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Abstract—Distributed convex optimization algorithms employ
a variety of methods for achieving exact convergence to the
global optimal value (modulo numerical precision): some use
time-varying dynamics, some use dynamics on each edge rather
than on each node of the communication graph, some use
double the communication between nodes per optimization step,
and some use a specific initialization that enforces the dynamics
to evolve on a particular subspace. Each of these methods has its
drawbacks. Using time-varying dynamics might require a global
clock, and it might cause transients due to disturbances to take
longer and longer to die out as time progresses. Using edge-based
rather than node-based dynamics might increase the memory and
computation costs, and it typically requires the communication
graph to be undirected. Using double the communication per
optimization step might increase the communication cost, and
it might also slow down the convergence to the optimal value.
Using a specific initialization to enforce a particular invariant
subspace might render the algorithm unable to recover from
faults or disturbances that perturb its dynamics from this
subspace, resulting in convergence to the incorrect value. In
this latter case we say that the algorithm is not self-healing.

In our previous work [1] we considered strongly convex
objective functions having Lipschitz continuous gradients, and
we introduced a new first-order method for achieving exact
convergence to the global optimal value. Our new algorithm has
none of the above drawbacks, and in particular it is a self-healing
algorithm. But, it does possess a peculiar internal instability: each
node has states that grows linearly in time even as its output
converges to the optimal value. In the present work, we consider
general non-smooth and extended-real-valued convex objective
functions (which can thus incorporate hard convex constraints).
We present proximal algorithms that again employ our new,
internally unstable method for achieving exact convergence.

Index Terms—distributed optimization, convex optimization,
proximal methods

I. BACKGROUND

Several well-known first-order methods for distributed
optimization, such as distributed (sub)gradient descent
(DGD) [2] and diffusion [3], converge to a neighborhood
of the optimal value when the step size is constant. As the
choice for the step size decreases, typically so do both the
size of the neighborhood and the convergence rate, thus
creating a trade-off between accuracy and speed. While such
a trade-off may be undesirable, both DGD and diffusion are
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self-healing: if a temporary disturbance or fault occurs in
the distributed computation, the method will automatically
resume convergence to its original stationary point without
the need for any restarting or re-initialization.

To obtain convergence to the exact value in methods like
DGD and diffusion, one can vary the step size with time,
making it smaller and smaller as time progresses. In doing so,
however, one creates a time-varying response to any distur-
bances or faults: it takes longer and longer to recover from
disturbances as time progresses. Hence such time-varying
methods might not be appropriate for applications in which
disturbances and faults are common (such as swarm robotics).

By introducing additional states into the optimization
dynamics, one can obtain methods that converge to the
exact solution under constant step sizes, thus avoiding any
accuracy/speed trade-offs. Such methods include EXTRA
[4], DIGing [5], [6], NIDS [7], Exact Diffusion [8], SVL
[9], DOGT [10], and Push-Pull [11] (and see [9] for other
examples). These methods all evolve on a state space
that is a foliation of invariant manifolds for the method
dynamics, only one of which contains the optimal solution.
Thus precise initialization on the correct manifold is a
requirement for convergence to the exact solution. In other
words, these exact methods are not self-healing.

The methods DGD, diffusion, SVL, NIDS, EXTRA, and
Exact Diffusion all require each node to broadcast to its
neighbors at each iteration a vector the size of the number
of shared decision variables. Because other methods require
more communication per iteration, we will say that these six
methods are communication-efficient. There do exist methods
for distributed optimization that are exact and self-healing
with time-invariant dynamics (i.e., constant step sizes), but
they are not communication-efficient. For example, the self-
healing methods in [12] (which is also [13, Algorithm 1]) and
[14] require twice as much communication per iteration as do
the communication-efficient methods. Also, the edge-based
methods in [15], [16] are exact and self-healing with time-
invariant dynamics, but they do not work on directed commu-
nication graphs and they generate a total amount of network
communication per iteration that grows linearly with the
number of edges rather than with the number of nodes (and
thus are generally not communication-efficient either).



To the best of our knowledge, our gradient method in
[1] is the first distributed optimization method that is exact,
self-healing, and communication-efficient, has time-invariant
dynamics, and can work on directed communication graphs.
However, this method is restricted to smooth convex
objective functions having Lipschitz-continuous gradients.
In this extended abstract we present proximal versions of
our method in [1] that we can apply to general nonsmooth
and extended real-valued convex objective functions.

II. THE PROBLEM

We suppose each node i in a network of n nodes has a
local objective function f; : R® — R U {co}, and we consider
the optimization problem

minimize
0 e R°
The nodes wish to solve this problem cooperatively in a
distributed manner, i.e., without having to share the local
data that comprise their local objective functions f;. We
assume the following:
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(A1) each f; is convex and lower semicontinuous
(A2) N, ridom(f;) # @, and
(A3) there is a unique solution 6* € R° to problem (1).

In (A2), the set dom(f;) = {0 € R® : f;(0) < oo} represents
the effective domain of f; and ri denotes the relative interior
(i.e., the interior relative to the affine hull). Hence (A2) is
an assumption that the local objective functions have a
common “strictly feasible” point.

We model the communication among the nodes in the net-
work as a simple digraph in which a directed edge i — j from
node i to node j exists if and only if node i can send infor-
mation to node j. Thus the edge direction is the same as the
communication direction. Each edge i — j has an associated
weight w;; € R. We extend the set of weights to non-edges by
setting w;; = 0 whenever i — j is not an edge of the digraph.
The weighted in- and out-degrees d.* and d?"* for node i are

n
" = Z Wji»
j=1
The corresponding weighted in- and out-Laplacian matrices

for the digraph are

Lin = diag{d", ..., d"} — [wij] (3)
Lout = diag{dfut, RN dgut — [Wij] s (4)

n
dl-OUtzzwij. (2)
Jj=1

where [w;;] denotes the weighted adjacency matrix, namely,
the n X n matrix whose entry in row i and column j is w;;.
Weights w;; on self-loops cancel out in these Laplacians,
so such weights are irrelevant. By construction we have
LiTn]ln = Loyt1, = 0. We say the weights are balanced when
Lin = Loy, namely, when d* = d™" for each node i.

Now suppose each node i has access to a local vector
v; € R, and define the global vector v = (vy,...,v,) € R If
edge weights are assigned at the receiving nodes, then each
node i can calculate the i vector component y; € R® of

y = (L] ®I.)v by receiving the vectors v; from each of its in-
neighbors j. In other words, multiplication by the transposed
in-Laplacian L] ® I is a distributed operation. Likewise, if
edge weights are assigned at the transmitting nodes, then
each node i can calculate the i component y; € R¢ of
y = (L], ®I.)v by receiving the weighted vectors wj;v; from
each of its in-neighbors j. It is easier to use Ly, rather than
Loyt because nodes naturally know their in-degrees through
receiving information from their in-neighbors, whereas dis-
covering their out-degrees may involve extra communication.
We will make use of the orthogonal projection matrix

J=I,-3i1,17, (5)

where 1, € R” represents the vector of n ones. Note that J
is also the weighted Laplacian matrix for a complete graph
having n nodes and all edge weights equal to 1/n. We make
the following assumptions on the communication digraph:

(A4) the weights are balanced (and we set L = Li = Loyt),
(A5) there exists o € [0,1) such that ||J - L||; < o.

In practice we achieve (A4) by running a weight balancer
in parallel with our optimization algorithms so that (A4)
holds only in the limit, not at every time step. Because our
algorithms are self-healing, such parallel weight balancing
will not introduce any error in steady state. One can find
various methods for balancing weights in [17]-[22]. If the
weights are positive and the digraph is strongly connected,
then we can always satisfy (A5) by scaling all weights by
a sufficiently small positive constant. Here o represents a
bound on the distance between L and the Laplacian matrix
J for a complete graph, and as such is acts as a measure
of the connectivity of the digraph.

We next reformulate the problem by giving each node i a
local copy x; of the common decision variable 6, collecting
x=(x1,...,%,) € R, and defining F : R® —» R U {co} as

F =3 fitx). ©)
i=1

To obtain an optimization problem for F that is equivalent
to the original one in (1), we first define two subspaces of
R" as follows:

C=Null(J®IL)= {(yl,..
Ct=Col(J®IL) = {(m,..

Sin) € R op = p; Vi,j} (7)
Hp) €RT L ZE =0}, (8)
Here C represents the consensus subspace and has dimension

¢, whereas C* represents the disagreement subspace and has
dimension c(n — 1). The reformulated problem is
minimize F(x)
x € R 9)
subject to x €C,

which from assumption (A3) has a unique solution given
by x* = 1, ® 6*. It is straightforward to show that

x=x" S xe€C and 9F(x)NC*t + @,

(10)

where 9F(x) = (dfi(x1), ..., fn(xn)) € R denotes the
convex subdifferential.



III. THE ALGORITHMS

There are many optimization methods that are based on
a splitting of the objective function into the sum of two
terms (ADMM being a prime example), and we will employ
such a splitting here. To be precise, each node i splits its
local objective function f; as the sum

filxi) = gi(x;) + hi(Aix; + by), (11)

where g; : R —» R U {co}, h; : R™ — R U {oo} for some
dimension m;, A; € R™*¢ and b; € R™. Note that m;, g,
hi, A;, and b; need only be known to the i node. Also, the
splitting in (11) is not unique, and different choices for the
splitting will lead to different algorithms.

The presence of the matrix A; in (11) is significant, as
it often allows us to choose a function h; having a proximal
map that is straightforward to evaluate (and that may even
be given by a simple closed-form expression). We could
always define a new function h}*V(x;) = h;(A;x; + b;) and
thus assume A; = I and b; = 0 without loss of generality;
as explained in [23], however, the proximal map for A"
can be significantly more difficult to evaluate that that for
the original h;, largely eliminating any potential benefit of
the splitting. Hence by allowing A; # I, we obtain proximal
methods more widely applicable than those such as NIDS
[7] that require A; = 1.

We assume the splitting in (11) satisfies the following:

(A6) rank(A;) =c,
(A7) g; and h; are convex and lower semicontinuous, and
(A8) 3 0 € ridom(g;) such that A;0 + b; € ridom(h;).

Assumption (A6) incurs no loss of generality: indeed, if
rank(A;) < ¢ then we can simply add rows to A; to obtain
a larger matrix A7*" which has rank c. We likewise add
entries to b; to obtain b7V, and we define h}*V (v, ) = h;(v)
so that h}*V(AMVx; +b7*V) = h;(A;x; +b;). Assumption (A8)
is a regularity condition on the splitting in (11) that will
allow us to employ rules from subdifferential calculus.
To derive a formula for oF, we let m = m; +---+m, and
define G : R —» R U {oo} and H : R™ — R U {co} as
G(x) = > gi(x1), H(v) = > hi(v), (12)
i=1 i=1
where v = (vq,...,v,) € R™ with v; € R™. Thus using (11)
we can write F in (6) as

F(x) =G(x)+H(Ax+b), (13)

where A € R™*“" denotes the block-diagonal matrix A =
blk diag{A;,..., Ay} and b = (by,...,b,) € R™. It follows
from (A8) and the rules of subdifferential calculus [24] that

(14)

Because we have both 9G(x) = (391 (x1), ..., 3gn(x,)) C RY
and aH(Ax+b) = (8h1 (A1X1 +b1), ces ah,,(A,,xn+bn)) C Rm,
it follows from (13) and (14) that

aﬁ(xi) = agi(xi) +A§ahi(A,~xi + bz) .

OF (x) = 9G(x) + AToH(Ax + b) . (15)

Fig. 1. Feedback form of distributed algorithms

Also, (A6) implies that the Moore-Penrose pseudoinverse
A* is a left inverse of A and is given by

A" = (ATA)7'AT = blkdiag{A®,..., A"}, (16)

where At = (ATA;)7'A] for each i.

Our iterative algorithms will involve sequences of vectors,
and if v is such a sequence then we will let o* denote its
kM element. Here k is the discrete time variable, which will
take values in N={0,1,2,...}.

We write our algorithms as the feedback connection of a
discrete-time LTI system X and a memoryless nonlinear block
A, as shown in Fig. 1. The system 3 consists of n parallel sys-
tems 3; (one for each node), and it has the state-space form

Wk+1 B >4 | 25 Wk
y* Sc|3p | |uF

for appropriate matrices (24,25, Z¢, Zp). Here w is the
global state at time k. The feedback system will have no
algebraic loops, that is, (id —XpA)~! will be a well-defined
memoryless operator.

(17)

At every time step k, each LTI system X; has two vector
states w{‘l, wfz € R™, four vector inputs uf“] € R™, and four
vector outputs yf.‘j € R™, where j=1,...,4. We collect the
local signals for each node into the vectors wj.‘, u?, y;.‘ e R™
by defining w’f = (wfl, e W51) and likewise for the other
signals. We further collect the states, the inputs, and the
outputs as wk = (Wf, wé‘) e R2m yk = (u’f,...,uf) e R4m,
and y* = (y’f, . ..,yi‘) € R*", The state-space matrices for
the system X are

2A | 2B
2c | Zp

1 0 bll b12 1 b14 ]
0 1] 0 0 1 0
C11 1 0 0 0 0
= ®1 18
C21 0 d21 0 d23 0 " ( )
c31 0 |dsy dip 0 diy
1 0] 0 0 dy O

for parameters c;;, d;; € R. The nonlinear block u* = A(y¥)



is given by the memoryless mappings

uk = A (F) = AT @ L) ATYF (19)
d5(y%)  (algorithm 1)

uf = Ay(yh) = {B0e0 Y2/ A EOn (20)
prox/,.(y;) (algorithm 2)

uy = As(y5) = proxgy (vs +b) - b (21)

Uy = Ay(yy) = AA'Y} . (22)

where a and f§ represent strictly positive step sizes. Hence A
is of the diagonal form A = diag{A1,...,As}. The nonlinear
maps in (20)—-(21) are given by

gdl.(v) = AT [ATo — aVG(ATv)] (23)
proxéG(v) =A- arg min[aG(z) + %”Az - U||2] (24)
proxgy (v) = arg min[ﬂH(z) + %Hz - z)||2] (25)

There are two choices for A; in (20) leading to two different
algorithms: the first uses the weighted gradient descent map
gd’; whereas the second uses the weighted proximal map
prox” .. Both algorithms use the standard proximal map
proxgy for As. Note that algorithm 1 uses the gradient of
G and thus requires each g; to be everywhere differentiable.
Also, we must take care when using algorithm 2 that our split-
ting results in each g; being simple enough (e.g., quadratic)
to make the evaluation of prox? straightforward. The only
part of £ and A that involves communication between nodes
is Ay (where the Laplacian matrix L appears); all other com-
putations can be performed locally in parallel on each node.

The “readout” signal x*, that will converge to optimal
solution x* under suitable stability conditions is

k _ a+,.k
Xout = ATus .

(26)

Our algorithms are not internally stable: the signals wé‘ and
y’f grow linearly in k in steady state, even as x*, converges
to the optimal solution x*. This mild internal instability
is the price we pay for gaining the self-healing property
without losing exactness, time invariance, or communication
efficiency.

There are 12 parameters in the matrices Xp, X¢, and
2p, which together with the step sizes a and f represent a
total of 14 algorithm parameters. However, we cannot freely
choose all 14 parameters. First, our parameter choices must
guarantee the well-posedness of the feedback loop in Fig. 1.
For this reason we assume that djsdsy = d3sdys = 0, which
together with the diagonal form of the nonlinear block A
ensures that (id —XpA)~! is a well-defined operator on R*™,
This operator consists of various compositions of linear
maps and the nonlinearities gdﬁc (or proxﬁG) and proxg;.
In particular, A and (id —XpA)~! are Lipschitz continuous in
algorithm 2 (and also in algorithm 1 when VG is Lipschitz).

Second, our parameter choices must guarantee that the
readout signal x(’fut converges to the optimal solution x* as
k — oo, regardless of the initial state w®. This guarantee
comes in two parts: stability, which is the existence of a limit

for x(])‘ut, and correctness, which is this limit being equal to x™.

We say that the algorithm parameters are correct when
they guarantee well-posedness (dy3ds; = dsadss = 0), have
strictly positive step sizes @ and f, and satisfy a collection
of correctness constraints. For algorithm 1, these correctness
constraints are:

c31 #0, c31 # —d3g (27)
ads;
1 dss), b _— 28
B # a(1+ c31dy3) 11¢ﬁ—a(1+031d43) (28)
byy = ads; — f b= a(cs1 + dsq) (29)
,B—O((1+C31d43) ﬁ—(){(1+C31d43)
b1 by 1 bia| _
rank di 0 dyy—cudz—1 can| L (30)

To satisfy these constraints, we can choose the parameters
as follows. First we choose dss and ds3, noting that at least
one of them must be zero (so together they represent only
one independent parameter). Then we choose any «, p,
bi1, c11, 31, and ds; that satisfy the inequality constraints
in (27)-(28). This results in seven independent parameter
choices, and we must choose the remaining six parameters
in one of the following two ways. The first way is to choose
cy1 =dy; =dsp =0, dys = 1, and by, and by4 according to
(29). The second way, which requires @ # f, is to choose
b1z = dy3 =0, dsz = B/a, by according to (29), and

a(csi +dsq)
a-p
In either case, the resulting set of correct parameters is a

seven-dimensional semialgebraic subset of R4,
For algorithm 2, the correctness constraints are:

dyy = —=b11 (1 + co1dss) . (31)

Co1 =

bi1=b1y =0, bz =-1 (32)
a(C31 + d34) + ﬂch = 0, Oldgz + ﬂd23 =a+ ﬁ (33)
c31+dss #0,  dy(csy +dss) #coidsr. (34)

To satisfy these constraints, we can choose the parameters
as follows. First we choose d34 and dy3, noting that at least
one of them must be zero. Then we choose any c3; such
that c3; + ds4 # 0. Next we choose any «, f, c11, and day,
and then we solve (33) for cy1, dss, and ds; (noting that at
least one of dy; and d3; must be zero). Finally. we choose
any ds; that satisfies the right-hand inequality in (34). So
again, the set of correct parameters is a seven-dimensional
semialgebraic subset of R, However, if we choose dss = 0
then u4 becomes disconnected from the feedback loop and
the value of dy; becomes irrelevant; hence in this case the
effective parameter space has dimension six.

The stability analysis is beyond the scope of this extended
abstract, and thus we provide only an overview. Given a
desired linear convergence rate, a set of correct algorithm
parameters, the connectivity parameter o from (A5), bounds
on the singular values of the matrices A;, and other bounds
related to the g; parts of the split local objective functions, we
can determine whether xffut converges to the optimal solution
x* at the desired linear rate by solving an LMI feasibility
problem. The size of this LMI is independent of n (the number



of nodes), m (the number of rows in A), and ¢ (the number of
decision variables). We have verified that for a wide variety
of scenarios, there exist algorithm parameters such that this
LMI is feasible for some linear convergence rate.

If the splitting in (11) is such that A; = I, and h; = 0 for
each i, then algorithm 1 reduces to [1, Algorithm 1] under ap-
propriate parameter choices. Let §, 1, and { be the algorithm
parameters from [1] (together with the step size «). Consider
the following parameter values: cz; = d2; = dsz = d3s = 0,
b1y = b1y =c31 =1, do3 =dy3 =1, and

f=a, biy =n(-1)
C11 = —5/’7, ds = —

(35)
(36)

If n¢ # 0 (which is needed in [1] for the convergence proof),
then these choices are correct for algorithm 1. Now A = I,
and H =0 1mply As = Ay = id, which means ué‘ = —wf —nuk
and u4 = —r]ul for all k We define the 51gnals (vk xk, k)

from [1] as v* = qul, yk = ryyl = —5w1 +qw2, and x* = y2

ué‘ = —wf — v, These result in the state update equations
wi‘“ = w1 + bnu1 ué‘ + u]; - uff
= w1 +aVF(x¥) + 0oF (37)
k+1 —wf + wé‘ ryu’f = —Wf + w§ —oF. (38)
Now of = (L'® Ic)yk because A = I.,, so we recover [1,

Algorithm 1] if we scale the state variable w{‘ by —1, namely,
if we replace wf with —wf. An example of the parameters
from [1] are § = = 0.5 and { = 1, which are inspired by
the NIDS [7] and Exact Diffusion [8] methods. These choices
result in the following list of parameters for our algorithm 1:
biy =cy =dyy =dsp =dss =0, bz = by = 11 = ¢33 = -1,
dys = dgs = 1, and ds; = —0.5, with step size @ = f.

IV. EXAMPLE: DISTRIBUTED SUPPORT-VECTOR MACHINE

Suppose each node i in the network has access to s; data
samples {d;1,...,d;s} belonging to a data set D, with each
sample having a binary label y;; € {-1,1}, and suppose
the nodes would like to use their data to build a binary
classifier. To accomplish this, the nodes wish to solve

minimize — sz Yij$(di)'0) + 101l + 312211011% (39)
feR® sio j=1
where ¢ : D — R€ is a feature map, ¢ is the hinge loss func-
tion £(r) = max{0, 1—r}, 0 € R€ is the model parameter vec-
tor, s = s1+- - -+sp, is the total number of samples, and y, 2 >
0 are the parameters for “elastic net” regularization. Once
the nodes have a solution 6* to (39), then the binary label
y for a new data vector dpey is simply y = sgn(¢(dpew) 0%).
We multiply the objective in (39) by s so that the local
objective functions are

Si

fi(xi) = 21 (yijd(di)'x;) + sipllxills + %Sillz||xi||2 (40)
=
We split (40) as in (11) as follows:
9i(xi) = 2xpzllx;||? (41)
hi(vi) = sipllviolls + 3 (si = K pallvioll + i t(vij), (42)

J=1

where Vi = (Vio, Vil:-n;Visi) S Rmi, m; = c¢+Sj;, Vig € Rc,
vij € Rfor j=1,...,s;, and « is a parameter chosen such
that 0 < k < min{sy,...,s,}. If we define A; as

I
“
1

Ei = [ya¢(dn) Vs (dis,) |
then by construction this gives f;(x;) = gi(x;) + hi(Aix;). In

this case gdﬁ;i and prox’,g;i are straightforward to evaluate
(and are in fact linear maps):

A= € R™X¢  (43)

€ RO (44)

gdfy (y) = [Ai — ax AT | ATy (45)
prox ' (y) = A; (axpole + AJA;)” 1A?y. (46)
Moreover, proxg, is easy to evaluate because
r when r > 1
proxg,(r) = {1 when 1-8<r<1 (47)

r+p

Thus both algorithms 1 and 2 apply to this splitting. We
have yet to investigate which of these two algorithms might
provide better performance for this problem.

whenr <1-p.

V. EXAMPLE: DISTRIBUTED MATRIX COMPLETION

Let M be a real matrix space (i.e., the set of all matrices of
a fixed size having real entries). A noisy measurement of a
matrix M € M is a pair (P,Z), where P : M — R is a linear
mapping and Z C R is a nonempty closed interval such that
P(M) € 7. In the standard formulation, P simply selects a
particular entry of the matrix. Now suppose each node i has
access to a collection {(P;;, Z; j)}j.i: , of s; noisy measurements
of some unknown matrix M € M. Our goal is to find a
matrix X € M of minimum rank that is consistent with all
of the measurements, namely, that satisfies P;;(X) € Z;; for
1<i<nand1<j<s; We obtain a convex relaxation of
this problem by replacing rank(X) with the nuclear norm
|IX||« and adding a quadratic regularization term:

minimize || X, + 2p||X — Mo]|?

XeM 2 F

subject to  P;;(X) € Z;; Vie{l,...,n}, (48)
VJ (S {1,...,Si},

where ||-||r denotes the Frobenius norm and M, is some
a priori estimate of the unknown matrix M. Recall that the
characteristic function charg of a set S is

0 whenres$

A (49)
oo otherwise

charg(r) = {

We will encode the hard interval constraints P;;(X) € Z;;
in (48) by adding the terms charz,, (P;j(X)) to the objective
function. We let the decision variable 8 = vec(X) € R¢
be a vectorization of X, where ¢ = dim(M). If we scale the
objective in (48) by n, then the problem is of the form (1) with

£:(0) = IX(O)l. + LullX(6) — My|%

¥ icharzij (Pij(X(0))),

Jj=1

(50)



where X(0) denotes the reassembly of 0 into the matrix
X. Because each P;j; is linear, there exist vectors p;; € R¢
such that P;;(X(0)) = piTjG. If we define the matrix A; as

I
Pir
A,' = . 5 (51)
o
then fi(x;) = gi(x;) + h;(Aix;) with
9i(x;) = pllX (x;) — Moll% (52)
hi(vi) = IX(vio) |l+ + Z charz,, (vij)., (53)

Jj=1
where v; = (vig, Vi1, ..., Vis;) € R™, m; = ¢+, viop € R,
. . A; A;
and.v,-j € R for j =1,...,s;. Again gda;i and prox,, are
straightforward to evaluate:

gdos () = [Ai — apATT | ATy + apATT-vee(My)  (54)

prox‘(:;i(y) = Ai(apl + AIAi)fl[AIy +ay -vec(My)] . (55)

Computing the proximal map for ph; involves singular value
thresholding, i.e., computing all singular values of a matrix
in M that are larger than f. Again both algorithms 1 and 2
apply to this splitting, and we have yet to investigate which
of these two algorithms might provide better performance
for this problem.

VI. SIMULATIONS OF EXAMPLE PROBLEMS

We tested our algorithm 2 on particular instances of the
support-vector machine and matrix completion problems.
The communication digraph was the same for each problem:
a strongly connected digraph with n = 16 nodes generated
at random using the Erd6s-Rényi method with an 0.3 edge
probability. For the support-vector machine, we used s = 118
labeled data points in R? from the COSMO. j1 documentation
[25] (distributed at random among the nodes), together with
a 6M-order polynomial feature map ¢ : R> — R and
regularization parameters p; = 0.01 and g = 0.1. For the
matrix completion problem, the unknown matrix M was a
randomly generated 16X100 matrix having rank 5 and entries
in the range 0 to 10. The i node had between 1 and 10
measurements of entries from the i! row of M, with a total of
s = 80 measurements of M distributed among the nodes. The
intervals Z;; for the measurements were random subintervals
of [0,10]. The a priori estimate My of M was a matrix of all
5’s, and the regularization parameter was p = 0.01.

We chose the parameters for algorithm 2 as shown in
Tables I and II. To demonstrate the self-healing property
of the algorithm, we chose the initial state vector w° at
random. We see from Fig. 2 that the error indeed converges
to zero at a linear rate for each of the two problems.

VII. FUTURE WORK

There is yet much to do, besides providing the stability
analysis not present in this extended abstract. First, we must
find a systematic way to choose the algorithm parameters,
not only to guarantee convergence but also (if possible) to

Parameter Value Parameter Value
[24 1.0 C31 -1.0
B 2.0 dn -0.1
bu 0.0 das 1.5
b12 -1.0 d31 —0.6
bia 0.0 ds; 0.0
C11 —6.0 d34 0.0
C21 0.5 d43 0.0
TABLE I

PARAMETER CHOICES FOR THE SUPPORT-VECTOR MACHINE.

Parameter  Value Parameter Value
a 1.6 31 -1.0
B 2.0 doy -0.1
bt 0.0 dys 1.8
b1z -1.0 ds -0.6
bia 0.0 dsz 0.0
C11 -1.0 d34 0.0
C21 0.8 dys 0.0
TABLE II

PARAMETER CHOICES FOR THE MATRIX COMPLETION PROBLEM.
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Fig. 2. An illustration of the linear convergence of algorithm 2 applied
to particular instances of the example problems. The algorithm states were
initialized at random.

optimize the convergence rate. Second, we need to include
additional edge states as in [1] to make the algorithms
robust to intermittent communication failures (e.g., packet
drops). Third, we need to investigate how robust our
algorithms are to errors or noise in the calculations of
the gradient descent and proximal maps. Finally, as these
are first-order methods, we need to determine whether we
can accelerate their convergence by including additional
dynamics states (e.g., momentum terms).
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