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The equilibrium configuration of a plasma in an axially symmetric reactor is described mathematically by a 
free boundary problem associated with the celebrated Grad-Shafranov equation. The presence of uncertainty in 
the model parameters introduces the need to quantify the variability in the predictions. This is often done by 
computing a large number of model solutions on a computational grid for an ensemble of parameter values and 
then obtaining estimates for the statistical properties of solutions. In this study, we explore the savings that can be 
obtained using multilevel Monte Carlo methods, which reduce costs by performing the bulk of the computations 
on a sequence of spatial grids that are coarser than the one that would typically be used for a simple Monte Carlo 
simulation. We examine this approach using both a set of uniformly refined grids and a set of adaptively refined 
grids guided by a discrete error estimator. Numerical experiments show that multilevel methods dramatically 
reduce the cost of simulation, with cost reductions typically on the order of 60 or more and possibly as large as 
200. Adaptive griding results in more accurate computation of geometric quantities such as 𝑥-points associated 
with the model.

1. Introduction

Monte Carlo (MC) techniques are one of the most common strategies 
for dealing with the quantitative assessment of the accuracy of numer-
ical simulations of physical models with uncertainties. The idea behind 
these methods is to obtain a large number of samples (typically by nu-
merically solving the associated model) for random realizations of the 
uncertain parameters, and use these data to gather statistical informa-
tion about the quantity of interest. However, when the model involves 
the solution of partial differential equations, the computational effort 
related to the collection of the data points required can easily become 
unmanageable. To overcome this difficulty methods like polynomial 
chaos expansions [46], stochastic Galerkin [18], and stochastic collo-
cation [3] have been used to handle uncertainties associated with a 
small number of parameters. These techniques, however, often require 
the development of specialized numerical solvers or rely on the smooth 
dependence of the model with respect to the parameter values. The 
multilevel Monte Carlo (MLMC) method was developed [8,19,41,44]
as an efficient alternative that does not require additional smoothness 
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assumptions and can take advantage of an existing numerical solver. 
Given a target numerical grid (i.e. a grid whose resolution is consid-
ered sufficiently fine) MLMC improves the efficiency of the sampling 
step by offsetting the bulk of the numerical computations to a sequence 
of coarser grids where the numerical solution is cheaper.

In the particular context of free-boundary Grad-Shafranov compu-
tations subject to parameter uncertainty, the authors have shown that 
the computational cost can be reduced manyfold by employing a strat-
egy based on stochastic collocation [12]; however, due to the latent 
possibility of plasma-wall contacts, the smoothness of the mapping be-
tween coil currents and equilibria cannot be guaranteed. In this paper, 
our goal is to overcome this difficulty by approximating the expecta-
tion of the equilibrium configuration using a multilevel Monte Carlo 
Finite-Element (MLMC-FE) approach. We will consider two MLMC-FE 
algorithms: a classical strategy based on uniformly refined meshes and 
a variation based on meshes refined adaptively using an a posteriori er-
ror estimator. As we shall see, both of these approaches greatly reduce 
computational costs, with the adaptive strategy being somewhat more 
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Fig. 1. The plasma confinement region Ω𝑝 is enclosed by the violet line. The 
rectangles represent the external coils 𝐶𝑘 ; the gray curved line represents the 
exterior wall of the vacuum chamber. See online version for color images.

effective in computing the approximation of the expectation of geomet-
ric properties of the equilibrium configuration.

An outline of the paper is as follows. In Section 2, we briefly re-
call the Grad-Shafranov free boundary problem. Section 3 is devoted 
to the introduction of the Monte Carlo and multilevel Monte Carlo 
Finite-Element methods. The section concludes with the introduction 
of an algorithm to compute the optimal number of samples required at 
each discretization level. In Section 4 we present numerical experiments 
comparing the effectiveness of these strategies with a Monte Carlo strat-
egy based on a single mesh. Concluding remarks are presented in the 
final Section 5. For completeness, the technical mathematical, and algo-
rithmic aspects of the problem and the methods discussed are included 
as an appendix.

2. The Grad-Shafranov free boundary problem

2.1. The deterministic problem

In a cylindrically symmetric magnetic confinement device, with 
coordinates (𝑟, 𝑧, 𝜑), the mathematical expression of the equilibrium 
condition between the hydrostatic and magnetic forces acting on the 
plasma results in the celebrated Grad-Shafranov equation [21,36,42]. 
This nonlinear elliptic equation relates the poloidal flux function 𝜓(𝑟, 𝑧)
to the hydrostatic pressure 𝑝(𝜓) and the toroidal field 𝑔(𝜓) (both of 
which are assumed to be functions of 𝜓 only), and the currents 𝐼𝑘 go-
ing through external coils with cross-sectional area 𝑆𝑘. Posed in free 
space, the equation takes the form

−∇ ⋅
(

1
𝜇𝑟

∇𝜓
)
=
⎧⎪⎨⎪⎩

𝑟 𝑑𝑑𝜓 𝑝(𝜓) +
1

2𝜇𝑟
𝑑
𝑑𝜓 𝑔

2(𝜓) in Ω𝑝(𝜓)
𝐼𝑘∕𝑆𝑘 in Ω𝐶𝑘
0 elsewhere.

(1a)

Above, 𝜇 is the magnetic permeability, Ω𝐶𝑘 denotes the area occupied by the 𝑘-th external coil, Ω𝑝 is the plasma confinement region which 
is not known a priori and must be determined as a problem unknown, 
making this a free boundary problem. A schematic of a cross-section, 
for 𝑟 > 0, of a tokamak is depicted in Fig. 1. The confinement region 
Ω𝑝 is characterized as the largest region that contains the magnetic 
axis (defined as the point where 𝜓 has a global maximum) and that is 
bounded by a closed level set 𝜓 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. The solution to this free 
boundary problem is ubiquitous in nuclear fusion and several compu-
tational codes have been developed over the years (see for instance 
[14,20,24,25,28,31] and references therein).

A common choice in the literature, first proposed in [37], for the 
free functions 𝑝(𝜓) and 𝑔(𝜓) in the right hand side of (1a) is
𝑑
𝑑𝜓
𝑝(𝜓) = 𝑗0

𝛽
𝑟0

(
1 −𝜓𝛼1𝑁

)𝛼2 , 1
2
𝑑
𝑑𝜓
𝑔2(𝜓) = 𝑗0𝜇0𝑟0(1−𝛽)

(
1 −𝜓𝛼1𝑁

)𝛼2 ,
(1b)

where 𝑟0 represents the outer radius of the vacuum chamber and 𝜓𝑁 ∈
[0, 1] is a normalization of the flux 𝜓 such that 𝜓𝑁 = 1 on the plasma 
boundary 𝜕Ω𝑝 and 𝜓𝑁 = 0 at the magnetic axis. The parameters 𝛼1 and 
𝛼2 control the behavior of 𝜓 around the magnetic axis, and 𝛽 measures 
the ratio between the hydrostatic pressure and the magnetic pressure in 
the plasma, and 𝑗0 is a normalization factor.

2.2. Incorporating uncertainty

In this article, we will consider that the uncertainty in the model (1a)
is concentrated in the values of the currents 𝐼𝑖 going through the exter-
nal coils. As a result, the function 𝜓 (and all quantities derived from it) 
are random variables. Obtaining a full description of their probability 
density functions might not be possible, but an approximate picture can 
be obtained by exploring the parameter space and computing sample 
approximations of its expectation and variance. We will model the ar-
ray of currents as a 𝑑-dimensional random variable 𝝎 ∶= (𝜔1, … , 𝜔𝑑 ), 
where 𝑑 is the number of confinement coils in the reactor, and the 
𝑘-th component of 𝝎 is the current going through the 𝑘-th coil. We 
will consider that 𝝎 is uniformly distributed around a baseline vector 
𝑰 = (𝐼1, … , 𝐼𝑑 ) corresponding to the desired current values in a de-
terministic model. We will often refer to 𝑰 as either the reference or 
unperturbed currents. Letting 𝜏 > 0 denote the size of the possible per-
turbation in the current values (relative to the components of 𝑰), the 
vector 𝝎 is then uniformly distributed over the 𝑑-dimensional parame-
ter space

𝑊 ∶=
𝑑∏
𝑘=1

[
𝐼𝑘 − 𝜏|𝐼𝑘|, 𝐼𝑘 + 𝜏|𝐼𝑘|

]
. (2)

Since coils are independent of each other, the stochastic random cur-
rents {𝜔𝑘

}𝑑
𝑘=1 are uncorrelated and the joint density function of 𝝎 is 

given by 𝜋 (𝝎) =∏𝑑
𝑘=1 𝜋𝑘

(
𝜔𝑘
)
=
∏𝑑
𝑘=1

1
2𝜏|𝐼𝑘| . The equilibrium configu-

ration determined by the solution to (1a) is then the random variable 
𝜓(𝑟, 𝑧, 𝝎); we will be primarily interested in efficiently constructing an 
approximation to its expected value

𝔼 [𝜓(𝑟, 𝑧,𝝎)] = ∫
𝑊

𝜓(𝑟, 𝑧,𝝎)𝜋(𝝎)𝑑𝝎, (3)

as well as those of some derived quantities such as the plasma boundary, 
the location of the x-points, etc.

3. Monte Carlo and multilevel Monte Carlo Finite-Element 
methods

We now turn our attention to the numerical approximation of the 
expected value (3). Since the location and shape of the plasma bound-
ary depend on the values of the coil currents, variations of these values 
could lead to contacts between the plasma and the wall or even loss 
of confinement. This fact translates into a possible non-smoothness of 
the mapping between coil currents and the solutions of (1a) which may 
then cause techniques such as stochastic collocation to underperform. 
Moreover, the computational effort associated with cubature methods 
scales exponentially with the dimension of the parameter space, seri-
ously limiting their feasibility for estimating (3). This leads to the use 
of Monte Carlo methods, which are agnostic to both the smoothness of 
the mapping and the dimensionality of the problem [38], although they 
have a slow convergence rate (1/2) that tends to make them costly. This 
will be addressed through the use of a multi-level approach.

3.1. Monte Carlo Finite-Element method

We will describe the method in terms of a generic solution, 𝑢, to 
a PDE involving stochastic parameters and its finite element approx-
imation 𝑢ℎ, where ℎ is the mesh parameter of the discretization. Let 
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{𝝎(𝑖)}1≤𝑖≤𝑁 be a set of 𝑁 realizations of the random variable 𝝎 giv-
ing rise to a sample of 𝑁 realizations 𝑢(𝑖) = 𝑢(𝝎(𝑖)) and 𝑢(𝑖)ℎ = 𝑢ℎ(𝝎(𝑖)) of 
the exact solution and its finite element discretization. We will assume 
that all these functions belong to a functional space 𝑍 endowed with a 
norm ‖ ⋅ ‖𝑍 (see the Appendix 7.1 for details), and we will consider the 
standard FEM error estimate ‖𝑢(𝑖) − 𝑢(𝑖)ℎ ‖𝑍 ≤ 𝐶 (𝑖)ℎ𝑝, where 𝑝 is the or-
der of the FEM discretization and the constant 𝐶 (𝑖) depends only on the 
problem geometry and the particular values of 𝝎(𝑖).

The Monte Carlo Finite-Element (MC-FE) estimator 𝐴MC(𝑢ℎ) for 𝔼(𝑢)
is defined as the sample mean

𝐴MC(𝑢ℎ) ∶=
1
𝑁

𝑁∑
𝑖=1
𝑢(𝑖)ℎ . (4)

This estimator is easily shown to be unbiased and to satisfy 𝔼(𝐴MC) =
𝔼(𝑢ℎ). A quantity that serves as a foundation for examining the spatial 
and statistical accuracy of the MC-FE estimator is the mean squared error
(MSE) defined as

2
𝐴MC

∶= 𝔼
[‖‖𝔼(𝑢) −𝐴MC(𝑢ℎ)‖‖2𝑍

]
.

It can be shown (see, for instance [4, Theorem 4.3]) that, for lin-
ear problems, the Monte Carlo estimator accurately approximates the 
expected value in the sense that 2

𝐴MC
≤ 𝐾(𝑁−1∕2 + ℎ𝑝)2, where the 

constant 𝐾 > 0 depends on the problem geometry and the expected val-
ues of the problem data. The MSE can be decomposed into terms related 
to the bias and variance as

2
𝐴MC

= ‖‖𝔼(𝑢) − 𝔼(𝑢ℎ)‖‖2𝑍 + 𝔼
[‖‖𝔼(𝑢ℎ) −𝐴MC(𝑢ℎ)‖‖2𝑍

]

= ‖‖𝔼(𝑢) − 𝔼(𝑢ℎ)‖‖2𝑍 +
𝕍 (𝑢ℎ)
𝑁

= 2
Bias + 2

Stat,

where 𝕍 (𝑢) ∶= 𝔼[‖𝑢− 𝔼(𝑢)‖2𝑍 ] and 𝕍 (𝐴MC(𝑢)) = 𝕍 (𝑢)∕𝑁 . The last two 
terms in the expression above implicitly define the discretization error Bias and the sampling (or statistical) error Stat respectively.

If 𝔼(𝑢) ≠ 0, the mean squared error can be expressed as a percentage 
through normalization by the factor ‖𝔼(𝑢)‖2𝑍 , leading to the normal-
ized mean squared error ̂ 2

𝐴MC
. Since the exact random variable 𝑢 is not 

available, we will approximate the relative mean squared error (nMSE) 
by

̂ 2
𝐴MC

≈
‖‖𝔼(𝑢) − 𝔼(𝑢ℎ)‖‖2𝑍

‖‖𝔼(𝑢ℎ)‖‖2𝑍
+

𝕍 (𝑢ℎ)

𝑁 ‖‖𝔼(𝑢ℎ)‖‖2𝑍
= ̂ 2

Bias + ̂ 2
Stat, (5)

where ̂Bias and ̂Stat are relative analogues to the discretization and 
statistical errors defined above. If the number of grid points for the FEM 
discretization is 𝑀 then, in two dimensions, it is standard to assume 
that ̂Bias = (𝑀−𝑝∕2). Given a target tolerance 𝜖, the contribution of 
the statistical and discretization errors towards the total nMSE can be 
controlled by requiring that

̂ 2
Bias =(𝑀−𝑝) ≤ (1 − 𝜃)𝜖2, ̂ 2

Stat =
𝑉ℎ
𝑁

≤ 𝜃𝜖2, (6)

where 𝜃 ∈ (0, 1) is known as the splitting parameter, and 𝑉ℎ ∶=
𝕍
(
𝑢ℎ
)
∕ ‖‖𝔼(𝑢ℎ)‖‖2𝑍 . This in turn allows us to estimate the sample size 

𝑁 and the number of grid points 𝑀 required to achieve the desired 
tolerance as

𝑀 ≥ ((1 − 𝜃)𝜖2)− 1
𝑝 , 𝑁 =

⌈
𝑉ℎ
𝜃𝜖2

⌉
. (7)

Assuming the average cost to obtain one sample (i.e. to solve (1a)
for one value of the coil-currents) is 𝐶 = (𝑀𝑐 ) for some 𝑐 > 0, the 
total computational cost of the MC-FE estimator can be estimated as

𝐶(𝐴MC) =(𝑁𝑀𝑐) =
(
𝜖−2−

2𝑐
𝑝

)
. (8)

3.2. Multilevel Monte Carlo Finite-Element method

MLMC reduces the computational cost associated with sampling—
which in our case involves the numerical solution of a non-linear PDE 
in a target computational mesh—by approximating the expectation of 
the quantity of interest on the finest mesh by a sequence of control vari-
ates on a set of coarse grids that are cheaper to compute [13]. Using the 
linearity of expectation, the MLMC estimator expresses the quantity of 
interest on the finest spatial grid, 𝔼 

(
𝑢ℎ
), by a telescoping sum involv-

ing the numerical approximations of 𝑢 on coarser grids. Consequently, 
MLMC’s workload is shifted from the fine grid to coarser grids, mak-
ing it more efficient than MC [8]. Cf. e.g. [35] for alternative ways to 
reduce the costs of MC methods.

To construct meshes that are easy to describe for both uniform and 
adaptive mesh refinement, we will characterize them using the number 
of grid points rather than the mesh size. We will refer to 𝓁 = 0, … , 𝐿
as the level of a mesh 𝓁 containing {𝑀𝓁} grid points. We will then 
consider a sequence of meshes 0, … , 𝐿 with increasing resolution so 
that {𝑀𝓁}0≤𝓁≤𝐿 defines an increasing sequence and 𝐿 is the finest 
mesh, and we will denote by 𝑢𝓁 the approximation of 𝑢 on the mesh 𝓁 .

The expectation of the function 𝑢 can be approximated by the expec-
tation of the finest approximation 𝑢𝐿. Since 𝑢𝐿 = 𝑢0 + (𝑢1 − 𝑢0) + (𝑢2 −
𝑢1) +⋯ + (𝑢𝐿 − 𝑢𝐿−1), this approximation is given by

𝔼(𝑢) ≈ 𝔼(𝑢𝐿) = 𝔼(𝑢0) +
𝐿∑

𝓁=1
𝔼(𝑢𝓁 − 𝑢𝓁−1) =

𝐿∑
𝓁=0

𝔼(𝑌𝓁), (9)

a telescoping sum, where each of the terms

𝑌0 ∶= 𝑢0 and 𝑌𝓁 ∶= 𝑢𝓁 − 𝑢𝓁−1 (for 𝓁 ≥ 1) (10)
can be regarded as a correction of the coarsest approximation 𝑢0. If 
each term 𝔼(𝑌𝓁) is estimated by gathering 𝑁𝓁 samples at level 𝓁 and 
computing the sample expectations

𝔼(𝑌0) ≈ 𝑌0 ∶=
1
𝑁0

𝑁0∑
𝑖=1
𝑢(𝑖)0 , 𝔼(𝑌𝓁) ≈ 𝑌𝓁 ∶= 1

𝑁𝓁

𝑁𝓁∑
𝑖=1

(
𝑢(𝑖)𝓁 − 𝑢(𝑖)𝓁−1

)

( for 𝓁 ≥ 1),

then the MLMC-FE estimator at level 𝐿 will be unbiased and can be 
written as

𝐴MLMC(𝑢𝐿) ∶=
𝐿∑

𝓁=0
𝑌𝓁 = 1

𝑁0

𝑁0∑
𝑖=1
𝑢(𝑖)0 +

𝐿∑
𝓁=1

1
𝑁𝓁

𝑁𝓁∑
𝑖=1

(
𝑢(𝑖)𝓁 − 𝑢(𝑖)𝓁−1

)
. (11)

Recalling that 𝔼(𝑌𝓁) = 𝔼(𝑌𝓁) and 𝕍 (𝑌𝓁) = 𝕍 (𝑌𝓁)∕𝑁𝓁 we conclude that, 
for the MLMC-FE estimator, it follows that 𝔼 

(
𝐴MLMC

)
=
∑𝐿

𝓁=0 𝔼(𝑌𝓁) =
𝔼(𝑢𝐿) and 𝕍

(
𝐴MLMC

)
=
∑𝐿

𝓁=0 𝕍 (𝑌𝓁) =
∑𝐿

𝓁=0 𝕍 (𝑌𝓁)∕𝑁𝓁 .
As for MC-FE, the mean squared error 2

𝐴MLMC
can be split into con-

tributions from bias and variance as

2
𝐴MLMC

= 𝔼
[‖‖𝔼(𝑢) −𝐴MLMC(𝑢𝐿)‖‖2𝑍

]

= ‖‖𝔼(𝑢) − 𝔼(𝑢𝐿)‖‖2𝑍 +
𝐿∑

𝓁=0

𝕍
(
𝑌𝓁
)

𝑁𝓁
= 2

Bias + 2
Stat.

Similarly, using 𝔼(𝑢) ≈ 𝔼(𝑢𝐿), the normalized mean squared error ̂ 2
𝐴MLMC

can be approximated by

̂ 2
𝐴MLMC

≈
‖‖𝔼(𝑢) − 𝔼(𝑢𝐿)‖‖2𝑍

‖‖𝔼(𝑢𝐿)‖‖2𝑍
+

𝐿∑
𝓁=0

𝑉𝓁
𝑁𝓁

= ̂ 2
Bias + ̂ 2

Stat, (12)

where

𝑉𝓁 ∶= 𝕍
(
𝑌𝓁
)
∕‖‖𝔼(𝑢𝐿)‖‖2𝑍 . (13)
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As above, the parameter 𝜃 ∈ (0, 1) can be used to split the contributions 
of the two components of the error by requiring ̂ 2

Bias ≤ (1 − 𝜃)𝜖2 and 
̂ 2
Stat ≤ 𝜃𝜖2 where 𝜖 is a predetermined tolerance such that ̂ 2

𝐴MLMC
≤ 𝜖2.

Note that each of the terms 𝑌 (𝑖)
𝓁 ∶= 𝑢(𝑖)𝓁 − 𝑢(𝑖)𝓁−1 appearing in (11) re-

quires the approximation of 𝑢(𝑖) on adjacent refinement levels using the 
same value of the parameter 𝝎(𝑖). However, for FEM discretization, the 
numerical implementation of this term does not require the solution of 
the PDE on the two grids 𝓁 and 𝓁−1. The realization on the coarse 
grid can be obtained from the one on the fine grid by either Galerkin 
projection or interpolation. Projection is the more accurate choice, but 
it requires the solution of a system involving the mass matrix for each 
realization. Thus we prefer interpolation, for which costs are minimal 
and which is of second-order accuracy in our application. To avoid in-
troducing correlation across discretization levels, none of the samples 
involved in the computation of 𝑌𝓁 is reused for the finer level 𝓁 + 1. 
That is, sampling is done such that, for 𝑛 ≠ 𝑚, the estimates 𝑌𝑛 and 𝑌𝑚
are uncorrelated. However, for any particular 𝑌𝓁 the strong correlation 
between 𝑢(𝑖)𝓁 and 𝑢(𝑖)𝓁−1 makes the variance of the correction terms much smaller than the variance of the approximation 𝑢𝐿 in the finest mesh, 
further improving the statistical approximation.

To quantify the computational effort of the MLMC-FE estimator, let 
𝑀𝓁,𝑖 be the number of grid points for the 𝑖-th sample on mesh level 
𝓁. We will assume that the computational cost to obtain one sample 
of 𝑢(𝑖)𝓁 is 𝐶𝓁,𝑖 ∶= 𝐶(𝑢

(𝑖)
𝓁 ) = (𝑀𝑐

𝓁,𝑖), where the exponent 𝑐 > 0 depends 
on the solver, and will denote the cost of computing the correction 
term 𝑌 (𝑖)

𝓁 by 𝐶𝓁,𝑖 ∶= 𝐶(𝑌
(𝑖)
𝓁 ) = (𝑀𝑐

𝓁,𝑖) for 𝓁 ≥ 0 and 𝑀−1,𝑖 = 0. For a 
nonlinear problem like the one at hand, the particular realization 𝝎(𝑖)

will influence the cost. We will consider the average cost to be of the 
form

𝐶𝓁 =(𝑀𝑐
𝓁) (14)

and use this to estimate the total cost as 𝐶(𝐴MLMC) =
∑𝐿

𝓁=0𝑁𝓁𝐶𝓁 =∑𝐿
𝓁=0𝑁𝓁 ⋅  

(
𝑀𝑐

𝓁

)
. Using the method of Lagrange multipliers, it is 

shown in [19] that this total cost, a function of 𝑁𝓁 , can be minimized 
subject to the constraint ̂ 2

Stat ≤ 𝜃𝜖2 by the choice

𝑁𝓁 =

⌈
1
𝜃𝜖2

√
𝑉𝓁
𝐶𝓁

𝐿∑
𝑘=0

√
𝑉𝑘𝐶𝑘

⌉
. (15)

With this expression for 𝑁𝓁 , the optimal total cost for the MLMC-FE 
estimator is

𝐶(𝐴MLMC) ≤ 1
𝜃𝜖2

( 𝐿∑
𝓁=0

√
𝑉𝓁𝐶𝓁

)2

+
𝐿∑

𝓁=0
𝐶𝓁 . (16)

This analysis of computational cost is established in full generality in 
[19, Theorem 1].

The formula (15) suggests an iterative procedure for the approxima-
tion of 𝔼(𝑢). Starting from a computational mesh 0, gather an initial 
number 𝑀0 of samples 𝑢(𝑖)0 and estimate ̂Bias, ̂Stat, and 𝑉0. If ̂Stat is 
larger than the prescribed tolerance, use (15) to update 𝑀0 and gather 
additional samples; if ̂Bias is above the prescribed tolerance, then add 
an additional level of spatial refinement. The process continues adding 
discretization levels and collecting additional and/or samples until both ̂Bias and ̂Stat fall below the required tolerance, at which point 𝔼(𝑢)
is approximated using equation (9). This simple algorithm, however, 
presents one challenge: the term 𝑉𝓁 in equation (15) requires the com-
putation of the term

𝕍 (𝑌𝓁) =
1

𝑁𝓁 − 1

⎛⎜⎜⎝

𝑁𝓁∑
𝑖=1

‖‖‖𝑌
(𝑖)
𝓁
‖‖‖
2

𝑍
− 1
𝑁𝓁

‖‖‖‖‖‖

𝑁𝓁∑
𝑖=1
𝑌 (𝑖)
𝓁

‖‖‖‖‖‖

2

𝑍

⎞⎟⎟⎠
. (17)

However, the estimated sample sizes {𝑁𝓁} are available only for pre-
existing discretization levels, hence whenever an additional mesh re-
finement is needed, 𝑁𝐿+1 cannot be approximated by (15) as this for-
mula uses 𝑉𝐿+1 to compute 𝑁𝐿+1. This inconvenience can be overcome 
by noting that

𝕍 (𝑢− 𝑢𝓁) = 𝔼
[‖‖𝑢− 𝑢𝓁‖‖2𝑍

]
− ‖‖‖𝔼

(
𝑢− 𝑢𝓁

)‖‖‖
2

𝑍
≤ 𝔼

[‖‖𝑢− 𝑢𝓁‖‖2𝑍
]
. (18)

Hence, the variance 𝕍 (𝑢 − 𝑢𝓁) can be estimated by the expectation 
of the squared discretization error ‖‖𝑢− 𝑢𝓁‖‖2𝑍 . For a uniformly refined 
grid, we can resort to a standard a priori error estimate and assume 
that 𝔼[‖‖𝑢− 𝑢𝓁‖‖2𝑍 ] = (𝑀−𝑏1

𝓁 ) for some 𝑏1 > 0. It then follows that 
𝑉𝓁 = (𝑀−𝑏1

𝓁 ) and following [40] we can then approximate 𝑉𝐿+1 in 
terms of the known variance 𝑉𝐿 by

𝑉𝐿+1 =
(
𝑀𝐿+1∕𝑀𝐿

)−𝑏1 𝑉𝐿. (19)

3.3. Adaptive multilevel Monte Carlo Finite-Element method

In view of the benefits of approximating the quantity of interest 
across a sequence of increasingly finer meshes, and with the goal of 
further reducing the computational cost associated with reducing the 
bias associated with the numerical discretization, it is natural to fo-
cus the refinement only on those parts of the mesh where the error is 
concentrated. Our goal is then to, starting from a computational mesh 0, generate a family of adaptively refined meshes {𝓁}0≤𝓁≤𝐿 that will produce better approximations of 𝔼(𝑢) than the ones resulting from con-
secutive uniform refinements of the initial grid. With this goal in mind, 
the use of an a posteriori error estimator to guide the construction of the 
family of meshes has been proposed in the context of multilevel Monte 
Carlo methods [11,26,27,32].
Residual error estimator. A key ingredient in an adaptive solver is a 
local error estimator. In our case, for each element 𝐾 on the mesh 𝓁 , 
we will use the simple residual-based a posteriori error indicator

𝜂𝐾,𝓁(𝝎) ∶= ℎ2𝐾
‖‖‖‖∇ ⋅

(
1
𝜇𝑟∇𝑢𝓁(𝝎)

)
− 𝑓 (𝑢𝓁(𝝎))

‖‖‖‖𝐾
+ ℎ3∕2𝐾

‖‖‖
�

1
𝜇𝑟∇𝑢𝓁(𝝎) ⋅ 𝒏

�‖‖‖𝜕𝐾⧵𝜕Ω
, (20)

where 𝜕𝐾 is the boundary of the element 𝐾 , ℎ𝐾 is the diameter of 
𝐾 , 𝒏 is the outward unit normal to the element 𝐾 , �⋅� denotes the 
jump across the edge of an interior element, and 𝑓 is the source term 
defined piecewise on the right-hand side of (1a). Following [11,32], 
we will further define the mean local and mean global error estimators 
respectively as

𝜂𝐾,𝓁 ∶= 𝔼
(
𝜂𝐾,𝓁(𝝎)

) and 𝜂2𝓁 ∶=
∑
𝐾∈𝓁

𝜂2𝐾,𝓁 . (21)

For linear deterministic problems, estimators of this form can be shown 
to be such that there are constants 𝐶1, 𝐶2 > 0 such that 𝐶1𝜂𝓁 ≤ ‖𝑢 −
𝑢𝓁‖𝑍 ≤ 𝐶2𝜂𝓁 . Therefore, the error estimator will accurately locate the 
regions of high error density and will decay at the same rate as the true 
error [34]. The global error can then be approximated by adding the 
local estimators over the entire triangulation. Using these error estima-
tors, the adaptive analogue of (18) can be written as

𝕍 (𝑢− 𝑢𝓁) ≤ 𝔼
[‖‖𝑢− 𝑢𝓁‖‖2𝑍

]
≈ 𝜂2𝓁 , (22)

which then leads to the following adaptive analogue of the extrapola-
tion formula (19)

𝑉𝐿+1 =
(
𝜂𝐿+1∕𝜂𝐿

)2 𝑉𝐿. (23)
This estimate can then be used in combination with (15) to obtain an 
update for the sample size required at each adaptive level.

Adaptive solution cycle. With these definitions in place, we can 
then describe our strategy, which follows the “SOLVE → ESTIMATE 
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→ MARK → REFINE” paradigm familiar from deterministic adaptive 
solvers [7], as:

1. Solve: Starting from a fixed number of samples, the problem (1a)
is solved on the initial mesh 0.

2. Estimate: The local mean error estimator is approximated from the 
sample gathered.

3. Mark: The set 𝓁 containing the smallest possible number of ele-
ments in 0 satisfying
∑

𝐾∈𝓁

𝜂2𝐾,𝓁 ≥ 𝜁𝜂2𝓁 , (24)

for some predetermined value 𝜁 ∈ [0, 1] is marked for refinement—
this marking strategy is known as Dörfler marking in the adaptive 
finite element community [10].

4. Refine: The elements marked are refined in such a way that the 
resulting triangulation 𝓁+1 is shape-regular and conforming. Ef-
forts should be made to make sure that the growth of the number 
of elements is kept at bay. In our case, we used the implementation 
given in [16] of the algorithms described in [6,15,39].

The steps above are repeated until the error estimator 𝜂 falls below a 
certain predetermined value.
A notion of mesh level. For uniformly refined grids, the notion of 
mesh level is natural: starting from a mesh 𝓁 , one step of uniform re-
finement decreases the mesh parameter ℎ across the grid by a factor 
of 1∕2; the resulting mesh is said to have level 𝓁 + 1 and is denoted 
by 𝓁+1. For adaptively refined grids, where the mesh parameter is not 
constant through the grid, the notion of the level does not come so natu-
rally. We will use the fact that, for a uniform refinement, the numerical 
error decays by a factor of (1∕2)𝑝, (where 𝑝 is the order of the FEM 
solver) with each successive level to extend the notion of mesh level to 
adaptively refined grids.

Consider a numerical approximation 𝑢𝓁 obtained on a mesh 𝓁 with 
an associated error estimation given by 𝜂𝓁 . We will say that a mesh has 
level 𝓁 + 1 and will denote it by 𝓁+1 if it was obtained from 𝓁 by cy-
cling over the adaptive loop using the value (1∕2)𝑝𝜂𝓁 as the stopping 
tolerance. In other words, we will say that an adaptively refined mesh 
has level 𝓁 + 1 if it produces a numerical solution with an error (1∕2)𝑝
times smaller than one with level 𝓁, just like in the uniform case. We 
will refer to 𝑞 ∶= (1∕2)𝑝 as the decay factor. In terms of discretization 
accuracy, after 𝓁 steps of adaptive refinement, an adaptively refined 
mesh with level 𝓁 will have an associated error estimation 𝜂𝓁 = 𝑞𝓁𝜂0, 
where 𝜂0 corresponds to the error estimation at the initial mesh. In our 
numerical experiments, since the convergence rate of the piecewise lin-
ear solver is 2 (when measured in the 𝐿2 norm), we shall use a decay 
factor 𝑞 = 1∕4 to define our adaptively refined meshes.
Deterministic adaptive grids. Ideally, in the stochastic setting, all the 
error estimations collected from the totality of samples would be used 
to drive the adaptive refinement forward and build an optimal set of 
meshes at every level. However, due to the iterative nature of the algo-
rithm arising from (15), the optimal mesh at every level would have to 
be corrected with every new batch of samples and the solutions corre-
sponding to all previous realizations 𝝎(𝑖) would have to be recomputed. 
The computational cost of re-sampling in this manner quickly becomes 
impractical.

Instead, following [26,27,33], we will construct a sequence of de-
terministic adaptive grids with partial knowledge about 𝔼(𝑢) as follows. 
Starting from a sample {𝝎(𝑖)}1≤𝑖≤𝑁 (where 𝑁 is small and arbitrarily 
chosen) and a mesh 0, the PDE is solved and the local error is es-
timated for every solution 𝑢(𝑖)0 , resulting in 𝑁 local error estimators 
{𝜂𝐾,0(𝝎(𝑖))}1≤𝑖≤𝑁 . The mean local and global error estimators 𝜂𝐾,0 and 
𝜂0 are then approximated by the sample means of the individual es-
timators. Using this approximation of 𝜂𝐾,0, the mesh 0 is refined. 

Algorithm 1: Generate adaptive deterministic mesh set.
Input: Initial mesh 0, maximum mesh level 𝐿, element marking 

percentage 𝜁 ∈ (0, 1), sample size 𝑁 , error decay factor 
𝑞 ∈ (0, 1).

Output: Adaptive mesh set {𝓁}𝐿𝓁=0 .
1 for 𝓁 = 1, ⋯ , 𝐿 do
2 Refine = TRUE.
3 Set 𝑗 = 1 and  (𝑗) = 𝓁−1 .
4 while Refine do
5 for 𝑖 = 1, ⋯ , 𝑁 do
6 (i) Draw a random sample 𝝎(𝑖) from 𝑊 .
7 (ii) Obtain 𝑢(𝑖) by solving the free boundary problem on  (𝑗)

using 𝝎(𝑖).
8 (iii) Calculate and accumulate the local and global error 

estimators 𝜂𝐾,𝑗 (𝝎(𝑖)) and 𝜂𝑗 (𝝎(𝑖)).
9 Compute the mean estimators 𝜂𝐾,𝑗 and 𝜂𝑗 from the accumulated 

samples.
10 Mark & refine the mesh  (𝑗) according to 𝜂𝐾,𝑗 to obtain  (𝑗+1).
11 if 𝜂𝑗 ≤ 𝑞𝜂1 then
12 Store  (𝑗) as 𝓁 .
13 Refine = FALSE.
14 𝑗 = 𝑗 + 1

This process is continued until the approximated mean error estima-
tor satisfies 𝜂 ≤ 𝑞𝜂0; the resulting mesh is stored and labeled as 1
(mesh level 1). The previous steps are repeated until a target number 
of meshes {𝓁}0≤𝓁≤𝐿 have been generated. The process is described in 
Algorithm 1. Since the family of meshes produced is constructed us-
ing random samples of 𝝎, they approximately reduce the error for the 
approximate expectation 𝔼(𝑢ℎ) by a factor of 𝑞 with every increasing 
level. This family of meshes is then kept fixed during the MLMC run.

4. Numerical experiments

We now demonstrate and evaluate the performance of the methods 
presented for the Grad-Shafranov free boundary problem. We examine 
the efficiency of the three simulation approaches, comparing the CPU 
times (or computational cost) and the accuracy of some geometric de-
scriptors that are generated from the approximation of 𝔼(𝜓) obtained 
with each of the techniques. Following [14], we consider an ITER ge-
ometry with 12 coils and a “baseline” vector of target current intensities 
𝑰 given by
𝐼1 = −1.4 × 106𝐴, 𝐼2 = −9.5 × 106𝐴,
𝐼5 = −9 × 106𝐴, 𝐼6 = 3.564 × 106𝐴,
𝐼9 = −6.426 × 106𝐴, 𝐼10 = −4.82 × 106𝐴,

𝐼3 = −2.0388 × 107𝐴, 𝐼4 = −2.0388 × 107𝐴,
𝐼7 = 5.469 × 106𝐴, 𝐼8 = −2.266 × 106𝐴,
𝐼11 = −7.504 × 106𝐴, 𝐼12 = 1.724 × 107𝐴.

(25)

We will refer to these values as the reference currents. The profiles for 𝑝
and 𝑔 on the right hand side of (1a) follow the form given in (1b) with 
the specific values 𝑟0 = 6.2𝑚, 𝛽 = 0.5978, 𝛼1 = 2, and 𝛼2 = 1.395, and 
𝑗0 = 1.3655 × 106𝐴∕𝑚2. The reactor and coil array geometries follow 
the ones described in [2]. In our experiments, we will take the vector of 
current intensities to be subject to uncertainty modeled as a uniformly 
distributed perturbation of magnitude 𝜏 = 2% centered around the ref-
erence values above.

4.1. Experiment description

In this section, we present numerical results comparing the three 
approaches – MC-FE, uniform MLMC-FE, and adaptive MLMC-FE. For 
the solution of (1), we used the finite element-based solver FEEQS.m
[23] developed by Holger Heumann and collaborators as a lightweight 
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Fig. 2. Mean CPU time to compute 100 realizations of 𝑢𝓁 , as a function of 
the number of grid points 𝑀𝓁 , plotted on a logarithmic scale. The fitted curve 
indicates that the computational cost 𝐶𝓁 behaves approximately like 𝑀1.09

𝓁 .

Matlab implementation of the code CEDRES++ [14,24]. The code imple-
ments a piecewise linear finite element discretization of a weak formu-
lation of (1) and employs a globalized variation of Newton’s method 
to resolve the nonlinearity. (The stopping threshold for the relative 
residual was set to 5 × 10−11.) For the solution of the perturbed prob-
lems, the initial iterate of Newton’s method was taken to be the solution 
corresponding to the reference currents 𝑰 . All tests used the splitting pa-
rameter 𝜃 = 0.5 in (6). The user-specified tolerances for the normalized 
mean squared error range from 𝜖 = 2 × 10−4 to 8 × 10−3. Experiments 
were conducted using MATLAB R2022a on a System 76 Thelio Major 
with 256GB RAM and a 64-Core @4.6 GHz AMD Threadripper 3 Pro-
cessor.

To produce an estimate of the number of samples required on 
each discretization level, equation (15) requires the knowledge of two 
problem-dependent parameters: the power 𝑐 appearing in the estimate 
for the computational cost (14), and the normalized variance of the cor-
rection terms 𝑉𝓁 as defined in (13). The normalization factor ‖𝔼(𝑢𝐿)‖𝑍
in (13) was estimated on the finest uniform mesh level (𝓁 = 5) to be 
approximately 8.57 ×10−1. To estimate the value of 𝑐, 100 random cur-
rents are sampled for different mesh sizes 𝑀𝓁 , the processing times 
required to obtain the solutions are averaged for each mesh size, and 
𝑐 is estimated through a regression. Fig. 2 shows the behavior of the 
average cost as a function of the mesh size 𝑀𝓁 ; from the data dis-
played, the power law is estimated to be 𝑐 ≈ 1.09. Note that this cost 
estimate is based on Matlab timings and not on the complexity analysis 
of standard linear solution algorithms. The same samples are also used 
to estimate the sample means, 𝔼(𝑌𝓁) or 𝔼(𝑢ℎ), and variances, 𝕍 (𝑌𝓁) or 
𝕍 (𝑢ℎ) dynamically using Welford’s algorithm [45]. As the new samples 
are gathered, the mean 𝑚𝑤 and proxy for the variance, 𝑠𝑤, are updated 
using the following formulas for the 𝑖-th sample, with 𝑚(0)

𝑤 = 0, 𝑠(0)𝑤 = 0:

𝑚(𝑖)
𝑤 =𝑚(𝑖−1)

𝑤 +
𝑢(𝑖) −𝑚(𝑖−1)

𝑤
𝑖

, 𝑠(𝑖)𝑤 = 𝑠(𝑖−1)𝑤 +
⟨
𝑢(𝑖) −𝑚(𝑖−1)

𝑤 , 𝑢(𝑖) −𝑚(𝑖)
𝑤

⟩
.

Using sample size 𝑖, the variance is then given by 𝑉 (𝑖) = 𝑠(𝑖)𝑤 ∕(𝑖 − 1).
To perform MLMC-FE simulations, the user typically defines and 

generates a sequence of spatial grids, where, given a tolerance 𝜖, the 
fineness of the grid is determined by the requirement that the discretiza-
tion error (̂ 2

Bias in (6)) or an estimate of it be small enough. In this study, we generated two types of grids, a set of geometry-conforming uni-
formly refined grids, and a set of adaptively refined grids constructed 
using the strategy presented in Section 3.3.1 For the uniformly refined 
grid, we generated a total of six levels of grids. We note that, due to the 

1 The domain components contain curved boundaries, which we handled by 
treating them as polygonal structures. The mesh generation entails identifying 
the curved boundaries using piecewise splines and interpolating along these 
splines with grids of varying fineness.

Table 1
The number of grid points 𝑀𝓁 for both geometry-conforming uniform 
and adaptive (𝑞 = 1∕4) meshes as the mesh levels increase from 0 to 5.
Level 𝓁 0 1 2 3 4 5
Uniform 2685 8019 30449 120697 484080 1934365
Adaptive 2685 6090 25099 103968 411913 1552282

increasing accuracy of the spline approximation of the curved bound-
aries, these meshes are not a direct refinement of each other. Instead, 
each level is characterized by a mesh parameter ℎ𝓁 being roughly half 
of the preceding mesh as determined by the Triangle mesh generator 
[43]. The adaptive refinement strategy began with the coarsest mesh 
from the uniform family and applied the weighted 𝐿2 a posteriori error 
estimator specified in (20) and 𝑞 = 1∕4 to reflect a similar error decay 
as for uniform refinement, also using Triangle to generate the de-
sired adaptively refined meshes. The number of grid points for each of 
these methods on different grid levels is shown in Table 1. Note that the 
grid sizes for the adaptive meshes are not dramatically smaller than for 
uniform meshes, which suggests that the solution, as a function of the 
spatial variables, is fairly smooth.

4.2. Computational cost

Fig. 3 shows a variety of computational results, including the er-
ror estimator, 𝑉𝓁 , and CPU time for the two versions of MLMC (and 
times for full MC). To investigate the convergence behavior of the dis-
cretization error, we calculate the a posteriori error estimator for both 
uniform and adaptive meshes in the same experiment to obtain an es-
timate of 𝑐 for 𝐶𝓁 before conducting the simulations. The results are 
displayed in the top left plot in Fig. 3, with a dashed line showing a 
least square fit, indicating that the discretization error of both methods 
exhibits an asymptotic rate of (𝑀−1) (or 𝑝 ≈ 2). The similar conver-
gence rate further indicates that the solution to the problem is smooth 
and the error is equidistributed, rendering the adaptive strategy compa-
rable to uniform mesh refinement. Note that the estimated error is used 
for variance extrapolation in (23) during the MLMC simulations.

The top right plot of Fig. 3 shows the behavior of 𝑉𝓁 of (13) for 
both uniform and adaptive MLMC-FE methods with 𝜖 = 2 × 10−4, using 
six levels of meshes. It can be seen that both methods demonstrate a 
decreasing trend in the values of 𝑉𝓁 as the mesh resolution increases, 
with a power law decay characterized by 𝑏 ≈ 2 in the least square fit. 
But there is a regime for a small number of grid points where the asymp-
totic behavior of the adaptive method is not evident, in contrast to the 
behavior of the uniform method. As the meshes get finer, the plots of 
𝑉𝓁 for the two methods are close to being parallel.

The computational effort for uniform MLMC-FE and MC-FE scales 
as (𝜖−2) and (𝜖−3) respectively, as indicated by the slopes of the 
least square fitting lines for the red and yellow curves. This observation 
is consistent with the theoretical cost predictions in Theorem 1 (with 
𝑏 > 𝑐) and (8). Theorem 1 also indicates that the majority of computa-
tional work is performed on coarse grids. Table 2 shows the sample sizes 
obtained from (7) for MC-FE and (15) for MLMC-FE, further demon-
strating a decrease in 𝑁𝓁𝐶𝓁 as 𝓁 increases for the multilevel methods. 
We also found that the computational cost associated with the small-
est tolerance 𝜖 = 2 × 10−4 is so large that we were unable to generate 
MC-FE results on a fine mesh (𝓁 = 5) with a large sample size. In con-
trast, both versions of MLMC-FE successfully generated results with this 
tolerance.2

2 Although we could not directly generate results for MC-FE for 𝜖 = 2 × 10−4 , 
we could estimate the costs. In particular, we found that the variance 𝑉ℎ is 
close to constant across mesh levels. Consequently, we used (7) to estimate the 
number of required samples as 8000 in Table 2, approximately four times the 
number required for 𝜖 = 4 ×10−4 . This number was multiplied by the mean CPU 
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Fig. 3. Top left: weighted 𝐿2 error (with weight 𝜇𝑥) of estimator 𝐶𝜂𝓁 vs. number of grid points 𝑀𝓁 plot. Top right: normalized variance 𝑉𝓁 vs. number of grid 
points 𝑀𝓁 plot. Bottom left: CPU time in seconds vs. tolerance 𝜖. Bottom right: Monte Carlo convergence rate estimate with tolerance 𝜖 vs. sample size 𝑁 . This plot 
is generated from Table 2.

Table 2
The optimal sample size estimation for MC-FE (left), uniform MLMC-FE (middle), and adaptive MLMC-FE (right). The simulations were conducted for a variety 
of choices of 𝜖. The computational cost associated with a tolerance of 𝜖 = 2 × 10−4 for Monte Carlo was prohibitive; the entry in the table for this tolerance 
(with an asterisk) is an estimate.
𝜖 Level 𝓁 𝜖 Level 𝓁 𝜖 Level 𝓁

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
8 × 10−3 5 8 × 10−3 10 2 2 8 × 10−3 10 2 2
6 × 10−3 7 6 × 10−3 12 3 2 6 × 10−3 19 3 3
4 × 10−3 22 4 × 10−3 32 5 2 2 4 × 10−3 38 5 4
2 × 10−3 83 2 × 10−3 152 26 4 2 2 × 10−3 121 18 6 2
10−3 322 10−3 691 109 18 4 2 10−3 697 82 49 8
8 × 10−4 527 8 × 10−4 841 129 23 3 2 8 × 10−4 1446 118 91 27 6
6 × 10−4 869 6 × 10−4 1610 231 40 8 2 6 × 10−4 2070 218 133 21 3
4 × 10−4 1980 4 × 10−4 3791 589 104 15 3 4 × 10−4 5075 484 315 61 14
2 × 10−4 8000∗ 2 × 10−4 15859 2344 375 62 13 2 2 × 10−4 25871 1961 1668 430 85 14

As seen in the bottom left plot of Fig. 3, the uniform and adaptive 
versions of MLMC-FE have similar computational costs of (𝜖−2), as 
evidenced by the similar decay rate of the error estimator and (22). Ac-
cording to (16), the slightly smaller magnitude of the error estimator 
for the adaptive MLMC-FE suggests a smaller (or comparable) compu-
tational cost in the asymptotic regime. However, when 𝜖 = 4 × 10−4, 
the adaptive MLMC-FE method requires approximately twice as much 
CPU time (1.79 × 103 seconds) compared to the uniform MLMC-FE ap-
proach (9.29 × 102 seconds) due to a notable increase in 𝑉𝓁 around 

time observed for the computations for Fig. 2 (120.3 seconds, the largest entry 
appearing in the figure) to give the estimated total CPU time in Table 3. Table 3
gives quantitative data on the costs in CPU time for the three methods, as well 
as the speedups achieved by the two multilevel methods. It can be seen that for 
small tolerance 𝜖, both these methods reduce the CPU times dramatically, with 
many examples of speedups greater than a factor of 60 and a best-case speedup 
of approximately 200.

𝑀𝓁 = 104. This also causes the speedups achieved using adaptive re-
finement to be somewhat smaller than for uniform refinement. Thus, 
the traditional advantage of adaptive mesh refinement is not clearly 
present. We also attribute this to the apparent smoothness of the solu-
tion. We will demonstrate some advantages of the adaptive strategy in 
Section 4.3.

The bottom right plot of Fig. 3 shows that the nMSE tolerance 𝜖
of MC-FE approach declines at (𝑁−0.51), which is consistent with the 
well-known square root convergence rate. This rate holds since 𝕍 (𝑢ℎ)
remains nearly constant among all levels.

4.3. Properties of geometric parameters

Next, we will explore the plasma boundaries and geometric descrip-
tors of the expected poloidal flux 𝜓 resulting from the three methods. 
To ensure a fair comparison, we will use the results obtained from the 
MC-FE on the finest uniform mesh as a reference benchmark.
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Fig. 4. The overlayed plasma boundaries of 50 random realizations are displayed in the top row as violet curves. The solid violet line is the plasma boundary of 
the expected poloidal flux generated with tolerance 𝜖 = 4 × 10−4 . The inner and outer walls of the reactor are displayed in solid black and dark red respectively. 
The bottom row shows the regions close to the x-points in more detail. The dark green dots are the x-points of the expected solution. Each column from left to 
right corresponds to: simulation with the Monte Carlo approach, MLMC simulation on geometry-conforming uniform meshes, and adaptive MLMC simulation. All 
simulations were performed using the discretization level 𝓁 = 5. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

Table 3
The CPU time in seconds for MC-FE (left), uniform MLMC-FE (middle), 
and adaptive MLMC-FE (right), together with speedups for the multilevel 
methods, for a variety of choices of 𝜖. The computational cost associated 
with a tolerance of 𝜖 = 2 × 10−4 for Monte Carlo was prohibitive; the entry 
in the table for this tolerance (with an asterisk) is an estimate.
𝜖 MC-FE Uniform MLMC-FE Adaptive MLMC-FE

Time Time Speedup Time Speedup
8 × 10−3 5.67e+00 4.52e+00 1.3 3.50e+00 1.6
6 × 10−3 7.69e+00 5.25e+00 1.5 5.51e+00 1.4
4 × 10−3 1.30e+02 2.32e+01 5.6 9.01e+00 14.4
2 × 10−3 4.83e+02 4.62e+01 10.5 3.16e+01 15.3
10−3 9.22e+03 2.47e+02 37.3 1.84e+02 50.1
8 × 10−4 1.50e+04 2.48e+02 60.5 5.73e+02 26.2
6 × 10−4 2.48e+04 4.13e+02 60.0 6.30e+02 39.4
4 × 10−4 5.68e+04 9.29e+02 61.1 1.79e+03 31.7
2 × 10−4 9.62e+05∗ 4.21e+03 228.5 1.21e+04 79.6

Plasma boundary. To ascertain the expected location of the plasma 
boundary, we first determine the expected solution to the free bound-
ary problem, 𝔼[𝜓], and determine the boundary of this deterministic 
function. This boundary is depicted, in dark violet, in Fig. 4 along with 
the plasma boundaries obtained from 50 random currents, which are 
shown in light violet curves. In Fig. 5 we present plots depicting the 
x-points and plasma boundaries of the expected solution 𝜓 computed 
using only samples and corrections from increasingly finer grids for 
both uniform and adaptive MLMC-FE approaches. The data was ob-
tained with tolerance 𝜖 = 4 × 10−4. As can be seen when moving from 
left to right in Fig. 5, the result obtained using the information from 
the coarsest level (leftmost column) is progressively corrected with in-
formation from increasingly finer grids, leading to the desired result 
depicted in the rightmost column.

Among the three methods, MC-FE yields the smoothest plasma 
boundaries in the vicinity of the x-point, followed by adaptive MLMC-
FE, while the MLMC-FE approach on geometry-conforming uniform 
meshes manifests the most pronounced irregularity in the plasma 
boundary. The boundary of the expected solution generated with the 

Table 4
Geometric parameters of the expected poloidal flux 𝔼[𝜓] from MC-FE, MLMC-
FE with geometry-conforming uniform mesh set, and adaptive MLMC-FE. The 
results are generated with an nMSE 4 × 10−4 .

MC-FE Uniform MLMC-FE Adaptive MLMC-FE
x point (5.14,-3.29) (5.14,-3.29) (5.14,-3.28)
magnetic axis (6.41,0.61) (6.44,0.56) (6.46,0.54)
strike (4.16,-3.71) (4.16,-3.71) (4.16,-3.71)
points (5.56,-4.22) (5.56,-4.22) (5.56,-4.21)
inverse aspect ratio 0.32 0.32 0.32
elongation 1.86 1.87 1.86
upper triangularity 0.43 0.43 0.43
lower triangularity 0.53 0.53 0.53

uniform grid MLMC-FE method exhibits irregularities as can be seen in 
Fig. 4. These large deformations can be primarily attributed to the ad-
ditional challenges arising from the curved boundaries. We will address 
this point in more detail at the end of this section. The top row of Fig. 5
demonstrates that using a geometry-conforming mesh provides a more 
accurate approximation of the curved structure (in black) of the config-
uration than that in the bottom row. These observations underscore the 
challenge of striking a balance between preserving geometric fidelity 
when dealing with curved boundaries and the desired statistical accu-
racy of the solution.
Geometric descriptors. Table 4 reports some geometric parameters 
of the expected poloidal flux 𝔼[𝜓] in (3). It is observed that these 
parameters are consistent across different simulation techniques, with 
agreement typically up to two or, in some cases, one significant digit. 
Having been derived from 𝔼[𝜓] all these values are deterministic. There 
is, however, uncertainty associated with the corresponding quantities 
derived from 𝜓 , as they are themselves random variables. Uncertainty 
on these quantities can be assessed by computing Monte Carlo estimates 
of their expectations and variances. The multi-level methodology can 
be used for this purpose without any modification by simply regarding 
them as quantities of interest in their own right. All the relevant descrip-
tors are computed for each of the samples gathered during the compu-



Computer Physics Communications 298 (2024) 109099

9

H.C. Elman, J. Liang and T. Sánchez-Vizuet

Fig. 5. The violet curves represent the expected plasma boundaries for simulations using increasingly finer grids when 𝜖 = 4 × 10−4 using the sample sizes specified 
in Table 2. Each sub-plot focuses on a region near the x-point, maintaining the same zoom-in ratio as the second row of Fig. 4. The dark green dots denote the 
locations of the x-point. The top row shows the results of MLMC-FE on a set of geometry-conforming uniform meshes, while the bottom row displays the results for 
adaptive MLMC.

Algorithm 2: Multilevel Monte Carlo Finite-Element method.
Input: Initial mesh level 𝐿 = 0, sequence of mesh available {𝓁}𝓁≥0 , 

root nMSE 𝜖, 𝜁 ∈ (0, 1), initial sample size 𝑁old =
{
𝑁𝓁

}𝐿
𝓁=0 , 

counter 𝑗 = 1, sample size corrections 𝑑𝑁𝑗
𝓁 = {𝑁𝓁}𝐿𝓁=0 .

Output: {𝑁𝓁

}𝐿
𝓁=0 , {𝑉𝓁}𝐿𝓁=0, 𝐴MLMC.

1 while ∑𝓁(𝑑𝑁
𝑗
𝓁) > 0 do

2 for 0 ≤ 𝓁 ≤𝐿 do
3 for 𝑖 = 1, ⋯ , 𝑑𝑁𝑗

𝓁 do
4 Solve the free boundary problem on 𝓁 to get 𝑢(𝑖)𝓁 for the 

𝑖-th sample.
5 Approximate {𝑉𝓁}𝐿𝓁=0 by (17).
6 Update the sample size estimation {𝑁𝓁

}𝐿
𝓁=0 by (15).

7 𝑗 = 𝑗 + 1.
8 𝑑𝑁𝑗

𝓁 =
{
𝑁𝓁

}𝐿
𝓁=0 −𝑁old.

9 𝑁old =
{
𝑁𝓁

}𝐿
𝓁=0.

10 if ∑𝓁(𝑑𝑁
𝑗
𝓁) = 0 then

11 if The a posteriori error estimator falls below 
√
1 − 𝜃𝜖 ‖𝔼(𝑢)‖𝑍 ,

then
12 Compute 𝐴MLMC by (11) and terminate the loop.
13 else
14 𝐿 =𝐿 + 1.
15 Approximate 𝑉𝐿 by (19) and compute 

{
𝑁𝓁

}𝐿
𝓁=0 and go to 

Step 1.

tational loop at the various discretization levels and their expectations 
and variances are estimated following the same process described on 
Algorithm 2. The expectations and variances obtained in this fashion 
are shown in Table 5.

Despite the advantages of low computational cost, the MLMC-FE-
based methods may encounter difficulties in accurately determining the 
locations of x-points and magnetic axis. Note that the x-points, which 
correspond to saddle points of the piecewise linear approximation of 𝜓 , 
can only be located at the nodes of the mesh. The numerical identifica-
tion of their exact locations, which often relies on changes in the sign of 
the discrete gradient, can be challenging; see [5,12,28] for discussions 
of the computational difficulties.

In summary, simulations using the uniform MLMC-FE on non-nested 
geometry-conforming uniform meshes may encounter a substantial 
challenge in accurately identifying the x-point and achieving less ac-

curate quantities, especially for the plasma boundary, when compared 
to the results obtained from MC-FE. On the other hand, the adaptive 
MLMC-FE approach on a nested adaptively refined mesh set produces 
results that closely align with the MC-FE at a much lower computational 
cost.
Meshing curved domains and their effect on MLMC estimations. In 
the deterministic setting this geometric error has the undesired conse-
quence of hindering the decay of the discretization error since, as the 
mesh is refined, the discretized computational domain does not con-
verge to the semicircle bounded by Γ. In the stochastic setting the 
geometric error manifests itself in rendering the Monte Carlo estima-
tor biased and inconsistent. The inconsistency stems from the fact that, 
as both the sample size and the mesh level increase, the Monte Carlo es-
timator does not converge to the expectation of the random variable 𝑢
satisfying the free boundary problem. Instead, the estimator converges 
to the expectation of the random variable that satisfies a perturbation 
of (28) where the curve Γ is not a semicircle, but the initial polygonal 
approximation. If the initial mesh is fine enough, this geometric bias 
will likely be too small to affect the estimation.

On the other hand, if an exact descriptor of the curved bound-
aries is available, the aforementioned difficulty can be overcome by 
re-sampling the curved boundaries when building the sequence of finer 
grids, thus allowing for a resolution of the curved structures consistent 
with the respective mesh parameter. If an exact descriptor is not avail-
able it is possible to approximate it with, for instance, a cubic spline 
representation that interpolates the original polygonal representation. 
This spline surrogate is then used to re-sample the boundary as the 
mesh is refined. This strategy, which gives rise to what we refer to as 
geometry conforming meshes, was implemented for the numerical exper-
iments with uniformly refined meshes and can be seen in use in the top 
row of Fig. 5, where the curved boundary is represented more accu-
rately as the mesh is refined.

Nevertheless, even if the approximation to the problem geometry is 
now consistent with the discretization error, this approach creates ad-
ditional challenges. Since the approximations to the curved boundaries 
are not fixed across mesh levels, the sequence of meshes is no longer 
nested—not even in the case of uniform refinements. Moreover, due to 
the fact that the sequence of discrete domains no longer coincides across 
levels, the domains of definition of the respective discrete solutions will 
not overlap, and an extrapolation step may be needed to compute the 
multilevel Monte Carlo estimator on a common computational domain. 
This strategy, used in our numerical experiments, introduces an addi-
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Table 5
Sample mean of the geometric parameters extracted from each realization during three simulations MC-FE, uniform MLMC-FE, and 
adaptive MLMC-FE. The results are generated with an nMSE 4 × 10−4 .
Geometric parameters MC MLMC

- Uniform Adaptive
Mean Variance Mean Variance Mean Variance

x point (5.14,-3.29) (2.37e-04,1.44e-03) (5.14,-3.28) (2.44e-04,6.33e-04) (5.14,-3.29) (4.03e-04,2.91e-03)
magnetic axis (6.41,0.61) (1.01e-03,6.11e-04) (6.41,0.60) (2.65e-02,6.28e-03) (6.42,0.60) (3.15e-02,5.81e-03)
strike (4.17,-3.71) (4.46e-03,2.23e-03) (4.16,-3.71) (1.23e-04,4.30e-05) (4.17,-3.71) (4.18e-04,2.00e-04)
points (5.56,-4.22) (2.88e-08,3.28e-03) (5.56,-4.22) (4.05e-09,5.54e-05) (5.56,-4.21) (2.02e-08,2.98e-04)
inverse aspect ratio 0.32 4.76e-06 0.32 4.23e-06 0.32 4.31e-06
elongation 1.86 1.50e-04 1.86 1.83e-03 1.86 2.29e-03
upper triangularity 0.43 2.49e-04 0.43 1.45e-03 0.43 2.08e-03
lower triangularity 0.53 1.08e-04 0.53 1.52e-03 0.53 1.31e-03

Fig. 6. The violet curves represent the expected plasma boundaries for post-processed simulations using increasingly finer grids when 𝜖 = 4 × 10−4 and sample size 
specified in Table 2. Each sub-plot focuses on a region near the x-point, maintaining the same zoom-in ratio as the second row of Fig. 4. The dark green dots denote 
the locations of the x-point.

tional extrapolation error. In our case this is evident, for instance, in 
the fact that the plasma boundary of the expected solution 𝔼[𝜓ℎ] is 
considerably less regular in the geometry-conforming case than it is in 
the non-geometry-conforming one. This can be seen in Fig. 5. The ex-
trapolation error can be taken care of through careful post-processing. 
One option is to project or interpolate the numerical solutions into a 
subdomain common to all grids so that no extrapolation is needed for 
evaluation. This strategy was employed to produce Fig. 6 successfully 
eliminating the spurious oscillations in the plasma boundary. However, 
doing this requires considerable computational work and reduces the 
time savings obtained from MLMC.

One further difficulty is that the re-sampling of the boundaries is 
impossible to perform in a straightforward fashion in the case of adap-
tively refined meshes. Thus, the geometric approximation remains fixed 
at the initial level of refinement. This can be seen in the bottom row 
of Fig. 5, where the solid black line represents the polygonal approx-
imation to the curved boundary of the divertor. The approximation 
improves as the mesh is refined for the uniformly refined mesh, but 
stays fixed for the adaptive strategy.

5. Concluding remarks

The objective of this study is to evaluate the performance of MC-FE 
and several variants of MLMC-FE for the Grad-Shafranov free bound-
ary problem under high-dimensional uncertainties in the currents. The 
plasma equilibrium problem presents challenges and complexities as-
sociated with the physical properties of the system, the values of the 
parameters of the experiment, and even the approximation of geomet-
ric features of the model. Examples include the degradation of the 
stability of the equilibrium associated with an increase of plasma elon-
gation or beta; the presence of finite current near the plasma boundary 
or, as in this study, the complex boundary structures, which must be 
treated carefully in the context of multilevel methods. These physi-
cally grounded challenges typically get reflected in the computations, 
for instance, as an increase in the difficulty of a linearized algorithm to 
converge to a desired tolerance or as the need for higher precision in the 

numerical computation required to resolve the desired features. In other 
words, complicated physical scenarios typically result in an increase in 
computational costs which might easily become overwhelming when 
combined with uncertainty quantification efforts. In cases like these, 
an MLMC strategy can help to mitigate the costs required to gather 
statistical information at the expense of potentially overlooking subtle 
behavior that may not be resolved in the samples gathered in coarse 
levels of refinement.

It is important to remark that the multilevel Monte Carlo techniques 
presented rely only on the independence between different realizations 
across discretization levels and not on the particular probability distri-
bution obeyed by the stochastic parameters. In this study, the current 
intensities were modeled as independent uniformly distributed random 
variables, but the method would have worked without any modifica-
tion even if the current intensities had obeyed correlated distributions 
as long as realizations across discretization levels are independent of each 
other. Moreover, further stochastic components—such as the parame-
ters appearing in the profile models in equation (1b)—can be included 
and handled simultaneously.

In this study, we handled the geometric difficulties in the uniform 
MLMC-FE case using a sequence of uniform meshes that conform to 
the curved boundaries in the geometry. We also found that a feature of 
adaptive MLMC-FE is that adaptive griding leads to a somewhat better 
representation of geometric quantities; in contrast, errors introduced 
by computations on uniform coarse meshes lead to some distortions 
of some features. The traditional advantage of adaptive refinement 
reduced computational cost, was less clearly present. But the overall 
advantage of the MLMC approach in reducing costs is dramatic.
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7. Appendix

We now describe some technical mathematical and implementation 
details related to the work presented. This additional material is pro-
vided for the sake of completeness but is not needed to follow the 
discussion from the previous sections.

7.1. Weak formulation of the Grad-Shafranov equation

Deterministic problem.We will start by introducing the weak formulation 
for the Grad-Shafranov problem in the case where all the parameters in-
volved are deterministic. Consider a semi-circle centered at the origin, 
boundary Γ and with radius 𝜌 such that it fully contains all the rel-
evant reactor components depicted in Fig. 1. If Ω denotes the region 
surrounded by Γ then, by construction, for any in Ω𝑐 the right-hand 
side of (1a) will vanish identically. We will then, following [22], con-
sider the space of real-valued functions

𝑍 ∶=
⎧⎪⎨⎪⎩
𝑢 ∶ Ω→ℝ

||||| ∫Ω
𝑢2𝑥𝑑𝑥𝑑𝑦 <∞ ,

∫
Ω

|∇𝑢|2
𝑥

𝑑𝑥𝑑𝑦 <∞; and 𝑢(0, 𝑦) = 0
⎫⎪⎬⎪⎭
∩𝐶0

(
Ω
)
. (26)

This space arises naturally when testing equation (1a) using the 
weighted 𝐿2 inner product defined by

⟨𝑢, 𝑣⟩ ∶= ∫
Ω

𝑢𝑣𝑥𝑑𝑥𝑑𝑦,

which leads to the finite energy requirement appearing in the second 
inequality in the definition (26). The third requirement (𝑢(0, 𝑦) = 0) is 
a result of the anti-symmetry of the problem with respect to reflections 
across the axis of symmetry of the reactor and has the effect of ensuring 
that the quantity

‖𝑢‖𝑍 ∶=
⎛⎜⎜⎝∫Ω

|∇𝑢|2
𝑥

𝑑𝑥𝑑𝑦
⎞⎟⎟⎠

1∕2

(27)

does indeed define a norm in the space 𝑍 . We will refer to this norm 
as the energy norm. The space 𝑍 defined in (26) endowed with the 
energy norm (27) is the natural function space to look for variational 
solutions to the deterministic linearized Grad-Shafranov equation (1). 
The variational formulation of the problem, as derived in [1,17,29], is 
that of finding 𝜓 ∈𝑍 such that for every test 𝜑 ∈𝑍 it holds that:

∫
Ω𝑝

1
𝜇𝑥

∇𝜓 ⋅∇𝜑𝑑𝑥𝑑𝑦− ∫
Ω𝑝

(
𝑟𝑝′(𝜓) + 1

𝜇0𝑥
𝑓𝑓 ′(𝜓)

)
𝜑𝑑𝑥𝑑𝑦

+ ∫
Γ

𝜓 𝑁 𝜑𝑑𝑐

+ ∫
Γ

∫
Γ

(
𝜓(𝒙1) −𝜓(𝒙2)

)
𝑀(𝒙1,𝒙2)

(
𝜑(𝒙1) −𝜑(𝒙2)

)
𝑑𝑐(𝒙1)𝑑𝑐(𝒙2)

=
𝑀𝑐∑
𝑘=1

𝐼𝑘
𝑆𝑘 ∫

Ω𝐶𝑘

𝜑𝑑𝑥𝑑𝑦. (28)

Above, the magnetic permeability 𝜇 is either a function of 𝜓 inside 
a region occupied by a ferromagnetic material, 𝜇 = 𝜇(|∇𝜓|2∕𝑥2), or a 
constant 𝜇 = 𝜇0 elsewhere, 𝒙𝑖 = (𝑥𝑖, 𝑦𝑖) denote position vectors, Ω𝐶𝑘denotes the region occupied by the 𝑘-th coil, and the total number of 
coils is denoted by 𝑀𝑐 . The following quantities, appearing on the left-
hand side of (28), are related to the Green’s function associated with 
the operator on the left-hand side of (1a)

𝑁 ∶= 1
𝑥

(
1
𝛿+

+ 1
𝛿−

− 1
𝜌

)
, 𝛿± ∶=

√
𝑥2 + (𝜌± 𝑦)2 ,

𝜅(𝒙1,𝒙2) ∶=

√
4𝑥1𝑥2

(𝑥1 + 𝑥2)2 + (𝑦1 − 𝑦2)2
,

𝑀(𝒙1,𝒙2) ∶=
𝜅(𝒙1,𝒙2)

2𝜋(𝑥1𝑥2)3∕2

×
(

2 − 𝜅2(𝒙1,𝒙2)
2 − 2𝜅2(𝒙1,𝒙2)

𝐸(𝜅(𝒙1,𝒙2)) −𝐾(𝜅(𝒙1,𝒙2))
)

,

where 𝐸(𝜅(𝒙1, 𝒙2)) and 𝐾(𝜅(𝒙1, 𝒙2)) are complete elliptic integrals of 
the first and second kind respectively [30].

Accounting for stochasticity. We now consider the stochasticity in the 
currents and allow the vector of currents to be a 𝑑-dimensional random 
variable 𝝎 uniformly distributed over the parameter space 𝑊 defined 
in (2). It is clear that in this case for any particular realization of the 
currents 𝝎 we will obtain a different equilibrium configuration 𝜓(𝝎)
that belongs to the Banach space 𝑍 defined in (26). Moreover, since for 
every 𝝎 ∈𝑊 the resulting equilibrium configuration has finite energy, 
it then holds for the expected value of the equilibrium that

𝔼
(‖𝜓‖2𝑍

)
<∞.

In mathematical terms, we say that the stochasticity of the currents 
transforms the solution 𝜓 to (1) into a Banach space-valued random 
variable with finite expected energy. If 𝝎 belongs to a complete and 
separable probability space (𝑊 ,Σ,ℙ), the class of such random vari-
ables forms what is known as a Bochner space [9]. In our particular 
case, solutions to (1) are mappings from the parameter space 𝑊 to the 
Banach space 𝑍 that, as functions of 𝝎, belong to the Bochner space

𝐿2(𝑊 ,Σ,ℙ;𝑍)

∶= {𝑢 ∶𝑊 →𝑍 ||| 𝑢 strongly measurable, ‖𝑢‖𝐿2(𝑊 ,𝑍) <∞},

where the norm ‖ ⋅‖𝐿2(𝑊 ,𝑍) is precisely defined in terms of the expected 
energy

‖𝑢‖𝐿2(𝑊 ,𝑍) ∶=
⎛⎜⎜⎝∫𝑊

‖𝑢(⋅,𝜔)‖2𝑍 𝑑ℙ(𝜔)
⎞⎟⎟⎠

1∕2

=
(
𝔼
(‖𝑢(⋅,𝜔)‖2𝑍

))1∕2
.

7.2. Mathematical results on multilevel Monte Carlo

The proceeding analysis on the computational cost to compute the 
MLMC-FE estimator in terms of the desired relative accuracy 𝜖 is based 
on the following Theorem (established and proven in [8]), which quan-
tifies the distribution of the computational effort across discretization 
levels in terms of the relation between the decay rate of the variance 
of the correction terms, 𝑉𝓁 , and the increase of the computational cost, 
𝐶𝓁 , as the mesh is refined. In particular, it states that if the variance of 
the correction terms decays faster than the increase of computational 
cost, the dominant computational expense takes place on the coarsest 
grid—see also [19].
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Theorem 1. Suppose there exist positive constants 𝑎, 𝑏, 𝑐 such that 𝑎 ≥
1
2 min(𝑏, 𝑐),

(i) ‖‖‖𝔼
(
𝑢− 𝑢𝓁

)‖‖‖𝑍 = 
(
𝑀−𝑎

𝓁

)
,

(ii) 𝑉𝓁 = 
(
𝑀−𝑏

𝓁

)
,

(iii) 𝐶𝓁 = 
(
𝑀𝑐

𝓁

)
.

Then for any positive 𝜖 < 𝑒−1 small enough, there exists level 𝐿 and sample 
size 𝑁𝓁 for which the multilevel estimator 𝐴MLMC has an nMSE with

𝔼
[‖‖𝔼(𝑢) −𝐴MLMC(𝑢𝐿)‖‖2𝑍

]

𝔼
[‖𝔼(𝑢)‖2𝑍

] < 𝜖2,

and the total computation cost 𝐶 with bound

𝐶
(
𝐴MLMC

)
=

⎧⎪⎪⎨⎪⎪⎩

(𝜖−2) , 𝑏 > 𝑐,
(𝜖−2 (log 𝜖)2) , 𝑏 = 𝑐,


(
𝜖−2−

(𝑐−𝑏)
𝑎

)
, 0 < 𝑏 < 𝑐.
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