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Abstract. We analyze feature learning in infinite-width neural networks
trained with gradient flow through a self-consistent dynamical field theory. We
construct a collection of deterministic dynamical order parameters which are
inner-product kernels for hidden unit activations and gradients in each layer at
pairs of time points, providing a reduced description of network activity through
training. These kernel order parameters collectively define the hidden layer activ-
ation distribution, the evolution of the neural tangent kernel (NTK), and con-
sequently, output predictions. We show that the field theory derivation recov-
ers the recursive stochastic process of infinite-width feature learning networks
obtained by Yang and Hu with tensor programs. For deep linear networks, these
kernels satisfy a set of algebraic matrix equations. For nonlinear networks, we
provide an alternating sampling procedure to self-consistently solve for the ker-
nel order parameters. We provide comparisons of the self-consistent solution to
various approximation schemes including the static NTK approximation, gradi-
ent independence assumption, and leading order perturbation theory, showing
that each of these approximations can break down in regimes where general
self-consistent solutions still provide an accurate description. Lastly, we provide
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experiments in more realistic settings which demonstrate that the loss and kernel
dynamics of convolutional neural networks at fixed feature learning strength are
preserved across different widths on a image classification task.

Keywords: deep learning, machine learning, learning theory
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1. Introduction

Deep learning has emerged as a successful paradigm for solving challenging machine
learning and computational problems across a variety of domains [1, 2]. However, the-
oretical understanding of the training and generalization of modern deep learning meth-
ods lags behind current practice. Ideally, a theory of deep learning would be analytic-
ally tractable, efficiently computable, capable of predicting network performance and
internal features that the network learns, and interpretable through a reduced descrip-
tion involving desirably initialization-independent quantities.

Several recent theoretical advances have fruitfully considered the idealization of wide
neural networks, where the number of hidden units in each layer is taken to be large.
Under certain parameterization, Bayesian neural networks and gradient descent (GD)
trained networks converge to gaussian processes (NNGPs) [3-5] and neural tangent ker-
nel (NTK) machines [6-8] in their respective infinite-width limits. These limits provide
both analytic tractability as well as detailed training and generalization analysis [9-16].
However, in this limit, with these parameterizations, data representations are fixed and
do not adapt to data, termed the lazy regime of NN training, to contrast it from the rich
regime where NNs significantly alter their internal features while fitting the data [17,
18]. The fact that the representation of data is fixed renders these kernel-based theories
incapable of explaining feature learning, an ingredient which is crucial to the success of
deep learning in practice [19, 20]. Thus, alternative theories capable of modeling feature
learning dynamics are needed.

Recently developed alternative parameterizations such as the mean field [21] and
the uP [22] parameterizations allow feature learning in infinite-width NNs trained with
GD. Using the tensor programs (TPs) framework, Yang and Hu identified a stochastic
process that describes the evolution of preactivation features in infinite-width uP NNs
[22]. In this work, we study an equivalent parameterization to uP with self-consistent
dynamical mean field theory (DMFT) and recover the stochastic process description of
infinite NNs using this alternative technique. In the same large width scaling, we include
a scalar parameter v, that allows smooth interpolation between lazy and rich behavior
[17]. We provide a new computational procedure to sample this stochastic process and
demonstrate its predictive power for wide NNs.

Our novel contributions in this paper are the following:

(i) We develop a path integral formulation of gradient flow dynamics in infinite-width
networks in the feature learning regime. Our parameterization includes a scalar
parameter 7y, to allow interpolation between rich and lazy regimes and comparison
to perturbative methods.

(ii) Using a stationary action argument, we identify a set of saddle point equations that
the kernels satisfy at infinite-width, relating the stochastic processes that define
hidden activation evolution to the kernels and vice versa. We show that our saddle
point equations recover at 7y = 1, from an alternative method, the same stochastic
process obtained previously with TPs [22].

(iii) We develop a polynomial-time numerical procedure to solve the saddle point
equations for deep networks. In numerical experiments, we demonstrate that
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solutions to these self-consistency equations are predictive of network training at a
variety of feature learning strengths, widths and depths. We provide comparisons
of our theory to various approximate methods, such as perturbation theory.

Code to reproduce our experiments can be found on our Github.

1.1. Related works

A natural extension to the lazy NTK/NNGP limit that allows the study of feature
learning is to calculate finite width corrections to the infinite-width limit. Finite width
corrections to Bayesian inference in wide networks have been obtained with various
perturbative [23-29] and self-consistent techniques [30-33]. In the GD based setting,
leading order corrections to the NTK dynamics have been analyzed to study finite width
effects [27, 34-36]. These methods give approximate corrections which are accurate
provided the strength of feature learning is small. In very rich feature learning regimes,
however, the leading order corrections can give incorrect predictions [37, 38].

Another approach to studying feature learning is to alter NN parameterization in
gradient-based learning to allow significant feature evolution even at infinite-width, the
mean field limit [21, 39]. Works on mean field NNs have yielded formal loss convergence
results [40, 41] and shown equivalences of gradient flow dynamics to a partial differential
equation (PDE) [42-44].

Our results are most closely related to a set of recent works which studied infinite-
width NNs trained with GD using the TPs framework [22]. We show that our dis-
crete time field theory at unit feature learning strength ~y =1 recovers the stochastic
process which was derived from TP. The stochastic process derived from TP has
provided insights into practical issues in NN training such as hyper-parameter search
[45]. Computing the exact infinite-width limit of GD has exponential time requirements
[22], which we show can be circumvented with an alternating sampling procedure. A
projected variant of GD training has provided an infinite-width theory that could be
scaled to realistic datasets like CIFAR-10 [46]. Inspired by Chizat and Bach’s work on
mechanisms of lazy and rich training [17], our theory interpolates between lazy and
rich behavior in the mean field limit for varying v and allows comparison of DMFT to
perturbative analysis near small 7y. Further, our derivation of a DMFT action allows
the possibility of pursuing finite width effects.

Our theory is inspired by self-consistent DMFT from statistical physics [47-53]. This
framework has been utilized in the theory of random recurrent networks [54-59], tensor
PCA [60, 61], phase retrieval [62], and high-dimensional linear classifiers [63—66], but has
yet to be developed for deep feature learning. By developing a self-consistent DMFT
of deep NNs, we gain insight into how features evolve in the rich regime of network
training, while retaining many pleasant analytic properties of the infinite-width limit.

2. Problem setup and definitions

Our theory applies to infinite-width networks, both fully-connected and convolu-
tional. For notational ease we will relegate convolutional results to later sections.

https://doi.org/10.1088/1742-5468 /ad01b0 5
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For input x, e R”, we define the hidden pre-activation vectors h' e RY for layers
te{l,...,L} as

1 R ( z) 1 L o
N \/NW ¢(h,), h, \/EW x,, (1)
where 6 :Vec{W()?...,wL} are the trainable parameters of the network and ¢ is a
twice differentiable activation function. Inspired by previous works on the mechanisms
of lazy gradient based training, the parameter v will control the laziness or richness of
the training dynamics [17, 18, 22, 42]. Each of the trainable parameters are initialized as
Gaussian random variables with unit variance VVf] ~ N (0,1). They evolve under gradient

fu wh gb(hL), hf;H:

flow %9 = —?VgL. The choice of learning rate v> causes %Ehzo to be independent of
~. To characterize the evolution of weights, we introduce back-propagation variables
14 ¢
g, = 7\/_ = (h ) .z, = fNW gl (2)

where zﬁ is the pre-gradient signal.
The relevant dynamical objects to characterize feature learning are feature and gradi-
ent kernels for each hidden layer ¢ € {1,..., L}, defined as

2, (15) = o (m(0) 6 (RL(5)) . Cla(ts) = 1ah(0)-gh(s) ()

From the kernels {®,G'}/_,, we can compute the NTK KNI (t,s) = Vyf.(t)-
Vofa(s) = Zf:o ij&l (t, s)@fm(t, s), [6] and the dynamics of the network function f,

P

d 0
L= K EHA1) , Au(t) = “a7, Mo (4)
a=1 K
where we define base cases GLI'(t,s)=1,8Y (t,s) = K, = @, To. In prior work,

®!, G' were termed forward and backward kernels and were theoretlcally computed at
initialization and empirically measured through training [67]. Our DMFT will provide
exact formulas for these kernels throughout the full dynamics of feature learning. We
note that the above formula holds for any data point p which may or may not be in the
set of P training examples. The above expressions demonstrate that knowledge of the
temporal trajectory of the NTK on the t =s diagonal gives the temporal trajectory of
the network predictions f,(¢).

Following prior works on infinite-width networks [18, 21, 22, 40], we study the mean
field limit

T
VN
As we demonstrate in the appendices D and N, this is the only N-scaling which allows
feature learning as N — oco. The 7y =0 limit recovers the static NTK limit [6]. We
discuss other scalings and parameterizations in appendix N, relating our work to the pP-
parameterization and TP analysis of [22], showing they have identical feature dynamics
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in the infinite-width limit. We also analyze the effect of different hidden layer widths
and initialization variances in the appendix D.8. We focus on equal widths and NTK
parameterization (as in equation (1)) in the main text to reduce complexity.

3. Self-consistent DMFT

Next, we derive our self-consistent DMFT in a limit where ¢,P = Oyn(1). Our goal is
to build a description of training dynamics purely based on representations, and inde-
pendent of weights. Studying feature learning at infinite-width enjoys several analytical
properties:

e The kernel order parameters ®, G’ concentrate over random initializations but are
dynamical, allowing flexible adaptation of features to the task structure.

e In each layer ¢, each neuron’s preactivation hf and pregradient zf become i.i.d. draws
from a distribution characterized by a set of order parameters {®‘, G¢, A*, B‘}.

e The kernels are defined as self-consistent averages (denoted by ()) over this dis-
tribution of neurons in each layer ®° (t,s)= <¢(hﬁ(t))¢(hf1(s))> and G, (t,s) =

<g/€(t)g(€(5)> e po

The next section derives these facts from a path-integral formulation of gradient flow
dynamics.

3.1. Path integral construction

Gradient flow after a random initialization of weights defines a high dimensional
stochastic process over initalizations for variables {h,g}. Therefore, we will utilize
DMEFT formalism to obtain a reduced description of network activity during training.
For a simplified derivation of the DMFT for the two-layer (L= 1) case, see appendix D.2.
Generally, we separate the contribution on each forward/backward pass between the
initial condition and gradient updates to weight matrix W, defining new stochastic
variables x/,&‘ € RV as

X0 =W 00 (h0) . 0= WO g . ©

We let Z represent the moment generating functional (MGF) for these stochastic
fields

z[{jf,vf}]=<exp > /wdt[jf@(t)-xﬁ<t>+vﬁ<t>-si<t>] > ,
e {w'o)

wl(0)}

which requires, by construction the normalization condition Z[{0,0}] =1. We enforce
our definition of x,& using an integral representation of the delta-function. Thus for
each sample p € [P] and each time ¢ € R, we multiply Z by

https://doi.org/10.1088/1742-5468 /ad01b0 7
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e ﬂAﬁﬁ“%mp(xﬁ*a>[xﬁ%w—;%vwﬂ«»¢oﬁ@»})wn

for x and the respective expression for £. After making such substitutions, we perform
integration over initial Gaussian weight matrices to arrive at an integral expression for
Z, which we derive in the appendix D.4. We show that Z can be described by set of
order-parameters {®, ®‘,G* G, A, B’}

/ [] d®.. (t,5) AP, (t,5)AG,, (,5)AGL,, (t,5)dAL, (t,5)dBY, (t,s)

Luats

X exp (NS [{@,é,G,é,A,B,j,v}]), (8)

S=Y»" / dt / ds o (t:8) B, (t,5) + Ghy (t,5) Gl (t,5) — AL (t,5) Bl (8, 5)

Lo

+InzZ [{@,é,G,é,A,B,j,v}] , 9)

where S is the DMFT action and Z is a single-site MGF, which defines the distribution
of fields {x*,£’} over the neural population in each layer. The order parameters A and B
are related to the correlations between feedforward and feedback signals. We provide a
detalled formula for Z in appendix D.4 and show that it factorizes over different layers

ZzZ= He 1 Z¢. Each of the single site MGFs has the form
/H%L%f AOEACE T CH A PACRACR ACRAGIH JIE)

where H, is a single-site Hamiltonian that depends on the order parameters and defines
the probability density over fields {x*, ¢’ X%, £}, We introduce the single site average
(O) of observable O

(olfsxe))

=5 [avaganad o ({.¢' 2&} e (-2 [{¢ 2. €7]]). (1)

In the next section, we express the DMFT saddle-point equations defining {CIDK,Gé} in
terms of such single site averages.

3.2. Deriving the DMFT equations from the path integral saddle point

As N — oo, the moment-generating function Z is exponentially dominated by the saddle
point of S. The equations that define this saddle point also define our DMFT. We thus
identify the kernels that render S locally stationary (65 =0). The most important
equations are those which define {®‘, G’}

https://doi.org/10.1088/1742-5468 /ad01b0 8
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o (g e 69 gy = P (6) — (0 0) 6 () =0
) i, l 5Z L e
(5@fm (t,s) G (t:5) + Z (5G€ (t,3) =Gla — (9, (t) ga (5)) =0, (12)

where () denotes an average over the stochastic process induced by Z, which is defined
below

{Uﬁ (t)} P]teRy ~ gp( (p(/ 1) {7” }HE[P teR, gp (O’Gé+1) ’

Mw

W (8) = o (1) + 70 / S A (1) & A ()L (1,)] 2 (5) D (1L ()

a=1

z, (t) =1, (t)+ ds

Mw

o (:5) + D0 ()Gt 9)] ¢ (R (s)),  (13)

S~

uzl

where we define base cases @, (t,s) = K7, and GL1(t,s) =1, A" = B = 0. We see that

the fields {h’,2'}, which represent the smgle site preactivations and pre-gradients, are
implicit functionals of the mean-zero Gaussian processes {u’,7‘} which have covariances
(ul,(t)ul(s)) = @l (L, s), (rl,(t)rh(s)) = GLE(t,s). The other saddle point equations
give the linear response functions

5 l Sgttl
A£a<t,s>:val<%> Bl (ts) = <55€—Et))> (14

which arise due to dependence between the feedforward and feedback signals. We note
that, in the lazy limit vy — 0, the fields approach Gaussian processes Rt = ul, 28—t
Lastly, the final saddle point equations 2 5(1)[ =0, prcii = 0 imply that Pl =G = O The full
set of equations that define the DMFT are given in appendix D.7.

This theory is easily extended to more general architectures such as networks with
varying widths by layer (appendix D.8), trainable bias parameter (appendix H), multiple
(but On(1)) output channels (appendix I), convolutional architectures (appendix G),
networks trained with weight decay (appendix J), Langevin sampling (appendix K)
and momentum (appendix L), discrete time training (appendix M). In appendix N,
we discuss parameterizations which give equivalent feature and predictor dynam-
ics and show our derived stochastic process is equivalent to the pP scheme of
Yang and Hu [22].

4. Solving the self-consistent DMFT

The saddle point equations obtained from the field theory discussed in the previous
section must be solved self-consistently. By this we mean that, given knowledge of the
kernels, we can characterize the distribution of {h’,2’}, and given the distribution of
{h!,2'}, we can compute the kernels [64, 68]. In appendix B, we provide algorithm 1,
a numerical procedure based on this idea to efficiently solve for the kernels with an

https://doi.org/10.1088/1742-5468 /ad01b0 9
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(g) Final G* kernels vy = 1.0 (h) G* Dynamics vy = 1.0 (i) G* Convergence to DMFT

Figure 1. Neural network feature learning dynamics is captured by self-consistent
dynamical mean field theory (DMFT). (a) Training loss curves on a subsample
of P=10 CIFAR-10 training points in a depth 4 (L=3, N =2500) tanh network
(¢(h) =tanh(h)) trained with MSE. Increasing 7, accelerates training. (b), (c)
The distribution of preactivations at the beginning and end of training matches
predictions of the DMFT. (d) The final ® (at t=100) kernel order parameters
match the finite width network. (e) The temporal dynamics of the sample-traced
kernels » | (I)f;u (t,s) matches experiment and reveals rich dynamics across layers. (f)
The alignment A(®%pr, Py ), defined as cosine similarity, of the kernel L, (t,5)
predicted by theory (DMFT) and width N networks for different N but fixed
Yo ="/ V/'N. Errorbars show standard deviation computed over 10 repeats. Around
N ~ 500 DMFT begins to show near perfect agreement with the NN. (g)—(i) The
same plots but for the gradient kernel G'. Whereas finite width effects for ®° are
larger at later layers ¢ since variance accumulates on the forward pass, fluctuations
in G’ are large in early layers.

alternating Monte—Carlo strategy. The output of the algorithm are the dynamical ker-
nels @fm(t,s),Gfm(t,s),Aﬁa(t,s),Bﬁa(t,s), from which any network observable can be
computed as we discuss in appendix D. We provide an example of the solution to the
saddle point equations compared to training a finite NN in figure 1. We plot ®¢, G* at
the end of training and the sample-trace of these kernels through time. Additionally, we
compare the kernels of finite width N network to the DMFT predicted kernels using a

https://doi.org/10.1088 /1742-5468 /ad01b0 10
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DMFT NN
(I)DMFT,q)NN) _Tr & ®

cosine-similarity alignment metric A( = gDVFT] NN - Additional examples

are shown in appendix figures Al and A2.

4.1. Deep linear networks: closed form self-consistent equations

Deep linear networks (¢(h) =h) are of theoretical interest since they are simpler to
analyze than nonlinear networks but preserve nontrivial training dynamics and fea-
ture learning [23, 25, 32, 69-73]. In a deep linear network, we can simplify our saddle
point equations to algebraic formulas that close in terms of the kernels H ﬁa(t,s) =
<hft(t)hf¥(s)>, G'(t,s) = (g'(t)g'(s)) [22]. This is a significant simplification since it
allows the solution of the saddle point equations without a sampling procedure.

To describe the result, we first introduce a vectorization notation h'=
Vec{hﬁ(t)}ue[p},te&. Likewise we convert kernels H'= Mat{Hﬁa(t7S)}M,ae[P],t,se&
into matrices. The inner product under this vectorization is defined as a-b=
fooo dt ij:lau(t)bu(t). In a practical computational implementation, the theory would
be evaluated on a grid of T time points with discrete time GD, so these kernels
H' e RPT*PT would indeed be matrices of the appropriate size. The fields hg, g’ are
linear functionals of independent Gaussian processes u’,r!, giving gI —’ySC'EDf)hg =
ul + 4 Crt | (I- 7§D£Cg)ge = r! +yyDu’. The matrices C* and D' are causal integ-
ral operators which depend on {A"', H*"'} and {B‘ G} respectively which we
define in appendix F. The saddle point equations which define the kernels are

H — <h£hZT> - ,YSCEDE)_l [Heq +7§CeGe+1CeT} [(I _ ’YSCEDE)_l] T
Gl — <g€g£T> _ (I _ %%Dece)—l [G”l +,ygDsz—1DeT} [(I _ ,YSDZCZ)—l] T. (15)

Examples of the predictions obtained by solving these systems of equations are provided
in figure 2. We see that these DMFT equations describe kernel evolution for networks of
a variety of depths and that the change in each layer’s kernel increases with the depth
of the network.

Unlike many prior results [69—72], our DMFT does not require any restrictions on the
structure of the input data but holds for any K, y. However, for whitened data K* =1
we show in appendix F.1.1, appendix F.2 that our DMFT learning curves interpolate
between NTK dynamics and the sigmoidal trajectories of prior works [69, 70] as 7 is
increased. For example, in the two layer (L= 1) linear network with K* =1, the dynam-
ics of the error norm A(t) = ||A(t)|| takes the form %A(t) = —2y/1+2(y—A(1))2A()
where y = ||y||. These dynamics give the linear convergence rate of the NTK if ~y — 0
but approaches logistic dynamics of [70] as 79 — co. Further, H(t) = (h'(t)h'(t)7) €
RP*P only grows in the yy' direction with H,(t) = y%yTH(t)y =1+ (y—At))2
At the end of training H (t) — I+ %[\/ 1+ ~3y? — 1]yy ", recovering the rank one spike
which was recently obtained in the small initialization limit [74]. We show this one
dimensional system in figure A3.
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i -
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L

(¢c) L-Dependent kernel move-
ment

d) L =5 DMFT temporal kernels

Figure 2. Deep linear network with the full DMFT. (a) The train loss for NNs
of varying L. (b) For a L =5, N =1000 NN, the kernels H at the end of train-
ing compared to DMFT theory on P =20 datapoints. (¢) Average displacement of
feature kernels for different depth networks at same - value. For equal values of
~0, deeper networks exhibit larger changes to their features, manifested in lower
alignment with their initial ¢ =0 kernels H. (d) The solution to the temporal com-
ponents of the G'(t,s) and > WH 1u(t,s) kernels obtained from the self-consistent
equations.

4.2. Feature learning with L2 regularization

As we show in appendix J, the DMFT can be extended to networks trained with weight
decay f}l—? = —2VgL — \0. If neural network is homogenous in its parameters so that
f(c8) =c"f(0) (examples include networks with linear, ReLU, quadratic activations),
then the final network predictor is a kernel regressor with the final NTK lim;_,, f(2,t) =
k(z)"[K + \kI]"'y where K (z,2’') is the final-NTK, [k(z)], = K(z,z,) and K], =
K(x,,x,). We note that the effective regularization Ax increases with depth L. In NTK
parameterization, weight decay in infinite width homogenous networks gives a trivial
fixed point K(x,x’) — 0 and consequently a zero predictor f — 0 [75]. However, as we
show in figure 3, increasing feature learning v, can prevent convergence to the trivial
fixed point, allowing a non-zero fixed point for K, f even at infinite width. The kernel
and function dynamics can be predicted with DMFT. The fixed point is a nontrivial
function of the hyperparameters A, x, L,7.
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Yo=0.75 yp=1.00

(a) Loss for varying o (b) Final ® kernels

Figure 3. Width N =1000 ReLU networks trained with L2 regularization have
nontrivial fixed point in DMFT limit (yo > 0). (a) Training loss dynamics for a
L =1 ReLU network with A= 1. In 79 — 0 limit the fixed point is trivial f = K =0.
The final loss is a decreasing function of v¢. (b) The final kernel is more aligned
with target with increasing . Networks with homogenous activations enjoy a
representer theorem at infinite-width as we show in appendix J.

5. Approximation schemes

We now compare our exact DMFT with approximations of prior work, providing an
explanation of when these approximations give accurate predictions and when they
break down.

5.1. Gradient independence ansatz

We can study the accuracy of the ansatz A’= B’ =0, which is equivalent to treating

the weight matrices W*(0) and W*(0)™ which appear in forward and backward passes

respectively as independent Gaussian matrices. This assumption was utilized in prior

works on signal propagation in deep networks in the lazy regime [76-80]. A consequence

of this approximation is the Gaussianity and statistical independence of x* and ¢* (con-

ditional on {®‘ G*}) in each layer as we show iréha%pendix O. This ansatz works very
z

well near g ~ 0 (the static kernel regime) since §, 52 ~ O(v) or around initialization

t ~0 but begins to fail at larger values of vy,¢ (figures 4 and A4).

5.2. Small-feature learning perturbation theory at infinite-width

In the vy — 0 limit, we recover static kernels, giving linear dynamics identical to the
NTK limit [6]. Corrections to this lazy limit can be extracted at small but finite .
This is conceptually similar to recent works which consider perturbation series for the
NTK in powers of 1/N [27, 28, 35] (though not identical, see [81] for finite N effects in
mean-field parameterization). We expand all observables ¢(7y) in a power series in 7,
giving ¢(v0) = ¢% +v0¢V +12¢® + ... and compute corrections up to O(72). We show

https://doi.org/10.1088 /1742-5468 /ad01b0 13
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(c) H* Kernel dynamics g = 1.5 (d) Theory H* vs NN with N = 1000

Figure 4. Comparison of DMFT to various approximation schemes in a L=>5 hid-
den layer, width N =1000 linear network with 79 = 1.0 and P =100. (a) The loss
for the various approximations do not track the true trajectory induced by gradient
descent in the large ¢ regime. (b), (¢) The feature kernels H ﬁa (t,s) across each of
the L =15 hidden layers for each of the theories is compared to a width 1000 neural
network. Again, we plot the sample-traced dynamics 3, H Lu(t,s). (d) The align-
ment of H' compared to the finite NN A(H', H\y) averaged across £ € {1,...,5}
for varying . The predictions of all of these theories coincide in the ~y = 0 limit but
begin to deviate in the feature learning regime. Only the nonperturbative DMFT
is accurate over a wide range of 7.

that the O(vp) and O(v3) corrections to kernels vanish, giving leading order expansions
of the form ® = ®" +~2®? + O(7}) and G = G’ +2G* + O(q}) (see appendix P.2).
Further, we show that the NTK has relative change at leading order which scales
linearly with depth |AKNTK|/|KNTKO| ~ O, 1 (L43) = On.,, L(%), which is consistent
with finite width effective field theory at v = Oy (1) [26-28] (appendix P.6). Further, at
the leading order correction, all temporal dependencies are controlled by P(P + 1) func-
tions v, (t) = fot dsAY(s) and v,s(t) = f(f dsAd(s) [y ds’A%(s"), which is consistent with
those derived for finite width NNs using a truncation of the neural tangent hierarchy [27,
34, 35]. To lighten notation, we focus our main text comparison of our non-perturbative
DMFT to perturbation theory in the deep linear case. Full perturbation theory is in
appendix P.2.
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Test Loss
Test Accuracy
Alignment

(a) Test MSE (b) Classification error (c) A(®F yyT) dynamics

Figure 5. The dynamics of a depth 5 (L=4 hidden) CNNs trained on first two
classes of CIFAR (boat vs plane) exhibit consistency for different channel counts
N € {250,500} for fixed 79 = /v N. (a) We plot the test loss (MSE) and (b) test
classification error. Networks with higher ¢ train more rapidly. Time is measured
in every 100 update steps. (c) The dynamics of the last layer feature kernel ®*,
shown as alignment to the target function. As predicted by the DMFT, higher
~p corresponds to more active kernel evolution, evidenced by larger change in the
alignment.

Using the timescales derived in the previous section, we find that the leading order
correction to the kernels in infinite-width deep linear network have the form

} L+1
K™ (ts) = (L+ 1) Kp, + 7 ——5— ZK [Vag () + vga (5) +va (£) 03 (5)]

L(L + 1)
+ ’YU Z ;La Uaﬁ (t + Uﬁa Z ,BUCY Uﬁ (S)

+0(%). (16)

We see that the relative change in the NTK |KNT® — KNTE(0) /| KNTE(0)| ~ O(2L) =
O(~*L/N), so that large depth L networks exhibit more significant kernel evolution,
which agrees with other perturbative studies [25, 27, 35] as well as the nonperturbative
results in figure 2. However at large vy and large L, this theory begins to break down
as we show in figure 4.

6. Feature learning dynamics is preserved across widths

Our DMFT suggests that for networks sufficiently wide for their kernels to concentrate,
the dynamics of loss and kernels should be invariant under the rescaling N — RN,y —
v/ VR, which keeps 7y, fixed. To evaluate how well this idea holds in a realistic deep
learning problem, we trained convolutional neural networks (CNNs) of varying channel
counts N on two-class CIFAR classification [82]. We tracked the dynamics of the loss
and the last layer ®* kernel. The results are provided in figure 5. We see that dynamics
are largely independent of rescaling as predicted. Further, as expected, larger ~, leads
to larger changes in kernel norm and faster alignment to the target function y, as was
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also found in [83]. Consequently, the higher -y networks train more rapidly. The trend
is consistent for width N =250 and N =500. More details about the experiment can be
found in appendix C.2 and figure Ab5.

7. Discussion

We provided a unifying DMFT derivation of feature dynamics in infinite networks
trained with gradient based optimization. Our theory interpolates between lazy infinite-
width behavior of a static NTK in vy — 0 and rich feature learning. At vy =1, our
DMFT construction agrees with the stochastic process derived previously with the TPs
framework [22]. Our saddle point equations give self-consistency conditions which relate
the stochastic fields to the kernels. These equations are exactly solveable in deep linear
networks and can be efficiently solved with a numerical method in the nonlinear case.
Comparisons with other approximation schemes show that DMFT can be accurate at
a much wider range of v¢. We believe our framework could be a useful perspective for
future theoretical analyses of feature learning and generalization in wide networks.

Though our DMFT is quite general in regards to the data and architecture, the
technique is not entirely rigorous and relies on heuristic physics techniques. Our theory
holds in the T, P = Ox(1) and may break down otherwise; other asymptotic regimes
(such as P/N,T/log(N) = On(1), etc) may exhibit phenomena relevant to deep learning
practice [32, 84]. Indeed, many experiements find that finite width effects appear to grow
dynamically during learning (with 7" and P) and hinder the performance of models [45,
81, 85, 86]. The computational requirements of our method, while smaller than the
exponential time complexity for exact solution [22], are still significant for large PT'. In
table 1, we compare the time taken for various theories to compute the feature kernels
throughout T steps of GD. For a width N network, computation of each forward pass on
all P data points takes O(PN?) computations. The static NTK requires computation of
O(P?) entries in the kernel which do not need to be recomputed. However, the DMFT
requires matrix multiplications on PT x PT matrices giving a O(P3T?) time scaling.
Future work could aim to improve the computational overhead of the algorithm, by
considering data averaged theories [64] or one pass SGD [22]. Alternative projected
versions of GD have also enabled much better computational scaling in the evaluation
of the theoretical predictions [46], allowing evaluation on full CIFAR-10.

Since the first appearance of our work in conference proceedings [87], we have exten-
ded our DMFT technique beyond GD-based training on a loss function to study the
dynamics of other, more biologically-plausible learning rules such as feedback alignment
and Hebbian learning [88]. Such rules follow updates with pseudo-gradient fields Qi(t)
which provide a bioplausible approximation to the true backprogagation signals. In this
case, the key order parameters to consider are the feature kernels q)fw(t,s) and the
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Table 1. Computational requirements to compute kernel dynamics and trained
network predictions on P points in a depth N neural network on a grid of T time
points trained with P data points for various theories. DMFT is faster and less
memory intensive than a width N network only if NV > PT'. It is more computation-
ally efficient to compute full DMFT kernels than leading order perturbation theory
when T < v/P. The expensive scaling with both samples and time are the cost of
a full-batch non-perturbative theory of gradient based feature learning dynamics.

Requirements Width-N NN Static NTK Perturbative Full DMFT
Memory for kernels O(N?) O(P?) O(P*T) O(P?T?)
Time for kernels O(PN*T) O(P?) O(PT) O(P3T3)
Time for final outputs O(PN>T) O(P?) o(PY) O(P3T3)

gradient-pseudogradient correlators éfw(t,s) = %gﬁ(t} -g"(s). Successful feature learn-

ing enhances the gradient-pseudogradient alignment measured with G. As in the present
work, the kernels {®‘, G’} and the distribution of preactivations and pregradients are
related self-consistently at infinite width.

It remains an open question how much deep learning phenomena can be captured
by this infinite width feature learning limit of network dynamics. A recent empirical
study analyzed the loss dynamics, individual network logits, and internal feature ker-
nels and preactivation distributions of networks trained at different widths, finding that
for simple tasks like CIFAR-10, networks across widths exhibit consistency across these
observables in the mean field/u parameterization [86]. However, for harder tasks such
as ImageNet or token prediction on the C4 dataset, wider networks exhibit distinct
dynamics, often training faster and updating features more rapidly. The differences
across widths in performance and learned representations motivates the development of
theoretical methods beyond the mean-field analysis presented here, which can charac-
terize finite size effects on learning dynamics in the feature learning regime [28, 29, 81].
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Appendix A. Additional figures

—— y=02

t

(a) Loss dynamics (c) Final z distribution

Yo=0.2 Yo=1.0 Yo=2.0 Yo =3.0

Theory ®1 Expt. ¢!

(d) Final ®' kernels (e) Final G' kernels

Figure Al. Self-consistent DMFT reproduces two layer (L =1 hidden layer, width
N =2000) ReLU NN’s preactivation density, loss dynamics and learned kernel. (a)
The loss is obtained by taking saddle point results for ®,G and calculating the
NTK’s dynamics. The ~y — 0 limit is governed by a static NTK, while the vy > 0
network exhibits kernel evolution and accelerated training. (b) We plot the preact-
ivation h distribution for neurons in the hidden layer of the trained NN against
the theoretical densities defined by Z[®,G]. For small 7, the final distribution is
approximately Gaussian, but becomes non-Gaussian, asymmetric, and heavy tailed
for large 9. The DMFT estimate of the distribution is noisy due to the finite
sampling error. (¢) The pre-gradient distribution p(z) in the trained network has
larger final variance for large 7. (d), (¢) The final ®,G are accurately predicted by
the field theory and exhibit a block structure that increases with vy due to feature
learning.
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(a) Lazy vs Rich loss dynamics
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Figure A2. Self-consistent DFT reproduces loss dynamics, and kernels through
time in a L=3 tanh network. (a) The loss when training on synthetic data is
obtained by taking saddle point results for ®,G and calculating the NTK’s dynam-
ics. The vy — 0 limit is governed by a static NTK, while the vy > 0 network exhibits
kernel evolution and accelerated training. Solid lines are a N = 2000 NN and dashed
lines are from solving DMFT equations. (b), (c) The final learned kernels ® (b)
and G (c) are accurately predicted by the field theory and exhibits block structure
due to clustering by class identity. (d) The temporal components of ®,G reveals
nontrivial dynamical structure.
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(a) Two layer error dynamics (b) Projection on target

Figure A3. Error and kernel dynamics obtained by solving a one-dimensional ODE
system for a depth-2 linear network. (a) A(¢) error dynamics from appendix F.1.1
allows one to solve for H (t) by solving a one-dimensional ODE at each value of ~.
The learning curves interpolate between exponential convergence at small vy and
logistic sigmoidal trajectories at large 7¢. (b) The projection of the kernel H (t)
along the task relevant subspace y € R”.

o
[CIFSWIINY

(a) Grad. independence DMFT (b) Grad. independence Predicted feature kernels

Figure A4. Gradient independence fails to characterize feature learning dynam-
ics in networks with L > 1 and large v¢. (a) Loss curves for deep linear networks
predicted under gradient independence ansatz for vy = 1.5. (b) The predicted and
experimental feature kernels H' for the L=>5 hidden layer network demonstrate
that gradient independence underestimates the size of kernel adaptation.
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Figure A5. Repeating the experiment of figure 5 with depth 7 (L =6 hidden layer)
CNN trained on two class CIFAR over a wide range of vy with N € {250,500}.
We find consistent agreement of loss and prediction dynamics across widths but
finite size effects become more significant when computing feature kernels of deeper
layers. We note that, while higher v is associated with faster convergence, the final
test accuracy for this model is roughly insensitive to choice of 7.

Appendix B. Algorithmic implementation

The alternating sample-and-solve procedure we develope and describe below for nonlin-
ear networks is based on numerical recipes used in the dynamical mean field simulations
in computational physics [68]. The basic principle is to leverage the fact that, conditional
on kernels, we can easily draw samples {uﬁ (t),rﬁ (t)} from their appropriate GPs. From
these sampled fields, we can identify the kernel order parameters by simple estimation

of the appropriate moments.
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Algorithm 1. Alternating Monte—Carlo solution to saddle point equations.

Data: Ky, Initial Guesses {@[,G[}le, {AZ,B/}?:T, Sample count S, Update Speed
Result: Final Kernels {®', G}/, {Aé,Bk}éLgll7 Network predictions through training f,(¢)

1 ®=K'®11",GI''=11T
2 while Kernels Not Converged do
3 From {®',G'} compute KN"¥(#,¢) and solve Lt =3, Ad()ENTE (1) 4 (=1
5 while ¢ < L+1 do
6 Draw S samples {ul,,(t)}5-, ~ GP(0, @), {rl..(t)}5-1 ~GP(0,G"™)
7 Solve equation (13) for each sample to get {hﬂn( ), ﬁ Q)
8 Compute new ®°, G’ estimates:
9 B (1,9) = & Sy S0 1(9)), Chalt,5) = & 5, 151001 (5
10 Solve for Jacobians on each sample (77) , aing
11 Compute new A’ B! estimates:
Do h‘)
12 A= s Enes (’;7“7 B szne (?u‘T
13 C0+1
14 end
15 =1
16 while /< L+1 do
17 Update feature kernels: ®° + (1 — 5)®" +ﬂ<i>(, G — (1-pG" + ﬁée
18 if ¢ < L then
19 | Update A’ (1—B)A’ + BA",B' « (1—3)B' + BB’
20 end
21 l+—14+1
22 end
23  end

24 return {@Z G(/}/ 1,{A€ B[} ! ASult )}5:1

The parameter § controls the recency weighting of the samples obtained at each
iteration. If =1, then the rank of the kernel estimates is limited to the number of
samples § used in a single iteration, but with 8 <1 smaller sample sizes S can be
used to still obtain accurate results. We used 8 =0.6 in our deep network experiments.
Convergence is usually achieved in around ~15 steps for a depth 4 (L =3 hidden layer)
network such as the one in figures 1 and A2.

Appendix C. Experimental details

All NN training is performed with a Jax GD optimizer [89] with a fixed learning rate.

C.1. MLP experiments

For the MLP experiments, we perform full batch GD. Networks are initialized with
Gaussian weights with unit standard deviation W ~AN(0,1). The learning rate is
chosen as nyy? =nyiN for a network of width N. The hidden features hﬂ(t) eRY
are stored throughout training and used to compute the kernels ‘I)fm (t,s) = %qﬁ(hfl (t)) -

$(h',(s)). These experiments can be reproduced with the provided jupyter notebooks
on our Github.
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C.2. CNN experiments on CIFAR-10

We define a depth-L CNN model with ReLLU activations and stride 1, which is imple-
mented as a pytree of parameters in JAX [89]. We apply global average pooling in the
final layer before a dense readout layer. The code to initialize and evaluate the model
is provided on our Github in the file titled scratch_cnn_expt.ipynb.

After constructing a CNN model, we train using MSE loss with the base learning
rate no = 2.0 x 1074, batch size 250. The learning rate passed to the optimizer is thus n =
noy: = noyi N. We optlmlze the loss function which is scaled appropriately as £(7y, LEy).
Throughout training, we compute the last layer’s embedding ¢(hL) on the test set
to calculate the alignment A(<I>L ,yy ). Training is performed on 4 NVIDIA GPUs.
Training a L =3 network of width 500 takes roughly 1 h.

Appendix D. Derivation of self-consistent dynamical field theory

In this section, we introduce the dynamical field theory setup and saddle point equations.
The path integral theory we develop is based on the Martin—Siggia—Rose—De Dominicis—
Janssen (MSRDJ) framework [47], of which a useful review for random recurrent net-
works can be found here [54]. Similar computations can be found in recent works which
consider typical behavior in high-dimensional classification on random data [63, 64].

D.1. Deep network field definitions and scaling

As discussed in the main text, we consider the following wide network architecture
parameterized by trainable weights 6 = Vec{WO,Wl,...wL}, giving network output
f, defined as

Lo o 1 L
fu:;hqu 7hu+ :\/_NwL'¢(hu)

1
= =W (r.) - B = A (D.1)

Using gradient flow with learning rate n on cost L=73_ ((f,,y,) for loss function, we

1

introduce functions A, = W and 7 for learning rate, and gradient flow induces the
following dynamics

_n W“ Oy O™ ohg*!
Z o = ZA Ko™ s Kot = == 50— (D-2)

Since Kntk is O,(1) at initialization, it is clear that to have O,(1) evolution of the
network output at initialization we need 1 = v2. With this scaling, we have the following

Z hL+1 af,u ZA KNTK (D 3)
7 1% (90 ) jize’ : :
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Now, to build a valid field theory, we want to express everything in terms of features
hﬁ rather than parameters @ and we will define the following gradient features gﬁ =

8hL+
vIN ah‘ which admit the recursion and base case

8hL+1 <8h4+1 > T ( 8hL+1> ) 1
L _ /N 1z — 14 VN M — hf /¢ 0 _ WKT /41
g, ¢ ¢ 0+1 ¢ ) Oz, 2, g, -
/ oh,, oh,, oh," ( / ) R WN /
gﬁ =¢ (hﬁ) o wk (D.4)

We define the pre-gradient field zﬁ L W”g”rl so that gﬁ = é(hi)@zﬁ(t). From
these quantities, we can derive the gradlents with respect to parameters

L N L +1
OnL+! onLttontt 1

.
_ /+1 Y4
T ZW S~ NI © <hu) (D.5)
Z:1 ,LL,Z

which allows us to compute the NTK in terms of these features

L=l [ 041 0+1 o (ht)- ¢ (h L. gl

g, 9. @ 9, 9. T

KA = 550 () -6 (h1) +Z< S ) ( H>N ) TR K D6)
=1

where K = a:u x, is the input Gram matrix. We see that the NTK can be built out

o
of the followmg primitive kernels

1 1
We utilize the parameter space dynamics to express W' in terms of the {g,h} fields

W (t) = N/dsZA gt ( (p(h@( ))T. (D.8)

Using the field recurrences hffl(t) = ﬁwf(t)¢(hi(t)) we can derive the following
recursive dynamics for the features

W0 =X 0+ / dsZA ) gt (1) L, (5,1)

2 (1) = /dsZA o (PL()) Gl (s,0) + gl (1) = (Rl (1) © 2L (1)

afﬂ ZA

L(61) JFZG‘+1 (t,1) @), (,1) + Gy (t, t)Kjfa]. (D.9)
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In the above, we implicitly utilize the base cases for the feature kernels <I>?w (t,s) =K},

and Gﬁj 1(t,s) = 1. We also introduced the following random fields Xi(t),&f;(t) which
involve the random initial conditions

1

Coy L 1
X}L (t) - \/N

1 T _(+1
SO (0a0)

W (0)6 (R (1) , & ()=

We observe that the dynamics of the hidden features is controlled by the factor \/—% If

v = On(1) then we recover static NTK in the limit as N — co. However, if y = Ox(v/N)
then we obtain On(1) evolution of our features and we reach a new rich regime. We
choose the scaling v =9V N for our field theory so that ~y >0 will give a feature
learning network.

D.2. Warmup: DMFT for one hidden layer NN

In this section, we provide a warmup problem of a L=1 hidden layer network which
allows us to illustrate the mechanics of the MSRDJ formalism. A more detailed computa-
tion can be found in the next section. Though many of the interesting dynamical aspects
of the deep network case are missing in the two layer case, our aim is to show a simple
application of the ideas. The fields of interest are x, = \%WO(O):E“ and & = w!(0).
Unlike the deeper L > 2 case, both of these fields are time invariant since x, does not
vary in time. These random fields provide initial conditions for the preactivation and
pre-gradient fields h,,(t),z(t) € RY, which evolve according to

() =0 [ 453 259 90 ()] K7 )

o

2(0) =€+ [ ds 300k ()80 () (D.11)

where the network predictions evolve as % fu®) =20 [Pua(tst) + Gpa(t,1) K, | Au(t) for
kernels @,,,(t,t) = +0(hu (1)) - ¢(ha(t)) and G (t,t) = %gu(t) -g,(t). At finite N, the
kernels ®,G will depend on the random initial conditions x, &, leading to a predictor f,
which varies over initializations. If we can establish that the kernels ®,G concentrate at
infinite-width NV — oo, then A, are deterministic. We now study the moment generating

function for the fields

23} ey 0| = <6XP (;ju X, € v) > . (D.12)

6o

To perform the average over 8y = {W"(0),w'(0)}, we enforce the definition of X, €
with delta functions
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dxtdxt . 1
1:/dxuc5 (Xu ) A S / exp (qu' <X/t_ﬁwo<0)w“)>

- [ags(e—w' o) - /ffexp(zs (s w'(0))). (D.13)

Though this step may seem redundant in this example, it will be very helpful in the
deep network case, so we pursue it for illustration. After mulitplying by these factors of
unity and performing the Gaussian integrals, we obtain

dxdx dé&d o .
/H - X 5 £ < ZX“ Xo ia+zxﬂ'(leb+3u)

0

- §|é|2+5- (@-gﬂ,)). (D.14)

We now aim to enforce the definitions of the kernel order parameters with delta func-
tions

=N / A, (t,5) 5 (NBua (t,5) = 6 (R, (1)) - 6 (e (5)))

B / A, (t,5) AP, (t,5) .
a 2mri N1

lzN/dGua (t,s) 6 (NG a (t,5)—g,(t)-g, (s))

B /dGW (t,58)dG e (t,5)
- IriN-1 ¢

xp (N (8:5) (V00 (£:5) = 6 (R (1)) - 6 (o (5))))

5D (NCialt, s) (NGalt:) — 9,(8)-94(5)) ), (D.15)

where the fields h,(t),g,(t) are regarded as functions of {x,},,£ (see equation (D.11))

and the @,CAJ integrals run over the imaginary axis (—i00,700). After this step, we can
write

o</Hd@ua(t,s)d@ua(t,s)dGW(t,s)déw(t,s)exp (NS [@,@,G,GD (D.16)

pats

where the DMFT action S[®,®,G,G] is Oy(1) and has the form

S[q) ?,G, G Z/dtds o (£,8) @ (1,8) + G (t,5) G ] ZIHZ Jiy Vil -

12"

(D.17)

The single site moment generating function Z[j,v] arises from the factorization of the
integrals over N different fields in the hidden layer and takes the form
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Zlj,v /degixu d§d§ ( ZXMXLY pa ]u+if<ﬂ) X”_;82+(v+ié)£>
< exp (‘/ 055 [0 (05) 6 1, ()6 (o () + Gy 1.9 ) “)D

(D.18)

where, again, we must regard h,(t),g,(t) as functions of x,£. The variables in the
above are no longer vectors in RY but rather are scalars. We can write Z[j,v] =

f]_[ﬂdxﬂdxudgdfexp (—H[{XM,XM},S,f,j,U]) where H is the logarithm of the integ-
rand above. Since the full MGF takes the form Z « [ d® dd dGdG exp <NS[<I>, d,G, G]),

characterization of the N — oo limit requires one to identify the saddle point of S, where
0S =0 for any variation of these four order parameters.

08

5 (1s) — 2 (05 =00 S s = B (65) = [ DL ()9 (e (), =0

==
1=

i=1

R 1
=Gpa(t,s) =0 L:Gua(t,s)—

5Gw(t,s) po " 54 (t 8) N <gu(t)ga(5)>i:0 (D.19)

M=

~

where the ith single site average (), of an observable O(x, X,&,€) is defined as

(o(x68) =55+ [ [Tovanaaen (# (i ein] )0 (x0.68)
(D.20)

Since =G =0 the single site MGF reveals that the initial fields are inde-
pendent Gaussians {x,} ~N(0,K") and & ~N(0,1). At zero source j,v—0,

all single site averages (), are equivalent and we may merely write ®,,(t,s)=

(O(hu()d(ha(s))) , Gualt,s) =(gu(t)ga(s)), where () is the average over the single
site distributions for j,v — 0.

D.2.1. Final L=1 DMFT equations. Putting all of the saddle point equations together,
we arrive at the following DMFT

{XN}}LE[P] NN(()’Kx) ) SNN(O71)
1) =30 [ s 30 [2(906 (1 (9)] K7 (9

[0}

20 =6+ [ 453000 () A (5

(%

Dy (155) = (6 (1 (1) & (ha () + G (1) = (2(1) 2() S (s () & (ha (5)))

% = %: [ (1,8) + Gra(t, 1) K] Aa(E). (D-21)
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We see that for L =1 networks, it suffices to solve for the kernels on the time-time
diagonal. Further in this two layer case y,¢ are independent and do not vary in time.
These facts will not hold in general for L > 2 networks, which requires a more intricate
analysis as we show in the next section.

D.3. Path integral formulation for deep networks

As discussed in the main text, we study the distribution over fields by computing the
moment generating functional for the stochastic processes {x* 754}[%:1

2 [{5 )] = (o [ [l 040 0] )

8y=Vec{ W(0),..w"(0) }
(D.22)

Moments of these stochastic fields can be computed through differentiation of Z near
ZEero-source

(X () oo x () €L (81) - €l ()

1) 1) 1) 1)
- o i 7L oo, (D.23)
i () 84t (ta) Suih (1) S (tm) H }] .

To perform the average over the initial parameters, we enforce the definition of the
fields x‘*'(t) = \/LNWE(O)QS(hf;(t)), £.(t) = J—lﬁwé(O)Tgffl( ), by inserting the following
terms in the definition of Z[{j,v}] so we may more easily perform the average over
weights 0,. We enforce these definitions with an integral representation of the Dirac-
Delta function 1= [, dz 6(z) = 5= [pdz [ dZexp (iz#). We note that we are implicitly
working in the Tto scheme, where factors of Jacobian determinants are equal to one [54,

90, 91] (we note that h' .(t) does not causally depend on x4 (t) and g/,(t) does not

causally depend on &° (t)) Applying this to fields x, &, we have

1= /R 2 2:"”( ey <x 0 [0~ W 0,)

RN JRY 27T

< exp ( () [xf# (t) -

\/—NWE(O)QS(hfL(t))D L le{l,....L-1}

S fﬁlﬁ Do (180 e} ) - ' 0)
é
1_/R\ /R\ Eﬁgi : )eXp (iéi(t)' {Eﬁ(t)—\/%WF(O)Tgﬁ( )D : Ee{l,...,fD—;j)
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where {h’, g’} are understood to be stochastic processes which are causally determined
by the {x,&} fields, in the sense that h‘(t) only depends on x’(s) for s <t. We thus
have an expression of the form

Z[{3"v'}]
(+1 €+1 14
/de ((; ()HdE ((2; (Z/ dt [y, (1) - X, () + v}, (t) - ,()])

Lut Lut Lo

1 <exp -=3 / a5 0T W06 (B (1) + 957 (0T W08 <t>]> >
w(0)

L o]
x [T exp ( 3 / dt [%0,(6) XL +€,() -sﬁ(ﬂ]) . (D.25)

Since W[’(O) are all Gaussian random variables, these averages can be performed quite
easily, yielding

<exp< Z/ dtx,(t) "W (0)z >>W“(O)
_exp<—/ / dtdstu ,m)
<exp (—z’Z/O éﬁ(t)-wL(O))>
p wk(0)
_exp<—z/ | aras & ())

e

<exp< Z / d[x (1) TW”(0>¢<hﬁ<t>>+gﬁ+l<>wa<o>éi<t>])>
W' (0)
_exp< S / / dtds X (1) “”l()aﬁ(hi(t))w(hﬁ(s»)

< exp (—QNZ [ s o€ gl 00l s >)
xexp( Z / / dtds gLt f+1<>¢<hf;<t>>-é’;<s>>. (D.26)
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D.4. Order parameters and action definition

We define the following order parameters which we will show concentrate in the N — oo
limit

2, (1,5) = 0 (1) -6 (R (5)) . Gl (1,5) = 100 (1) -6 (5)

ol

A (1) = 0 (B (1)) € (5). (D.27)

The NTK only depends on {®,G*} so from these order parameters, we can compute
the function evolution. The parameter A" arises from the coupling of the fields across a
single layer’s initial weight matrix W* (0). We can again enforce these definitions with
integral representations of the Dirac-delta function. For each pair of samples u,a and
each pair of times t,s, we multiply by

d 5)d®f 2 D
// (I)/W ;W’LN(I)/{O/ ( ) exp (N(I)fta (t,S) (I)ﬁa (t’ 3) - (Df;oz (t7 8) ¢ (h‘fl (t)) @ (hﬁ‘ (S)))

// dGa ;WSZ;GT (t3) (NG/@M (t,5) Gl (t5) = Gl (1) gl (1) .gg(s)) (D.28)

for all £ € {1,...,L} and analogously

Al (t,s)dB] X
= [ [ 0P iy (N AL (1,910, 1) — Bl )R 1) £ (5))
(D.29)

for £ € {1,...,L —1}. After introducing these order parameters into the definition of the
partition function, we have a factorization of the integrals over each of the N sites in
each hidden layer. This gives the following partition function

/ T AP, (t,5)dD’,, (t,5) AG g (,5) AG, (t,5) dAL, (t,5)dBY, (t,5)

2ri N—1 2mi N—1 2mi N—1
lpats

X exp <NS H@ b,6,, A,BH) (D.30)
S = Z / / dtds qﬂ t,s) &L, (t,8)+ Gl (t,5) Gl (t,5) — AL, (t,5) B, (t,s)]
+InzZ H@,@,G,G,A,B,j,v}] . (D.31)

We thus see that the action S consists of inner-products between order para-
meters {®,G,A} and their duals {®,G,B} as well as a single site MGF
Z[{®,?,G,G, A, B, j,v}], which is defined as
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/deu ), (t) A€ (¢ )dﬁf()

Lut

X exp

X exp

X exp

X exp

X exp

S [ GO+ RO + o) + i€ e)Eh o)
Jm 0

_%Z/Ooodt/ooodeCL(t)Xa K“—Z/ dt/ st )

Yy | [ o o, <t,s>+é£<t>éf;<s>ciﬁ<t,s>]>

Elua
Ty [ [ astonice <h£<s>><i>f1a<t,s>+gﬁ<t>g§<s>éﬁa<t,sn)
(= 1ua
LYY [ [ o ) () B t.0) + 4 0l >A£a<t,s>1>.
(=1 pa

(D.32)

D.5. Saddle point equations

Since the
eNS[{®.8,G,G.A,B}]

integrand in the moment generating function Z takes the form
, the N — oo limit can be obtained from saddle point integration, also

known as the method of steepest descent [92]. This consists of finding order parameters
{®,®,G,G, A, B} which render the action S locally stationary. Concretely, this leads to
the following saddle point equations.

08

5dt (¢,

%"

08

0L, (t,s

0S8

6GY, (t,s

08

0G!, (t,s

05

SAC (t,

o

08

6B!,(t,s

5= e )+%6(I)f—z()—<I>fm(t,8)—<¢(hﬁ(t))¢(h£(8))> =0

=% (m)%% = Bl (1,5) 5 (1T (K57 () =0

=Gl + %mf—f) = Gl (5) = (9 (094 (5)) =0

§ = Gl (,5)+ 3 511y = G 69 = 5 340032 =0

3 — B!, (t,s) + %% = —Ba(t;s) =i (3, (H)ga"' () =0

J= At + %% = AL ()~ (B, (1)EL()) = 0. (D33)

We use the notation () to denote an average over the self-consistent distribution on
fields induced by the single-site moment generating function Z at the saddle point.
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Concretely if Z = [dxd¢ d)Zdé exp(—’l—[[x,ﬁ,f(?é]) then the single-site self-consistent
average of observable O([x,¢&, )A(,é]) is defined as

(0([ve0d])) = [ avacardé o (e xd]Jow (- [xetd]). @31

To calculate the averages of the dual variables such as < Yt XE+1>, it will be convenient

to work with vector and matrix notation. We let x‘ = Ve(:{xi(t)}He[p]’teR+ represent
the vectorization of the stochastic process over different samples and times and define
the dot product between two of these vectors as a - b= ij:l Jo~ dt a,(t)b,(t). We also
apply this procedure on the kernels so that ® = Mat{®,,(t,5)},ac[P]t,scr. - Matrix vec-

tor products take the form [Ab],; = [;*ds>", Aua(t,s)ba(s). We can obtain the beha-

vior of (x Hlef”> in terms of primal fields {x,&,h,z} by insertion of a dummy source

u into the effective partition function.

<Xe+1>2/:+1> _ _&gw <exp <w X/+1)> o

= —;au(?;ﬂ_ /dxé+1 ...€xp (—; <XZ+1 +u— Aégprl)T [@q - (XHl +u— A[géﬂ) — .. )

(o] - [#]" <(Xf+1 — Alg™) (- Azg«+l)T> @] . (D.35)

Al AT
Similarly, we can obtain the equation for <£ I3 > by inserting a dummy source r and

differentiating near zero source

(€)= g (ool(5-8) e

_ [Gzﬂ]ﬂ B [Gulrl <<§g _B£T¢é> <£€ _ BzT(I,f>T> [Gzﬂ]*l. (D.36)

As we will demonstrate in the next subsection, these correlators must vanish. Lastly,
we can calculate the remaining correlators in terms of primal variables

<Xﬁ+lg€+1 T> <eXp( it )2 )g[+17> [@E} -1 <(Xf+1 _ AZgZ+1) gf+1—|—>

=i (o(r)€") 8T< exp(—ir-€)) = (@ (1) (¢ - BT @ (1)) [6"]

(D.37)

D.6. Single site stochastic process: Hubbard trick

To get a better sense of this distribution, we can now simplify the quadratic forms
appearing in Z using the Hubbard trick [93], which merely relates a Gaussian function
to its Fourier transform.
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1
T T —1 '
exp| ——x Ax exp| —=u A" u—iu-x
p( ) /]Rd (2m) d/2 Vdet A p( 2 )

= (exp(—iu ), r(0.4)- (D.38)

Applying this to the quadratic forms in the single-site MGF Z, we get

exXp <——Z/ dt/ ds Xy on )K/fa>

%!

<exp (—Z Z/ dt u A”l( )) >
(' }~GP(0.K*®117T)
exp <——Z/ dt/ ds X€+1 Aé—i—l( )(I)é ( )>

<exp (—z Z/ dt u€+1 )A(f:rl( )) >
{uf}~GP(0,8)
1 o] [e e} . .
exp (—5%; | arf as sﬁ(wsi(s)Gf;zl(t,s))
= <exp <—i > / dt rﬁ(t)éﬁ(t)>>
w0 {r'}~GP(0.G"")
1 o] 0 R R
_+ d ds &L L
exp ( 2D | arf ase <t>sa<s>>
= <eXp (—i > / dt rﬁ(t)éf;(t))> . (D.39)
p 0 {rL}~GP(0,117)

Next, we integrate over all )Zg,éé variables which yield Dirac-delta functions
dx;, (t) . _ _
/H 2u7r exp(zxg-[xf—ug—Ag 1gq>:5(xf_uﬁ_A£ 1g£)

/Hdiﬁ;t) exp (zg [54_7'4 — BTy <h€>D _s <£€_ré_BéT¢ <h€>>. (D.40)

To remedy the notational asymmetry, we redefine B as its transpose B* — B‘T. The
presence of these delta-functions in the MGF Z indicate the constraints u’=x’—
A7 lgland r! = £ — B'¢(h"). We can thus return to the ® and G saddle point equations
and verify that these order parameters vanish
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& — _; <Xz+1xe+1T> [@5] <(Xz+1 _ Aegeﬂ) (XHl _ Azge+1)T> [(I,z]—l 21 [q,e] -1

2
% ] < é+1uf+1T> (@)™ - % ] =0, (D.41)

~ 0
since <u”1u””> — ®’. Following an identical argument, G = 0. After this simplifica-
tion, the single site MGF takes the form

Z[{5"v"]

= < / [Tax‘dg's(x" —u' — A" g")5(&" —+' = B'o(h"))exp(ij" - x" +iv"- sf>> :
¢ {uz;J,Z}
(D.42)

The interpretation is thus that u’,r’ are sampled independently from their respective
Gaussian processes and the fields x/ and &’ are determined in terms of u’,r’,h’, g".
This means that we can apply Stein’s Lemma (integration by parts) [94] to simplify the
last two saddle point equations

e & N A )

(D.43)

D.7. Final DMFT equations

We can now close this stochastic process in terms of preactivations h’ and pre-gradients
‘. To match the formulas provided in the main text, we rescale A’ — A’/yy= O, (1)
and B® — B‘/~yo = 0,,(1), which makes it clear that the non-Gaussian corrections to
the hﬁ(t),zﬁ(t) fields are O(7). After this rescaling, we have the following complete
DMEFT equations.

bl (t) = +%/ dsZA )DL (t,5) 20 (5) & (R (s))
+%/ dsz (AL (1,8) + A () L2 (1,5)] & (1 (5)) 2. (5)

2 = é ds A, GZ+1 s he (s
() =€l +%/ > (t,5)6 (B, (5)) D

)+ / S [Bla (t5) + A (s >Gfi:1 (t, )] S(HL(s))
B (1,5) = (U ()R (5))) + Glultss) = (gh(1)h(5))

BYRLIUAG T
A (t5) =5 <W> Bt =" <UKE))>
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The base cases in the above equations are that A°= Bl'=0 and <I>0 L(t,s) =
K, and Gﬁgjl(t,s) =1. From the above self-consistent equations, one obtams the

) .. . Ofu _
NTK dynamics and consequently the output predictions of the network with Z! =

Yo Ba(t) [X2, GLal (1) D4, (£,8)].

D.8. Varying network widths and initialization scales

In this section, we relax the assumption of network widths being equal while taking
all widths to infinity at a fixed ratio. This will allow us to analyze the influence of
bottlenecks on the dynamics. We let N = a;N represent the width of layer ¢. Without
loss of generality, we can choose that N* = N and proceed by defining order parameters
in the usual way

B, (5) = 50 (R (1)) -0 (R () Gl (1,5) = 31704 (1) -9l (). (D.45)

Since NX =N, the variable gl =vNL2 ! — wl o d(hh) = On~(1) as desired. We

extenq this definition to each layer as be(?f}(L)Lre_gé =V Nt 83—;1 which again satisfies the
recursion
9, () =200 (1) . =)= ——=W'®) gl (). (D.46)
Now, we need to calculate the dynamics on weights w
d of, of, Or'H
i@V = Q%:A“av{;f QZ hJ;+1 avlvg
= o= mz Mgf;“ (hﬁ) . (D.47)

Using our definition of the kernels and the h, z fields

Rl (t) = Z/ ds A L(s) @i (t,s)

¢— Z / ds & hz (s )) G (t.s). (D.48)

We also find the usual formula for the NTK

KN = 22 {(M T Ofa _ gt +L§_1G”1<D€ +G,, K, (D49)
7 ‘ pa po :
owW'| ow —

Now, as before, we need to consider the distribution of x,& fields. We assume
W/;(0) ~ N(0,07). This requires computing integrals like
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<6Xp<z/ dt 3 (0T W (0)0 (), (0) /VN 49, () W (0)€ <>/m]>>

w(0)

o (<G [T [T Af+1<>¢za<t,s>+éi<t>s<>af;1<ts>])

X exp (-W\/‘T 2(; / dt / ds AL, (1,5) X0 (£) - gt (s )) (D.50)

where Aﬁa(t,s) = —#@(hﬁ(t)) éi(s) The action thus takes the form

5= amr [@£T¢5+G5TG4_A4TB€] +> a/nZ (D.51)
( ‘

where the zero-source MGF for layer ¢ has the form

- (11 UL AUEAGLAG

2

ut

LY ! 0.2_ . o 0_2/{ "
() ()]

T o o~
X exp (—iag_u /aé—glpzéA“gf —ig (h‘) Bfg) exp (ixg it g) .(D.52)

The saddle point equations give

(o)) ) e
9 <h4)

A= <¢(h4)é”>=< o >

(+1T
C_ 2 | U )il (41T ¢ o a1 /Og
CLgB = —10G¢4+10y @ <X [ > — B = gy a—g <W> (D53)

where u! ~ GP(0,07_®71), 7 ~ GP(0,0}G"™). We redefine B* — i &Bf. To take

the N — oo limit of the field dynamics, again use vy =v/vN = Oy(1). The field
equations take the form

A 1)+ ()80 (19| 6 0, () 2L

H \/ Z
o P a
l _ A 2 [+ oy
ZM (t) - rlt (t) + /0 ; |:0-€ ay Bua (t

(t—s)Glt! <t,s>} o (h(5)).
(D.54)

ay
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We thus find that the evolution of the scalar fields in a given layer is set by the parameter
o0/ +/a¢, indicating that relatively wider layers evolve less and contribute less of a change
to the overall NTK. This definition for A’, B is non-ideal to extract intuition about

bottlenecks since At~ O (%) and B~ O (ﬁ—%) To remedy this, we redefine

A= V—\CAK,B = —Vf';‘;*BE. With this choice, we have

0 =u, 0+ 2= [ Z o AL (1,3) + O (- ) B ()] & (1 (5)) 2L (9

() =7 ( / Z 234 (t,5)+O(t— )Gﬁgl(t,s)]¢(hg(s)) (D.55)

where A1, B! do not have a leading order scaling with a,_1 or a1 respectively. Under
this change of variables, it is now apparent that a very wide layer ¢, where \/7—27 <1

is small, the fields h‘,z’ become well approximated by the Gaussian processes u’,r’,

albeit with evolving covariances ®'~!, G/ respectively. In a realistic CNN architecture
where the number of channels increases across layers, this result would predict that more
feature learning and deviations from Gaussianity to occur in the early layers and the
later layers to be well approximated as Gaussian fields u’, ¢ with temporally evolving
covariances for £ ~ L. We leave evaluation of this prediction to future work.

Appendix E. Two-layer networks

In a two-layer network, there are no A or B order parameters, so the fields x! and ¢! are
always independent. Further, x' and ¢! are both constant throughout training dynamics.
Thus we can obtain differential rather than integral equations for the stochastic fields
h',z' which are

where the average is taken over the random initial conditions h'(0) ~ N(0, K*) and
21(0) ~N(0,117). An example of the two-layer theory for a ReLU network can be
found in appendix figure Al. In this two-layer setting, a drift PDE can be obtained for
the joint density of preactivations and feedback fields p(h,z;t)
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%p(h 2t = —p(h, 20 2 () Ay (8) K2, (R (1))

o ap (h,z, op(h,z,
- %ZK;aAm(ha ()= (1 “Tft) =702 Aad (ha) p(a—,“)
L iy !

Mw

Gruo (t) Ko + @0 ()] Ao (1)

= (o (hh (1) 6 (hh (1)) Gha () = (=1 @7 (A ())IA®)),  (B2)

which is a zero-diffusion feature space version of the PDE derived in the original two-
layer mean field limit of neural networks [21, 42, 43].

Appendix F. Deep linear networks

In the deep linear case, the gﬁ (t) fields are independent of sample index p. We introduce
the kernel H}(t,s) = <h£(t)hg(s)> The field equations are

hg( +”yo/ AZ ! ts)+@(t—s)H€ H(t,s)] Aq (5)g' (s)

o 0=+ [ Z (B (1) +700 (1= 5) G (1,5)] A (3) 1 (5). (F.1)

Or in vector notation h’ = u’ 4+ ~,C’g’ and g’ = r' +~v,D’h’ where

Ch(t,s) = [AL (t,s)+O(t—s)Hy' (t,5)] Aa(s)
Dl (t,s) = [E;ﬁ (t,5) +O(t—s) G (t,5)] AL (s). (F.2)

Using the formulas which define the fields, we have

h'=u'+~,Cr! + ”y(%CfDéhf — h'= (I — ’ngeDé) - [uf + 'YOCerq

g' =r'+~yDu + ’ygDZC’(gE — g'= (I — ’ygDZC’g)f1 [ré + ’yoDeué] . (F.3)
The saddle point equations can thus be written as

H — <h€h£‘l'> - ,YSCEDE)_l [H'™ +2C'G'' ] [(I _ ,YSCEDE)T} -

G'=(g'g"") = (I- ’Yngcz) (G +~2D'H' ' D"T] [(I 12D'C") } -1
Al=(1-c'D")'c', B"'=(1-2D'Cc’)' D". (F.4)

We solve these equations by repeatedly updating H*, G*, using equation (F.4) and the
current estimate of C*, D’. We then use the new H, G’ to recompute KN'¥ and Al(t),
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calculating C*, D" and then recomputing H*,G*. This procedure usually converges in
approximately five to ten steps.

F.1. Two-layer linear network

As we saw in appendix E, the field dynamics simplify considerably in the two-layer
case, allowing the description of all fields in terms of differential equations. In a two-
layer linear network, we let h(t) € R” represent the hidden activation field and g(t) € R
represent the gradient

%h(t) =g (VKAW) . 2 g(t)=1A0)-h(1). (F.5)
The kernels H(t) = (h(t)h(t)") and G(t) = (g(t)?) thus evolve as

th< 0 =K A (g h M) )+ (o (A1) ATK

26 =20 (o (R (1) A1), (F.6)

It is easy to verify that the network predictions on the P training points are f(t) =
y—A(t) = = L (g(t)h(t)) € RP. Thus the dynamics of H(t),G(t) and A(t) close

0
SH() =K Aly—A) +73(y—A)ATK?

ot
DG =27 (y—A)- A
O A=~ [H (1) + G0 KA (k.7

where the initial conditions are H (0) = I, G(0) =1 and A(0) = y. These equations hold
for any choice of data K*,y.

F.1.1. Whitened data in two-layer linear network. For input data which is whitened
where K* =1, then the dynamics can be simplified even further, recovering the sig-
moidal curves very similar to those obtained under a special initialization [69, 70,
72, 74]. In this case we note that the error signal always evolves in the y direction,

A(t) = A(t) |y|, and that H only evolves in a rank one direction yy' direction as well.
Let |2yTH( )y = Hy(t). Let y = |y| represent the norm of the target vector, then the

relevant scalar dynamics are

O H() =230 (0~ A (1) . 5G (1) =2R3AM0) (- A)
O A0 =~ [H, () +CMIAW). (F.5)

Now note that, at initialization H,(0) = G(0) =1 and that %Hy(t) = %G(t). Thus, we
have an automatic balancing condition H,(t) = G(t) for all ¢t € R} and the dynamics
reduce to two variables
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0 0
—H,(t)=2%A) (y—A®1) , =
5 v () =2mA0) (y - A1), 5
We note that this system obeys a conservation law which constrains (H,,y —A) to a
hyperbola

A(t) = —2H,(t) A(t). (F.9)

S [H2 =2 (= A0)] =20 H,A (y— ) - 2 H,A (y— A) =0 (F.10)

This conservation law implies that H,(0)? =1 = lim;_, H,(t)> —13y? or that the final
kernel has the form lim; ., H(t) = %[\/ 1+~2y%> —1]yy " + 1. The result that the final
kernel becomes a rank one spike in the direction of the target function was also obtained
in finite width networks in the limit of small initialization [74] and also from a normative
toy model of feature learning [83]. We can use the conservation law above 1 = H,(t)* —
V3 (A(t) —y)? to simplify the dynamics to a one-dimensional system

IAMD=-214R B0 -y AW = Sf =213 G- (1)

where f =y — A. We see that increasing vy provides strict acceleration in the learning
dynamics, illustrating the training benefits of feature evolution. Since this system is
separable, we can solve for the time it takes for the network output norm to reach
output level f

f d 1 14+ ~2
2t:/ 5 = = > tanh ;—%yf >
0 (y—s)V1+%s® 1+ VI+Ry /144312

1 1
- tanh ! | —— |. (F.12)
V1+95y2 <\/1+73y2>
The NTK limit can be obtained by taking -~y — 0 which gives
%A(t) ~2A(t) = A(t)~e ™ (F.13)

which recovers the usual convergence rate of a linear model. The right hand side of
equation (F.12) has a perturbation series in ,? which converges in the disk 7y < é The
other limit of interest is the 7y — oo limit where

LA@) ~ 20 -2 0)AW (F.14)
which recovers the logistic growth observed in the initialization scheme of prior works
[69, 70]. The timescale 7T required to learn is only 7 ~ % < 1, which is much smaller
than the O, (1) time to learn predicted from the small v, expansion. We note that
the above leading order asymptotic behavior at large vy considers the DMFT initial
condition A(0) =y as an unstable fixed point. For realistic learning curves, one would
need to stipulate some alternative initial condition such as A =y — e for some small
€ >0 in order to have nontrivial leading order dynamics.
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F.2. Deep linear whitened data

In this section, we examine the role of depth when linear networks are trained on
whitened data. As in the two-layer case, all hidden kernels H(t, s) need only be tracked
in the one-dimensional task relevant subspace along the vector y. We let A(t) = iy-

A(t) and let hy(t) = %hg(t) -y. We have

h_f; (t) = uf, )+ /00 ds C*(t,s)g" (s) , C'(t,s) = Ag_l (t,s)+0O(t—ys) H;‘l (t,s)A(s)
0

g @) =r )+ /00 ds D(t,s) hi (s) , D'(t,s) = B;‘l (t,s)+O(t—s) G (t,s)A(s).
0

(F.15)
Lastly, we have the simple evolution equation for the scalar error A(t)
OA(t) _ _ig“l (t,t) H: (t,t) A(t) = A(t) =exp (—/tdsiG‘”l (s,8) H' (s s)) Y.
ot =0 R o o TR
(F.16)

Vectorizing we find the following equations for the time x time matrix order paramet-
ers h' = u! —I—’yoC’( togh=r' +70D€h£, we can solve for the response functions A’ =
(I —’ngZDg)AC[ and B’ = (I —73chf)’1D€. This formulation has the advantage
that it no longer has any sample-size dependence: arbitrary sample sizes can be con-
sidered with no computational cost.

Appendix G. Convolutional networks with infinite channels

The DMFT described in this work can be extended to CNNs with infinitely many
channels, much in the same way that infinite CNNs have a well defined kernel limit
[95, 96]. We let VVi?a represent the value of the filter at spatial displacement a from the
center of the filter, which maps relates activity at channel j of layer ¢ to channel i of
layer £+ 1. The fields h! . . are defined recursively as

RN

N
1 .
hﬁ;}a: _\/NE :E :I/ij_/bgb(hﬁ?jﬁb) ,ie{l,...,N} (G.1)

Jj=1bpes!

where S’ is the spatial receptive field at layer /. For example, a (2k+1) x (2k+1)
convolution will have S! = {(i,j) € Z?: —k <i < k,—k <j < k}. The output function
is obtained from the last layer is defined as f, = %LNZlN:l wl,d(hl;,). The gradient

Ofy
ohl, .’

fields have the same definition as before gfw =N which as before enjoy the

following recursion from the chain rule

/ afu ahfj—bl ] l 1 Y [T _(+1
gha=0NY_ T o é (hw> °| 7% Z S wilgltl,| . (G2)

b Jj=1bpes!t
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The dynamics of each set of filters {W,} can therefore be written in terms of the
features h', g

d T
& E ZAH fj_al < ua—i—b) : (G.3)
The feature space description of the forward and backward pass relations is

t
he (1) = xﬁ%w+%[]w§jA<>@mw%ﬁuu$¢w<>

t ab,c
4mbﬁwwwﬂmZA<mmmwu$w%J (G4)
ab,c

where ijal (t) = \/LWW (O)qﬁ(hﬁa( )). The order parameters for this network architecture
are

W (1:5) = 0 (Mo () 6 (Rl (5)) + Gl (05) = 10 ()0l (). (G5)

These two order parameters per layer collectively define the NTK. Following the com-
putation in appendix D, we obtain the following field theory in the N — oo limit:

{tpe (O} ~GP(0,27") , {ra(} ~GP(0,G™)
B (t) = il (8 +w/®§)%w b (hly (5)) 2Ly (5)

+ ’70/ ds Z Aa (I)fmzla-l-b c+b¢ (h(exc (S)) Zgzc (S)

ab,c

Zflu(t)_ Zu t +/70/ dSZBHu ab tS hub( ))

0

+70/ dsZA aa b,c— b¢( m(s))

ab,c

q)fwz ab (t, S) = <¢ (hfm( ))¢(hab(s))> Gua ub <gua gab( )>
) hé 5 E—H
@wa>—$<§ﬁ%§ ama>=—<§m%> (©6)
0 Toap\S Uop (S

We see that this field theory essentially multiplies the number of sample indices by the
number of spatial indices P — P|S|. Thus the time complexity of evaluation of this the-
ory scales very poorly as O(P3|S]*T?), rendering DMFT solutions very computationally
intensive.
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Appendix H. Trainable bias parameter

If we include a bias b‘(t) € RV in our trainable model, so that

RO (1) = Tlﬁwf ()6 (R (1)) +' (1 (1.1)

then the dynamics on b‘(t) induced by gradient flow is

_bf 22% gJ;(Z:\/lNZAa(t CL (1) = g ZAQ (H.2)

Assuming that b/(0) ~ A(0,1), the dynamics of the DMFT becomes
{u'} ~GgP(0, @ +117) , {+'} ~GP(0,G"")
L) = (070 [ ds 3D AL (09)+ O =) A0 (9 812 (1.9)] ()

[e%

+/YO/ dSZA ga

zﬁ (t)=r,(t) +’yo/ dsz W (ts)+O(t—s)Ay(s )ij;l (t,s)}qb(hfl (s)) (H.3)

Appendix |I. Multiple output channels

We now consider network outputs on C'=Op(1) classes. The prediction for a data
point 11 € [P] at time t € Ry is f,(t) € RY. As before, we define the error signal as A, =

—iﬁ(fwyu) € RC. For any pair of data points p,« the NTK is a C' x C matrix KNTK €

RY*C with entries K N(;Fgg, = af‘é(g n . 0L ( erle) From these matrices, we can compute the

evolution of the predlctlons in the network
=Y K)FA,. L1
dtf Z (1.1)

In this case, we have matrices for the backprop features g‘ = vV N % € RV*C. These
satisfy the usual recursion

of o\ ofT ot 1
g =N v —7\/_< o ) ahj;H = [cb <h€> 11 ® [\/—NWNQM] : (L.2)
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We can now compute the NTK for samples u,«

0f (z,) Of (za)
KNaTK: 2
8 ; ow' oW’

=L, I+ZG£+1¢4 +Gl KL, (1.3)

where Gﬂa =~ gﬁTgé € RY*C and @/ = %gb(hﬁ) -¢(h!) € R. Next we introduce kernels

o

Af;a (t,s) € R and Bia(t, 5) € R which are defined in the usual way. The corresponding
field theory has the form

P

hﬁ (t) = Xft (t) + 0 /000 dsz [Ai;l (t,s)+0O(t—s)As(s) @ﬁal (¢, s)} -gfy (s)eR
0o P
z,(t) =&, (t)+ 70/ ds) [B}, (t,s)+O(t—s)Gh Au(s)] ¢ (b, () € RC
0 a=1
g, (t)=¢ (h, (1) 2., (t) e RC. (1.4)

From these fields, the saddle point equations define the kernels as

D (1,5) = (0 (i, () & (W (5))) € R, Gl (1.5) = (g}, (D gl () ) € RO

AL (1) = % <%> eRC, B, (t,s) = % <§Z§E?)> eRC. (I5)

This allows us to study the multi-class structure of learned representations.

Appendix J. Weight decay in deep homogenous networks

If we train with weight decay, %0 = —2VyL — )0, in a r-degree homogenous network
(f(cO) =c"f(8)), then the prediction dynamics satisfy

ZA KNTK (x,0,t) — A&f ().

This holds by the following identity % f(cO) = %c”@ £(0), which when evaluated at ¢=1
gives a% f(0) -0 =kf(0). This identity was utilized in a prior work which studied L2 reg-
ularization in the lazy regime [75]. For a L-hidden layer ReLU network ¢(h) = max(0,h),
the degree is kK = L 4 1, while rectified power law nonlinearities ¢(h) = max(0,h)? give

degrees k = qq —1_We note that the fixed point of the function dynamics above gives a
representer theorem with the final NTK

flx)=k(x) [K+ Iy (J.1)
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where [k(2)], = limy_o K(,2,,t) and K, =lim_,o K(x,,2q,t). The prior work of
Lewkowycz and Gur-Ar [75] considered NTK parameterization 7y = 0. In this limit, the
kernel (and consequently output function) decay to zero at large time, but if vy > 0,
then the network converges to a nontrivial fixed point as t — oo. In the DMFT limit we
can determine the final kernel by solving the following field dynamics

Bl () = A”()ﬂo/dse tSZA ()@ (t.5)

zﬁ (t) = e_’\tﬁﬁ (1) —I-'yo/ ds e A3 ZAa 5 (5)) GZJrl (t,s). (J.2)

We see that the contribution from initial conditions is exponentially suppressed at large
time ¢ while the second term contributes most when the system has equilibrated. We
provide an example of the weight decay DMFT showing its validity in a two layer ReLLU
network in figure 3.

Appendix K. Bayesian/Langevin trained mean field networks

Rather than studying exact gradient flow, many works have considered Langevin
dynamics (gradient flow with white noise process on the weights) of neural network
training [25, 30-32, 97]. This setting is of special theoretical interest since the distribu-
tion of parameters converges at long times to a Gibbs equilibrium distribution which
has a Bayesian interpretation [3, 4, 97]. The relevant Langevin equation for our mean
field gradient flow is

A6 (t) = —*VL(0 () dt — AB0 (t)dt + /28 1de (¢ (K.1)

where A is a ridge penalty which controls the scale of parameters, and de(t) is a Brownian
motion term which has covariance structure (de(t)de(t’)") = 6(¢t — t')I. The parameter
B, known as the inverse temperature controls the scale of the random Gaussian noise
injected into this stochastic process. The dynamical early-time treatment of the g — oo
limit will coincide with our usual DMFT while the g < oo will exhibit a nontrivial
balance between the usual DMFT feature updates and the random Langevin noise. At
late times, such a system will equilibrate to its Gibbs distribution.

K.1. Dynamical analysis

In this section we analyze the DMFT for these Langevin dynamics. First we note that
the effect of regularization can be handled with a simple integrating factor

[ ZA g (16 (B, (¢ )

where de(t) € RV*¥ is the Gaussian noise for layer £ at time t. It is straightforward to
verify by Ito’s lemma that, under mean field parameterization, the fluctuations in f’s

mbf

d [We (t) e%} dt++/207 e 3de (K.2)
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dynamics due to Brownian motion are af -de(t) ~ O(N~1/2) and are thus negligible in
the N — oo limit. Thus the evolution of the network function takes the form

Ofu(t) _ D A Ko (t,1) = ABT'O (1) - Vo (t) +

[0

5Trv fu( )

We can express both of these parameter contractions in feature space provided we intro-

09,
duce the new features r! u(t) = g, which are necessary to compute Hessian terms like

[

O N2 84 [9; 7 p(h)] = N2 r; ¢(h%)? in cach layer. This gives the following

evolution

000 P IUEACUESE ICTORAC)
+4 IZWH ) (o hf(t))>. (K.3)

As before, we compute the next layer field A" in terms of x/™ and 2! in terms

of &

t T
+ / 3 [ds%zAa(S)gfjl(SW(h£(3)>T \/;Ndeml g ().

(K.4)

The dependence on the initial condition through x,& is suppressed at long times due
A

the regularization factor e ', while the Brownian motion and gradient updates will

survive in the ¢ — oo limit. In addition to the usual {x, &} fields which arise from the

initial condition, we see that h'(t),2/(t) also depend on the following fields which arise
from the integrated Brownian motion

_ \/BZN / Tas e M0 - s)ae (5)6 (L ()
\/57\7/ ds e (t=9) O (t—s)de’ (S)Tgi—s-l (t). (K.5)
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Our aim is now to compute the moment generating function for the {x,&,x, & } fields
which causally determine {h,z}. This MGF has the form

= <exp (Z/m (5, (8) - x5, (8) + v, (8) - &, () + 357 () - x5 (1) + 05 (8) - &) (t)]) > -
V0 Bo,e(t

(K.6)

We insert Dirac-delta functions in the usual way to enforce the definitions of x, &, x¢,&°
and then average over 6,€(t). These averages can be performed separately with the
0, average giving the identical terms as derived in previous sections. We focus on the
average over Brownian disorder

1n<exp< \/ZN Z / dt Tr [x;’“ 16 (b (1)) +gf:“<>sf<ﬂ / e3<“>®<t—s>de<s>>>

! /dt@ (t—s)e 3= "Z{“‘“ ( (t)) +g,€“()£,f(t)T]

= “IN | ds

1 > *° / / —T(tfert 75)
—= ds dt dt O(t—s5)O((t —s)e ¥

AN

~€,0 ~c. ,
Z[x:/“ R B 1)+ £ 0- €5 () 6L )+ 25 ()08 )AL (111

oodt/oodt/exp <2(t+t/)> [62§min{t,t’}71:|
0 0
(R (0 % () 1)+ & (-5 (1) Gl (1) + 2085 ()95 () ATt (.07)]

(K.7)

_1
S 2)
2

€

where we introduced the order parameter A< (t,t') = Ngb( ())é(f(s) We

!

will use the shorthand for the temporal prefactor in the above Chp(t,t') =
%exp (—%(t + t’)) [eggmi“{t’t/} — 1} ~t 00 %exp (—%|t — t’\). We insert a Lagrange
multiplier B¢ to enforce the definition of A“‘. After
¢ =0 ¢ ¢ ¢ ¢ el el
Z oc/d@m (t,s)d®,, (t,5)dG,, (t, s)dGW (t,s)dA,, (t,s)dB,, (t,s)dA}, (t,s)dB;, (t,s)
X exp <NS [@,é,G,G,A,B,Aﬁ,BGD . (K.8)

The order parameters can be determined by the saddle point equations. These equations
for ®,®,G,G, A, B are the same as before. The new equations are

08
—Z—Be’e t,S —ZC tS 6€+1 t+1 =0
5142&(15,8) uoe( ) )\ﬁ <X )g(y ( )>

)

S~ i 69 =100 (1) (o (B0 & 5)) =0 (K.9)
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Using the fact that o' G concentrate, we can use the Hubbard trick to linearize the
quadratic terms in x¢ and &°.

exp <——/ dt/ ds C,\ﬂ t S ZX€€+1 A€€+1( )(I)ia (t78))

<exp <—Z Z/ dt uj; R )Zf/“ (t)) > (K.10)
w1 (1) ~GP(0,C0d¢)
exp (——/ dt/ ds Cyp(t,s Zf Gflzl (¢, s))

%!

<eXp (—Z Z/ dt ry 556( )>> : (K.11)
5 (1) ~GP(0,COGH)

Using the vectorization notation, we find the interpretation that x¢! and €' decouple
as

Xe,z+1 =ttt Ae,€+lgf+1 , 56,4 —pel 4 Bevt’T(ﬁ (hf> (K.12)
6¢ hé 0 41\ T
€0 € g
A’F—H—C)\,ﬁ®<%> B = C)\,3®<au€+l> . (K13)

As before, we make the substitutions B —~,'B' and A — 7, A and arrive at the
final DMFT equations

{w, 0} ~GP (0,27 {r, (1)} ~GP (0.G")
{ui" ()} ~GP(0,Cr 500 "), {ry' ()} ~GP(0,Crp@G™)

hft(t):e_ﬁt[ —1—70/ dsZAf Y(t,s)g )]
a0 [ as Y[ ) +e N IAL ()90 1.9)] 9
0

zﬁ (t) :e_?ﬁ[ —1—70/ dSZBua (t,s) g’ (s )]

—i—*yo/ ds Z BEE t,s)+e” G S)Aoé(s)(;fjgyl(t,s)] (R (s)) (K.14)

where the kernels are defined in the usual way. As expected, the contributions from the
initial conditions x!,&¢ are exponentially suppressed at late time whereas the contribu-
tions from the Brownian disorder x“*, ¢! persist at late time.
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K.2. Weak feature learning, long time limit

In the weak feature learning ~y — 0 and long time ¢ — oo limit, the preactivation

fields equilibrate to Gaussian processes hl,(t) ~ u§'(t), z/,(t) ~ r5'(t), which have respect-

ive covariances H},(t,s) = (h!,(t)hi(s)) = Crp(t,s)®I 1 (t,5), Z),(t,s) = (2} (t)z,(s)) =
CAﬁ(t,s)ij{yl (t,s). In this long time limit, the feature kernels will be time translation

invariant, e.g. @ﬁa(t,s) = @ﬁa(]t — s]). Letting 7 = [t — 5| and C) 3(7) = } exp <—%7’), we

have the following recurrence for H, ®*

Hia (T) - C)\,JB (T) Kﬁu ’ q)iwc (T) - <¢ (h) ¢ (h/)>iL,lL’~N(O,H1) 9 Hl = |:HA1L,LL (,7_) H;{Oz (0)

HE () = O (1)L (1) @2 (4,5) = (0 ()6 (W), (o)
HEE(0) HL (7)

41 _
B =1aie vl (K.15)
Similarly, we can obtain Z¢ and G* in a backward pass recursion
2 (0) =Crs () Gl () =¥ ()20, B (r) = (GOMY),
240 (1) = O (VG ) Gla0) = 810 () 200 () ()= (SRIS))
(K.16)

On the temporal diagonal 7=0, these equations give the usual recursions used to
compute the NNGP kernels at initialization [4], though with initialization variance
C)5(0) = A1, set by the weight decay term in the Langevin dynamics. This indicates
that the long time Langevin dynamics at vy — 0 simply rescales the Gaussian weight
variance based on A. It would be interesting to explore fluctuation dissipation relation-
ships at finite vy within this framework which we leave to future work.

K.3. Equilibrium analysis

The Langevin dynamics at finite N converges (possibly in a time extensive in N) to an
equilibrium distribution with several interesting properties, as was recently studied by
Yang et al [97] and implicitly by Seroussi and Ringel [31] in a large sample size limit. This
setting differs from the previous section where first N — oo limit is taken, followed by a
t — oo limit in the DMFT. This section, on the other hand, studies for any N, the ¢ — oo
limiting equilibrium distribution. This equilibrated distribution is then analyzed in the
N — oo limit. The relationship between these two orders of limits remains an open prob-
lem. The equilibrium distribution over parameters p(6|D) o exp (—3v2L(8) — 3|6|?) can
be viewed as a Bayes posterior with log-likelihood —37?L(0) and a Gaussian prior with
scale A™1/2. In the mean field limit with v = +v/N~j, we can express the density over
pre-activations h’ and the output predictions f. This gives
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p(fID)

X exp (NWSBZE (f#,yu)>
I
 fan (T0s (5~ o) 0o (1 ot )
H 0 \/N O~N(0,X~11)

ul

/ dequ@ d@llaexp(—NvSBZf(fﬂ,yu N%qufﬂ 2AZfH o )
s

lpa !

X exp (];f S, +NY Iz @ &4)
l

Lo

dh,dh I | : i
Z = /H Lt oxp (—%Zhu@ﬁm - §Z¢(hﬂ)¢>f&a¢(ha) +thMhu> . (K1)
H 1%

Je !

We see that p(f|D) oc [d®ddexp <NS[<I>,(§]> where

_ —'Yoﬁzg w yu -7 Z fuf,u 2)\ Z fH ﬁ(,fa Z (I)fm(l)fm

E,ua
+ Zan [@f—l,qﬂ . (K.18)
)4

Thus the predictions f, become nonrandom in this N — oo limit and can be determined
from the saddle point equations as in [97]. Again, letting A, = —aifﬂﬁ( fusYu), we find

88 “~ 2 85 ]_ L A

—_— = — A =0, ——=— + < q)aoz:()

a7, Y01 — 1 BA o7, Yofu )\Z ot

08 oS 1
oL fufa+ (I)/LMZO’ 9oL 2 fm__<¢( i) ¢ (ha)) =0

pix e

oS _ L /oot | Y _ 85 _1 ¢ 1 ¢ ¢
—< 380 =t (0000 =0 (510

which implies that f, at the fixed point satisfies the following equations

ﬁ L ot (fom ya)
fﬂ == X ;Q)MQAO‘ 5 Aa - —8—fa (KQO)
The last layer’s dual kernel has the form @ﬁa = —%AAAQ, which we see vanishes as

feature learning strength is taken to zero y — 0, while for non-negligible v, we see
that the last layer features are non-Gaussian. We thus see that the moment generating
function for the last layer field has the form
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z [(I)L—l’(i)L]
7 2
dh,dh 1 . 2 92 ' A
= /H 121’71- el exp _ﬁ Zhtha(Pﬁ(;l —+ ’y;f [Z A,ugb (h“) “+1 Zhuhu
p piex I I
(K.21)

In the 79 — 0 limit, the non-Gaussian component of this density vanishes. Now that
we have this form, we can compute ®* conditional on ®*~!. Next, we calculate @ﬁ; =

<ﬁ£ﬁ§> , giving

& =A@ -2 [@k ] (R T [B 1] (K.22)

< L1
Again, we note that in the vy — 0 limit, since <thL> ~ATIBIT g0 that @ =0,
implying that the h*~! fields are also Gaussian in this 7y — 0 limit. For arbitrary ~o,
this recursive argument can be completed going backwards using

o — <¢> Qr (hf)T> & = e T [0 T (W) (@) (K23)

For deep linear networks, the distributions are all Gaussian, allowing one to close algeb-
raically, the saddle point equations for ®,® [97].

Appendix L. Momentum dynamics

Standard GD often converges slowly and requires careful tuning of learning rate.
Momentum, in contrast can, be stable under a wider range of learning rates and can
benefit from acceleration on certain problems [98-101]. In this section we show that
our field theory is still valid when training with momentum; simply altering the field
definitions appropriately gives the infinite-width feature learning behavior.

Momentum uses a low-pass filtered version of the gradients to update the weights.
A continuous limit of momentum dynamics on the trainable parameters {W*} would
give the following differential equations.

0

W =0

Q=@+ LY A gl 0 (1) (L1)
dt N . 12 M H

We write the expression this way so that the small time constant 7 — 0 limit corres-
ponds to classic GD. Integrating out the Q° (t) variable, this gives the following weight
dynamics
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t’ T
14 1, —(t'—t"") // £+1 ¢
W (t)=w NT/dt/ dt'"e /TZA Jgit e (rL)  (L2)

which implies the following field evolution

tl
=0+ 2 [Lar | e TS A (g™ () Bl (1:17)

Zﬁ (t) — gﬁ (t) + %/0 dt//o dt//e—(t/_t/’)/TZdt//Aa (t”)gb (hf,( )) Gﬁzl (t t“)
(L.3)

We see that in the 7— 0 limit, the ¢” integral is dominated by the contribution at
t" ~ t' recovering usual GD dynamics. For 7> 0, we see that the integral accumulates
additional contributions from the past values of fields and kernels.

Appendix M. Discrete time

Our model can also be accommodated in discrete time, though we lose the NTK as a
key player in the theory (note that fu df T da =>,A K}LTK requires a continuous
time limit of the GD dynamics). For a dlscrete tlme analysis we let t € N and define our
network function as

fu(t)zNL%wL(t)ﬁ(hﬁ(t)) va0 [ +’YOZZA ))] -¢5(h£(t))
S RURICTORS 9 GRS o)

a  s<t

We treat f,(t) as a potentially random variable and insert
df, (t)df,. (t . 1
1= [RO00,, ( ) [Nfu (0=, w* 00 (h () - N8 ()2, w]) -
(M.2)

Noting that w”(0) is involved in the definition of both f,(¢) and éﬁ (t), we see that the
average over w’(0) now takes the form

<exp (z > [& O+ fu (6 (hE @) ] - w” <0>> >

pt wk(0)
1 ~
= exp <_§Z£i(t) a QZf/‘ (t73)>
ptas uats
<o (—— S0 (kL 1) - & <s>) | oL
pats
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We extend our definition as before iAﬁa (t,s) = ]\%O(ﬁ(hﬁ (t)) - €-(s). Proceeding with the
calculation as usual, we find that

x [45,(0)4f, (a2 .. 4B exp (NS [{f,f, v # Al B )

S=i Y fu(t)fult) QQZf,L ) fa (5) @, (t,5)

ut ,u(yt s

_iqu(t) Zqu t—S ( )(I)ﬁa(twsﬂ
pats utas
+y [@fm@fza (t:5) + Gl (£,5) G (£5) — Al (t,5) Bl (1,5)]
luats
Yz H@f,é{...,A{Bf}] . (M.4)

The saddle point equations can now be analyzed. In addition to the usual order para-
meters, we note that f, f also generate saddle point equations

oS
—if,(t)=
afu( ) / ( )
oS
= = oL i fy AL
dif, () o Z ( fa ) Z
—Z@ (t—s)Aq(s) W(t,s). (M.5)
We also obtain saddle point equations for the new A%, BY order parameters.
oS A
BL 5 — M.
AL (1) Dpellrs) Zifu(t) =0 (M.6)
05 4L (ts)ing! <¢> (hE (1) €k (s)) =0 (M.7)
OBt - eI (2 () '
which impli BL L= ohi(1)) is gi i
plies B;, (t,s) =0 and A ari(s ). Lhis gives the following DMFT
=2 2 2 l69) Bas)+ DA (08
s<t «
uZNN( @Y P~ N (0 G”l)
hy, (8) = +%Z (AL (8:8) + O (t—5) A (5) @' (T,5)] 9o (5)

2, () =1, (t +’Yoz ha (1,8) + O (t—5) Ay (5) G (t,5)] ¢ (e (5))

O, (t,5) = (¢ (hy, (1) 6(he(s))) 5 Graltss) = (g,(t)ga(s))
o l ) (+1
Aﬁa(tvs) = ,7(;1 <%((;)>)> ) Bﬁa(tvs) =% <8f€+1((z)) > : (MS)
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We leave it to future work to verify that a continuous time limit of the above DMFT
recovers function evolution governed by the NTK.

Appendix N. Equivalent parameterizations

In this section, we show the equivalence of our parameterization scheme with many
alternatives including the pP parameterization of Yang and Hu [22]. We also com-
pare the derived stochastic processes obtained with DMFT and TPs in appendix N.6.
Following Yang we use a modified variant of abc parameterization. We will assume the
following parameterization and initialization

f — %h[ﬂ-l , hL-‘rl :NiaL’UJL'QZS(hL) , wZL NN(O,N,Z,L)

R = NTW e (BY) L W~ N (0.N7)
h!=N"“D 'PW% W) ~N (0,N7™) (N.1)

and we consider training with gradient flow dynamics

_Wl ZA (N.Q)

n=1

The learning rate is scaled as 7 =1nyy2N~¢ with 1y = O(1). The factor of 7? in the
learning rate 7 ensures that % fli=o does not depend on ~. Lastly, we will scale the
Chizat and Bach feature learning parameter as v = vo/N¢. We will ultimately find that
only d =5 Wlll allow stable feature learning in the infinite width N — oo limit.

We W111 now derive constraints on (a,b,c,d) which give desired large width behavior.
We will identify a one-dimensional family of parameterizations which satisfy three desid-
erata of network training 1. finite preactivations, 2. learning in finite time, 3. feature
learning.

N.1. Fields are Op(1)

In this section, we identify conditions under which h’ have Oy (1) entries which ensures
that the kernels ® are also Oy (1). The base case for h' gives us the following covariance
of entries at initialization

(hihj) =N7>%D1Y (Wi, (0) Wjks (0)) gy = ;N 0" K™, (N.3)
kk’

Assuming that K” does not scale with N as N — oo, we find the constraint that 2ag +
bo = 0. Now that we have a condition for h! to be Ox(1) in its entries giving ®! ~ O(1),
we proceed with the induction step. We assume that ®‘~ Oy(1) and we then find
conditions which guarantee h™ has Op(1) entries. The covariance at layer £+ 1 at
initialization is
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(R TRST) = N2y (W (0) Wi (0)) & (Ry) ¢ (i)
k.’
;N2 @t L Oy (1). (N.4)

Since we are assuming under the inductive hypothesm that ®° = On(1), we identify
the constraint 2a,+ b, = 1. Again we see that (ay Q,bg 0) works, but this is not
the only possible scaling. Alternatively standard parameterization (a; = 0,by =1) will
also preserve the Oy (1) scale of the features. To characterize prediction and feature

dynamics, we next need to analyze the scale of the feature gradients 2 We start
with the last layer and define

ah/

ahLJrl .
gf = NP = N wl 06 (hf) ~ Ox (1)
which has Oy (1) entries by construction. We similarly extend this definition to earlier
layers g’ = No+be/ 283 to see whether g’ remains Ox(1) under its backward-pass
recursion
¢ on"! : 1 _ it T o
o' =\ | ¢ =o(n)o [N W )] (N.5)

Now, letting z{ = N~*W*(0)Tg/*! as in the main text, we have
<ZL€ZJ£> _ diijsz[fbggf-H .gl-l-l — 5UN72a[fb[+1G€+l' (NG)

Under the inductive hypothesis that G‘*' ~ Ox(1) and the previous constraint 2a, +
by =1, the z variables have O(1) variance. Overall, we can thus ensure that ®‘ G’ ~
ON(l) if 2ay+by=1 for £ € {1,...,L} and 2ag + by = 0.

N.2. Predictions evolve in Oy(1) time

As before we define the NTK be the matrix which characterizes network prediction
dynamics O0;f, =m0 _, KEQTKAQ. We demand that this matrix be KNTK ~ Opn(1) so
that the network prediction evolution 0 f,, ~ On(1)

Ol gpL+l

Of,  Ofa _
KNTK 2N ©o :N c
e Zawf ow' ; ow' ow!
e [P0 00l | S OME k(8 0(1) o0 01t g,
= N2ar - 8hﬁ+1 8hfj1 N2a ahh (9h(11 N2a D

(N.7)

pot > po | o

—N—¢ [Nl_zan)ﬁa +ZN1 2a4G€+1(I)K +N— 2a0G1 K=

Where we used the usual definition of the kernels ®‘ = Ngb(hg) (h') and Gf = +9g"
g’ which are Oy(1) under the assumptions of the previous section. We thus find the
following constraints
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2ar+c=1,0e{l,... L}
2ap+c=0. (N.8)

Again this recovers the parameterization in the main text provided ¢=0 and ay=0
and a, = % We see that for nonzero ¢, we need nonzero ay.

N.3. On(1) feature evolution

Now, we desire that the fields h;,z; all evolve by an Oy(1) amount during network
training, so that feature learning is stable. Under the assumption that 2a;, + by =1 (see
previous sections), the update equation for W' and k' give

d 6hL+1

EWZ—TIWN “ ‘”E/;A ahz+1¢<h€> = Ny N7~ 2;Augﬁ+l¢ (hft)T

Now, noting that A" (t) = N~W'(t)¢(h'(t)) and &', = %6(h,) - ¢(h,), we have
A (0 =X )+ oV D / dsa () gl ()L, (1.5)  (N.9)

where we used v =y N¢. The above equation implies that d — c — 2a, + % =0 is neces-
sary and sufficient for Oy (1) feature evolution. An identical argument for the pregradi-
ent fields zﬁ(t) gives the same constraint.

N.4. Putting constraints together

The set of parameterizations which yield O(1) feature evolution are those for which

(i) Features h,z are On(1l) = 2ay+by =1 for £ € {1,...,L} and 2ay+ by = 0.
(ii) Outputs predictions evolve in Oy (1) time = 2a;+c=1, 2ap+c=0
(iii) Features h,z have Oy (1) evolution = d =3

The parameterization discussed in appendix D satisfies these With d= 1 = 1 ,bp=
0,c¢ = 0. The quite general requirement for feature learning that d = 5 1nd1(:ates is that
v =~V N for any choice of ay, by, ¢ as we use in the main text. This mdlcates that neural
network prediction logits at initialization scale as f, ~ O(N~'/2) in the feature learning
infinite width limit. The set of parameterizations which meet these three requirements is
one dimensional with d = , and (a, b ,¢) €{(a,1 —2a,1—2a):ac R} for all layers except
the ﬁrst layer which has (ao =a— bo =1—2a). Our parameterization corresponds to

a = 5. However, in the next sectlon we show that if one demands Oy (1) raw learning

rate n =nyy>N ¢, then the parameterization is unique and is the uP parameterization
of Yang and Hu [22].
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Table N1. Dictionary relating the notation of the tensor programs (TP) framework
[22] and this work.

DMFT  h(t) x(t)  g(t) &@1) dL(t, s) G'(t,s) Al(t,s),B(t,s) At

TP Zh‘ ZWI‘ de ZWTdh,, E[ZT[ be} E[Zdh"' Zdh.s:l Qts —Xt

N.5. On(1) raw learning rate

We are also interested in a parameterization for which we can have learning rate
n ~ O(1) which are those for which n = 797> N ¢ = On(N??¢) = On(1) = c=2d=1.
Under this constraint, a;=0 and by=1 for £€{1,...,L} and ag= —% and by =1,
which corresponds to a modification of standard parameterization, with first and last
layer altered with width. In a computational algorithm, the learning rate would be
n=mn0y’N~°=nyyd = On(1). This is equivalent to the uP parameterization stated in
the main text of Yang and Hu [22].

N.6. Equivalence of DMFT at vy = 1 and TP-derived stochastic process

Now that we have established that the parameterization we consider here (modified
NTK parameterization) is equivalent to pP, (modified standard parameterization), we
will now demonstrate that the stochastic process which we obtained through a stationary
action principle applied to our DMFT action S is equivalent to the stochastic process
derived from the TP framework of Yang [22, 96]. Using the notation from appendix H
of Yang and Hu [22], they give the following evolution equations for the preactivations
in a hidden layer in one pass SGD

t—1
th — ZW.Tt + ZWl't _ ZXSZthE [ZISth]

s=0
t—1
det _ ZWTdht 4 ZWTdht . ZXSZISE [Zdhtzdhs] (NlO)
s=0

where Z"7 is a mean zero Gaussian variable with covariance E[Z*Z"] and ZW " dh
is a mean zero Gaussian with covariance E[Z4"Zd%]. We can switch to the nota-
tion of this work by making the substitutions Z™ — h(t), ZW* — u(t), xs — —A(s),
ZVr 3" A(s)A(t,s) and E[Z% Z"] — ®(t,s), and so on. A summary of the full set of
notational substitutions between this work and TP are summarized in table N1.

After these substitutions are made, we see that the equations above match the one-
pass SGD version of the DMFT equations in appendix M. A similar identification can be
made for the backward pass. This shows that both TPs and DMFT, though alternative
derivations, give identical descriptions of the stochastic processes induced by random
initializations + GD in infinite neural networks.
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Appendix O. Gradient independence

The gradient independence approximation treats the random initial weight matrix
We(()) as a independently sampled Gaussian matriz when used in the backward pass.
~ 0
We let this second matrix be W (0). As before, we have x/*! = \/LNWK(O)Q(hE), how-
~ {
ever we now define ¢/ = \/LNW (0)Tg""'. Now, when computing the moment generating

function Z, the integrals over W*(0) and WZ(O) factorize

<exp<f/ | E0 >¢(h’<))+g,’;“<>TW€<0>£ﬁ<t>D>
_exp<_-z/ dt/ as' [%7 (1) X0 (5) @, (t,s)+éi(t)-éﬂ(s)aﬁgl(t,s)}).

(0.1)

We see that in this field theory, the fields x,¢ are all independent Gaussian pro-
cesses {X“l( )} ~GP(0,®") and {fﬁ(t)} ~GP(0,G'Y). This corresponds to making
the assumption that A = BY =0 so that xy =« and & = r within the full DMFT.

Appendix P. Perturbation theory

P.1. Small ~¢ expansion

In this section we analyze the leading corrections in a small 7y expansion of our DMFT
theory. All fields at each time t are expanded in power series in 7.

hﬁ Z,ynhf n)
Zﬁ Z,yn 4,(s (Pl)

Our goal is to calculate all corrections to the kernels up to O(v3) to show that the
leading correction is O(93) and the subleading correction is O(~v3). It will again be
convenient to utilize the vector notation defined in appendix D.

We note that unlike other works on perturbation theory in wide networks, we do not
attempt to characterize fluctuation effects in the kernels due to finite width, but rather
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operate in a regime where the kernels are concentrating and their variance is negligible.

For a more thorough discussion of perturbative field theory in finite width networks,
see [27, 28, 35].

P.1.1. Linear network. The kernels in deep linear networks can be expanded in powers
of v¢? giving a leading order correction of size O(72) and can be computed explicitly
from the closed saddle point equations. We use the symmetrizer {X,Y },,,, = XY +

Y " X" as shorthand. The leading order behavior of C* ~ CY +0(12) , D'~ DY +
O(vg),Hg’O =HY=K*"2117,G"" = G =117 is independent of layer index so we
find the following leading order corrections

H' ~HY 4 2({cODY HOY,, +CcP117COT) + O(yp)
G ~11"+ (L+1-03({DYCc"Y 11"}, + DOHY DY) + O(+)
L(L+1
KNTK  LHO 42 (L+1)

2
L(L+1) .,
+78%K ©(DVC" 117}, + DYHYDYT) +O(x).  (P2)

({C(O)D(O),KI}S?W + C(O)lch(O)T)

Note that [C'g],; = fodt S Hs(t 1) Ap(t)g(t') = 2[5 uﬁfodt/AB )g(t') and note
that [Dh), = [; dt'GO(t,t") 3, A o(tVha(t) =32, [3 dt Ayt ha(t)).

4 _ T
Huy(t,s) =K,,

+€’yoz /dt’A (t )/0 dt"Ag (t"") + ((u,t) <> (v,8))

0 I [ars.w] [ [Cas20)
G (t,8) =1+~ (L+1—1) ZKgﬁ /Ot dt’'A, (1) /Ut/ dt"Ag (") + (t <> s)
aff

+73a;+1—43%;ﬁq;{[TdﬂAauq}{[fdyaagyﬂ. (P.3)
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We can simplify the notation by introducing functions v, (¢ fo o(t") and vap(t) =
Jydt Au( fo dt” Ag(t").

Hﬁl/ (t + 6’73 Z 'U(y/} ) + 'Uﬂ(x + ‘670 Z l/ﬁUO/ 'U[)’ (S)

G'(t,s) =147 (L+1—0)>  K&s[vas(t) + vga (s) + va (t)vg (s)]. (P.4)
ap

Using the fact that

L
K;ljaTK (t,S) = ZGZ-H (t,S) Hﬁa (t75)

=0

~(L+1)K: +%ZH5§ (t,s) +%ZG“ (t,s) KL, +0O (7)) (P.5)

and utilizing the identity 25:1 ¢ =3L(L+1), we recover the result provided in the main
text.

P.2. Nonlinear perturbation theory

In this section, we explore perturbation theory in nonlinear networks. We start with
the formula which implicitly defines h’, 2 treated as vectors over samples and time

h' =u' 4~ C" [qb (hl“)) ® zf] 2l =7+ 4D' (hl“)) . (P.6)
We proceed under the assumption of a power series in 7

hZ u _’Yoh£1—|—’}/2h£2
ZZ—T _’YOZ +’722£2+
P — 0 = @ 4 2P
Gf_Gé,():%Ger%Gm
C! — C" =5, C" +2C"2 +
D' — D" =~y D" + 2D + ... (P.7)

As before, the leading terms for C*°, D! only depend on time through the functions
{va(t)} and {v.s3(t)}. Expanding both sides of the implicit equation for z we have
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fyOzg’l + ’ygz“ +...
=7D"¢ (u')
93 [ D" (w) © B+ D ()]
93 [ D" (w) © B2 + DG (w) © [B] + DM (w) © b + D26 (w)| + 0 (5).
(P.8)

Performing a similar exercise for h', we get the following first three leading terms for
z!.h’, and we find

zf,l — DE,0¢ (’U,)
zf,Z — D&O(Z‘S (u) ® hf,l + Df,1¢(u)

03 — pto Bq'g(u) ® [hm]? +é(w) @h“] 1 pil [qb (w) @h“} + D" (u)

hiL = Ct0glo — oo [q& (u) ® 7,}
h€’2 — C&lgf,l + Cﬁ,ng,Q
=c" [(b (u) 2% + ¢ (u) hmr}
+Ccht [qﬁ (u) 202 4 o (u) hO1201 4 % o (u) [hm] r+¢(u) hwr]

hf,?y — 05709&2 + Cf,lg&l + Cf,Qgé,O

2
+ ! [¢ (u) 2" + 6 (u) hmr] +C"? [¢5 (u) r} . (P.9)

=< Lﬂu) 22 ()2 G () P+ () WH

As will become apparent soon, it is crucially important to identify the dependence of
each of these terms on 7. We note that z! does not depend on r and h®! is linear in -
In the next section, we use this fact to show that ®“! = 0 and G*' = 0. These conditions
imply that C*? and D! =0. As a consequence, z"? is linear in  and A’? only contains
even powers of r. Lastly, this implies that 2% only contains even powers of r and h®3
contains only odd powers of r.
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P.2.1. Leading corrections to ®1 kernel is O(y3). We start in the first layer where
u! ~GP(0,K"®11") (note that this is O, (1)) and compute the expansion of &'

in 7o

¢(u1> h1’3+¢5(u) h1’1h1’2+—.g25' (u) (h1’1)3] ¢(U)T>

+0() (P.10)

where powers and multiplications of vectors are taken elementwise. Now, note that,
as promised, the terms linear in ~, vanish since h'! is linear the Gaussian ran-
dom variable 7!, which is a mean zero and independent of u' so an average like
(rtF(u')) = (r'?) (F(u')) = 0 must vanish for any function F. Thus we see that d's
leading correction is O(43).

We also obtain, by a similar argument, that the cubic O(+3) term vanishes. To see
this, note that h'? only contains odd powers of r!'. Next, h''h"? contains only odd
powers of 7, and (h'')? is cubic in . Since all odd moments of a mean-zero Gaussian

vanish, all averages of these terms over r annihilate, causing the y® terms to vanish.
Thus ' = @0 +~30"* + O(v}).

P.3. Forward pass induction for ®*
We now assume the inductive hypothesis that for some ¢ € {1,...,L — 1} that

' =30+ 7@ + 0 () (P.11)
and we will show that this will imply that the next layer must have a similar expansion

P = @0 L 212 L O(42). First, we note that u™' ~ GP(0, @0 + 282 4 ...).
As before, we compute the leading terms in the expansion of ®‘
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i)
_ <¢ (uéﬂ) 5 (u£+1)> n 73 [gzﬁ (’u,”l) hé+1,1} [¢ (u€+1) h€+1,1] T>

R (o) F (o fun] ) ro
(P.12)

where, as before, the vy and 7> terms vanish by the fact that odd moments of 7+
vanish. Now, note that all averages are performed over ut! ~ GP(0, 8" + 2@ + .. ),
which depends on the perturbed kernel of the previous layer. How can we calculate the
contribution of the correction which is due to the previous layer’s kernel movement? This
can be obtained easily from the following identity. Let F'(u,r) be an arbitrary observable
which depends on Gaussian fields « and r which have covariances ®“° +13®"* + O(~3)
and G 4+ 12G"? + O(42) (note this only requires that the linear in o terms of G
vanish which is easy to verify). Then

1
(F(u,m))y, = /dkdudvd’rF (u,r)exp <—§sz [(136’0 T S Jk+ik- u)
1
X exp (—;vT G+ 3G 4 v tiv- r) (P.13)

~ (F(u,T))

upTo

2 [ 2
Y0 —12 0
+ 5 Tr |® <auaqu(u,r)>um]

’Yg £+1,2 0
* ETY ¢ <8r6’rTf(u’r)>

+0 (%) (P.14)

UpTo

where ug ~ GP(0,®"), 7o ~ N (0,G"™"). Thus, the leading order behavior of ®"* can
easily be obtained in terms of averages over the original unperturbed covariances

2 2
#1 — (otu)o )T, + T |87 5 E o) ¢<uo>T>uJ
2 92
+ 0 o=0 (¢ (P (w0,70,70)) & (R (0,70,70))) yyry + O (70) > (P.15)

207

where the trace is taken against the Hessian indices and the indices on ®"2. This gives us
the desired result by induction that for all £ € {1,...,L}, we have ®' = &"° —1—73@&2 +
O(v3). We see that ®° accumulates corrections from the previous layers’ corrections
through the forward pass recursion.
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P.4. Leading corrections to G' kernel is O(~3)

The analogous argument for G* now can be provided. First note that ” is independent
of u” and of vy. Thus we can find that G has no linear-in-y, term in its expansion
since

Gl — <[¢ (uL) TL] [¢ (uL) SL +¢5(UL) hL71TL]>
+ < [gzﬁ (’u,L) ’I‘L} [gzﬁ (uL) P gb ('u,L) hL’ler} > =0 (P.16)
each term contains only odd powers of 7’ and odd moments of Gaussian variables

vanish. After much more work, one can verify that G also must vanish since all terms
contain odd powers of 7.

GL’S _ <gL739L’0T> + <gL7ogL,3T> + <gL,29L,1T> + <gL,1gL,2T> (P17)

First, note that g™0is linear in 7. Next, note that g™! only depends on even powers of
r since gh! = ¢(u)z"! + p(u)h™'r. Next, we have

g"? = ¢ (u) 252 + 6 (u) [WPr + AP 20 4 %gb (u) [R"1]7. (P.18)

which only depends on odd powers of 7. Lastly, we have g*?

gL,3 — ¢(U) ZL,3 +¢(u) [hL,3,r, 4+ hL,QzL,l + hL,lzL,2:|

+ %?ff (u) [2RF BB 4 [RE) 25| 4 %W (w) [R5 (P-19)

which we see only contains even powers of r. Thus g“3g’? will be odd in 7. Looking
at the expansion for G*3, we see that all terms are odd in 7 and so the averages vanish

under the Gaussian integrals.

P.5. Backward pass recursion for G*

We can derive a similar recursion on the backward pass for G'’s leading order correc-
tions. Using the same idea from the previous section, we find the following expressions

G — < [¢ (UO)TO] [¢ (Uo)ro} T> n % <¢5(uo) GB(UO)>UO o Gl1?

Uuo,To 2
V% 0

+?a—%ly(,:0<[cﬁ(h(uo,’roﬁo))’ro] [é(hmo,m,wmﬁ +0 (%)

This time, we see that G* accumulates corrections from succeeding layers through the
backward pass recursion.
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P.6. Form of the leading corrections

We can expand the h’ and 2 fields around u/?,r%° to find the leading order corrections
to each feature kernel

P2 — ;8322|% o< <h€ (uo,roﬁo)> ¢(h€ (uo,roﬁo)>T>

1
=T
* 2" Oupou,

o2 <a— [¢(Uo)¢(uo)T]> ] : (P-20)

The first term requires additional expansion to extract the corrections in 7,2
2
. ’}/ . 2
¢ (u+7C'g") ~ ¢ (u) +v0(u)© [C'g'] + 5% (u)® [C'g']

~ ¢ (u) +700 (w) © [CVg"] +36 (u) © [Cg"] + ’f&fi (u)® [C"g"T’
¢ (h) © 2"~ ¢ (w) O +900 (u) © [Cg"] O +906 (w) © [D¢ (u)] + O (1))
Chld(t,s) =AM (t,8) + O (t— ) AD () D0 (L, )
D“(t 5) = B“(t $)+ 0 (t—5) AL (s) D10 (¢, 5) (P.21)

et ! o

where we used the fact that C*! = 0 which follows from the fact that &1 =0, and
A% = 0. Now, expanding out term by term

&' — (I)zo+70<[ (u @(C“) 40)} [GB(U)@(CK’OQZ’O)}T>
+ 78 <[ (C [ (u) ® C’“J “] @’I‘])} qb(u)T> + transpose
+%<[ (Cﬁ [ (u)® DE0 o (u )H)] ¢(u)T>+transpose

+ &2 < [ )® [C“) EO 2} o (u > + transpose

2

7UTr P12 +0 (). (P.22)

o)

} >u~g79(o,<1>“=°)

We see that the corrections for the ® kernels accumulate on the forward pass through
the final term so ®“2 ~ O(f). Now we will perform the same analysis for G*.

Gé: l l T
<g (u,r)g (u,r) >u~g73(07<1>‘7—1~0)r~g73(0,G’ﬂ“‘0)

i %Tr e <37f97“T [@(u) QT) <q.§ (e T> T} >u~g73(0,<1>‘I‘O)TNQP(O,G‘“’O) Foa)
- <gz (u, T)gz (u, T)T>u~g7>(o,q>f1-0)r~g7>(o,Gf'+‘~°)
PR (bwiw), 00 (P.23)
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We see that, through the second term, the G’ kernels accumulate on the backward pass
so that G* ~ O(L+1—¢). As before the difficult term is the first expression which
requires a full expansion of g’ to second order

g ~d(u)Or+70(u) o [D“d) (u) + D¢ (u) Cf’“gé’o}
+06 () [C0g™0 + 4, C g ] o . (P.24)

From these terms we find
G' =G (3w o (D6 )] [y o (Do w)] )
o ([ (0] [Bu (€] )

+73 < [¢ (u)® (Dw(ﬁ (u) Cé’ogé’oﬂ g£’0> + transpose

+ 72 < [(;5 (u) ®C*? (gb (u)® C'E’Ogm)] g£’0> + transpose

+BG120 (pu)d(u)) O (7). (P25)

u~gP(0,8710)

Now the correction to the NTK has the form

L-1 L-1
KNTK,Q — @LQ 4+ ZG€70¢)E,2 + Z qu)é,o + G1,2 0 (K.r ® 11T) ) (P26)
(=1 (=1

Since each ®%2 G112 ~ O(f), each of the two sums from £ € {1,...,L —1} gives a

depth scaling of the form ~ Ef;ll = L(LQ_I). Since the original NTK has scale KNTK0 ~

Ig;: = O(¥3L). In a finite width N, network, our

definition v = v N would indicate that a width N network would have corrections of

scale /3L = 'VZTL in the NTK regime where v = Oy (1) provided the network is sufficiently

wide to disregard initialization dependent fluctuations in the kernels.

O(L), the relative change in the kernel is
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