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The equilibrium configuration of a plasma in an axially symmetric reactor is described mathematically by a
free boundary problem associated with the celebrated Grad-Shafranov equation. The presence of uncertainty in
the model parameters introduces the need to quantify the variability in the predictions. This is often done by
computing a large number of model solutions on a computational grid for an ensemble of parameter values and
then obtaining estimates for the statistical properties of solutions. In this study, we explore the savings that can be
obtained using multilevel Monte Carlo methods, which reduce costs by performing the bulk of the computations
on a sequence of spatial grids that are coarser than the one that would typically be used for a simple Monte Carlo
simulation. We examine this approach using both a set of uniformly refined grids and a set of adaptively refined
grids guided by a discrete error estimator. Numerical experiments show that multilevel methods dramatically
reduce the cost of simulation, with cost reductions typically on the order of 60 or more and possibly as large as
200. Adaptive griding results in more accurate computation of geometric quantities such as x-points associated
with the model.

1. Introduction assumptions and can take advantage of an existing numerical solver.
Given a target numerical grid (i.e. a grid whose resolution is consid-
ered sufficiently fine) MLMC improves the efficiency of the sampling
step by offsetting the bulk of the numerical computations to a sequence
of coarser grids where the numerical solution is cheaper.

In the particular context of free-boundary Grad-Shafranov compu-
tations subject to parameter uncertainty, the authors have shown that
the computational cost can be reduced manyfold by employing a strat-
egy based on stochastic collocation [12]; however, due to the latent
possibility of plasma-wall contacts, the smoothness of the mapping be-
tween coil currents and equilibria cannot be guaranteed. In this paper,
our goal is to overcome this difficulty by approximating the expecta-

Monte Carlo (MC) techniques are one of the most common strategies
for dealing with the quantitative assessment of the accuracy of numer-
ical simulations of physical models with uncertainties. The idea behind
these methods is to obtain a large number of samples (typically by nu-
merically solving the associated model) for random realizations of the
uncertain parameters, and use these data to gather statistical informa-
tion about the quantity of interest. However, when the model involves
the solution of partial differential equations, the computational effort
related to the collection of the data points required can easily become
unmanageable. To overcome this difficulty methods like polynomial
chaos expansions [46], stochastic Galerkin [18], and stochastic collo-

cation [3] have been used to handle uncertainties associated with a
small number of parameters. These techniques, however, often require
the development of specialized numerical solvers or rely on the smooth
dependence of the model with respect to the parameter values. The
multilevel Monte Carlo (MLMC) method was developed [8,19,41,44]
as an efficient alternative that does not require additional smoothness

* The review of this paper was arranged by Prof. David W. Walker.
* Corresponding author.

tion of the equilibrium configuration using a multilevel Monte Carlo
Finite-Element (MLMC-FE) approach. We will consider two MLMC-FE
algorithms: a classical strategy based on uniformly refined meshes and
a variation based on meshes refined adaptively using an a posteriori er-
ror estimator. As we shall see, both of these approaches greatly reduce
computational costs, with the adaptive strategy being somewhat more
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Fig. 1. The plasma confinement region Q, is enclosed by the violet line. The
rectangles represent the external coils Cy; the gray curved line represents the
exterior wall of the vacuum chamber. See online version for color images.

effective in computing the approximation of the expectation of geomet-
ric properties of the equilibrium configuration.

An outline of the paper is as follows. In Section 2, we briefly re-
call the Grad-Shafranov free boundary problem. Section 3 is devoted
to the introduction of the Monte Carlo and multilevel Monte Carlo
Finite-Element methods. The section concludes with the introduction
of an algorithm to compute the optimal number of samples required at
each discretization level. In Section 4 we present numerical experiments
comparing the effectiveness of these strategies with a Monte Carlo strat-
egy based on a single mesh. Concluding remarks are presented in the
final Section 5. For completeness, the technical mathematical, and algo-
rithmic aspects of the problem and the methods discussed are included
as an appendix.

2. The Grad-Shafranov free boundary problem
2.1. The deterministic problem

In a cylindrically symmetric magnetic confinement device, with
coordinates (r,z, @), the mathematical expression of the equilibrium
condition between the hydrostatic and magnetic forces acting on the
plasma results in the celebrated Grad-Shafranov equation [21,36,42].
This nonlinear elliptic equation relates the poloidal flux function y(r, z)
to the hydrostatic pressure p(y) and the toroidal field g(y) (both of
which are assumed to be functions of y only), and the currents I; go-
ing through external coils with cross-sectional area .S;. Posed in free
space, the equation takes the form

ur

Above, y is the magnetic permeability, Qc, denotes the area occupied
by the k-th external coil, ©, is the plasma confinement region which
is not known a priori and must be determined as a problem unknown,
making this a free boundary problem. A schematic of a cross-section,
for r > 0, of a tokamak is depicted in Fig. 1. The confinement region
Q, is characterized as the largest region that contains the magnetic
axis (defined as the point where y has a global maximum) and that is
bounded by a closed level set y = constant. The solution to this free
boundary problem is ubiquitous in nuclear fusion and several compu-
tational codes have been developed over the years (see for instance
[14,20,24,25,28,31] and references therein).

A common choice in the literature, first proposed in [37], for the
free functions p(y) and g(y) in the right hand side of (1a) is

4 1 42 i
rgPW+ oo (w)  inQ,y)
1,./Sy inQc, (1a)
0 elsewhere.

d . ﬂ LTINS 1d . ap\ o
2y P =do (1=wd)™ 3 o8 W) =omore( =P (1=vy)".
(1b)
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where r(, represents the outer radius of the vacuum chamber and y, €
[0, 1] is a normalization of the flux y such that y 5 =1 on the plasma
boundary 0Q, and yy =0 at the magnetic axis. The parameters «; and
a, control the behavior of y around the magnetic axis, and § measures
the ratio between the hydrostatic pressure and the magnetic pressure in
the plasma, and j, is a normalization factor.

2.2. Incorporating uncertainty

In this article, we will consider that the uncertainty in the model (1a)
is concentrated in the values of the currents /; going through the exter-
nal coils. As a result, the function y (and all quantities derived from it)
are random variables. Obtaining a full description of their probability
density functions might not be possible, but an approximate picture can
be obtained by exploring the parameter space and computing sample
approximations of its expectation and variance. We will model the ar-
ray of currents as a d-dimensional random variable ® := (®,...,®,),
where d is the number of confinement coils in the reactor, and the
k-th component of @ is the current going through the k-th coil. We
will consider that @ is uniformly distributed around a baseline vector
I=(,...,1;) corresponding to the desired current values in a de-
terministic model. We will often refer to I as either the reference or
unperturbed currents. Letting 7 > 0 denote the size of the possible per-
turbation in the current values (relative to the components of I), the
vector @ is then uniformly distributed over the d-dimensional parame-
ter space

d
w =
k=1

[I; = 21 L) T + 71 ). )

Since coils are independent of each other, the stochastic random cur-
rents {a)k}:: , are uncorrelated and the joint density function of @ is
given by 7 (@) = HZ: 7 (o) = szl #]k' The equilibrium configu-
ration determined by the solution to (1a) is then the random variable

w(r, z,®); we will be primarily interested in efficiently constructing an
approximation to its expected value

Elw(r,z,0)] = / v(r,z,0)r(®)do, 3)
w

as well as those of some derived quantities such as the plasma boundary,
the location of the x-points, etc.

3. Monte Carlo and multilevel Monte Carlo Finite-Element
methods

We now turn our attention to the numerical approximation of the
expected value (3). Since the location and shape of the plasma bound-
ary depend on the values of the coil currents, variations of these values
could lead to contacts between the plasma and the wall or even loss
of confinement. This fact translates into a possible non-smoothness of
the mapping between coil currents and the solutions of (1a) which may
then cause techniques such as stochastic collocation to underperform.
Moreover, the computational effort associated with cubature methods
scales exponentially with the dimension of the parameter space, seri-
ously limiting their feasibility for estimating (3). This leads to the use
of Monte Carlo methods, which are agnostic to both the smoothness of
the mapping and the dimensionality of the problem [38], although they
have a slow convergence rate (1/2) that tends to make them costly. This
will be addressed through the use of a multi-level approach.

3.1. Monte Carlo Finite-Element method
We will describe the method in terms of a generic solution, u, to

a PDE involving stochastic parameters and its finite element approx-
imation u;,, where h is the mesh parameter of the discretization. Let
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{0} <y be a set of N realizations of the random variable @ giv-
ing rise to a sample of N realizations U = u(@®) and ug) = uh(w@) of
the exact solution and its finite element discretization. We will assume
that all these functions belong to a functional space Z endowed with a
norm || - ||, (see the Appendix 7.1 for details), and we will consider the
standard FEM error estimate |[u{) — u(hi)ll 7 < COnP where p is the or-
der of the FEM discretization and the constant C"”) depends only on the
problem geometry and the particular values of .

The Monte Carlo Finite-Element (MC-FE) estimator Ay (u,) for E(u)
is defined as the sample mean

N
1 .
Ayc(uy) t= N 2”2)- @
i=1

This estimator is easily shown to be unbiased and to satisfy E(Ayc) =
E(uy,). A quantity that serves as a foundation for examining the spatial
and statistical accuracy of the MC-FE estimator is the mean squared error
(MSE) defined as

&, = [[E@ - Ayew]2].

It can be shown (see, for instance [4, Theorem 4.3]) that, for lin-
ear problems, the Monte Carlo estimator accurately approximates the
expected value in the sense that 8/241\4 < K(N~Y2 4 pp)2 | where the
constant K > 0 depends on the problem geometry and the expected val-
ues of the problem data. The MSE can be decomposed into terms related
to the bias and variance as

Ee = B ~E@y)[ + E [ ) = Awcp)]

V(uy)

(]Vh =€]§ias
where V(u) :=E[||lu— [E(u)||22] and V(Apc@)) = V(u)/N. The last two
terms in the expression above implicitly define the discretization error
Egias and the sampling (or statistical) error &g, respectively.

If E(u) # 0, the mean squared error can be expressed as a percentage
through normalization by the factor ||[E(u)||2z, leading to the normal-

+ &2

= |E@ - Ewy)||% +

ized mean squared error ngC. Since the exact random variable u is not
available, we will approximate the relative mean squared error (nMSE)
by

2 o IE@-E@];

~
~

2 V() &2 a2
v e

=& +E& 5)
N ”[E(uh)llzz Bias Stat

where é‘ABias and é\Stat are relative analogues to the discretization and
statistical errors defined above. If the number of grid points for the FEM
discretization is M then, in two dimensions, it is standard to assume
that SABiaS = O(M~P/?), Given a target tolerance ¢, the contribution of
the statistical and discretization errors towards the total nMSE can be
controlled by requiring that

AN V
=OM ) <A=0) &gy =r <0, 6)

a2
& S

Bias
where 6 € (0,1) is known as the splitting parameter, and V, :=
V (uy) / ||E@p)||- This in turn allows us to estimate the sample size
N and the number of grid points M required to achieve the desired
tolerance as

fe?

_1 V,
M2 (1-0¢e)7, N= [—"] %)
Assuming the average cost to obtain one sample (i.e. to solve (1a)

for one value of the coil-currents) is C = O(M*¢) for some ¢ > 0, the
total computational cost of the MC-FE estimator can be estimated as

ClAye) = ON M) =0 <€_2_z7c> . ®
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3.2. Multilevel Monte Carlo Finite-Element method

MLMC reduces the computational cost associated with sampling—
which in our case involves the numerical solution of a non-linear PDE
in a target computational mesh—by approximating the expectation of
the quantity of interest on the finest mesh by a sequence of control vari-
ates on a set of coarse grids that are cheaper to compute [13]. Using the
linearity of expectation, the MLMC estimator expresses the quantity of
interest on the finest spatial grid, E (uh), by a telescoping sum involv-
ing the numerical approximations of u on coarser grids. Consequently,
MLMC’s workload is shifted from the fine grid to coarser grids, mak-
ing it more efficient than MC [8]. Cf. e.g. [35] for alternative ways to
reduce the costs of MC methods.

To construct meshes that are easy to describe for both uniform and
adaptive mesh refinement, we will characterize them using the number
of grid points rather than the mesh size. We will refer to £ =0,...,L
as the level of a mesh 7, containing {M,} grid points. We will then
consider a sequence of meshes 7y, ...,7; with increasing resolution so
that { My, }o<s<; defines an increasing sequence and 7} is the finest
mesh, and we will denote by u, the approximation of u on the mesh 7.

The expectation of the function u can be approximated by the expec-
tation of the finest approximation u; . Since u; =uy + (u; —ugy) + (uy —
uy)+ -+ (uy —uy_y), this approximation is given by

L L
Eu) ~ E(up) = Etg) + Y E(uy —up_)= Y E(Y,), ©)
=1 =0

a telescoping sum, where each of the terms

Yo ::MO and Yf ::Mf —Up_q (for 14 > 1) (].0)

can be regarded as a correction of the coarsest approximation u,. If
each term E(Y,) is estimated by gathering N, samples at level £ and
computing the sample expectations

Y | &
EX)~Tyi=— Yu?, EY¥)~T, = — (u(l) i )
NO P 0 Nf ; 4 -1
(forz>1),

then the MLMC-FE estimator at level L will be unbiased and can be
written as

L L NooL N _
Avcter) 1= T To= = F) + 3 = X () -l ).an
£=0 i=1 /=1 i=1

Recalling that E(f@) =[E(Y,) and \/(l?f) =V(Y,)/N, we conclude that,
for the MLMC-FE estimator, it follows that E (AMLMC) = ZfL=0 [E(l?f) =
E(ur) and V (Aypyc) = ZtLa:O V() = 2;=0 V(Yy)/Ng.

As for MC-FE, the mean squared error giMLMC can be split into con-
tributions from bias and variance as

Ernane = E [IE@ ~ Awnsictun |7
o V(Y)
2 14
= 1B~ Bl + X, == = &g + e
=0

Similarly, using E(u) ~ E(u;), the normalized mean squared error
é‘j can be approximated by
MLMC

. l[Ew-EwplZ &v, 5, 4
™ B 2N, et e a2
Lz £=0
where
V, =V (Y, /|Ew)|, - 13)
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As above, the parameter 6 € (0, 1) can be used to split the contributions
of the two components of the error by requiring SBZias < (1 —0)e? and

&2 < 0e? where € is a predetermined tolerance such that SjMLMC <é2.

Stat
Note that each of the terms Y;i) = u;) - ug)_l

quires the approximation of () on adjacent refinement levels using the
same value of the parameter ®”. However, for FEM discretization, the
numerical implementation of this term does not require the solution of
the PDE on the two grids 7, and 7,_;. The realization on the coarse
grid can be obtained from the one on the fine grid by either Galerkin
projection or interpolation. Projection is the more accurate choice, but
it requires the solution of a system involving the mass matrix for each
realization. Thus we prefer interpolation, for which costs are minimal
and which is of second-order accuracy in our application. To avoid in-
troducing correlation across discretization levels, none of the samples
involved in the computation of Y, is reused for the finer level Z + 1.
That is, sampling is done such that, for n # m, the estimates Y, and Y,,
are uncorrelated. However, for any particular Y, the strong correlation

appearing in (11) re-

between u((f) and u(fi)_] makes the variance of the correction terms much
smaller than the variance of the approximation u; in the finest mesh,
further improving the statistical approximation.

To quantify the computational effort of the MLMC-FE estimator, let
M, ; be the number of grid points for the i-th sample on mesh level
¢. We will assume that the computational cost to obtain one sample
of u;) is Cp; = C(ug)) = (‘)(M;i), where the exponent ¢ > 0 depends
on the solver, and will denote ‘the cost of computing the correction
term Yf(i) by Cz; = C(Y;i)) = O(M;J_) for £ >0 and M_,; =0. For a
nonlinear problem like the one at hand, the particular realization o®
will influence the cost. We will consider the average cost to be of the
form

C,=0O(MY) a4

and use this to estimate the total cost as C(Ayyyc) = 25:0 N,C, =
Zﬁzo N, -0 (M ;) Using the method of Lagrange multipliers, it is
shown in [19] that this total cost, a function of N, can be minimized
subject to the constraint £2_ < f¢? by the choice

Stat —
1 Ve <
12
Ny=|—=1/ =— E VViCi |- 15
‘ ’796‘2 Cf k=0 ‘ k“ (1%

With this expression for N, the optimal total cost for the MLMC-FE
estimator is

L LI
1
Clhmme) < 25 <Z v Vfcf> +.Co. 1e)
#=0 #=0

This analysis of computational cost is established in full generality in
[19, Theorem 1].

The formula (15) suggests an iterative procedure for the approxima-
tion of E(u). Starting from a computational mesh 7, gather an initial
number 1\70 of samples ug) and estimate SABiaS, 2‘Sm, and V. If EAStat is
larger than the prescribed tolerance, use (15) to update 7\70 and gather
additional samples; if é'ABias is above the prescribed tolerance, then add
an additional level of spatial refinement. The process continues adding
discretization levels and collecting additional and/or samples until both
gBias and é;tat fall below the required tolerance, at which point E(u)
is approximated using equation (9). This simple algorithm, however,
presents one challenge: the term V, in equation (15) requires the com-
putation of the term

2

L Seppor - l58 o
VO = ; [, - N ;Yt, : a7
- - V4
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However, the estimated sample sizes { N,} are available only for pre-
existing discretization levels, hence whenever an additional mesh re-
finement is needed, N, ,; cannot be approximated by (15) as this for-
mula uses V; ,; to compute N ;. This inconvenience can be overcome
by noting that

Vu—-u,)=E [”u—uf”zz] - ||[E (u—uf)sz <E [”u —uf”zz] . (18)

Hence, the variance V(u — u,) can be estimated by the expectation
of the squared discretization error |ju — uf||zz. For a uniformly refined
grid, we can resort to a standard a priori error estimate and assume
that [E[||u—uf||22] = O(M;b') for some b; > 0. It then follows that

V, = O(M;bl) and following [40] we can then approximate V; ., in
terms of the known variance V; by

—b
Vi = (Mp /M) vy a9
3.3. Adaptive multilevel Monte Carlo Finite-Element method

In view of the benefits of approximating the quantity of interest
across a sequence of increasingly finer meshes, and with the goal of
further reducing the computational cost associated with reducing the
bias associated with the numerical discretization, it is natural to fo-
cus the refinement only on those parts of the mesh where the error is
concentrated. Our goal is then to, starting from a computational mesh
Ty, generate a family of adaptively refined meshes {Tf }0 o<y that will
produce better approximations of E(«) than the ones resulting from con-
secutive uniform refinements of the initial grid. With this goal in mind,
the use of an a posteriori error estimator to guide the construction of the
family of meshes has been proposed in the context of multilevel Monte
Carlo methods [11,26,27,32].

Residual error estimator. A key ingredient in an adaptive solver is a
local error estimator. In our case, for each element K on the mesh 7,
we will use the simple residual-based a posteriori error indicator

Nk o (@) 1= h%

V. (ﬁVqu)) — flup(@)

K

+ hi/z ” [[iVuf(a)) . n]] H (20)

K\OQ’
where 0K is the boundary of the element K, hy is the diameter of
K, n is the outward unit normal to the element K, [-] denotes the
jump across the edge of an interior element, and f is the source term
defined piecewise on the right-hand side of (1a). Following [11,32],
we will further define the mean local and mean global error estimators
respectively as

and n?, = 2 11?(,/. (21)
KeT,

ke 1 =E (ng (@)

For linear deterministic problems, estimators of this form can be shown
to be such that there are constants C;,C, > 0 such that C;n, < |lu —
uy||z £ Cynp. Therefore, the error estimator will accurately locate the
regions of high error density and will decay at the same rate as the true
error [34]. The global error can then be approximated by adding the
local estimators over the entire triangulation. Using these error estima-
tors, the adaptive analogue of (18) can be written as

V(u—-u,)<E [”u—uf”zz] zn;, (22)

which then leads to the following adaptive analogue of the extrapola-
tion formula (19)

2
Vi = (”L+1/’IL) V. (23)

This estimate can then be used in combination with (15) to obtain an
update for the sample size required at each adaptive level.

Adaptive solution cycle. With these definitions in place, we can
then describe our strategy, which follows the “SOLVE — ESTIMATE
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— MARK — REFINE” paradigm familiar from deterministic adaptive
solvers [7], as:

1. Solve: Starting from a fixed number of samples, the problem (1a)
is solved on the initial mesh 7;,.

2. Estimate: The local mean error estimator is approximated from the
sample gathered.

3. Mark: The set M, containing the smallest possible number of ele-
ments in 7; satisfying

> onk 2, (24)
KeM,

for some predetermined value ¢ € [0, 1] is marked for refinement—
this marking strategy is known as Dorfler marking in the adaptive
finite element community [10].

4. Refine: The elements marked are refined in such a way that the
resulting triangulation 7, is shape-regular and conforming. Ef-
forts should be made to make sure that the growth of the number
of elements is kept at bay. In our case, we used the implementation
given in [16] of the algorithms described in [6,15,39].

The steps above are repeated until the error estimator # falls below a
certain predetermined value.

A notion of mesh level. For uniformly refined grids, the notion of
mesh level is natural: starting from a mesh 7, one step of uniform re-
finement decreases the mesh parameter s across the grid by a factor
of 1/2; the resulting mesh is said to have level # + 1 and is denoted
by 7,,. For adaptively refined grids, where the mesh parameter is not
constant through the grid, the notion of the level does not come so natu-
rally. We will use the fact that, for a uniform refinement, the numerical
error decays by a factor of (1/2)?, (where p is the order of the FEM
solver) with each successive level to extend the notion of mesh level to
adaptively refined grids.

Consider a numerical approximation u, obtained on a mesh 7, with
an associated error estimation given by #,. We will say that a mesh has
level # + 1 and will denote it by 7, if it was obtained from 7, by cy-
cling over the adaptive loop using the value (1/2)?y, as the stopping
tolerance. In other words, we will say that an adaptively refined mesh
has level # + 1 if it produces a numerical solution with an error (1/2)?
times smaller than one with level #, just like in the uniform case. We
will refer to g :=(1/2)? as the decay factor. In terms of discretization
accuracy, after £ steps of adaptive refinement, an adaptively refined
mesh with level # will have an associated error estimation 7, = q° o>
where 7, corresponds to the error estimation at the initial mesh. In our
numerical experiments, since the convergence rate of the piecewise lin-
ear solver is 2 (when measured in the L? norm), we shall use a decay
factor ¢ = 1/4 to define our adaptively refined meshes.

Deterministic adaptive grids. Ideally, in the stochastic setting, all the
error estimations collected from the totality of samples would be used
to drive the adaptive refinement forward and build an optimal set of
meshes at every level. However, due to the iterative nature of the algo-
rithm arising from (15), the optimal mesh at every level would have to
be corrected with every new batch of samples and the solutions corre-
sponding to all previous realizations @) would have to be recomputed.
The computational cost of re-sampling in this manner quickly becomes
impractical.

Instead, following [26,27,33], we will construct a sequence of de-
terministic adaptive grids with partial knowledge about E(u) as follows.
Starting from a sample {©(},;.y (where N is small and arbitrarily

chosen) and a mesh 7, the PDE is solved and the local error is es-
(i)
- O ’

{n K,O(w(l) )}i<i<n- The mean local and global error estimators g ( and
#o are then approximated by the sample means of the individual es-

timators. Using this approximation of 5y (, the mesh 7 is refined.

timated for every solution u,’, resulting in N local error estimators
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Algorithm 1: Generate adaptive deterministic mesh set.

Input: Initial mesh 7, maximum mesh level L, element marking
percentage ¢ € (0, 1), sample size N, error decay factor
q€(0,1).

Output: Adaptive mesh set {7} ;:0'

1 for/=1,---,L do

2 Refine = TRUE.
3 | Setj=1and79=T7,_,.
4 while Refine do
5 fori=1,---,N do
6 (i) Draw a random sample ®® from W.
7 (ii) Obtain u” by solving the free boundary problem on 7
using 0.
8 (iii) Calculate and accumulate the local and global error
estimators 7 ;(@") and n;(@®).
9 Compute the mean estimators 7 ; and #; from the accumulated
samples.
10 Mark & refine the mesh 7/’ according to 7y ; to obtain 77U+,
11 if n; <qn, then
12 Store 7V as 7.
13 L Refine = FALSE.
14 j=j+1

This process is continued until the approximated mean error estima-
tor satisfies n < g#y; the resulting mesh is stored and labeled as 7,
(mesh level 1). The previous steps are repeated until a target number
of meshes {7 }(<s<; have been generated. The process is described in
Algorithm 1. Since the family of meshes produced is constructed us-
ing random samples of @, they approximately reduce the error for the
approximate expectation E(u,) by a factor of ¢ with every increasing
level. This family of meshes is then kept fixed during the MLMC run.

4. Numerical experiments

We now demonstrate and evaluate the performance of the methods
presented for the Grad-Shafranov free boundary problem. We examine
the efficiency of the three simulation approaches, comparing the CPU
times (or computational cost) and the accuracy of some geometric de-
scriptors that are generated from the approximation of E(y) obtained
with each of the techniques. Following [14], we consider an ITER ge-
ometry with 12 coils and a “baseline” vector of target current intensities
I given by

I, =-14x104,
Is=-9%x10°4,

Iy =—6.426 x 1004,
I3 =-2.0388 x 107 A,

I; =5.469x 1004,
I, =-7.504 x 1004,

I,=-9.5x10%4,

I =3.564 x 1004,

Io=—4.82x10%4,
I,=-2.0388x 107 4,
Ig=-2.266x 1004,
I, =1.724x 107 A.

(25)

We will refer to these values as the reference currents. The profiles for p
and g on the right hand side of (1a) follow the form given in (1b) with
the specific values ro = 6.2m, # =0.5978, a; =2, and a, = 1.395, and
Jjo = 1.3655 x 106A/m?. The reactor and coil array geometries follow
the ones described in [2]. In our experiments, we will take the vector of
current intensities to be subject to uncertainty modeled as a uniformly
distributed perturbation of magnitude = = 2% centered around the ref-
erence values above.

4.1. Experiment description

In this section, we present numerical results comparing the three
approaches — MC-FE, uniform MLMC-FE, and adaptive MLMC-FE. For
the solution of (1), we used the finite element-based solver FEEQS.m
[23] developed by Holger Heumann and collaborators as a lightweight
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Fig. 2. Mean CPU time to compute 100 realizations of u,, as a function of
the number of grid points M,, plotted on a logarithmic scale. The fitted curve
indicates that the computational cost C, behaves approximately like M %,

Matlab implementation of the code CEDRES++ [14,24]. The code imple-
ments a piecewise linear finite element discretization of a weak formu-
lation of (1) and employs a globalized variation of Newton’s method
to resolve the nonlinearity. (The stopping threshold for the relative
residual was set to 5 x 107!1.) For the solution of the perturbed prob-
lems, the initial iterate of Newton’s method was taken to be the solution
corresponding to the reference currents I. All tests used the splitting pa-
rameter # = 0.5 in (6). The user-specified tolerances for the normalized
mean squared error range from ¢ =2 x 10~* to 8 x 1073, Experiments
were conducted using MATLAB R2022a on a System 76 Thelio Major
with 256GB RAM and a 64-Core @4.6 GHz AMD Threadripper 3 Pro-
cessor.

To produce an estimate of the number of samples required on
each discretization level, equation (15) requires the knowledge of two
problem-dependent parameters: the power ¢ appearing in the estimate
for the computational cost (14), and the normalized variance of the cor-
rection terms V;, as defined in (13). The normalization factor ||E(u; )|z
in (13) was estimated on the finest uniform mesh level (# = 5) to be
approximately 8.57 x 10~!. To estimate the value of ¢, 100 random cur-
rents are sampled for different mesh sizes M, the processing times
required to obtain the solutions are averaged for each mesh size, and
¢ is estimated through a regression. Fig. 2 shows the behavior of the
average cost as a function of the mesh size M,; from the data dis-
played, the power law is estimated to be ¢ ~ 1.09. Note that this cost
estimate is based on Matlab timings and not on the complexity analysis
of standard linear solution algorithms. The same samples are also used
to estimate the sample means, E(Y,) or E(u;,), and variances, V(Y,) or
V(uj,) dynamically using Welford’s algorithm [45]. As the new samples
are gathered, the mean m,, and proxy for the variance, s,,, are updated

using the following formulas for the i-th sample, with mﬁ?) =0, s(f) =0:

mg)) = mg)_l) + 7'4(,) _l_m(”l) ’ , sg,) = sg)_l) + <u(i) - mfli)_l),u(") - mg))>
Using sample size i, the variance is then given by V® = s(w'? /G —=1).

To perform MLMC-FE simulations, the user typically defines and
generates a sequence of spatial grids, where, given a tolerance ¢, the
fineness of the grid is determined by the requirement that the discretiza-
tion error (ngiaS in (6)) or an estimate of it be small enough. In this
study, we generated two types of grids, a set of geometry-conforming uni-
formly refined grids, and a set of adaptively refined grids constructed
using the strategy presented in Section 3.3.! For the uniformly refined
grid, we generated a total of six levels of grids. We note that, due to the

! The domain components contain curved boundaries, which we handled by
treating them as polygonal structures. The mesh generation entails identifying
the curved boundaries using piecewise splines and interpolating along these
splines with grids of varying fineness.
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Table 1
The number of grid points M, for both geometry-conforming uniform
and adaptive (¢ = 1/4) meshes as the mesh levels increase from 0 to 5.

Level 0 1 2 3 4 5
Uniform 2685 8019 30449 120697 484080 1934365
Adaptive 2685 6090 25099 103968 411913 1552282

increasing accuracy of the spline approximation of the curved bound-
aries, these meshes are not a direct refinement of each other. Instead,
each level is characterized by a mesh parameter s, being roughly half
of the preceding mesh as determined by the Triangle mesh generator
[43]. The adaptive refinement strategy began with the coarsest mesh
from the uniform family and applied the weighted L, a posteriori error
estimator specified in (20) and g = 1/4 to reflect a similar error decay
as for uniform refinement, also using Triangle to generate the de-
sired adaptively refined meshes. The number of grid points for each of
these methods on different grid levels is shown in Table 1. Note that the
grid sizes for the adaptive meshes are not dramatically smaller than for
uniform meshes, which suggests that the solution, as a function of the
spatial variables, is fairly smooth.

4.2. Computational cost

Fig. 3 shows a variety of computational results, including the er-
ror estimator, V,, and CPU time for the two versions of MLMC (and
times for full MC). To investigate the convergence behavior of the dis-
cretization error, we calculate the a posteriori error estimator for both
uniform and adaptive meshes in the same experiment to obtain an es-
timate of ¢ for C, before conducting the simulations. The results are
displayed in the top left plot in Fig. 3, with a dashed line showing a
least square fit, indicating that the discretization error of both methods
exhibits an asymptotic rate of OM 1Y (or p~2). The similar conver-
gence rate further indicates that the solution to the problem is smooth
and the error is equidistributed, rendering the adaptive strategy compa-
rable to uniform mesh refinement. Note that the estimated error is used
for variance extrapolation in (23) during the MLMC simulations.

The top right plot of Fig. 3 shows the behavior of V, of (13) for
both uniform and adaptive MLMC-FE methods with e =2 x 10~*, using
six levels of meshes. It can be seen that both methods demonstrate a
decreasing trend in the values of V, as the mesh resolution increases,
with a power law decay characterized by b ~ 2 in the least square fit.
But there is a regime for a small number of grid points where the asymp-
totic behavior of the adaptive method is not evident, in contrast to the
behavior of the uniform method. As the meshes get finer, the plots of
V, for the two methods are close to being parallel.

The computational effort for uniform MLMC-FE and MC-FE scales
as O(e~2) and O(e3) respectively, as indicated by the slopes of the
least square fitting lines for the red and yellow curves. This observation
is consistent with the theoretical cost predictions in Theorem 1 (with
b> c) and (8). Theorem 1 also indicates that the majority of computa-
tional work is performed on coarse grids. Table 2 shows the sample sizes
obtained from (7) for MC-FE and (15) for MLMC-FE, further demon-
strating a decrease in N,C, as ¢ increases for the multilevel methods.
We also found that the computational cost associated with the small-
est tolerance e =2 x 107 is so large that we were unable to generate
MC-FE results on a fine mesh (¢ =5) with a large sample size. In con-
trast, both versions of MLMC-FE successfully generated results with this
tolerance.?

2 Although we could not directly generate results for MC-FE for € =2 x 1074,
we could estimate the costs. In particular, we found that the variance V), is
close to constant across mesh levels. Consequently, we used (7) to estimate the
number of required samples as 8000 in Table 2, approximately four times the
number required for € = 4 x 10~*. This number was multiplied by the mean CPU
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Fig. 3. Top left: weighted L, error (with weight ux) of estimator Cr, vs. number of grid points M, plot. Top right: normalized variance ¥V, vs. number of grid
points M, plot. Bottom left: CPU time in seconds vs. tolerance e. Bottom right: Monte Carlo convergence rate estimate with tolerance e vs. sample size N. This plot

is generated from Table 2.

Table 2

The optimal sample size estimation for MC-FE (left), uniform MLMC-FE (middle), and adaptive MLMC-FE (right). The simulations were conducted for a variety
of choices of €. The computational cost associated with a tolerance of € =2 x 10 for Monte Carlo was prohibitive; the entry in the table for this tolerance

(with an asterisk) is an estimate.

€ Level 7 € Level 7 € Level ¢

o 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
8x 1073 5 8§x 107 10 2 2 8§x 1073 10 2 2
6x1073 7 6x1073 12 3 2 6x107° 19 3 3
4x1073 22 4x1073 32 5 2 2 4x10™% 38 5 4
2x 1073 83 2x1073 152 26 4 2 2x 1073 121 18 6 2
1073 322 1073 691 109 18 4 2 1073 697 82 49 8
8x 107 527 8§x10™ 841 129 23 3 2 §x10™* 1446 118 91 27 6
6x107* 869 6x10™ 1610 231 40 8 2 6x10™* 2070 218 133 21 3
4x10™* 1980 4x10* 3791 589 104 15 3 4x10™* 5075 484 315 61 14
2x107* 8000* 2x10™* 15859 2344 375 62 13 2 2x10* 25871 1961 1668 430 85 14

As seen in the bottom left plot of Fig. 3, the uniform and adaptive
versions of MLMC-FE have similar computational costs of O(e7?), as
evidenced by the similar decay rate of the error estimator and (22). Ac-
cording to (16), the slightly smaller magnitude of the error estimator
for the adaptive MLMC-FE suggests a smaller (or comparable) compu-
tational cost in the asymptotic regime. However, when ¢ = 4 x 1074,
the adaptive MLMC-FE method requires approximately twice as much
CPU time (1.79 x 10? seconds) compared to the uniform MLMGC-FE ap-
proach (9.29 x 10% seconds) due to a notable increase in V, around

time observed for the computations for Fig. 2 (120.3 seconds, the largest entry
appearing in the figure) to give the estimated total CPU time in Table 3. Table 3
gives quantitative data on the costs in CPU time for the three methods, as well
as the speedups achieved by the two multilevel methods. It can be seen that for
small tolerance ¢, both these methods reduce the CPU times dramatically, with
many examples of speedups greater than a factor of 60 and a best-case speedup
of approximately 200.

M, = 10*. This also causes the speedups achieved using adaptive re-
finement to be somewhat smaller than for uniform refinement. Thus,
the traditional advantage of adaptive mesh refinement is not clearly
present. We also attribute this to the apparent smoothness of the solu-
tion. We will demonstrate some advantages of the adaptive strategy in
Section 4.3.

The bottom right plot of Fig. 3 shows that the nMSE tolerance ¢
of MC-FE approach declines at O(N -0.51y " which is consistent with the
well-known square root convergence rate. This rate holds since V(uj,)
remains nearly constant among all levels.

4.3. Properties of geometric parameters

Next, we will explore the plasma boundaries and geometric descrip-
tors of the expected poloidal flux y resulting from the three methods.
To ensure a fair comparison, we will use the results obtained from the
MC-FE on the finest uniform mesh as a reference benchmark.
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Fig. 4. The overlayed plasma boundaries of 50 random realizations are displayed in the top row as violet curves. The solid violet line is the plasma boundary of
the expected poloidal flux generated with tolerance € =4 x 10~*. The inner and outer walls of the reactor are displayed in solid black and dark red respectively.
The bottom row shows the regions close to the x-points in more detail. The dark green dots are the x-points of the expected solution. Each column from left to
right corresponds to: simulation with the Monte Carlo approach, MLMC simulation on geometry-conforming uniform meshes, and adaptive MLMC simulation. All
simulations were performed using the discretization level # = 5. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this

article.)

Table 3

The CPU time in seconds for MC-FE (left), uniform MLMC-FE (middle),
and adaptive MLMC-FE (right), together with speedups for the multilevel
methods, for a variety of choices of ¢. The computational cost associated
with a tolerance of € =2 x 10~ for Monte Carlo was prohibitive; the entry
in the table for this tolerance (with an asterisk) is an estimate.

€ MC-FE Uniform MLMC-FE Adaptive MLMC-FE
Time Time Speedup Time Speedup
8x 1073 5.67e+00 4.52e+00 1.3 3.50e+00 1.6
6x1073 7.69e+00 5.25e+00 1.5 5.51e+00 1.4
4x%x1073 1.30e+02 2.32e+01 5.6 9.01e+00 14.4
2x1073 4.83e+02 4.62e+01 10.5 3.16e+01 15.3
1073 9.22e+03 2.47e+02  37.3 1.84e+02  50.1
8x 1074 1.50e+04 2.48e+02 60.5 5.73e+02 26.2
6x107* 2.48e+04 4.13e+02 60.0 6.30e+02 39.4
4x10™* 5.68e+04 9.29e+02  61.1 1.79e+03  31.7
2x107* 9.62e+05* 4.21e+03 2285 1.21e4+04  79.6

Plasma boundary. To ascertain the expected location of the plasma
boundary, we first determine the expected solution to the free bound-
ary problem, E[y], and determine the boundary of this deterministic
function. This boundary is depicted, in dark violet, in Fig. 4 along with
the plasma boundaries obtained from 50 random currents, which are
shown in light violet curves. In Fig. 5 we present plots depicting the
x-points and plasma boundaries of the expected solution y computed
using only samples and corrections from increasingly finer grids for
both uniform and adaptive MLMC-FE approaches. The data was ob-
tained with tolerance e =4 x 10™*. As can be seen when moving from
left to right in Fig. 5, the result obtained using the information from
the coarsest level (leftmost column) is progressively corrected with in-
formation from increasingly finer grids, leading to the desired result
depicted in the rightmost column.

Among the three methods, MC-FE yields the smoothest plasma
boundaries in the vicinity of the x-point, followed by adaptive MLMC-
FE, while the MLMC-FE approach on geometry-conforming uniform
meshes manifests the most pronounced irregularity in the plasma
boundary. The boundary of the expected solution generated with the

Table 4

Geometric parameters of the expected poloidal flux E[y] from MC-FE, MLMC-
FE with geometry-conforming uniform mesh set, and adaptive MLMC-FE. The
results are generated with an nMSE 4 x 1074,

MC-FE Uniform MLMC-FE Adaptive MLMC-FE
X point (5.14,-3.29)  (5.14,-3.29) (5.14,-3.28)
magnetic axis (6.41,0.61) (6.44,0.56) (6.46,0.54)
strike (4.16,-3.71)  (4.16,-3.71) (4.16,-3.71)
points (5.56,-4.22)  (5.56,-4.22) (5.56,-4.21)
inverse aspect ratio 0.32 0.32 0.32
elongation 1.86 1.87 1.86
upper triangularity 0.43 0.43 0.43
lower triangularity 0.53 0.53 0.53

uniform grid MLMC-FE method exhibits irregularities as can be seen in
Fig. 4. These large deformations can be primarily attributed to the ad-
ditional challenges arising from the curved boundaries. We will address
this point in more detail at the end of this section. The top row of Fig. 5
demonstrates that using a geometry-conforming mesh provides a more
accurate approximation of the curved structure (in black) of the config-
uration than that in the bottom row. These observations underscore the
challenge of striking a balance between preserving geometric fidelity
when dealing with curved boundaries and the desired statistical accu-
racy of the solution.

Geometric descriptors. Table 4 reports some geometric parameters
of the expected poloidal flux E[y] in (3). It is observed that these
parameters are consistent across different simulation techniques, with
agreement typically up to two or, in some cases, one significant digit.
Having been derived from E[y] all these values are deterministic. There
is, however, uncertainty associated with the corresponding quantities
derived from y, as they are themselves random variables. Uncertainty
on these quantities can be assessed by computing Monte Carlo estimates
of their expectations and variances. The multi-level methodology can
be used for this purpose without any modification by simply regarding
them as quantities of interest in their own right. All the relevant descrip-
tors are computed for each of the samples gathered during the compu-
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Fig. 5. The violet curves represent the expected plasma boundaries for simulations using increasingly finer grids when e = 4 x 10~* using the sample sizes specified
in Table 2. Each sub-plot focuses on a region near the x-point, maintaining the same zoom-in ratio as the second row of Fig. 4. The dark green dots denote the
locations of the x-point. The top row shows the results of MLMC-FE on a set of geometry-conforming uniform meshes, while the bottom row displays the results for

adaptive MLMC.

Algorithm 2: Multilevel Monte Carlo Finite-Element method.

Input: Initial mesh level L =0, sequence of mesh available {7, },5,
root nMSE ¢, ¢ € (0, 1), initial sample size N4 = {Nf};z(y
counter j = 1, sample size corrections dN; ={N,} fL:O.

Output: {Nf};:o, Ve)oso Avmc:

1 while ¥,(dN))>0do
2 for0<# <L do

3 fori=1,---,dNL£ do
4 Solve the free boundary problem on 7, to get uif) for the
i-th sample.

5 Approximate {V,}._ by (17).
6 Update the sample size estimation {N /}I[',:O by (15).
7 | j=j+1L

i L
8 | dNJ={N;},_— Nyq-

L

9 | Nya={N,},_

10 | if ¥,(dNJ)=0 then

11 if The a posteriori error estimator falls below /1 — ¢ ||E(w)|| 4,
then
12 |_ Compute Ay by (11) and terminate the loop.
13 else
14 L=L+1.
15 Approximate ¥ by (19) and compute { N, f}ﬁzo and go to
Step 1.

tational loop at the various discretization levels and their expectations
and variances are estimated following the same process described on
Algorithm 2. The expectations and variances obtained in this fashion
are shown in Table 5.

Despite the advantages of low computational cost, the MLMC-FE-
based methods may encounter difficulties in accurately determining the
locations of x-points and magnetic axis. Note that the x-points, which
correspond to saddle points of the piecewise linear approximation of y,
can only be located at the nodes of the mesh. The numerical identifica-
tion of their exact locations, which often relies on changes in the sign of
the discrete gradient, can be challenging; see [5,12,28] for discussions
of the computational difficulties.

In summary, simulations using the uniform MLMC-FE on non-nested
geometry-conforming uniform meshes may encounter a substantial
challenge in accurately identifying the x-point and achieving less ac-

curate quantities, especially for the plasma boundary, when compared
to the results obtained from MC-FE. On the other hand, the adaptive
MLMC-FE approach on a nested adaptively refined mesh set produces
results that closely align with the MC-FE at a much lower computational
cost.

Meshing curved domains and their effect on MLMC estimations. In
the deterministic setting this geometric error has the undesired conse-
quence of hindering the decay of the discretization error since, as the
mesh is refined, the discretized computational domain does not con-
verge to the semicircle bounded by I'. In the stochastic setting the
geometric error manifests itself in rendering the Monte Carlo estima-
tor biased and inconsistent. The inconsistency stems from the fact that,
as both the sample size and the mesh level increase, the Monte Carlo es-
timator does not converge to the expectation of the random variable u
satisfying the free boundary problem. Instead, the estimator converges
to the expectation of the random variable that satisfies a perturbation
of (28) where the curve I' is not a semicircle, but the initial polygonal
approximation. If the initial mesh is fine enough, this geometric bias
will likely be too small to affect the estimation.

On the other hand, if an exact descriptor of the curved bound-
aries is available, the aforementioned difficulty can be overcome by
re-sampling the curved boundaries when building the sequence of finer
grids, thus allowing for a resolution of the curved structures consistent
with the respective mesh parameter. If an exact descriptor is not avail-
able it is possible to approximate it with, for instance, a cubic spline
representation that interpolates the original polygonal representation.
This spline surrogate is then used to re-sample the boundary as the
mesh is refined. This strategy, which gives rise to what we refer to as
geometry conforming meshes, was implemented for the numerical exper-
iments with uniformly refined meshes and can be seen in use in the top
row of Fig. 5, where the curved boundary is represented more accu-
rately as the mesh is refined.

Nevertheless, even if the approximation to the problem geometry is
now consistent with the discretization error, this approach creates ad-
ditional challenges. Since the approximations to the curved boundaries
are not fixed across mesh levels, the sequence of meshes is no longer
nested—not even in the case of uniform refinements. Moreover, due to
the fact that the sequence of discrete domains no longer coincides across
levels, the domains of definition of the respective discrete solutions will
not overlap, and an extrapolation step may be needed to compute the
multilevel Monte Carlo estimator on a common computational domain.
This strategy, used in our numerical experiments, introduces an addi-
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Table 5
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Sample mean of the geometric parameters extracted from each realization during three simulations MC-FE, uniform MLMC-FE, and
adaptive MLMC-FE. The results are generated with an nMSE 4 x 10~*,

Geometric parameters MC MLMC
Uniform Adaptive

Mean Variance Mean Variance Mean Variance
X point (5.14,-3.29) (2.37e-04,1.44e-03)  (5.14,-3.28) (2.44e-04,6.33e-04)  (5.14,-3.29)  (4.03e-04,2.91e-03)
magnetic axis (6.41,0.61) (1.01e-03,6.11e-04) (6.41,0.60) (2.65e-02,6.28e-03) (6.42,0.60) (3.15e-02,5.81e-03)
strike (4.17,-3.71) (4.46e-03,2.23e-03)  (4.16,-3.71) (1.23e-04,4.30e-05)  (4.17,-3.71) (4.18e-04,2.00e-04)
points (5.56,-4.22) (2.88e-08,3.28e-03)  (5.56,-4.22) (4.05e-09,5.54e-05)  (5.56,-4.21)  (2.02e-08,2.98e-04)
inverse aspect ratio 0.32 4.76e-06 0.32 4.23e-06 0.32 4.31e-06
elongation 1.86 1.50e-04 1.86 1.83e-03 1.86 2.29¢e-03
upper triangularity 0.43 2.49e-04 0.43 1.45e-03 0.43 2.08e-03
lower triangularity 0.53 1.08e-04 0.53 1.52e-03 0.53 1.31e-03

t=4

Fig. 6. The violet curves represent the expected plasma boundaries for post-processed simulations using increasingly finer grids when € =4 x 10™* and sample size
specified in Table 2. Each sub-plot focuses on a region near the x-point, maintaining the same zoom-in ratio as the second row of Fig. 4. The dark green dots denote

the locations of the x-point.

tional extrapolation error. In our case this is evident, for instance, in
the fact that the plasma boundary of the expected solution E[y;,] is
considerably less regular in the geometry-conforming case than it is in
the non-geometry-conforming one. This can be seen in Fig. 5. The ex-
trapolation error can be taken care of through careful post-processing.
One option is to project or interpolate the numerical solutions into a
subdomain common to all grids so that no extrapolation is needed for
evaluation. This strategy was employed to produce Fig. 6 successfully
eliminating the spurious oscillations in the plasma boundary. However,
doing this requires considerable computational work and reduces the
time savings obtained from MLMC.

One further difficulty is that the re-sampling of the boundaries is
impossible to perform in a straightforward fashion in the case of adap-
tively refined meshes. Thus, the geometric approximation remains fixed
at the initial level of refinement. This can be seen in the bottom row
of Fig. 5, where the solid black line represents the polygonal approx-
imation to the curved boundary of the divertor. The approximation
improves as the mesh is refined for the uniformly refined mesh, but
stays fixed for the adaptive strategy.

5. Concluding remarks

The objective of this study is to evaluate the performance of MC-FE
and several variants of MLMC-FE for the Grad-Shafranov free bound-
ary problem under high-dimensional uncertainties in the currents. The
plasma equilibrium problem presents challenges and complexities as-
sociated with the physical properties of the system, the values of the
parameters of the experiment, and even the approximation of geomet-
ric features of the model. Examples include the degradation of the
stability of the equilibrium associated with an increase of plasma elon-
gation or beta; the presence of finite current near the plasma boundary
or, as in this study, the complex boundary structures, which must be
treated carefully in the context of multilevel methods. These physi-
cally grounded challenges typically get reflected in the computations,
for instance, as an increase in the difficulty of a linearized algorithm to
converge to a desired tolerance or as the need for higher precision in the

10

numerical computation required to resolve the desired features. In other
words, complicated physical scenarios typically result in an increase in
computational costs which might easily become overwhelming when
combined with uncertainty quantification efforts. In cases like these,
an MLMC strategy can help to mitigate the costs required to gather
statistical information at the expense of potentially overlooking subtle
behavior that may not be resolved in the samples gathered in coarse
levels of refinement.

It is important to remark that the multilevel Monte Carlo techniques
presented rely only on the independence between different realizations
across discretization levels and not on the particular probability distri-
bution obeyed by the stochastic parameters. In this study, the current
intensities were modeled as independent uniformly distributed random
variables, but the method would have worked without any modifica-
tion even if the current intensities had obeyed correlated distributions
as long as realizations across discretization levels are independent of each
other. Moreover, further stochastic components—such as the parame-
ters appearing in the profile models in equation (1b)—can be included
and handled simultaneously.

In this study, we handled the geometric difficulties in the uniform
MLMC-FE case using a sequence of uniform meshes that conform to
the curved boundaries in the geometry. We also found that a feature of
adaptive MLMC-FE is that adaptive griding leads to a somewhat better
representation of geometric quantities; in contrast, errors introduced
by computations on uniform coarse meshes lead to some distortions
of some features. The traditional advantage of adaptive refinement
reduced computational cost, was less clearly present. But the overall
advantage of the MLMC approach in reducing costs is dramatic.
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7. Appendix

We now describe some technical mathematical and implementation
details related to the work presented. This additional material is pro-
vided for the sake of completeness but is not needed to follow the
discussion from the previous sections.

7.1. Weak formulation of the Grad-Shafranov equation

Deterministic problem. We will start by introducing the weak formulation
for the Grad-Shafranov problem in the case where all the parameters in-
volved are deterministic. Consider a semi-circle centered at the origin,
boundary I and with radius p such that it fully contains all the rel-
evant reactor components depicted in Fig. 1. If Q denotes the region
surrounded by T" then, by construction, for any in Q¢ the right-hand
side of (1a) will vanish identically. We will then, following [22], con-
sider the space of real-valued functions

Z :=3u:Q->R

/uzxdxdy<oo,
Q

|Vul? o (=
dxdy < oo; and u(©0,y)=0%nC (Q) (26)
X
Q

This space arises naturally when testing equation (1a) using the
weighted L, inner product defined by

(u,v) :=/uvxdxdy,
Q

which leads to the finite energy requirement appearing in the second
inequality in the definition (26). The third requirement (u(0,y) = 0) is
a result of the anti-symmetry of the problem with respect to reflections
across the axis of symmetry of the reactor and has the effect of ensuring
that the quantity

1/2
|Vul?
= —dxd
llull /x xdy
Q

does indeed define a norm in the space Z. We will refer to this norm
as the energy norm. The space Z defined in (26) endowed with the
energy norm (27) is the natural function space to look for variational
solutions to the deterministic linearized Grad-Shafranov equation (1).
The variational formulation of the problem, as derived in [1,17,29], is
that of finding y € Z such that for every test ¢ € Z it holds that:

(27)

/ L Yy Vodxdy- / (rp’(w)+ Lff’(w))wdxdy
3 HX HoX

14 14

+/u/N(pdc

r

+//(w(x1)—w(xz)) M (xy,%,) (@(x)) — @(x,)) de(x))de(xy)
r r
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(28)

M, o

= Z—k/(pdxdy.
k=1 Sk
- e,

Above, the magnetic permeability u is either a function of y inside
a region occupied by a ferromagnetic material, u = u(|Vy|?/x?), or a
constant u =y elsewhere, x; = (x;,y;) denote position vectors, Qc,
denotes the region occupied by the k-th coil, and the total number of
coils is denoted by M. The following quantities, appearing on the left-
hand side of (28), are related to the Green’s function associated with
the operator on the left-hand side of (1a)

N;:l(i_,.i_l)’ 5+Z=\/x2+(piy)2,
x\é6, 6 p -

%) : 4x1%,5
K = s
n (x1 + %)%+ (y; — y2)?
L k(x, %))
M(XI,XZ).—W
<72_"2(x1’x2) E(r(x).%,)) ~ K (x( >>
222 (x,xy) K(xq,%;) (x(x1,%x5)) ),

where E(k(x,x,)) and K(k(x;,x,)) are complete elliptic integrals of
the first and second kind respectively [30].

Accounting for stochasticity. We now consider the stochasticity in the
currents and allow the vector of currents to be a d-dimensional random
variable ® uniformly distributed over the parameter space W defined
in (2). It is clear that in this case for any particular realization of the
currents @ we will obtain a different equilibrium configuration y (@)
that belongs to the Banach space Z defined in (26). Moreover, since for
every @ € W the resulting equilibrium configuration has finite energy,
it then holds for the expected value of the equilibrium that

E(llyll) < co.

In mathematical terms, we say that the stochasticity of the currents
transforms the solution y to (1) into a Banach space-valued random
variable with finite expected energy. If @ belongs to a complete and
separable probability space (W ,X,P), the class of such random vari-
ables forms what is known as a Bochner space [9]. In our particular
case, solutions to (1) are mappings from the parameter space W to the
Banach space Z that, as functions of ®, belong to the Bochner space

L*(W,x,P; Z)
={u:W->2Z | u strongly measurable, |[ull 2y, 7 < oo},

where the norm || - || 2.y, 7 is precisely defined in terms of the expected
energy

1/2

1/2
lall 20 z) = / luC- )% dP@)| = 2
4

(E (lu o)lI%))

7.2. Mathematical results on multilevel Monte Carlo

The proceeding analysis on the computational cost to compute the
MLMC-FE estimator in terms of the desired relative accuracy ¢ is based
on the following Theorem (established and proven in [8]), which quan-
tifies the distribution of the computational effort across discretization
levels in terms of the relation between the decay rate of the variance
of the correction terms, ¥, and the increase of the computational cost,
C,, as the mesh is refined. In particular, it states that if the variance of
the correction terms decays faster than the increase of computational
cost, the dominant computational expense takes place on the coarsest
grid—see also [19].
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Theorem 1. Suppose there exist positive constants a,b,c such that a >
2 min(b, c),

o [etmso o)
(i) V, =0 (M;b),
(iii) C, =0 (M;).

Then for any positive ¢ < e~! small enough, there exists level L and sample
size N, for which the multilevel estimator Ay e has an nMSE with

E 16 - Avuaactun)

E [IE@I%]
and the total computation cost C with bound

O(e?), b>c,
O(e2(loge)?), b=c,

c (AMLMC) = b
(0] <€ a > , O<b<e.
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