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We investigate random interlacements on Zd with d ≥ 3, and derive the large deviation rate for the probability that

the capacity of the interlacement set in a macroscopic box is much smaller than that of the box. As an application,

we obtain the large deviation rate for the probability that two independent interlacements have empty intersections

in a macroscopic box. Additionally, we prove that conditioning on this event, one of the interlacements will be

sparse in terms of capacity within the box. This result is an example of the entropic repulsion phenomenon for

random interlacements.
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1. Introduction

Random interlacements, introduced in Sznitman (2010), serve as a model for understanding the trace

of simple random walks and percolation with long-range correlations. While its percolative properties

have been extensively studied (see, in particular, Sidoravicius and Sznitman (2009);Sznitman (2010)),

the large deviation properties of this model, as well as the trace of simple random walks, are also

a central object of study. Recent progress in this direction can be found in Chiarini and Nitzschner

(2020a);Li (2017);Li and Sznitman (2014);Nitzschner and Sznitman (2020);Sznitman (2017, 2019a,b,

2021a,b, 2023).

In this article, we focus on the intersection of two independent interlacements. The percolative prop-

erties of the intersection set and its complement are studied by the second author in Zhuang (2021). To

better understand the intersection set, we calculate the asymptotic probability that it leaves a macro-

scopic hole in space. In doing so, we show that the optimal strategy for two interlacements to avoid

each other is to force the interlacement with smaller intensity to be “almost empty” in the box, while

the other one behaves as usual. When the two interlacements have the same intensity, one of them

will be forced to exhibit this behavior with asymptotically equal probability. This phenomenon falls

within the scope of the entropic repulsion phenomenon for interlacements. (This phenomenon has been

studied in the context of Gaussian free fields, with results such as Bolthausen, Deuschel and Zeitouni

(1995);Deuschel and Giacomin (1999) for the hard-wall condition, and Chiarini and Nitzschner (2020b)

for the disconnection condition. More recently, the authors in Chiarini and Nitzschner (2020a) inves-

tigated the disconnection condition for random interlacements.) An important step in the proof is to

compute the large deviation rate for the probability that the capacity of one interlacement set in a

macroscopic box is much smaller than that of the box. This rate function is determined by a constraint

problem on capacity, which is of independent interest.

We now describe our results in more detail. See Section 2 for more details. For d ≥ 3, consider

two independent interlacements I1,I2 on Zd with intensity parameters u1,u2 ≥ 0 respectively. We will

write Iu when only one of them is being considered. We use P for the probability measure governing

these objects and E for the corresponding expectation. Let B(x,r) (resp. B̃(x,r)) denote the closed l∞-

norm box in Zd (resp. Rd) centered at x with radius r . We denote by cap(A) the discrete capacity for

1350-7265 © 2024 ISI/BS



On large deviations and intersection of random interlacements 2103

A ⊂⊂ Zd , and c̃ap(A) the Brownian capacity for bounded A ∈ B, where B is the collection of Fσ sets

in Rd (see Section 2, in particular above (2.1), for precise definitions). A set A ⊂ Rd is called nice if it is

the union of a finite number of closed boxes. For λ ≥ 0, we define f (λ) through the following constraint

problem:

f (λ) = inf
A nice, c̃ap(A)≤λ

c̃ap(B̃(0,1)\A). (1.1)

When λ ≥ c̃ap(B̃(0,1)), this function f (λ) is trivially zero. See Proposition 4.1 for properties of f .

Our first result concerns the large deviation rate for the probability that the interlacement set in a

macroscopic box has a small capacity.

Theorem 1.1. For any u > 0 and 0 < λ < 1
d

c̃ap(B̃(0,1)), we have

lim
N→∞

1

Nd−2
logP

[
cap (B(0,N) ∩ Iu) < λNd−2

]
= −u

d
f (dλ). (1.2)

Here, the factor Nd−2 appears twice because it corresponds to the order of the discrete capacity

of B(0,N). This factor is also present in related problems involving Gaussian free fields, such as in

Bolthausen and Deuschel (1993);Chiarini and Nitzschner (2020b);Sznitman (2015). The dimension

d appears in the rate function because the Brownian capacity is approximately d times the discrete

capacity. For more precise statements, we refer to Lemmas 2.2 and 2.3.

Our next result gives the large deviation rate for the probability that two independent interlacements

have no intersections in a macroscopic box, and shows that conditioned on this event, the one with the

smaller intensity parameter will be negligible in terms of capacity.

Theorem 1.2. Consider two independent random interlacements I1 and I2 with intensities u1 and u2

respectively.

(1). For any u1,u2 > 0,

lim
N→∞

1

Nd−2
logP [I1 ∩I2 ∩ B(0,N) =∅] = −min{u1,u2}

d
c̃ap(B̃(0,1)). (1.3)

(2). For any u1 > u2 > 0 and ε > 0,

lim
N→∞

P
[
cap (B(0,N) ∩ I1) > (1 − ε)cap (B(0,N))

��I1 ∩I2 ∩ B(0,N) =∅
]
= 1 ; (1.4)

lim
N→∞

P
[
cap (B(0,N) ∩ I2) < εNd−2

��I1 ∩I2 ∩ B(0,N) =∅
]
= 1. (1.5)

In Theorems 1.1 and 1.2, we present the result for the case of B(0,N), the blow-up of B̃(0,1), for

brevity. However, analogous results should also hold for more general sets, such as regular sets. Addi-

tionally, we can show that the interlacement set with the smaller intensity parameter is negligible in the

box in terms of occupancy. We refer to Section 6 for relevant discussions. In the case of u1 = u2, Claim

(2) in Theorem 1.2 no longer holds, and further discussions can be found in Remark 5.2. However, we

can establish that, with asymptotically probability a half, one of the interlacement sets is negligible in

terms of occupancy. The justification for this requires a different approach, which we briefly outline in

Section 6.

Theorem 1.2 is an example of the entropic repulsion phenomenon for random interlacements. This

phenomenon suggests that conditional on certain rare results (such as disconnecting a box from far away
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Chiarini and Nitzschner (2020a);Nitzschner and Sznitman (2020);Sznitman (2017), exceeding expected

values in a box Sznitman (2019b, 2021a, 2023), or having macroscopic holes Sznitman (2019a)), ran-

dom interlacements tend to favor configurations with the lowest energy, where “energy” refers to the

rate function in the large deviation type estimates. The optimal strategy is achieved by so-called “tilted

interlacements” which have a non-homogeneous density and were initially introduced in Li and Sznit-

man (2014). These tilted interlacements play a significant role in the aforementioned work and Li (2017)

for providing plausibly tight asymptotic lower bounds for disconnection probability. It is conjectured

that a similar phenomenon exists for simple random walks, which can be heuristically seen as inter-

lacements with intensity zero. However, only a few rigorous results have been established for random

interlacements or simple random walks so far, as shown in Chiarini and Nitzschner (2020a);Sznitman

(2019a), and many open problems remain. In contrast, similar phenomena for the Gaussian free field

are better understood due to the presence of a nice domain Markov property, which is absent in in-

terlacements. Another important issue is that upper and lower bounds involving percolative properties

of interlacements often rely on different definitions of critical thresholds, while the sharpness of the

phase transition for interlacements is still an open question (though this issue has been resolved for the

Gaussian free field in Duminil-Copin et al. (2023)).

Next, we provide a brief overview of the proof strategy for Theorems 1.1 and 1.2.

The lower bound of Theorem 1.1 directly follows from the definition of the function f . The idea is

to constrain the interlacements to stay within the blow-up of the set which almost solves the constraint

problem. By doing so, the lower bound of the rate function is given by the Brownian capacity of this

set.

We now focus on the upper bound. Heuristically, similar to the decomposition of Gaussian free fields

(see e.g. Sznitman (2015)), we can decompose interlacements into a local part and a global part. The

local part describes the behavior of interlacements inside each mesoscopic box, taking into account the

intensity profile such as the number of interlacement paths entering a slightly larger box or the average

local time. On the other hand, the global part contains information about these intensity profiles and

captures the global behavior of interlacements.

Since the local part is approximately independent between distantly located boxes, it is more difficult

to tilt compared to the global part, which exhibits long-range correlations. Thus, when considering a

rare event, we can assume that the local part remains untilted, in the sense that it behaves consistently

according to the intensity profile, while only the global part is tilted. In other words, the rare event is

realized through a certain tilting of the global part. Since the global part has an integrable structure, we

can calculate the cost of this tilting, which yields an upper bound on the large deviation rate function.

To rigorously establish this intuition, we employ the coarse-graining procedure introduced in Sznit-

man (2015, 2017). Specifically, we partition the macroscopic box into mesoscopic boxes with ap-

propriately chosen side lengths. By using the soft local time technique developed in Comets et al.

(2013);Popov and Teixeira (2015), we can show that, with a super-exponentially small probability, in-

terlacements will exhibit regular behavior in most boxes. For example, the fraction of occupied points

will be consistent with the local-time profile, which may not necessarily be equal to the intensity pa-

rameter. This aligns with the intuition that the local part is much more resistant to being tilted. In our

case, we call the interlacement set in a mesoscopic box good if it either has a small average local time

or is “visible” for simple random walks, meaning its capacity is comparable to that of the box, see (3.1)

and (3.2).

Under the constraint that most boxes are good, we can replace the event of “the interlacement set

in the macroscopic box having small capacity” with a collection of events, each of which corresponds

to the interlacement set having a small average local time in many mesoscopic boxes and yet the total

capacity of these boxes exceeds a certain threshold. The probability of each of these events can be

bounded above using the Laplace transform of local times (as shown in Proposition 2.4). By summing
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up these inequalities, we obtain an upper bound for the large deviation probability that matches the

lower bound in the principal order.

Theorem 1.2 is a direct corollary of Theorem 1.1 by observing the following identity:

P
[
I1 ∩I2 ∩ B(0,N) =∅

]
= E

[
e−u2 ·cap(I1∩B(0,N ))

]
= E

[
e−u1 ·cap(I2∩B(0,N ))

]
. (1.6)

In what follows, we highlight some of the open problems and challenges related to the entropic

repulsion phenomenon for interlacements and related models.

One fundamental problem is to provide a proper characterization of “the convergence of a random

set to tilted interlacements”. It is crucial to clarify the metric space in which this convergence occurs.

In this paper, we establish convergence in terms of capacity and occupancy. However, these notions

alone may not be sufficient to uniquely determine tilted interlacements. Therefore, it is necessary to

develop a characterization construction for tilted interlacements. This entails proposing conditions that

are sufficient to characterize the model as tilted interlacements. The main difficulty arises from the fact

that the characterization depends on both the scale and the tilted density profile.

Another challenging problem is the tilting of interlacements in the downward direction. As men-

tioned in Remark 5.5 of Sznitman (2019b), when investigating large deviation problems, difficulties

arise in estimating the rate function if the optimal strategy involves downward tilting, particularly when

the optimal strategy cannot be explicitly solved. In our specific case, this challenge does not arise since

the optimal strategy is relatively simple. However, to address the general situation, one must roll up

sleeves and overcome this difficulty.

We now discuss whether independence between different interlacements is preserved when condi-

tioning on rare events. We speculate that for fairly general events, these interlacements should still

behave independently, at least at the macroscopic level. Our Theorem 1.2 implies that in an appropriate

sense, one of them will behave normally while the other will avoid the box, which partially confirms

this speculation. However, to provide a precise statement, it is necessary to clarify in what sense these

discrete objects are approximately independent.

Finally, let us delve into the entropic repulsion phenomena for the trace of simple random walks.

To the best of our knowledge, few rigorous results in this direction have been established, and even

the rate functions are unknown in many cases. A classical question regarding the large deviations of

simple random walks is what happens when the range of a simple random walk is much smaller than

its expectation over a certain time interval. The large deviation rate function is obtained in Phetpradap

(2011), extending a similar result for Brownian motions in van den Berg, Bolthausen and den Hollan-

der (2001). The optimal strategy, referred to as the “Swiss cheese” in van den Berg, Bolthausen and

den Hollander (2001), depicts the random walk’s range resembling Swiss cheese (or more precisely,

Emmentaler cheese), covering a positive proportion of points in space but not all. We speculate that

this “Swiss cheese” strategy actually forces simple random walks to behave similarly to tilted interlace-

ments locally around some point; see Asselah and Schapira (2017, 2020) for recent developments in

this area.

This work is organized as follows. In Section 2, we introduce our notation and setup, and recall a

few useful results. Section 3 is dedicated to the coarse-graining strategy, which is a necessary step in

obtaining the upper bound in Theorem 1.1. We discuss the constraint problem and Brownian capacities

in Section 4. In Section 5, we conclude the proof of both theorems. In Section 6, we provide a sketch

of an alternative approach (which can apply to the u1 = u2 case).

Finally, let us explain our convention concerning constants. Constants like c,c′,C,C ′ may change

from place to place, while constants with subscripts like c1,C1 remain fixed throughout the article. All

constants may implicitly depend on the dimension d. The dependence on additional variables will be

indicated at the first occurrence of each constant.
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2. Notation and some useful results

In this section, we review the definitions of simple random walks, Brownian motions, and random

interlacements, and collect some useful results about capacities and local times.

We begin with some notation. We consider Zd and Rd with d ≥ 3. For a real value a, we define

a+ = max{a,0} and use 
a� to denote the largest integer not greater than a. Let | · |1 (resp. | · |∞)

denote the l1-norms (resp. l∞-norms) in both Zd and Rd . In what follows, we will add a tilde “˜”

above objects in the continuum to distinguish them from their discrete counterparts. We write B(x,r) =
{y ∈ Zd : |x − y |∞ ≤ r} for the closed l∞-ball in Zd centered at x and of radius r . Given A ⊂ Zd , we

write ∂iA = {x ∈ A : ∃y ∈ Zd\A, |x − y |1 = 1} for its inner boundary and ∂A = ∂i(Zd\A) for its outer

boundary. Let B̃(x,r) = {y ∈ Rd : |x − y |∞ ≤ r} denote the closed l∞-ball in Rd centered at x and of

radius r . Let Ã(x,r,R) = {y ∈ Rd : r < |x − y |∞ ≤ R} denote the l∞-annulus in Rd centered at x, with

inner radius r and outer radius R. Given A ⊂ Rd , we write ∂A for its boundary. Here we slightly abuse

the notation | · |1, | · |∞ and ∂ in Zd and Rd (and hopefully they will be clear in the context). For A ⊂ Zd ,

let Ã denote its Rd-filling (which contains all the l∞-balls centered at the vertices in A with radius 1/2

in Rd). For a set B in Rd and any integer N ≥ 1, let BN stand for the blow-up of B in the discrete:

BN = {x ∈ Zd; infy∈NB |x − y |∞ ≤ 1}.
We turn to random walks on Zd . Let Px denote the law of a continuous-time simple random walk

{Xt }t≥0 on Zd with jump rate 1 started at a vertex x. Given A ⊂⊂ Zd , let HA = inf{t ≥ 0 : Xt ∈ A}
denote the first entrance time and TA = inf{t ≥ 0 : Xt � A} denote the first exit time. Let ξ1 be the

first jumping time and ĤA = inf{t > ξ1 : Xt ∈ A} be the first hitting time. We write eA(x) = Px[ĤA =

∞]1{x ∈ K} for the equilibrium measure of A, cap(A) =∑
x eA(x) for the discrete capacity of A, and

ēA(x) = eA(x)/cap(A) for the normalized equilibrium measure. We write g(x, y) = Ex

∫ ∞
0

1{Xt = y}dt
for the Green’s function of the simple random walk.

We now briefly review Brownian motions on Rd and introduce relevant notation. Let Wx denote the

law of a standard Brownian motion {Wt }t≥0 in Rd started at a point x. Let B denote the collection of

all Fσ sets in Rd , i.e., the set that can be written as the increasing limit of compact sets. It is known

that B contains all open sets and closed sets. Moreover, B is closed under countable unions and finite

intersections. In this paper, all the sets we consider in Rd are bounded Fσ sets. We use | · | to denote the

volume (d-dimensional Lebesgue measure) of these sets. Given A ∈ B, let H̃A = inf{t ≥ 0 : Wt ∈ A}
denote the first entrance time of A and T̃A = inf{t ≥ 0 : Wt � A} denote the first exit time from A. We

write ẽA for the equilibrium measure of A and c̃ap(A) for the Brownian capacity of A. We write g̃(x, y)
for the Green’s function of the standard Brownian motion. One can refer to Section 3.1 of Port and

Stone (1978) for their precise definitions and basic properties. We call a set regular if its closure and

interior have the same Brownian capacity. We call a set A ⊂ Rd nice if it is the union of a finite number

of closed boxes.

From now on, we will use N > 100d to denote the side length of the macroscopic box, and L = L(N)
to denote the size of the mesoscopic boxes, also known as L-boxes, which will be defined below. For a

given large N , we choose L as

L =
⌊
N2/d(log N)1/d

⌋
. (2.1)

Let

0 < δ < 0.1 (2.2)

be a constant that governs all the errors and approaches zero towards the end. We also select a large

integer K = K(δ) > 100 (the choice of K is provided in (5.1)).

An l∞-ball B(x,r) in Zd is called an L-box if r = L, x ∈ (2K + 1)LZd and B(x,r) ⊂ B(0,N). For

x ∈ (2K + 1)LZd , we use Bx to denote B(x,L) and Dx to denote B(x,KL). The sets Dx are pairwise



On large deviations and intersection of random interlacements 2107

disjoint. We denote the union of a collection of L-boxes by C and use Card(C) to denote the number

of L-boxes it contains (note that this differs from the common usage of Card(·)). We consider C as a

subset of Zd and denote its Rd-filling by C̃.

The following lemma, collected from Proposition 2.5 in Sznitman (2017), states that when K is large

(equivalently, when L-boxes are far apart from each other), the relative equilibrium measure defined on

C is close to the equilibrium measure defined on each L-box. The proof is omitted.

Lemma 2.1. If L ≥ 1 and K ≥ c1(δ), then for any C which is the union of a collection of L-boxes, any
L-box B contained in C, and any x ∈ B,

(1 − δ)ēB(x) ≤
eC(x)
eC(B)

≤ (1 + δ)ēB(x),

where eC(B) =
∑

y∈B eC(y).

The next lemma, collected from Proposition A.1 in Nitzschner and Sznitman (2020), states that the

discrete capacity of C is close to d fraction of the Brownian capacity of its Rd-filling C̃ when both L
(equivalently, N) and K are large. The proof is also omitted.

Lemma 2.2. If L ≥ c2(δ) and K ≥ c3(δ), then for any C which is the union of a collection of L-boxes
and its Rd-filling C̃

(1 − δ)c̃ap(C̃) ≤ d · cap(C) ≤ (1 + δ)c̃ap(C̃).

The next lemma is a classical result that relates the Brownian capacity and the discrete capacity of

its blow-up.

Lemma 2.3. Suppose A is a bounded regular set in Rd. Then, we have

lim
N→∞

1

Nd−2
cap(AN ) =

1

d
c̃ap(A).

Proof. The lemma can be derived for nice sets from variational characterizations of both types of

capacity. The details can be found in Bolthausen and Deuschel (1993), specifically in Equation (2.4)

and Lemma 2.1.

To extend this result to arbitrary regular sets, we can express the interior of any set A as an increasing

limit of nice sets and the closure of A as a decreasing limit of nice sets. By using Proposition 1.13 in

Chapter 3 of Port and Stone (1978) and the fact that A is regular, this approximation yields the value of

c̃ap(A).

In the remainder of this section, we provide a brief introduction to the (continuous-time) random

interlacements on Zd . We refer the reader to Drewitz, Ráth and Sapozhnikov (2014) for a detailed

description of the random interlacements model, and to e.g. Li and Sznitman (2014) for the construction

of the continuous-time interlacements.

Let W denote the space of continuous-time doubly-infinite l1-neighbor paths in Zd , and let W∗

denote the quotient space of W modulo time shift. We use π to denote the quotient map from W to W∗.

We now define a Poisson point measure µ with intensity u on W∗, governed by the probability measure
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P, characterized by the following property. Given A ⊂⊂ Zd , let W∗
A

denote the paths in W∗ that pass

through A, and let µA denote the restriction of µ to W∗
A

. Then, µA has the same law as

µA =

NA∑
i=1

δπ(X i ). (2.3)

Here, NA ∼ Poisson(u · cap(A)) is a Poisson random variable with mean u · cap(A). Conditional on NA,

NA doubly-infinite paths {X i
t }t∈R on Zd are sampled independently with the same law. Specifically, for

each 1 ≤ i ≤ NA, X i
0

is a random point in A sampled according to the normalized equilibrium measure

ēA. Given X i
0
, the process {X i

t }t≥0 evolves as a continuous-time simple random walk starting from X i
0
,

and the process {X i
t }t<0 is another independent continuous-time simple random walk starting from X i

0

conditioned on ξ1 = 0 and ĤA =∞.

The interlacement set at level u, denoted by Iu , is defined as the set of vertices occupied by at least

one of these paths. Equation (2.3) gives the law of Iu ∩ A for all A ⊂⊂ Zd , and from this, the law of

Iu can be obtained. An important property is that

P[Iu ∩ A =∅] = P[NA = 0] = exp(−u · cap(A)). (2.4)

For x ∈ Zd , let Lu(x) denote the local time of Iu at the vertex x. Precise definitions can be found in

Equation (2.15) of Chiarini and Nitzschner (2020b). Given two square integrable functions f ,h : Zd →
R, we use 〈 f ,h〉 = ∑

x∈Zd f (x)h(x) to denote their inner product. The following lemma provides the

Laplace transform of 〈Lu,eA〉, which is useful for bounding the local time of interlacements.

Lemma 2.4. For A ⊂⊂ Zd and s < 1,

E
[
es 〈L

u ,eA 〉
]
= exp

(
us · cap(A)

1 − s

)
.

Here E denotes the expectation with respect to P.

Proof. For |s | < 1, this formula can be obtained by setting V(x) = s · eA(x) in Equation (2.40) of

Sznitman (2017). The result can be extended to s ∈ (−∞,−1] through analytic continuation.

3. The coarse-graining procedure

In this section, we introduce the coarse-graining procedure introduced in Sznitman (2017) as well as

the coupling of excursions introduced in Comets et al. (2013);Popov and Teixeira (2015).

First, we define good boxes which are important objects in the coarse-graining arguments. Recall that

δ, as defined in (2.2), is a global constant that eventually goes to zero. Fixing random interlacements

Iu , we will call an L-box (defined below (2.2)) Bx δ-good if either of the following two conditions

holds. In particular, we will call this box Type-I δ-good if

max
z∈∂iBx

Pz

[
HIu∩Bx

=∞
]
< δ, (3.1)

Type-II δ-good if

〈Lu, ēBx 〉 < δu, (3.2)
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and δ-bad otherwise. (Here, we assume that H∅ = ∞.) The definition is similar in spirit to (3.11)-

(3.13) in Sznitman (2017). Roughly speaking, a δ-good box is a box in which the behavior of random

interlacements matches the density profile (which is not necessarily equal to the intensity parameter).

For an L-box, if the average value of Lu is not too small, then the random interlacements will occupy

a positive fraction of points, and thus (3.1) holds with high probability; otherwise, if the average value

of Lu in the box is small, then (3.2) holds with high probability instead.

For ρ > 0, we define the event that most L-boxes are δ-good as

A := {there are at most ρ(N/L)d δ-bad boxes in B(0,N)}. (3.3)

In the next proposition, we will prove that for any ρ > 0, with overwhelmingly high probability, event

A occurs.

Proposition 3.1. For all δ, ρ > 0 and K ≥ 100, we have:

lim
N→∞

1

Nd−2
logP[Ac] = −∞. (3.4)

Before giving the proof, we need to make some preparations. We introduce the notion of excursions

and provide a way to couple excursions of interlacements in different boxes with independent random

walk excursions. This coupling is based on the “soft local times” technique first introduced in Popov

and Teixeira (2015), and the version we will use is from Section 2 of Comets et al. (2013).

Given an L-box centered at x ∈ (2K + 1)LZd , we decompose the paths of interlacements into excur-

sions from ∂iBx to ∂Dx by considering the hitting time of Bx and the exit time of Dx . One path may

produce multiple excursions. We denote the total number of excursions from ∂iBx to ∂Dx in Iu as Nu ,

and we denote these excursions as Y1, . . . ,Y Nu . See, for example, (2.29), (2.30), (2.41), and (2.42) in

Sznitman (2017) for precise definitions. These excursions depend on the vertex x, but we omit it for

simplicity. A priori, these excursions Y1, . . . ,Y Nu and Nu are not independent for different x’s. There-

fore, we cannot directly use them to estimate P[Ac]. However, we can couple them with independent

excursions and use these independent excursions to estimate P[Ac].
We define Θ to be

Θ =Θ(L) = cap(Bx). (3.5)

Let Q denote the law of a family of Poisson point processes indexed by x ∈ (2K +1)LZd whose marked

points are excursions in Zd . These processes are independent for different x’s. Given x ∈ (2K + 1)LZd ,

let (X i)i≥1 be i.i.d. excursions from ∂iBx to ∂Dx with the law of a continuous-time simple random

walk started from a point in ∂iBx sampled according to ēBx , and stopped upon leaving the box Dx .

(These excursions and the counters n(t) defined below all depend on x, but we omit it in the notation

for simplicity.) We let the Poisson process have intensity Θ. Let n(t) denote the number of points

(i.e., excursions) of the Poisson process that appear in the time interval [0, t]. Then, for any 0 < a < b,

n(b) − n(a) follows a Poisson distribution with mean (b − a)Θ. An important feature of this family is

that (X i)i≥1 and n(t) are independent for different x’s.

We will use the coupling described in Section 2 of Comets et al. (2013). We can construct both the

law of P and Q from a single realization of the Poisson point process, as done in Comets et al. (2013).

With abuse of notation, we will use Q to govern the coupling of P and Q. Now we explain how we

modify their setup. We set Aj = Bx and A′
j
= Dx ∪ ∂Dx . The law of P will be sampled in the same

way as their first process (Z1,Z2, . . .), and the law of Q will be sampled in the same way as their second

process (Z̃ (j)
1
, Z̃ (j)

2
, . . .). We take H̃j(z) = ēBx (z) for z ∈ ∂iBx . In their construction, they choose the

intensity to be 1, but we multiply the intensity by a factor of Θ. The following lemma will correspond

to their Equation (2.5):
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Lemma 3.2. For L ≥ 1 and K ≥ 100, there exists a > 1 such that for all z ∈ ∂iBx and y ∈ ∪x∂Dx

1
√

a
<

Py

[
HBx = Hz |H∪xBx = HBx <∞

]
ēBx (z)

<
√

a, (3.6)

where ∪x denoted the union over x ∈ (2K + 1)LZd .

Proof. This statement follows from (2.25) in Proposition 2.5 of Sznitman (2017) by taking A = Bx and

B = ∪xBx in the proposition. The original argument works for K sufficiently large, but one can extend

it to all K > 100 by enlarging the constant a.

We have the following property for the coupling. The proof follows verbatim that of Lemma 2.1 in

Comets et al. (2013), and thus we omit here. The only difference is that we need to replace (1 + v) in

their Equation (2.7) with a.

Lemma 3.3. We have the following two properties for the coupling of P and Q:

• If n
(
δu
a2

)
> δu

a3 Θ and Nu ≤ δu
a3 Θ, then we have

{Y1, . . . ,Y Nu } ⊂ {X1, . . . ,Xn(δu/a)}. (3.7)

• If n
(
δu
a4

)
< δu

a3 Θ and Nu ≥ δu
a3 Θ, then we have

{Y1, . . . ,Y Nu } ⊃ {X1, . . . ,Xn(δu/a5)}. (3.8)

We are now ready to prove Proposition 3.1.

Proof of Proposition 3.1. For each L-box Bx , let A1
x denote the event that all of the following in-

equalities hold:

n
( δu

a

)
<
δuΘ
√

a
; n

( δu
a2

)
>
δu

a3
Θ ; n

( δu
a4

)
<
δu

a3
Θ ; n

( δu
a5

)
>
δu

a6
Θ. (3.9)

Since E[n(t)] = Θt, we can apply standard tail bounds on Poisson random variables and use the fact

that Θ ≥ cLd−2 to obtain

Q
[
(A1

x)c
]
≤ exp

(
− cLd−2

)
. (3.10)

If the event A1
x occurs, we can deduce from (3.7) and (3.8) that when Nu ≤ δu

a3 Θ,

{Y1,Y2, ...,Y Nu } ⊂ {X1,X2, ...,Xδu/a} ⊂ {X1,X2, ...,XR}, (3.11)

while when Nu >
δu
a3 Θ,

{Y1,Y2, ...,Y Nu } ⊃ {X1,X2, ...,Xn(δu/a5)} ⊃ {X1,X2, ...,XM }, (3.12)

where we denote R = 
δuΘ/
√

a� and M = 
δuΘ/a6�. Let E = (X1 ∪ X2 ∪ . . .∪ XM ) ∩ Bx represent the

vertices occupied by the excursions in Bx . We define A2
x as the event

max
z∈∂iBx

Pz[HE =∞] < δ.
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Then, we have:

Q
[
(A2

x)c
]
≤

∑
z∈∂iBx

Q
[
Pz [HE =∞] ≥ δ

]
≤

∑
z∈∂iBx

1

δ
Q ⊗ Pz [HE =∞]

=

∑
z∈∂iBx

1

δ
Q ⊗ Pz [Z ∩ E =∅] =

∑
z∈∂iBx

1

δ
Pz

[
Q[Z ∩ X1 ∩ Bx =∅]M

]

≤ CLd−1 max
z∈∂iBx

Pz

[
Q[Z ∩ X1 ∩ Bx =∅]cLd−2 ]

.

Here, Q ⊗ Pz represents the product measure of Q and Pz , and Z denotes the trajectory of the simple

random walk starting from z. The second inequality follows by using Markov’s inequality. The fourth

step is by the independence of X1, . . . ,XM . Finally, the last inequality holds because |∂iBx | ≤ CLd−1

and M ≥ cLd−2. The trajectory Z connects ∂iBx and ∂Dx and thus has a capacity of at least cL/log L if

d = 3, and cL if d ≥ 4. Hence, for given any Z , we have Q[Z ∩ X1 ∩ Bx =∅] ≤ 1− c/log L if d = 3, and

≤ 1 − cL3−d if d ≥ 4. (These bounds follow easily from basic estimates on capacity through Green’s

function; see e.g. (1.3.6), (1.3.12) and (1.3.13) of Drewitz, Ráth and Sapozhnikov (2014).) Therefore,

lim
L→∞

1

log(L) logQ
[
(A2

x)c
]
= −∞. (3.13)

Recall that R = 
δuΘ�. Now we consider first R independent simple random walk excursions

X1, . . . ,XR from ∂iBx to ∂Dx under the law Q and their local times L1(·), . . . ,LR(·). Let A3
x denote the

event that

R∑
i=1

〈Li, ēBx 〉 < δu.

By Lemma 2.1 in Sznitman (2017), 〈Li,eBx 〉 is dominated by an exponential random variable with

mean smaller than one. Therefore, using a standard large deviation estimate and the fact that R ≤
δuΘ/

√
a, we have Q

[
(A3

x)c
]
≤ Ce−cR. Consequently,

lim
L→∞

1

log(L) logQ
[
(A3

x)c
]
= −∞. (3.14)

We observe that

Bx is δ-good on the event A1
x ∩A2

x ∩A3
x . (3.15)

We can prove this by separating into two cases:

• If Nu ≤ δu
a3 Θ, then by (3.11),

Iu ∩ Bx ⊂
(
Y1 ∪ · · · ∪Y Nu

)
∩ Bx ⊂

(
X1 ∪ · · · ∪ XR

)
∩ Bx .

Together with the definition of A3
x , we know that in this case 〈Lu, ēBx 〉 < δu, and so Bx is Type-II

δ-good.

• If Nu >
δu
a3 Θ, then by (3.12),

Iu ∩ Bx ⊃
(
Y1 ∪ · · · ∪Y Nu

)
∩ Bx ⊃

(
X1 ∪ · · · ∪ XM

)
∩ Bx = E .
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Together with the definition of A2
x , we know that in this case maxz∈∂iBx

Pz[HIu∩Bx
=∞] < δ,

and so Bx is Type-I δ-good..

Proposition 3.1 follows from the property (3.15) and the estimates (3.10),(3.13),(3.14). Let U be

the number of L-boxes, and let X1, . . . ,XU be the indicator functions for whether these boxes satisfy

A1
x ∩ A2

x ∩ A3
x . Since A1

x , A2
x , and A3

x are independent among disjoint boxes under the law Q, the

random variables Xi are i.i.d. Fix a large constant A. From (3.10), (3.13), and (3.14), we have that for L
large enough and any 1 ≤ i ≤ U,

Q[Xi = 1] = Q[A1
x ∩A2

x ∩A3
x] ≥ 1 − L−A. (3.16)

Now, fixing t > 0, we have

Q[Ac] ≤ Q
[ U∑
i=1

(1 − Xi) ≥ ρ(N/L)d
]
≤ e−ρt(N/L)d

(
E[et(1−X1)]

)U

≤ e−ρt(N/L)d
(
1 + L−A(et − 1)

)C(N/L)d
.

The first inequality is due to (3.15), and the second inequality follows from Markov’s inequality and

independence. In the last step, we use (3.16) and the fact that U ≤ C(N/L)d . For any B > 0, we choose

t = B log N . By choosing a sufficiently large A, we can ensure that (N/L)d log(1+ L−A(et − 1)) = o(1).
Combined with (2.1), we obtain

lim sup
N→∞

1

Nd−2
logQ[Ac] ≤ −ρB.

Since this holds for arbitrary B > 0, we can send the right-hand side to −∞ and thus finish the proof of

Proposition 3.1.

4. Basic properties of f and Brownian capacity

In this section, we present two results. First, in Proposition 4.1, we analyze the properties of the function

f introduced in the constraint problem (see (1.1) for its definition). Second, we prove Proposition 4.3,

which relates the Brownian capacity of coarse-grained sets to their discrete capacity. This connection

plays a crucial role in the proof of Theorem 1.1.

In the following proposition, we establish several properties of the function f .

Proposition 4.1. The function f defined in (1.1) has the following properties:

(1). f (λ) is decreasing.
(2). f (0) = c̃ap(B̃(0,1)), and f (λ) = 0 for all λ ≥ c̃ap(B̃(0,1)).
(3). f (λ) > c̃ap(B̃(0,1)) − λ, for all 0 < λ < c̃ap(B̃(0,1)).
(4). f (λ) is continuous.

Proof. Claims (1) and (2) follow directly from the definition. We now prove Claim (3). Let λ > 0 be

fixed. For any nice set A with c̃ap(A) ≤ λ, let B = B̃(0,1)\A. We will show that there exists c = c(λ) > 0

such that

c̃ap(B) ≥ c̃ap(B̃(0,1)) − λ + c. (4.1)
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If c̃ap(A) ≤ 1
2
λ, then by the subadditivity property of Brownian capacity (see e.g. Proposition 1.12 in

Chapter 3 of Port and Stone (1978)), we have

c̃ap(B) ≥ c̃ap(B̃(0,1)) − c̃ap(A) ≥ c̃ap(B̃(0,1)) − 1

2
λ. (4.2)

Now, suppose c̃ap(A) > 1
2
λ. By subadditivity and the fact that c̃ap(A) ≤ λ, we have

c̃ap(B) ≥ c̃ap(B̃(0,1)) − c̃ap(A) ≥ c̃ap(B̃(0,1)) − λ.

By Theorem 1.10 in Chapter 3 of Port and Stone (1978), we have

c̃ap(A) + c̃ap(B) =
∫
x∈∂B̃(0,2)

(
Wx[H̃A <∞] +Wx[H̃B <∞]

)
ẽ
B̃(0,2)(dx)

=

∫
x∈∂B̃(0,2)

(
Wx[H̃A∪B <∞] +Wx[H̃A <∞, H̃B <∞]

)
ẽ
B̃(0,2)(dx)

≥ c̃ap(B̃(0,1)) + c.

(4.3)

In the second step, we use the fact that A ∩ B =∅. In the last step, we use Theorem 1.10 in Chapter 3

of Port and Stone (1978) again and the fact that for any x ∈ B̃(0,2), we have Wx[H̃A <∞, H̃B <∞] > c
for some c = c(λ) > 0. This is because Wx[H̃A < ∞] =

∫
g̃(x, y)dẽA(dy) ≥

∫
cdẽA(dy) = cc̃ap(A) ≥ c

(see e.g., Theorem 2.1 in Chapter 3 of Port and Stone (1978)), and similarly Wx[H̃B <∞] ≥ c. The fact

Wx[H̃A <∞, H̃B <∞] follows from these two inequalities and the strong Markov property. The desired

inequality (4.1) follows from (4.2) and (4.3), which implies Claim (3).

Next, we will prove Claim (4). Since f is decreasing, it suffices to show that for any ∆ > 0, there

exists ε = ε(∆) > 0 such that for all λ ≥ 0, we have

f (λ) ≥ f (λ − ε) − ∆. (4.4)

Here we let f (λ) = c̃ap(B̃(0,1)) when λ < 0. Fix ∆ > 0 and choose a constant ε > 0 to be determined

later. For any λ ≥ 0, according to the definition of f , there exists a nice set A such that

c̃ap(A) ≤ λ and c̃ap(B̃(0,1)\A) ≤ f (λ) + ∆
2
.

In order to prove (4.4), it suffices to find a nice set A′ ⊂ A such that

c̃ap(A′) ≤ (λ − ε)+ and c̃ap(B̃(0,1)\A′) ≤ f (λ) + ∆. (4.5)

If f (λ) + ∆ ≥ c̃ap(B̃(0,1)), we can take A′
= ∅ and then (4.5) holds. From now on, we assume that

f (λ) + ∆ < c̃ap(B̃(0,1)). There exists a large integer N = N(∆) such that

(a). For all l∞-norm boxes E with side length 1
N

, we have c̃ap(E) ≤ ∆
2

.

(b). Suppose a set K ⊂ Rd satisfies |K∩E | ≥ 1
2
|E | for all l∞-norm boxes E with side length 1

N
on the

boundary of B̃(0,1) (i.e. E ⊂ B̃(0,1) and E ∩∂B̃(0,1) �∅). Then, we have c̃ap(K) ≥ c̃ap(B̃(0,1))−
∆

2
.

Claim (a) follows form the scaling property of c̃ap(·). We will now prove Claim (b). Consider a set K
that satisfies the condition stated in Claim (b). By Theorem 1.10 of Chapter 3 in Port and Stone (1978),
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we have

c̃ap(K) =
∫
x∈∂B̃(0,1)

Wx[H̃K <∞]ẽ
B̃(0,1)(dx) and c̃ap(B̃(0,1)) =

∫
x∈∂B̃(0,1)

ẽ
B̃(0,1)(dx).

Therefore, it suffices to show that for N large enough, we have

inf
x∈∂B̃(0,1)

Wx[HK <∞] ≥ 1 − ∆

2c̃ap(B̃(0,1))
. (4.6)

This follows from similar arguments to Wiener’s test, as described in Theorem 3.3 of Chapter 3 in Port

and Stone (1978). Recall that Ã(x,r,R) is the l∞-annulus in Rd centered at x and with inner radius r
and outer radius R, as defined in Section 2. Fix x ∈ ∂B̃(0,1). For {Wt }t≥0 sampled from Wx and 1 ≤ i ≤

log2 N�, we define σi := inf{t > 0 : Wt ∈ ∂B̃(x, 3

2
· 2i−1

N
)}, and τi := inf{t > σi : Wt � ∂ Ã(x, 2i−1

N
, 2

i

N
)}.

Then, we have:

Wx[HK =∞] ≤ Wx[Wt � K ∀σi ≤ t ≤ τi,1 ≤ i ≤ 
log2 N�].

By definition, the intervals [σi, τi] are disjoint from each other. By applying the strong Markov property

subsequently to the stopping times σi for 1 ≤ i ≤ 
log2 N�, we obtain:

Wx[HK =∞] ≤

log2 N �∏

i=1

sup

z∈∂B̃(x, 3
2
· 2i−1

N )}
Wz[Wt � K ∀0 < t ≤ τ′i ].

where τ′
i

is the first leaving time of Ã(x, 2i−1

N
, 2

i

N
). Each term in the product can be bounded by 1− c for

some c > 0 independent of i and x. This is because the Brownian motion will hit Ei := Ã(x, 2i−1

N
, 2

i

N
) ∩

{w ∈ B̃(0,1) : ∃y ∈ ∂B̃(0,1), |w− y |∞ ≤ 1
N
} with positive probability (since heuristically Ei is a (d −1)-

dimensional object), and K occupies at least half of the volume of Ei by condition (b). Therefore,

Wx[HK =∞] ≤ (1 − c) 
log2 N � .

By enlarging the valued of N , we obtain the inequality (4.6).

We choose a sufficiently large N such that Claims (a) and (b) hold. Since c̃ap(B̃(0,1)\A) ≤ f (λ)+ ∆
2
<

c̃ap(B̃(0,1))− ∆
2

, according to Claim (b), there exists a box E on the boundary of B̃(0,1) with side length
1
N

such that

|(B̃(0,1)\A) ∩ E | < 1

2
|E |,

and therefore, |A ∩ E | > 1
2
|E |. Let A′ be the closure of A\E , which remains a nice set. Then, using

Claim (a), we have

c̃ap(B̃(0,1)\A′) ≤ c̃ap(B̃(0,1)\A) + c̃ap(E) ≤ f (λ) + ∆

and there exists ε = ε(∆) > 0 such that

c̃ap(A) =
∫
x∈∂B̃(0,2)

Wx[H̃A <∞]ẽ
B̃(0,2)(dx)

≥
∫
x∈∂B̃(0,2)

(
Wx[H̃A′ <∞] +Wx[H̃A∩E <∞, H̃A′ =∞]

)
ẽ
B̃(0,2)(dx) ≥ c̃ap(A′) + ε .
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The first equation is from Theorem 1.10 in the Chapter 3 of Port and Stone (1978). The last inequality

holds because the Brownian motion started from ∂B̃(0,2) has a (uniform) positive probability of enter-

ing B̃(0,1) via ∂E ∩ B̃(0,1), then hitting the set A ∩ E (since |A ∩ E ≥ 1
2
|E |), and finally escaping to

infinity without ever hitting A′. In other words, there exists a constant c(∆) > 0 such that

inf
x∈∂B̃(0,2)

Wx[H̃A∩E <∞, H̃A′ =∞] > c(∆) ,

allowing us to choose ε as c(∆) · c̃ap(B̃(0,1)). Therefore, A′ satisfies (4.5), and Claim (4) holds.

Remark 4.2. By the continuity of f , the infimum in (1.1) can also be taken over all sets in Rd with

C1 boundaries. Finding the minimizer set A (if it exists, which we believe to be the case) in (1.1)

is an interesting question in itself. To the best of the authors’ knowledge, there is neither a quick

“back-of-the-envelope” solution nor a readily available answer in the literature. We hope that experts

in variational analysis could provide insights on this matter. It is equally interesting to consider more

general sets rather than just B̃(0,1). It is worth noting that, except in very special cases (e.g., the union

of two touching balls with a specifically chosen λ), there seems to be no trivial solution either.

We now turn to the Brownian capacity of the coarse-grained sets. The following proposition provides

a comparison between the Brownian capacity and the discrete capacity of these sets.

Proposition 4.3. Given δ > 0 and K ≥ 1, there exist constants c4(δ,K) and c5(δ,K) such that if L >
c4(δ,K), ρ < c5(δ,K), and t > 0, then for any C1 and C2, which are two disjoint collections of L-
boxes in B(0,N) satisfying Card(C1) + Card(C2) ≥ (1 − ρ)

(
2N

(2K+1)L
) d and c̃ap(C̃1) ≤ tNd−2, we have

the following inequality:

c̃ap(C̃2) ≥ ( f (t) − δ)Nd−2. (4.7)

Proof. Let ε = ε(δ,K) > 0 be a constant to be chosen. Similar to (4.6), we can choose N(ε) and ρ(ε)
such that for all N ≥ N(ε) and ρ ≤ ρ(ε), the following holds:

For all x ∈ B̃(0,N), either Wx[H̃C̃1
=∞] < ε or Wx[H̃C̃2

=∞] < ε. (4.8)

(Fix x ∈ B̃(0,N). The idea is to consider r = 
log2( N
2KL

)� layers of sets around x. At each layer, either

C̃1 or C̃2 will occupy a positive fraction of space, making it visible to a simple random walk. By

combining this observation with the strong Markov property, we can derive the desired result.)

Now we define two sets C̃′
1

and C̃′
2

as follows:

C̃′
1 := C̃1 ∪ {x ∈ B̃(0,N) : Wx[H̃C̃1

=∞] < ε} ; C̃′
2 := C̃2 ∪ {x ∈ B̃(0,N) : Wx[H̃C̃2

=∞] < ε}.
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By (4.8), we have C̃′
1
∪ C̃′

2
= B̃(0,N). According to Theorem 1.10 in Chapter 3 of Port and Stone (1978),

c̃ap(C̃′
1) =

∫
x∈∂B̃(0,N )

Wx[H̃C̃′
1

<∞]ẽ
B̃(0,N )(dx)

=

∫
x∈∂B̃(0,N )

(
Wx[H̃C̃1

<∞] +Wx[H̃C̃′
1

<∞, H̃C̃1
=∞]

)
ẽ
B̃(0,N )(dx)

≤
∫
x∈∂B̃(0,N )

���
Wx[H̃C̃1

<∞] +Wx[H̃C̃′
1

<∞] sup
y∈C̃′

1

Wy[H̃C̃1
=∞]���

ẽ
B̃(0,N )(dx)

≤ c̃ap(C̃1) + ε · c̃ap(C̃′
1) ≤ tNd−2

+ ε · c̃ap(B̃(0,N)).

The second equation follows from the fact that C̃1 ⊂ C̃′
1
. The third step is a consequence of the strong

Markov property. Finally, the last two steps follow from the construction of C̃′
1

and the assumption

c̃ap(C̃1) ≤ tNd−2. Similarly, we can show that

c̃ap(C̃′
2) ≤ c̃ap(C̃2) + ε · c̃ap(B̃(0,N)).

By choosing a sufficiently small ε , Equation (4.7) follows from the above two inequalities and the

continuity of f as shown in Proposition 4.1.

5. Proof of Theorems 1.1 and 1.2

In this section, we will prove Theorems 1.1 and 1.2. The lower bound of Theorem 1.1 can be derived

from the definition of f because we can force the interlacements to stay within the blow-up of the

minimizer of the constraint problem in (1.1), and the probability matches the large deviation rate. For

the upper bound, we need to use the coarse-graining procedure introduced in Section 3 and enumerate

all possible collections of type-II δ-good boxes. We will consider a quantity H defined in (5.2) which

encapsulates the information of the local time in type-II δ-good boxes. The upper bound then follows

from controls on H, particularly the Laplace transform in Lemma 2.4. Theorem 1.2 follows as a direct

corollary of Theorem 1.1.

We begin with the lower bound of Theorem 1.1.

Proof of the lower bound in Theorem 1.1. Fix λ > 0 and α > f (dλ). By Claim (4) in Proposition 4.1,

we can choose a nice set A such that

c̃ap(A) < dλ and c̃ap(B̃(0,1)\A) < α.

Let B = B̃(0,1)\A. Recall that AN and BN stand for the blow-up of A and B, respectively. Then,

AN ∪ BN ⊃ B(0,N). By Lemma 2.3, we have

lim
N→∞

1

Nd−2
cap(AN ) =

1

d
c̃ap(A) < λ and lim

N→∞
1

Nd−2
cap(BN ) =

1

d
c̃ap(B) < α

d
.

So,

lim inf
N→∞

1

Nd−2
logP[cap(B(0,N) ∩ Iu) < λNd−2] ≥ lim inf

N→∞
1

Nd−2
logP[Iu ∩ B(0,N) ⊂ AN ]

≥ lim inf
N→∞

1

Nd−2
logP[Iu ∩ BN =∅] = lim inf

N→∞
1

Nd−2
log [exp(−u · cap(BN ))] > −

uα

d
.
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The third step follows from (2.4). This holds for arbitrary α > f (dλ), and thus

lim inf
N→∞

1

Nd−2
logP[cap(B(0,N) ∩ Iu) < λNd−2] ≥ −u

d
f (dλ).

This verifies the lower bound of Theorem 1.1.

We now turn to the upper bound. Fix 0 < δ < 1. Pick a sufficiently large N (and recall (2.1) for its

relation to L), K and some ρ such that

K >max{100,c1(δ),c3(δ)}, L >max{100d,c2(δ),c4(δ,K)}, and 0 < ρ < c5(δ,K). (5.1)

Let A ′ denote the event that there are at most ρ(2N/(2K + 1)/L)d δ-bad boxes in B(0,N). Then, by

applying Proposition 3.1 with ρ = ρ(2/(2K + 1))d , the event A ′ happens with overwhelmingly high

probability. We write

D =
{
cap(Iu ∩ B(0,N)) < λNd−2

}
.

We now define a quantity that is abnormally small under the event A ′ ∩D. Let C1 denote the union

of Type-I δ-good boxes, and C2 denote the union of Type-II δ-good boxes (recall (3.1) and (3.2) for the

definition). We define H as

H = 〈Lu,eC2
〉. (5.2)

Lemma 5.1. On the event A ′ ∩D, we have

cap(C2) ≥
1 − δ

d

(
f

(
dλ

1 − 2δ

)
− δ

)
Nd−2 and H < 2uδ · cap(C2). (5.3)

Proof. Suppose that the events A ′ and D both happen. Define a set S as

S = ∪Bx ∈C1
(Iu ∩ Bx).

Then, we have

cap(C1)
∗
=

∑
x∈∂iB(0,N )

eB(0,N )(x)Px[HC1
<∞]

≤
∑

x∈∂iB(0,N )
eB(0,N )(x)

Px[HS <∞]
minBy ∈C1 ,z∈∂iBy

Pz[HS <∞] (by strong Markov property)

(3.1)
≤

∑
x∈∂iB(0,N )

eB(0,N )(x)
1

1 − δPx[HS <∞] = 1

1 − δ cap(S)
∗∗
≤ λ

1 − δNd−2.

where we use Proposition 5.5 in Drewitz, Ráth and Sapozhnikov (2014) for the equality marked with ∗
and the definition of the event D for the inequality marked with ∗∗. We denote C̃1 and C̃2 as Rd-fillings

of C1 and C2, respectively. By Lemma 2.2 and the fact that L > c2(δ), K > c3(δ), we have

c̃ap(C̃1) ≤
d

1 − δ cap(C1) ≤
dλ

1 − 2δ
Nd−2.
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By A ′, we have that Card(C1)+Card(C2) ≥ (1− ρ)
(

2N
(2K+1)L

) d
. Hence, by Proposition 4.3 and the fact

that L > c4(δ,K), ρ < c5(δ,K), we have

c̃ap(C̃2) ≥
(

f

(
dλ

1 − 2δ

)
− δ

)
Nd−2.

Thus, by Lemma 2.2 again,

cap(C2) ≥
1 − δ

d
c̃ap(C̃2) ≥

1 − δ
d

(
f

(
dλ

1 − 2δ

)
− δ

)
Nd−2. (5.4)

We now turn to the upper bound of H. By Lemma 2.1 and K ≥ c1(δ), we have (here we let B denote

the unique L-box that contains x)

H =

∑
x∈C2

Lu(x)eC2
(x) ≤

∑
x∈C2

Lu(x)(1 + δ)ēB(x)eC2
(B)

= (1 + δ)
∑
B∈C2

eC2
(B)

∑
x∈B

Lu(x)ēB(x)

(3.2)
< (1 + δ)

∑
B∈C2

eC2
(B)δu ≤ 2δu · cap(C2).

This finishes the proof.

We now prove the upper bound of Theorem 1.1 and thus complete its proof.

Proof of the upper bound in Theorem 1.1. By Lemma 2.4, for each choice of C2,

P[H < 2δucap(C2)] ≤ e2u
√
δcap(C2)E

[
e
− 1√

δ
H

]
= exp

(
u

[
2
√
δ − 1

1 +
√
δ

]
cap(C2)

)
. (5.5)

This together with (5.3) gives

P[A ′ ∩D] ≤
∑
E

P [A ′ ∩D ∩ {C2 = E}]

≤ 2

(
2N

(2K+1)L

) d
exp

(
u

[
2
√
δ − 1

1 +
√
δ

]
1 − δ

d

(
f

(
dλ

1 − 2δ

)
− δ

)
Nd−2

)
.

where in the first inequality, we sum over all possible choices of C2. We know from (2.1) that (N/L)d =
o(Nd−2). This, combined with Proposition 3.1, shows that

lim sup
N→∞

1

Nd−2
logP[D] ≤ u

[
2
√
δ − 1

1 +
√
δ

]
1 − δ

d

(
f

(
dλ

1 − 2δ

)
− δ

)
.

Let δ tend to zero. By Claim (4) in Proposition 4.1, i.e., the continuity of f , we have

lim sup
N→∞

1

Nd−2
logP[D] ≤ −u

d
f (dλ).

Together with the lower bound, this completes the proof of Theorem 1.1.
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Proof of Theorem 1.2. We first prove (1.3). Suppose that u1 ≥ u2. By using (2.4) and Lemma 2.2, we

have

lim inf
N→∞

1

Nd−2
logP [I1 ∩I2 ∩ B(0,N) =∅]

≥ lim inf
N→∞

1

Nd−2
logP [I2 ∩ B(0,N) =∅] = −u2

d
c̃ap(B̃(0,1)).

Using the observation (1.6), we have

lim sup
N→∞

1

Nd−2
logP [I1 ∩I2 ∩ B(0,N) =∅] = lim sup

N→∞

1

Nd−2
logE

[
e−u1cap(I2∩B(0,N ))

]

≤ sup
λ≥0

lim sup
N→∞

1

Nd−2
logE

[
e−u1λN

d−2 · 1{cap(I2 ∩ B(0,N)) < λNd−2}
]

= sup
λ≥0

[
− u1λ −

u2

d
f (dλ)

]
= −u2

d
c̃ap(B̃(0,1)).

In the second line, we decompose the possible values of cap(I2 ∩ B(0,N)) into intervals of width of

order Nd−2 and apply Theorem 1.1 and the continuity of f (as shown in Claim (4) of Proposition 4.1).

The last equation is by Claim (3) in Proposition 4.1. By combining the above two inequalities, we prove

(1.3).

Now we suppose that u1 > u2. Fix ε > 0. Equation (1.3) follows from the following inequality:

lim sup
N→∞

1

Nd−2
logP

[
I1 ∩I2 ∩ B(0,N) =∅,cap(B(0,N) ∩ I1) ≤ (1 − ε)cap(B(0,N))

]
(1.6)
≤ lim sup

N→∞

1

Nd−2
logE

[
e−u2cap(I1∩B(0,N )) · 1{cap(I1 ∩ B(0,N)) ≤ (1 − ε)cap(B(0,N)}

]

≤ sup
0≤λ≤ 1−ε

d
c̃ap(B̃(0,1))

lim sup
N→∞

1

Nd−2
logE

[
e−u2λN

d−2 · 1{cap(I1 ∩ B(0,N)) < λNd−2}
]

= sup
0≤λ≤ 1−ε

d
c̃ap(B̃(0,1))

[
− u2λ −

u1

d
f (dλ)

] ∗
< −u2

d
c̃ap(B̃(0,1)).

(5.6)

In the third line, we decompose the possible values of cap(I1 ∩ B(0,N)) into intervals of width of order

Nd−2 and apply Theorem 1.1, Lemma 2.3 and the continuity of f . The inequality marked with ∗ is

derived from Claim (3) in Proposition 4.1 and the fact that u1 > u2. By combining this with (1.3), we

establish (1.4).

To prove (1.5), it is sufficient to show that

lim sup
N→∞

1

Nd−2
logP

[
I1 ∩I2 ∩ B(0,N) =∅,cap(B(0,N) ∩ I2) ≤ εcap(B(0,N))

]
∗
< −u2

d
c̃ap(B̃(0,1)). (5.7)

We can prove it in a similar fashion as the previous two inequalities, and hence we omit it here.

Remark 5.2. We now discuss the case where u1 = u2. The proof of Claim (1) in Theorem 1.2 still

holds in this case. However, Claim (2) cannot be proved in the same fashion since the strict inequalities
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marked with ∗ in (5.6) and (5.7) no longer hold. We expect that when the intensities are the same,

conditional on the non-intersection event, one of the interlacements will be sparse in the box while the

other behaves as usual (and by symmetry, each of them has a half chance to be sparse). However, we

are uncertain if such sparsity also encompass that the capacity of the interlacement set in the box will

be significantly smaller than that of the box, as a very sparse set in terms of volume can still have a

capacity comparable to the box. Nonetheless, we conjecture that the sparse interlacement set will have

a small capacity in the interior of the box. Hence, we propose the following conjecture:

Conjecture 5.3. For u1 = u2 and any ε,δ > 0,

lim
N→∞

P
[
cap(I1 ∩ B(0,(1 − δ)N)) < εNd−2

���I1 ∩I2 ∩ B(0,N) =∅
]
=

1

2
.

In the next section, we will discuss an alternative approach to the large deviation bound which is

capable of dealing with the case of u1 = u2 in establishing the entropic repulsion result. In this approach,

we can completely avoid the issue discussed above by characterizing sparsity in terms of occupancy

instead of capacity.

6. An alternative approach and entropic repulsion regarding

occupancy

In this section, we outline an alternative approach to proving (1.3) in Theorem 1.2. This approach is

then applied to establish an entropic repulsion result regarding occupancy when u1 = u2. Finally, we

mention its application to the case where u1 > u2.

Recall that we consider two independent interlacements I1 and I2 with intensities u1 and u2 respec-

tively and that for x ∈ Zd , we let L1
x (resp. L2

x) denote the local time of interlacements I1 (resp. I2) at

the vertex x.

We start with the upper bound of (1.3) in Theorem 1.2. Note that the lower bound is completely

straightforward, as shown in Section 5.

An alternative proof to the upper bound of (1.3). For an integer N , we choose L as defined in (2.1).

We also select δ ∈ (0,0.1) as a constant that governs all the errors and approaches zero towards the end,

and a large constant K = K(δ). We require the following conditions to hold:

K ≥ max{100,c1(δ),c3(δ)},L ≥ max{100d,c2(δ)}.

We will use the definitions of boxes Bx and Dx as defined in Section 2.

The proof still follows from a coarse-graining procedure, but we will use different definitions of

δ-good boxes. We will call an L-box Bx :

1. Type-I δ-good if 〈L1, ēBx 〉 < δu1,

2. Type-II δ-good if 〈L2, ēBx 〉 < δu2,

3. Type-III good if I1 ∩I2 ∩ Bx �∅,

and δ-bad otherwise. Note that these three conditions may not be mutually exclusive. For ρ > 0, we

define the event A as

A := {there are at most ρ(N/L)d δ-bad boxes in B(0,N)}.

We can establish the following lemma, which serves as an analogue to Proposition 3.1:
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Lemma 6.1. For all δ, ρ > 0 and K ≥ 100, we have:

lim
N→∞

1

Nd−2
logP

[
Ac

]
= −∞. (6.1)

We can apply the excursion coupling technique independently to both interlacements, as described

in Section 3. The remainder of the proof follows the same structure as that of Proposition 3.1. Note that

an analogous result to (3.13) is easier in this case thanks to the presence of cLd−2 excursions instead of

just one. Therefore, we omit the proof here.

We now proceed with the proof of the upper bound. Let

E := {I1 ∩I2 ∩ B(0,N) =∅}.

We define C3 as the union of Type-I δ-good boxes and C4 as the union of Type-II δ-good boxes. We

also define H1 and H2 as follows:

H1 = 〈L1, ēC3
〉 and H2 = 〈L2, ēC4

〉.

On the event A ∩ E, similar to Lemma 5.1, we can show that

H1 < 2u1δ · cap(C3) and H2 < 2u2δ · cap(C4). (6.2)

On the event A ∩ E, where there are no Type-III good boxes, we have

Card(C3) +Card(C4) ≥
(

2N

(2K + 1)L

) d
− ρ

(
N

L

) d
.

Using this fact and similar arguments to Proposition 4.3, we can show that for L > C(δ,K) and ρ <

c(δ,K)

c̃ap(C̃3) + c̃ap(C̃4) ≥ inf
t≥0

(
t + f (t) − δ

)
Nd−2. (6.3)

The infimum form is obtained by decomposing the choice of t into intervals of width of order 1 and

applying the continuity of f in Claim (4) of Proposition 4.1. Combining this with Claim (3) in Propo-

sition 4.1 and Lemma 2.3, we can obtain:

cap(C3) + cap(C4) ≥ (1 − oδ(1))
c̃ap(B̃(0,1))

d
Nd−2. (6.4)

With (6.2) and (6.4) at hand, we can prove the upper bound in Claim (1) of Theorem 1.2 in a similar

manner to the proof of the upper bound in Theorem 1.1. Similar to (5.5), we know that for i = 1,2

P[Hi < 2δuicap(Ci+2)] ≤ exp
(
− (u1 + oδ(1))cap(Ci+2)

)
.

Therefore, we have

P[A ∩ E] ≤
∑
E1 ,E2

P[A ∩ E ∩ {C3 = E1} ∩ {C4 = E2}]

≤ exp
(
−(u1 + oδ(1))cap(C3) − (u2 + oδ(1))cap(C4) + oN (Nd−2)

)
.
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Here, we sum over all possible choices of C3 and C4. In the second line, we used the independence of

I1 and I2. Combining this inequality with (6.4), Lemma 6.1, and then sending δ to zero, we conclude

that:

lim sup
N→∞

1

Nd−2
logP[I1 ∩I2 ∩ B(0,N) =∅] ≤ −min{u1,u2}

d
c̃ap(B̃(0,1)).

This finishes the proof.

We now explain the application of this approach to the case where u1 = u2. As explained in Section

1, in this case we can show that each of the interlacement set will be sparse in the box in terms of

occupancy with probability tending to 1/2, conditional on the non-intersection event.

We start with the notation. Write

L
1
=

1

(2N + 1)d
∑

x∈B(0,N )
1{L1

x > 0} and L
2
=

1

(2N + 1)d
∑

x∈B(0,N )
1{L2

x > 0} (6.5)

for the average “occupancy” of I1 and I2 in the box B(0,N) resp. Then, we have:

Theorem 6.2. For u1 = u2 = u, there exists ε0 = ε0(u) > 0 such that for any 0 < ε < ε0

lim
N→∞

P
[
L
i
< ε

��I1 ∩I2 ∩ B(0,N) =∅
]
=

1

2
, i = 1,2. (6.6)

Proof. We need to first modify the condition of δ-good boxes. Instead, we call an L-box:

1. Type-I δ-good if 〈L1, ēBx 〉 < δu and 1
Ld

∑
y∈Bx

1{L1
y > 0} < δ,

2. Type-II δ-good if 〈L2, ēBx 〉 < δu and 1
Ld

∑
y∈Bx

1{L2
y > 0} < δ,

3. Type-III good if I1 ∩I2 ∩ Bx �∅,

We refer to the previous proof for the choice of L, δ, K , ρ and the event A. Similarly to Proposition 3.1,

we can prove that for δ, ρ > 0 and K ≥ 100

lim
N→∞

1

Nd−2
logP

[
Ac

]
= −∞.

We will now use this new definition of good boxes and coarse-graining procedure to show that for

any ε > 0

lim sup
N→∞

1

Nd−2
logP

[
L

1 ≥ ε,L2 ≥ ε,E
]
< −u

d
c̃ap(B̃(0,1)) (6.7)

(recall that E = {I1 ∩I2 ∩ B(0,N) =∅}). This together with (1.3) implies that conditional on the event

E, the event inside the bracket will not happen with asymptotically probability one. Fix ε > 0. Let C be

the union of all L-boxes contained in B(0,N). We define the event E ′ as follows:

E ′ := E ′
1 ∩ E ′

2 ∩ E, where E ′
i :=

{ 1

(2N + 1)d
∑
x∈C

1{Li
x > 0} ≥ ε

(2K + 1)d
,
}

, i = 1,2.

We now claim that

lim sup
N→∞

1

Nd−2
logP[E ′] < −u

d
c̃ap(B̃(0,1)). (6.8)
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Equation (6.7) directly follows from this estimate, as we can consider (2K + 1)d copies of the event

E ′, where the center of L-boxes are shifted by v for v ∈ LZd ∩ [0,2KL]d . Similar estimates can be

established for all these copies. The event in (6.7) implies that at least one of these events occurs, and

therefore (6.7) is a direct consequence of (6.8).

We now prove (6.8). We define C3 as the union of Type-I δ-good boxes and C4 as the union of Type-II

δ-good boxes. Then, similar to the previous proof we can show that

P[A ∩ E ′] ≤ exp
(
−(u + oδ(1))

(
cap(C3) + cap(C4)

)
+ oN (Nd−2)

)
. (6.9)

Next, we will provide a lower bound of cap(C3)+cap(C4). We assume that the event A∩E ′ happens.

On the event A ∩ E, where there are no Type-III good boxes, we have

Card(C3) +Card(C4) ≥
(

2N

(2K + 1)L

) d
− ρ

(
N

L

) d
.

On the event E ′, we know that for i = 1,2,

ε

(2K + 1)d
≤ 1

(2N + 1)d
∑
x∈C

1{Li
x > 0} = 1

(2N + 1)d

⎡⎢⎢⎢⎢⎣
∑

x∈Ci+2

1{Li
x > 0} +

∑
x∈C\Ci+2

1{Li
x > 0}

⎤⎥⎥⎥⎥⎦
≤ 1

(2N + 1)d
[
δLdCard(Ci+2) + (2L)d(Card(C) − Card(Ci+2))

]
,

and thus

Card(Ci+2) ≤
Card(C) − ε (2N+1)d

((4K+2)L)d

1 − δ
2d

≤
(
1 +

2δ

2d

) (
Card(C) − ε(2N + 1)d

((4K + 2)L)d

)
.

Therefore, we can choose δ < c(ε,K) and ρ < c(ε,K) such that

Card(C3) ≥ c(ε,K)(N/L)d and Card(C4) ≥ c(ε,K)(N/L)d,

and thus

c̃ap(C̃3) ≥ c′(ε,K)Nd−2 and c̃ap(C̃4) ≥ c′(ε,K)Nd−2.

With these two inequalities, we can establish the following inequality similar to (6.3): for L > C(δ,K)
and ρ < c(δ,K)

c̃ap(C̃3) + c̃ap(C̃4) ≥ inf
t≥c′

(
t +max{ f (t),c′} − δ

)
Nd−2 ≥ (c̃ap(B̃(0,1)) + c′′)Nd−2.

Note that c′ does not depend on δ, so we can choose a small δ such that the last inequality holds.

Combining this with Lemma 2.3 and (6.4), we complete the proof of (6.8) and thus (6.7).

Next, we will show that there exists some ε0 = ε0(u) > 0 such that for any ε < ε0, we have

lim sup
N→∞

1

Nd−2
logP

[
L

1
< ε,L

2
< ε

]
< −u

d
c̃ap(B̃(0,1)) (6.10)

This result can be derived in a similar fashion as (6.7) via coarse-graining (with some modification

on the definition of good boxes). In this case, as ε tends to zero, the left-hand side decreases to

− 2u
d

c̃ap(B̃(0,1)).
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Now, by combining (6.7) and (6.10), we can complete the proof of Theorem 6.2. We consider ε < ε0.

Conditional on the event E, the following four events happen disjointly:

{L
1 ≥ ε, L

2 ≥ ε} ; {L
1 ≥ ε, L

2
< ε} ; {L

1
< ε, L

2 ≥ ε} ; {L
1
< ε, L

2
< ε}.

Based on (6.7) and (6.10), we observe that the first and fourth events occur with asymptotically zero

probability, whereas the second and third events are symmetric. As a result, each of these events hap-

pens with asymptotically probability 1/2, which implies Theorem 6.2.

We end this section with several remarks:

Remark 6.3. 1. We expect that the optimal value of ε0 is

ε0(u) = 1 − exp(−u/g(0,0)) = E[1{L1
x > 0}].

2. One can also establish a more general entropic repulsion result by replacing the indicator function

1{Li
x > 0} in the definition of the average occupancy in (6.5) by f (Li

x), where f : [0,∞)→ [0,∞)
is any bounded function that remains uniformly positive when away from zero. An example is

f (x) = x ∧ 10.

3. In the case where u1 > u2, we can prove similarly that for any ε > 0

lim
N→∞

P
[
L

2
< ε

���I1 ∩I2 ∩ B(0,N) =∅
]
= 1. (6.11)

In this case, we also expect a global characterization of local times under this conditioning. Define

the local time profile L 1
N
,L 2

N
by

L
1
N =

1

(2N + 1)d
∑
x∈Zd

L1
xδ x

N
; L

2
N =

1

(2N + 1)d
∑
x∈Zd

L2
xδ x

N
.

For u1 > u2 > 0 and any R ≥ 1, we conjecture that

lim
N→∞

E
[
dR

(
L

1
N ,u1dx

)
∧ 1

���I1 ∩I2 ∩ B(0,N) =∅
]
= 0, and

lim
N→∞

E
[
dR

(
L

2
N ,u2g̃B̃(0,1)(x)

2dx
)
∧ 1

���I1 ∩I2 ∩ B(0,N) =∅
]
= 0.

(6.12)

Here, dR denotes the 1-Wasserstein distance restricted to the box B̃(0,R), and for z ∈ Rd , the

function g̃
B̃(0,1)(z) :=Wz[H̃B̃(0,1) =∞] denotes (the opposite of) the harmonic potential of B̃(0,1).
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