decisions based on the data trends observed by the digital twin [56]. For instance, if
a drift is detected, the model can suggest potential causes (such as drift localization or
features causing the drift) and recommend corrective actions based on similar past
scenarios it has learned during training,.

¢  Collaborative learning in digital twins: Collaborative learning in digital twins enables
CPS components to collectively analyze and respond to concept drift and anomalies,
ensuring robust decision making. In sharing insights, even if one CPS component
shows drift, others can validate its reliability, reducing false positives and enhancing
overall system accuracy. This approach fosters a resilient, interconnected CPS in
industrial environments.

¢ Inducing different types of drifts using anomaly injection: Currently, our noise
injection method introduces random points of anomalies to induce drifts of different
distributions in the testing data, which closely resemble abrupt, sudden and incremen-
tal drifts. However, systematic studies can be conducted to strategically simulate other
drift types (like re-occurring drifts) more explicitly to observe the model’s robustness.

¢  Contrastive learning: Contrastive learning is an innovative machine learning ap-
proach that helps the model adapt to concept drift using pairs of similar and dissimilar
data points to continuously update the model, ensuring that it recognizes relevant
changes in the data over time. As a future prospect, it can also be used for digital twins
to enhance their adaptability and accuracy in reflecting data distribution changes in
real-world systems.

¢ Advanced Al models: TWIN-ADAPT can be further extended using deep neural
network methods such as CNNs, Multi-Layer Perceptrons (MLPs) and Autoencoders
for anomaly detection and classification. These models can not only handle large
volumes of data but also better generalize across different types of data, thus im-
proving accuracy in digital twin frameworks. Additionally, Physics-Informed Neural
Networks (PINNSs) [57] can be used to incorporate domain-specific physical properties
into neural network architecture, enhancing model robustness in dynamic environ-
ments. However, these models require large training datasets and continual learning
to stay updated, which often leads to the problem of catastrophic forgetting [58]. Thus,
continuous learning approaches are essential to ensure models retain past knowledge
while adapting to new data.

9. Conclusions

In dynamic environments, such as scientific laboratories integrated with IoT and CPSs,
operational changes, sensor aging, machine degradation, software updates or the addition
of new processes and equipment can lead to varied data distributions over time causing
model degradation decay for anomaly (or fault) detection and classification. These changes
necessitate the use of adaptive models capable of detecting anomalies even as data distri-
butions evolve, ensuring a high model performance. Continuous anomaly classification
monitoring in the rapidly changing conditions of scientific laboratories requires models
that can dynamically learn and adapt to evolving data streams. In this context, we develop
a continual learning algorithm for digital twin-enabled online anomaly classification in
TWIN-ADAPT to adjust to concept drift while maintaining an accurate anomaly classifica-
tion. Our experimental results with the TWIN-ADAPT model highlight the effectiveness
and robustness of its adaptive and optimized classification approach in dynamic CPS
settings. TWIN-ADAPT employs a dual-window strategy for drift adaptation, integrated
with Particle Swarm Optimization, to continually adjust to evolving data streams. Our
method is evaluated under simulated drift scenarios using different noise distributions to
emulate anomalous drifts in the training and testing data distributions. The TWIN-ADAPT
framework significantly outperforms its offline counterparts and demonstrates a competi-
tive performance against benchmark drift adaptation algorithms for three industrial CPS
components. This continual learning strategy of TWIN-ADAPT ensures a better accuracy
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and reliability of machine learning models used for digital twins to better suit the changing
needs of industrial settings.
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