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Abstract: In this work, we consider critical planar site percolation on the triangular
lattice and derive sharp estimates on the asymptotics of the probability of half-plane
j-arm events for j > 1 and planar (polychromatic) j-arm events for j > 1, building
upon a recent, not yet peer-reviewed result of Binder and Richards (Convergence rates
of random discrete model curves approaching sle curves in the scaling limit. Preprint,
2020). These estimates greatly improve previous results and in particular answer (a large
part of) a question of Schramm (/CM Proc., 2006).

1. Introduction

Percolation is without doubt one of the most studied statistical mechanics models in
probability. As an ideal playground for the study of phase transitions and criticality, it
has received considerable attention from probabilists and statistic physicists in the past
60+ years. Despite its simple setup, it is the source of many fascinating yet difficult
mathematical problems, with some already well answered and many more still very far
from being solved. Starting from the beginning of 21st century, there have been a lot of
breakthroughs in the study of a particular case of this model, namely the critical planar
percolation on the triangular lattice. In the ground-breaking work by Smirnov [31], it is
shown that the both crossing probabilities and the exploration process have conformally
invariant scaling limits that can be given through Cardy’s formula and described as
a (chordal) Schramm-Loewner evolution with parameter 6 (SLEg) respectively. Later,
in [6] Camia and Newman give the characterization of the full scaling limit, via the
collection of non-self-crossing loops that is known now as the conformal loop ensemble
(CLE). To keep the introduction concise, we refer readers to the classical book [12] and
a recent survey [9] for more on the history and some recent progresses of this model.
Critical exponents are central notions in understanding the behavior of critical models.
In the case of percolation, many of them can be derived from the so-called arm exponents,
i.e. exponents in the power-law decay of the probability of arm events (as the mesh
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size tends to 0), which we will introduce shortly. The value of various arm exponents
have been calculated unrigorously in the physics literature a long time ago, see e.g.
[1,7,8,10,27].

In mathematics, for critical planar percolation on the triangular lattice, Smirnov and
Werner rigorously computed precise values of the half-plane arm exponents and (poly-
chromatic) j-arm exponents with j > 1 in [32], using Kesten’s scaling relation from
[16], Cardy’s formula as well as relations between interfaces and SLE¢, Roughly at the
same time, Lawler, Schramm and Werner obtained the one-arm exponent in the plane in
[21], also via SLE-related calculations. We will briefly recall their results in Claim (3)
of Lemma 2.6 and (1.10) respectively.

However, these asymptotics (with an o(1) in the exponent) are not completely satis-
factory. One particular reason is that in dealing with scaling limits involving microscopic
quantities from critical planar percolation, such as the pivotal, cluster or interface mea-
sures from [11] (see in particular Theorems 4.3, 5.1 and 5.5 of the said reference) and
the natural parametrization of the interface (see Theorem 1.4 in [13]), instead of renor-
malizing with an explicit factor n* where 7 is the mesh size and « the corresponding
exponent, one normalizes by something implicit, namely the asymptotic arm probability
(which corresponds to a; in this paper); see also Remark 4.10 in [11] for more on this
issue.

Thus, it is natural to ask if there are precise estimates of the arm events, just as what
have been obtained for other critical models, e.g., sharp asymptotics of the one-point
function of the loop-erased random walk (LERW); see [14,19,22] for the two-, three-
and four-dimensional cases respectively.

In fact, much before the scaling limit results mentioned in the paragraph above were
obtained, Schramm already asked the question in the proceedings of ICM 2006 if it is
possible to improve the estimates. In Problem 3.1 of [29], he pointed out that “it would
be especially nice to obtain estimates that are sharp up to multiplicative constants”.

In a few special cases (where the exponent is an integer, namely the half-plane 2-
and 3-arm exponents and planar 5-arm exponent), both the value and up-to-constants
estimates can be obtained without relating to SLE’s; see Lemma 5 of [17], Theorem 24 of
[24] or the first exercise sheet of [35]. Improvements for other arm asymptotics are much
more difficult. Mendelson, Nachmias and Watson (see [23]) and Binder, Chayes and Lei
(see [4]) obtained power-law convergence rate for the Cardy’s formula which yields a
slight improvement of half-plane one-arm asymptotics (see (1.2) below), although still
not as strong as up-to-constants estimates.

In this paper, we answer a large part (except the planar one-arm case; see Remark
1.6 for more detail) of Schramm’s question, building upon a recent result of Binder
and Richards [5] (not yet peer-reviewed, only available as the PhD thesis of Richards
[26]) which proved power-law convergence rate of the exploration path of critical planar
percolation (which also answered a related question by Schramm; see the beginning
of Sect. 1.2 for more discussions). More precisely, we derive sharp estimates for the
probability of half-plane arm events and planar j-arm events with j > 1, with power-
law error bounds in most cases, which gives much more than what he asked for.

1.1. Main results. We start with necessary notation. Let T denote the triangular lattice
where each face is an equilateral triangle and T* denote the dual graph. We consider
the critical Bernoulli percolation on T* in which each hexagon is colored red (=open)
or blue (=closed) independently with equal probability. For j > 1, let B;(r, R) denote
the half-plane j-arm event that there exist j disjoint crossings with alternating colors
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of the semi-annulus A*(r, R) in the upper half-plane with inner and outer radii r and
R respectively (see Sect.2.4 for the precise definitions of arm events and Sect.2.2 for
the discretization of domains). We will also consider a variant of half-plane arm events,
denoted by H  (r, R), which corresponds to j-alternating arms from the segment [—r, 7]
to the semi-circle C}, within the half-disk By. Write b; (r, R) := P[B;(r, R)] and define
h; similarly. In the seminal work [32], it is showed that for any j > 1, the sequence
bj(r, R) has a power-law decay in R with exponent

Bj =j(j+1)/6, suchthatas R — oo, b;(r, R) =R PitoM) (1.1)
In [23] the following improvement of b is obtained:

b](l, n) — eO(«/lOglogn)nflﬂ — (logn)O(l/«/loglogn)n71/3. (12)

We are now ready to state our main results for half-plane arm probabilities, which
give sharp asymptotics with power-law error bounds for both b; and 4.

Theorem 1.1. Forany j > 1, there exist constants c(j, r) > 0and Cp(j, 1), Cph(j, 7) >
0 such that for any real n > r,

bj(r.m) = Con ™1 (1+0G™))s hjrom) = Cun ™1 (1+0™)).  (13)

Note thatinthe casesof j = 1, 2, 3, Cp(j, 1), Ci(j, 1) > 0, hence it makes sense to pick
r = 1, and our theorem applies to classical half-plane arm events out of one hexagon.
The same asymptotics also hold for any fixed “inner initial configuration”, i.e., an outer
face which we will define in Sect.2.5. In this case, the constants depend on j and the
initial configuration.

We now turn to (polychromatic) planar j-arm events. Again, see Sects.2.2 and 2.4
for conventions and precise definitions. We start with the classical j-arm event P; (r, R),
which is defined as the event that there exist j disjoint crossings of the annulus A(7, R)
and not all of the same color (except in the case j = 1). We will also consider A, (r, R),
Xj(r,R),Y;(r, R)and Z;(r, R), which are variants satisfying the requirements of color
sequences, some with additional location constraints and some with additional connec-
tion constraints; see (2.4) and (2.5) below for precise definitions.

Write p;(r, R) = P[P;(r, R)] and define a;, x;, y; and z; similarly. In [32], it is
showed that for any j > 2, the sequence p;(r, R) has a power-law decay in R with
critical exponent

«j = (j2—1)/12, suchthatas R — oo, pj(r,R)=R™%4*D (14
We now state our main results for planar arm probabilities which give sharp asymp-
totics with power-law bounds for variants x; and y; and as a consequence sharp asymp-

totics without explicit error bounds for a; and up-to-constants estimates for p;.

Theorem 1.2. For any j > 2, there exist constants c(j,r) and Cx(j,r), Cy(j,r) > 0
such that for all real n > r,

xXj(ron) = Cyn™® (1 + O(rf“)>; Vi(r.n) = Cyn = (1 + O(n*“)). (1.5)
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Note that when j = 2,3,4,5,C,(j, 1), Cy(j, 1) > 0,and also when j = 6, C, (6, 1) >
0. Hence in these cases (note that special care is needed for x¢ (1, n); see Remark 4.9 for
discussions) our results hold for arm events out of a single hexagon. As an immediate
consequence of Theorem 1.2 and the up-to-constants asymptotic equivalence of different
arm events (see Claim (2) of Lemma 2.6),

pj(r,n) <aj(r,n) <n=%. (1.6)

Moreover, we are able to obtain sharper estimates (albeit without a power-law error
bound) than (1.6) for the alternating arm probability a; (r, n). For simplicity, we only
give them for arm events out of one hexagon for j < 5 (but similar asymptotics hold for
arm events with other inner initial configurations, including the case of ag(1, n)). See
Remark 4.9 for more discussions.

Theorem 1.3. For j = 2,3,4,5, there exists some C,(j) > 0 such that for all real
n>1,

aj(1,n) = Carf"‘f(l +0(1)). (1.7)

A direct application of Theorem 1.3 for j = 2, 4 is that we can replace renormalizing
factors in the scaling limit of pivotal and interface measures by precise powers of the
mesh size in Theorems 4.3 and 5.5 of [11] and that in the natural parametrization in
Theorem 1.4 of [13]. Another application is the improvement for the asymptotics of the
correlation (or characteristic) length and sensitivity length (see (2) in [33] for definition),
which is also a central object in the study of near-critical and dynamical percolation.
In particular, our asymptotics on planar 4-arm events imply that various versions of the
correlation length for planar critical percolation on triangular lattice are up-to-constants
equivalent to | p — 1/2|~%/3. For a more thorough account on the correlation length, see
e.g., Section 7 of [24].

1.2. Comments. Inthis subsection, we briefly comment on the proof and discuss possible
directions for generalization.

We start with the strategy of the proof. As Schramm has already pointed out immedi-
ately below his question in [29], the crux of the matter lies in “the passage between the
discrete and continuous setting”” and he posed a related question on obtaining “reasonable
estimates for the speed of convergence of the discrete processes”.

This question was solved recently by Binder and Richards in [5], which constitutes the
PhD thesis [26] of Richards; see also [3] for an extended abstract. More precisely, they
verify that the framework developed by Viklund in [34] for the power-law convergence
rate of random discrete models towards SLE indeed works for percolation. In particular,
they obtain a power-law convergence rate for the exploration process of planar critical
percolation up to some stopping time. See Sect.2.8 for detailed discussions of their
results.

We now explain how we derive sharp asymptotics for arm events out of the power-law
convergence. For better illustration we will discuss the classical half-plane arm-events
(i.e., Theorem 1.1 for b ;) in more detail and only briefly point out necessary modifications
in other cases.

At first glance, sharp asymptotics for arm events should follow naturally once we
relate the discrete exploration path to SLEg. However, a few obstacles prevent us from
applying the power-law convergence rate directly.
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The first one is that such results only give information down to the mesoscopic level
(in terms of the mesh size), while in this work we endeavor to reach the microscopic level.
To overcome this difficulty, we resort to coupling techniques developed for critical planar
percolation, which allow us to “decouple” the microscopic “initial configurations” (if
we figuratively regard arm events as the consequence of outward explorations) with the
macroscopic boundary conditions. Inspired by the arguments of Theorem 1.2 in [22] for
the one-point function of 3D LERW, the ideas above can be crystallized in the following
estimates, from which Theorem 1.1 for b; can be directly derived.

Denote 7,(j) = min{r € N : x;(r,n) > 0 for all sufficiently large n} for » €
{b,h,p,a,x,y,z}. Itis clear that when dealing with some arm probability *; (r, n), it
suffice to focus on the case r > r,(j). Note that r,(j) < rp(j) and ro(j) = re(j) <
ry(j) =7;(j); in addition, r, (j) = 1 for j <3 and ry(j) = 1for j <5.

Proposition 1.4. Given j > 1, for any r > rp(j) and m € (1.1, 10),
. 2 .
bj(r,mn) _ bj(r,mn) (1 N O(n_c)), (1.8)
bj(r,mn) bj(r,n)

where O (n~°) is independent of the choice of m.

The second obstacle is that the classical arm event 5; is not the ideal choice to be
described by the exploration path in a discretized domain. More precisely, working with
B; directly involves dealing with a sequence of semi-annuli with shrinking inner radii.
Although in principle one should be able to produce similar power-law convergence in
these varying domains as a perturbation of the half-disk, a more sensible choice is to
make use of couplings of percolation configurations conditioned on arm events (see the
discussion on the proof of Proposition 1.4 below), and work with the variant #; instead;
see Sects. 3.1 and 4.1 for more detail.

The third obstacle is that the result of Binder and Richards provides convergence rate
only for the exploration up to some stopping time, not for the whole path (although it
is believed to hold for the latter as well). To overcome this difficulty, we enlarge the
domain in which we compare percolation explorations and SLEg, so that the segment
before the stopping time already suffices to provide comparison of arm probabilities;
see Sect. 4.1 for more detail.

We now discuss the proof of Proposition 1.4 in more detail. The main ingredients are
Propositions 3.4 and 3.5, in which we derive comparisons of conditioned arm probabil-
ities, which allow us to compare arm probabilities between different boundary condi-
tions and also to compare different types of arm events. These estimates are established
through coupling results established in Propositions 3.1 and 3.3 for j = 1 and j > 1
respectively as well as the power-law convergence of the exploration proces in the form
of Proposition 4.1.

A crucial ingredient for these couplings is the separation lemma, which, first devel-
oped by Kesten in [16], plays a key role in establishing quasi-multiplicativity properties
of arm probabilities. We will discuss it (and several variants) in detail in Sects.2.6 and
2.7.

‘We now turn to the plane case. In a fashion similar to Theorem 1.1, Theorem 1.2 for
y; can be derived from the following estimates.

Proposition 1.5. Given j > 2, for any r > ry(j) and m € (1.1, 10),
yj(r,m*n) _y;(r,mn)
yj(r,mn) yj(r,n)

where O (n~°) is independent of the choice of m.

(1 + O(n*C)), (1.9)
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This proposition follows from the same argument as that of Proposition 1.4 as the
particular definition of ); allows us to relate it to the exploration process. Note that
in order to overcome the third obstacle as in the half-plane case, we will also enlarge
the domain accordingly; see Sect.4.3 for more detail. The claim for x; follows from a
coupling result that relates y; and x; see Proposition 3.10.

Theorem 1.3, whose proof is inspired by Proposition 4.9 of [11], is a corollary of
Theorem 1.2, Proposition 3.9 (which relates the conditional arm probabilities for X; and
A;), and Claim (4) of Lemma 2.6 (which gives the convergence of macroscopic arm
probabilities without a speed).

Remark 1.6. We now briefly mention some open questions and discuss possible gener-
alizations.

(1) Planar 1-arm events are crucial objects to understand critical percolation clusters.
In [21] it was shown that the 1-arm probabilities satisfy

pi(r, R) = R/4+r(MD 49 R 5 0. (1.10)

It is then a natural question to wonder if our asymptotics also hold in this case. In fact,
the key difficulty in extending our arguments to the one-arm case lies in the fact that
planar one-arm events cannot be described by a single chordal exploration path. Instead,
they can be described either by the collection of all interface loops or by the so-called
radial exploration process, which correspond to CLEg or the radial SLE¢ respectively
in the scaling limit. While we believe power-law convergence analogous to Theorem
4.1.11 in [26] should also hold for these objects, solid arguments leading to such results
still seem rather out of reach for the moment.

(2) Recently, in [25], the exact value of the monochromatic two-arm exponent has
been calculated. We expect that the couplings of conditional monochromatic two-arm
events can be proved similarly to the half-plane one-arm case; see Proposition 3.1 and
[11, Proposition 5.2]. The monochromatic two-arm event can also be explored using a
radial exploration process, and the main difficulty in extending this work to that case
is the lack of power-law convergence of this process. For the monochromatic j-arm
event with j > 2, the existence of their exponents was established in [2] using quasi-
multiplicativity arguments, but their explicit values are not known yet. To establish sharp
asymptotics for these events, additional difficulties arise in the coupling step which
require some non-trivial ideas. Essentially, one needs to show that conditional on the
monochromatic j-arm event, with positive probability these j arms will not be jammed
together. Another missing input is the power-law convergence of the radial exploration
process or full scaling limits.

(3) In fact, power-law convergence for the harmonic explorer (by Lan, Ma and Zhou
[18] as well as Binder and Richards [5]) and FK-Ising model (by Binder and Richards
[5]) has also been established. We wonder if it is possible to obtain sharp asymptotics
also for the FK-Ising arm events and the one-point function of the harmonic explorer
(as well as the convergence in natural parametrization to SLE4). We plan to investigate
them in future works.

Finally, we explain how this article is organized. In Sect. 2, we settle the setup and
introduce various key notions and preliminary results, including arm events, faces, sep-
aration lemmas, and the power-law convergence rate of the exploration paths. We give,
without proof, various coupling results concerning arm events in Sect. 3, which are cru-
cial to the main arguments and derive from these couplings some relations on conditioned
arm probabilities. Section4 is dedicated to the proof of the main theorems in which we
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also include the proofs of Propositions 1.4 and 1.5. In Sect. 5, we unfold the proofs for
various coupling results postponed from Sect. 3. A few technical proofs for preliminary
results in Sect. 2 are given in the appendices.

2. Notation and Preparatory Results

This section is dedicated to setup and preparatory results. In Sect.2.1 we introduce
overall notation. We then fix the setup and recall some basic tools for percolation in
Sects.2.2-2.3 resp. In Sect.2.4, we give the definition for various arm events, state
some existing results their its asymptotics and give a “functional equation” type result
on sequences that will be useful for obtaining sharp asymptotics. In Sects.2.6 and 2.7,
we state and prove the separation lemmas in the half-plane and plane resp., which are
crucial to the coupling argument in this work. Finally in Sect. 2.8, we recall the power-
law convergence rate of the rescaled exploration path towards SLE¢ from [26] and prove
a variant tailored for this work.

2.1. Notation and conventions. Let C stand for the complex plane and H = {x +iy :
y > 0} stand for the upper half-plane. For convenience of notation we regard them as
R? and a subset thereof and use both sets of notation interchangeably. Let B(x, R) =
{z : |z — x| < R} denote the ball of radius R around x and C(x, R) = dB(x, R). For
0<r < R,wewrite A(x,r, R) :={z:r < |z—x| < R} for the annulus of radiir < R
around x. We will omit “x” when x = 0, i.e., abbreviate B(0, R), C(0, R), A(0, r, R) as
Bgr, Cr, A(r, R). We will add + in the superscript to indicate the quantities are defined
in the upper half-plane H. For example, if A C C, write A* for the set A N H. Then,
B*(x,R),C*(x, R), A*(x,r, R), By, Ck, A*(r, R) are the corresponding subsets of H.
Without further specification, all the sequences we consider are indexed by real numbers,
not only integers.

We write a,, = n®*°W if for all € > 0, n%~¢ < a, < n®*¢ for all n large enough.
We write a, = O (n®%) if there exists C > 0 such that |a,| < Cn® for all n, and write
an =< b, if a,, b, > 0 for all n large enough, and a, /b, is bounded both from above and
below. We always write j for the number of arms and 5 for the scale of lattice. Without
further specification, all the arcs are written counterclockwise. We write d(x, y) for the
Euclid distance of x, y € R?. Given a real number x, we write | x| := max,cz{z < x}
for the integer part of x.

Finally, let us explain our convention concerning constants. Constants like ¢, 8, ¢, ¢,
C or C’ may change from line to line while those with a subscript like ¢; are kept fixed
throughout the paper. All constants are universal except otherwise stated.

2.2. Setting for percolation. Let T be the triangular lattice embedded in the complex
plane C where each face is an equilateral triangle of side length 1. More precisely, the
set of sites (vertices) in T is given by T := Z + ¢'7/37,, and two sites are neighbors if
they are at distance 1.

We consider the critical site percolation on T, defined through declaring each site
v € T as open or closed equally with probability % independently of the other sites.
More precisely, let {0, 1} be the sample space of configurations (wy)yer, Where w, = 1
if v is open, and w, = 0 if v is closed. Write PP for the product measure with parameter
% on T. For better illustration, a site will be colored red (resp. blue) if it is open (resp.
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closed). In studying scaling limits we will also be interested in percolation on the rescaled
lattice. For n > 0, let nT be T rescaled by n. With slight abuse of notation, we will also
use P to denote the product measure with parameter % on nT. However, we will fix
n = 1 in the majority of this work and emphasize the mesh size only when we do rescale
the lattice, namely, in Sects.2.8, 4.1 and 4.3.

We also view the percolation on the triangular lattice T as a random coloring of
hexagons (i.e. faces) on T*, which is dual to T such that each vertex (resp. edge) on
T corresponds to a hexagonal face (resp. an edge) on T*. We say two hexagons are
neighbors (or adjacent) if they have a common edge. A path on T* is a sequence of
neighboring hexagons and they are all distinct, and we call it a loop if the two endpoints
of the path are also neighbors. We will also consider paths on T* as a graph, which
we refer to as b-paths (“boundary paths”; we will mostly consider those as part of the
boundary of a cluster or a domain) to distinguish them from paths of hexagons we have
just defined. In the language of this work, arms (to be defined in the next paragraph)
are paths while interfaces are b-paths. We say two interfaces are adjacent if there is a
hexagon on T* touched by both of them.

Let 91 and 9, be two disjoint parts of the boundary of a hexagonal domain D (in many
cases two opposite sides of a topological quadrangle or inner and outer boundaries of
a topological annulus). A crossing from 9; to d; in D is a monochromatic path of
hexagons in nT* such that the two endpoints intersect d; and 9, respectively, and all
other hexagons are inside D. A crossing will also be called an arm when we consider
arm events in what follows.

We now turn to the issues related to discretization of domains. By default, we use
the conventions in [6] and refer readers thereto for more details. However, to avoid
inconsistency for the discretization of (half)-disks, (semi-)annuli and (semi-)circles that
are ubiquitous in this work, we give a special rule for the discretization of these objects;
see the last paragraph of this subsection for details. We also remark that as will be
discussed in Remark 2.19, our results are indeed quite stable against different choices
of discretization. Hence our convention here is in fact merely an inessential technical
matter.

We start with the default convention. A set of hexagons E is called connected or simply
connected if so is the set obtained by embedding E in C. If E is a simply connected set
of hexagons, we write A E for the outer boundary of E, i.e., the set of hexagons that are
not in £ but adjacent to hexagons in E, and we write d E for the topological boundary
of E by viewing E as a domain in C. The bounded simply connected set E of hexagons
is called a Jordan set if AFE is a loop.

Given a Jordan domain D in C, we write Dy, for the n-approximation of D, i.e., the
largest Jordan set of nT* that is contained in D (if there is a tie, choose one arbitrarily).
For a € 3D, we write a, for the vertex of nT* in d Dy} such that it is closest to a and
it is on the common edge shared by two adjacent hexagons in A Dy, (if there is a tie,
choose one arbitrarily). When n = 1, we omit n or [n] from the subscript unless we wish
to emphasize that this is a discretized object.

We now turn to special discretization rules for points and intervals on the real axis,
circles, disks and annuli centered at the origin. Note that if one applies the rules in the
paragraph above toe.g., By and A(r, R) which are two touching objects in the continuum,
the resulting hexagonal domains will have non-empty “cracks” in-between. Hence, we
apply the following special rule for them.

We first designate, in an arbitrary way, the discrete circles Cg for each R > 1 as a
loop of b-paths on T* that disconnects the origin from infinity which is at most O(1)-
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away from Cg, such that C; is the boundary of the hexagon containing the origin and
there do not exist Ry < R such that Cg, crosses Cg,. With slight abuse of notation
we still denote by Cr the discretized object; same for other objects in this paragraph.
Then, for each 1 < r < R we regard Br as the hexagonal domain encircled by Cr
and A(r, R) as Bg \ B, respectively. Similarly, we also designate for each R > 1 the
discrete semi-circle C as a b-path that disconnect 0y from infinity in Hjj; with the
special rule that C{ is the upper three edges of the hexagonal face in T* containing 0.
‘We then define half-disks B;; and semi-annuli A*(r, R) in a similar fashion. With slight
abuse of notation, we write [— R, R] for the b-path that forms the part of the boundary
of Hy) encircled by C}, and define other intervals accordingly. When working on the
discretization with respect to the rescaled lattice T, we first counter-rescale to n = 1,
apply the rules above and then rescale everything back to nT.

2.3. Some classical tools. The aim of this subsection is to review some classical tools
in percolation theory, namely, the Harris-FKG inequality, the BK-Reimer inequality and
the Russo—Seymour—Welsh theory. These tools will be extensively used throughout this
paper. We refer readers to [12] for more details.

Definition 2.1 (Monotone events). There is a natural partial order on the set of config-
urations {0, 1}7 given by w; < w; if and only if w(v) < wy(v) forall v € T. An
event A is called increasing if 14(w1) < 14(w2) whenever w1 (v) < wy(v), where 14
is the indicator function of A. An event A is called decreasing if its complement A€ is
increasing.

Lemma 2.2 (Harris-FKG inequality). If A and B are both increasing or decreasing
events, then

P[A N B] > P[A]P[B].

Lemma 2.3 (BK-Reimer inequality). Let ALIB denotes the disjoint occurrence of the
events A and B, meaning that € AUB if there exist disjoint sets of sites E and F
(possibly depending on w) with the property that one can verify that v € A (resp. w € B)
by looking at sites in E (resp. F ) only. Then, we have

P[AOB] < P[A]P[B].

Lemma 2.4 (Russo—Seymour—Welsh (RSW) Theorem). For any topological quadran-
gle (i.e., a Jordan domain with four marked points on the boundary) D in C with two
opposite sides 01 and 0, there exist constants ny > 0 and ¢ = c(D) > 0 such that for
all n < no, with probability at least c, there is an open crossing in n'T™ from 91 to 9, in
Dy (Which we call a quad crossing).

The combination of the Harris-FKG inequality and RSW theorem allows us to “glue”
arms of the same color to create paths that have macroscopic geometric restrictions with
uniformly positive probability. E.g., a loop that disconnects the annulus A(R, 2R) can
be constructed through gluing of quad crossings. We will colloquially refer to these
arguments as “RSW-FKG gluing”.
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o5 ch [—r,7] ct

Fig. 1. Left: The event B3(r, R). Right: The event 73 (r, R). The semi-annulus A* (r, R) and the line segment
[—r, r] (in bold black) should be viewed as b-paths discretized according to the convention given at the end
of Sect.2.2. Dashed red and blue curves represent arms (composed of hexagons) with respective colors

2.4. Arm events and asymptotics. In this subsection, we briefly review the definition of
classical arm events in planar percolation and introduce variants that we will specifically
use in this work. We then review existing asymptotics of the arm probabilities and finally
lay out a “functional equation” lemma on sequences that is tailored for the derivation of
sharp asymptotics in our work.

We first introduce two types of half-plane arm events. We fix n = 1 throughout these
definitions. In the following, the symbols By, Cx, A*(r, R), [=r,r], C; and A(r, R)
refer to discrete objects introduced at the end of Sect.2.2. For j > 1, let B;(r, R) and
H; (r, R) stand for the half-plane j-arm events from scale r to scale R in the semi-annulus
and half-disk respectively, defined as

Bj(r, R) = {There are j disjoint arms from C; to C}, in A*(r, R) of alternating colors};

(2.1)

H;(r, R) = {There are j disjoint arms from [—r, r] to C ;3 in B; of alternating colors},
2.2)
where alternating colors means that the color pattern is red, blue, red, ..., in counter-

clockwise order. See Fig. 1 for an illustration.

Remark 2.5. We now briefly comment on the definitions above.

(1) Among the two definitions above, B, (r, R) is the classical half-plane arm event
in the literature, however it is not the convenient setup for us to relate to the scaling
limit of the exploration process. To overcome this difficulty, we introduce H;(r, R),
which perfectly solves this problem. See Sect. 4.1, in particular Lemma 4.3 for how the
definition of H; (r, R) comes into play.

(2) As discussed in Remark 2 in [32], in the half-plane case it is not restrictive to
study arm events of alternating colors thanks to a “color-switching” trick. In fact, the
probability of B (r, R) (or H ;(r, R)) remains the same for any color sequence.

We now introduce the (polychromatic) arm events in the plane. For j > 2, the
classical j-arm event from scale r to R in the plane is given by

Pj(r, R) = {There are j disjoint arms from C, to Cg in A(r, R), not all of the same color}.

(2.3)

However, in this work we are going to mainly work with the following variants of arm
events, which allow us to link the exploration process under these arm events to specific
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R-a R-a *
(a) Xg(r, R). (b) Vs(r, R). (c) As(r, R). (d) Z6(r, R).

Fig. 2. lllustration of the events X; (r, R), V; (r, R), A j(r, R) and Z(r, R) when j = 6. The annuli should
be viewed as hexagonal domains on T* under the convention given at the end of Sect. 2.2. The dashed red and
blue curves represent arms of the respective colors

behaviors of the SLEg process; see also Remark 2.5 for relevant discussions in the half-
plane case. We refer readers to Fig.2 for illustrations. Fix four points a = (0, —1),
b= (—1/2,+/3/2),c=(1/2,+/3/2) andd = (0, 1) on Cy. Let

() =L/4+1G+D/Al+10 r(j) =1 +2)/41+ [(j +3)/4] — L.

(Note thatI(j)+r(j) = j.) We call j disjoint arms from C, to Cg in A(r, R) are “with
the prescribed pattern” if there are /(j) of them from C, to R - ba (the counterclockwise
arc from R - b to R - a) with color pattern red, blue, red ...(counted clockwise from the
point R - a); and the remaining r(j) ones from C, to R - ac with color pattern blue, red,
blue ...(counted counterclockwise from R - a). Then, we define the following variants
of planar j-arm events X, ); as

Xj(r, R) = {There exist j disjoint arms from C, to Cg in

A(r, R) with the prescribed pattern}, 2.4)
Yj(r, R) = {There exist j disjoint arms from C, to Cg in

A(r, R) with the prescribed pattern

and furthermore the left (k + 1)-th arm and the right

k-th arm are connected

in Bg by a path of their (common)

colorforall 1 <k < (I(j) — 1) Ar(j)}. (2.5)

We will also consider two other variants A j and Z;, which correspond to the events X
and Y; respectively but with no constraints on the endpoints on Cg. When j is even, A;
is the arm event with an alternating color sequence, referred to in the literature as the
alternating arm events. Note that 4 ; is different from P; except for j = 2, although
they are comparable; See Claim (2) of Lemma 2.6.

We now turn to arm probabilities. We write

bj(r, R) =P[B;(r, R)], and similarly %, p;, x;, y; and a; for arm probabilities .
(2.6)
We now collect several quick facts and review some classical estimates on the asymp-

totics of arm probabilities. For simplicity, we will fix r > r,(j) and write i;(n) as a
shorthand for £ (, n) (and resp. for other arm probabilities) throughout this subsection.
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We now collect several classical facts on the asymptotics of arm probabilities. In the
following lemma, we show that in both half-plane and plane cases, the probabilities of
variants arm events are up-to-constants equal to each other.

Lemma 2.6. The half-plane arm probabilities are comparable for j > 1 and so is the
case for planar arm events and j > 2. Namely

(1). hj(n) < bj(n);
(2). pj(n) < xj(n) < aj(n) and for r > ro(j) such that y;(n) > 0 for all large n, we
further have aj(n) < y;(n).

Moreover, with the arm exponents defined in (1.1) and (1.4) resp.,

(3). b;(R1, R2) = (R1/Ry)"Pi*°) as Ry > ry(j) and R/Ry — 0. Also for j > 2,
pj(R1, Ry) = (Rl/Rz)_“f+”(1) as Ry > rp(j) and Ry /Ry — 0. The same holds for
hj,aj,x./, yj.

Finally, the macroscopic arm probabilities have the following asymptotics:

(4). There exist f;, g; : (0, 1) — R* such that for 0 < € < 1,
lim xj(en,n) = fj(e) and lim aj(en,n) = gj(e).
n—00 : n—o0o

The proofs for Claims (1) and (2) are classical applications of separation lemmas (which
we will introduce shortly in this section) and will be postponed to Appendix A. Claim
(3) is the main result in [32]. Claim (4) of a; for j € {2, 3,4, 6} is Lemma 2.9 in [11],
while the case of other a; and x; follows from essentially the same arguments.

Remark 2.7. The power of (3) lies in the fact that Ry can also go to infinity with R, as
long as Ry /R, goes to zero. In the context, we will use two particular forms frequently.
One is that for fixed @ € (0, 1)

hj(n®, n) < bj(n*, n) = n—Pid=e+o) g4
xj(n%, n) < yjn%n) =< p;jn* n) = n~%i (I=a)+o(D), 2.7
The other is that there exists ¢ > 0 such that when R;/Ry — 00
b3(Ri, R2) < (Ri/R)'™ and  ps(R1. R2) < (R1/R2)™,
because 83 =2 > 1 and ag = 35/12 > 2.

In the following lemma, we show that the arm probabilities are “almost” monotone. We
also postpone its proof to Appendix A.

Lemma 2.8. Forany j > 1

. ) hj(t)
lim lim inf inf >1
e—~>0 n—>00 n<s<r<(l+€)n hj(s)

The same inequalities also hold for b; and x;, y;, p;j and a; (for j > 2).

The following lemma is a “functional equation” type result on sequences and it
shows that we can obtain Theorem 1.1 from Proposition 1.4 and Theorem 1.2 from
Proposition 1.5 together with the preliminary estimates Lemmas 2.6 and 2.8 (which
imply that the sequence of various types of arm probabilities satisfy Assumption (2) in
the following lemma). Its proof can be found in Appendix B.
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o
Fig. 3. Left: A configuration of outer faces around C;’Q. Right: A configuration of inner faces around C;. In
both cases, j = 3 and the configuration of faces ® = {0y, 6, 83} is depicted in heavy dashed curves with
corresponding colors. We have indicated the relative position of Dg and Vg. The events BJ@ (r, R) occur when

the arms indicated by normal dashed curves with colors exist. Moreover, /; and i are the end-hexagons of
0;, and x1 and x? are the endpoints of ®

Lemma 2.9. Consider a set of positive real numbers {a, : n € [1, 0c0)} such that:

(1) % = aaln”(l + O(n_c)) for allm € (1.1, 10), where the constants in O(n~=°) is

independent of m in the given range.
(2) lim 0 liminf, o inf;, <</ <(14e)n Z_: > 1

Then, there exist 0 < C < 00 and —o00 < o < 00 such that a,, = Cn"‘(l + O(n_c)>.

2.5. Faces. When working on couplings of arm events, a crucial concept we will need
throughout the arguments is faces, which forms a special example of stopping sets. The
notion of stopping set is in some sense a two-dimensional version of the stopping time,
whose meaning will be given at the end of this subsection.

We begin with faces in the half-plane. Recall the conventions given at the end of
Sect. 2.2 for discretization. We call a set of paths ® = {01, ..., 0;} a configuration of
outer faces around C; if the following conditions are satisfied:

e Forl <i<j, if i is odd (resp. even), then 6; is a red (resp. blue) path from A; to
h' such that 6; C H \ B}.

e Forl <i < j,theend-hexagons A;’s and hi’s satisfy the condition that /11, hJ touch
oHL,, and h!, hy..., hiL, hj touch C}. Furthermore, (h1, /LA hj, hj) are listed
in counterclockwise order, and /' is adjacent to k4 for 1 <i < j —1.

See Fig.3 for an illustration. The paths 6y, ..., 6; are called the outer faces of ©. The
set of points x’ := h' N h;4; N C; forall 1 <i < j — 1 are called the endpoints of ©.
The concepts of configurations of inner faces around C, are defined similarly except
that we require instead that ; C B} for all i. In both cases, each path will be called a
face. We will also use ® to denote the union of all hexagons in 6;, 1 < i < j with a
slight abuse of notation. For ® a configurations of outer faces, we write Dg and Vg for
the connected components of H,\® whose boundary contains co and 0 respectively. In
these definitions, the initials D and V stand for “discovered” and “vacant”, signifying
the status of these regions when we explore inwards; same for inner faces. See also
the definition for stopping sets. When ® represents a configuration of inner faces, we
exchange the role of co and 0 in the definition accordingly. See Fig. 3 for an illustration.

Suppose r < R. If ® is a configuration of outer faces around Cj, then we write

B? (r, R) (resp. H(;)(r, R)) for the event that each outer face is connected to C; (resp.
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Fig. 4. Left: A configuration of outer faces around Cg. Right: A configuration of inner faces around C;. In
both cases, j = 4 and the configuration of faces ® = {0y, ..., 04} is depicted in heavy dashed curves with
corresponding colors. We have indicated the relative position of Dg and Vg. The events A? (r, R) occur

when the arms indicated by normal dashed curves with colors exist. Moreover, 4; and h! are the end-hexagons
of 6;, and xl, o, x% are the endpoints of ®

[—r, r]) by an arm in Vg of the same color. The same definition applies to a configuration
of inner faces ® around C;', with each face connected to C ;5 by an arm also in Vg. When
O is specified, there is be no confusion in whether B? (r, R) refers to a configuration of
inner or outer faces.

In a similar fashion, in the plane, we define the configuration of outer or inner faces
around a circle as a circular chain of j (an even integer) paths of alternating colors. More
precisely, we call the set of paths ® = {61, ..., 6;} a configuration of outer (resp. inner)
faces around C, if

e 01, ..., 0, have alternating colors and they are contained in C \ B, (resp. B;).

e The end-hexagons of these j paths, (hy, ht, ., hj, hj), touching C,, are listed
in counterclockwise order (still, #; and hi are the two ends of 6;). Moreover, Kl is
adjacent to h;y1 forall 1 <i < j (where we set i1 := hy).

See Fig.4 for an illustration. Again, the paths 0;’s are called the outer (resp. 1nner)
faces of ®, and we can define the end-points x! , x/ analogously (by setting x' :=
hi N hip N C,). Similar to the half- plane case, for any configuration of outer faces ©,
let Dg and Vg denote the connected components of C \ ® which contains oo and 0
respectively. If ® stand for a configuration of inner faces instead, we then exchange the
role of 0 and oo in the definition accordingly. For 0 < r < R, if ® is a configuration of
outer faces around Cg, we write A? (r, R) for the event that each outer face is connected
to C, by an arm of the corresponding color in Dg. The corresponding events for inner
faces are defined in a similar way.

By a stopping set, we mean a random configuration of inner or outer faces ® which
can be determined by a “one-sided” exploration process. That is to say, there exists an
exploration process such that when the exploration stops, we are able to determine ®
from the configuration in Dg only, and all the hexagons in Vg are left unexplored.
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2.6. Separation lemmas in the half-plane. In this subsection, we give different versions
of the separation lemma in the half-plane. Their counterparts in the plane will be given
in the next subsection separately.

The separation lemma for planar percolation first appears in Kesten’s work [16].
This is the key tool that allows one to deal with conditional arm probabilities and obtain
quasi-multiplicativity for arm events. It is worth mentioning that its counterpart in the
setup of Brownian motion established by Lawler in [20] also has multiple implications
in the study of special points of Brownian motion.

We will state the separation lemma in terms of interfaces. By an interface we mean
a b-path that separates clusters of different colors in some domain.

‘We now introduce the notion of “quality” to measure how separated the interfaces are.
Suppose # < v. Let I be a set of interfaces crossing A* (u, v) from C;! to C;. Suppose
that I" contains j > 1 interfaces and let {xl, ot } be the collection of endpoints of
these interfaces on C} listed in counterclockwise order. Then I' has an exterior quality
defined as

1 1 1 .2 j
Qx(T) := ;d(v,x YAAx X)) A-Ad(x, —v). (2.8)

In an analogous way, we define the interior quality for interfaces and denote it by Qjy.
We can also define the quality Q for a configuration of faces ® in a similar fashion. Note
that there is no need to add subscripts here since in this case the type of quality can be
read from the type of faces. We call ® to be well-separated if Q(©) > j L.

The separation lemma roughly shows that conditioned on the interfaces reach a long
distance without intersecting each other, then their endpoints will separate at some
macroscopic distance with a universal positive probability. We now give the first version
of separation lemma, which involves no initial configuration of faces, and is rather
standard. This version can be viewed as the half-plane counterpart of [30, Lemma A.4]
and its proof uses a similar argument, so we omit it.

Lemma 2.10 (The Standard Separation lemma). For any j > 2, there exists c¢(j) > 0
such that for any 100j < 2r < R, the following hold.

e Let T be the set of interfaces crossing A*(r, R) connecting C; and C, then,

P[Qin(T) A Qex(T) > 71 | Bj(r, R)] > c. (2.9)

e Let I be the set of interfaces in By connecting [—r, r] and Cy, then
P[Qex(I) > j~ | Hj(r R)] > c. (2.10)

The following strong separation lemma is the half-plane version of [11, Proposition
A.1]. In fact, Proposition 2.11 is called “strong” because it holds for any given initial
configuration of faces which might be of very bad quality, not because it implies Lemma
2.10 (in fact it does NOT—note that in this strong version we do require the initial
configuration to be j faces, which does not appear in the conditioning in Lemma 2.10).
For the sake of completeness, we will prove it in Appendix C.

Proposition 2.11 (Strong separation lemma). For any j > 2, there exists c(j) > 0 such
that for any 100jn < 2r < R, the following hold.
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o (Outward) For any configuration of inner faces ® = {01, ..., 0;} with endpoints
(x', ..., x/~Y} around C}, let T be the (j — 1)-tuple of interfaces in Vg which start
from x', ..., xI71 respectively until they reach Ck. Then

P[Qex(T) > j = | BY (r, R)] > c. (2.11)

e (Inward) In a similar fashion, the same claim also holds for any configuration of
outer faces © with C}}, Ck and Qex replaced by C},, C} and Qiy respectively.

In this work, we will also need a slightly strengthened version of the strong separation
lemma stated below. Compared with Proposition 2.11, it lifts the restriction of requiring
exactly j faces as the initial configuration, although it still requires an a priori upper
bound on the number of faces. We say that a color configuration on T* coincides with
a configuration of (inner or outer) faces if they have the same color on the common
hexagons. Moreover, for a color configuration wy on T* (or only on a subset D of T*),
we denote by {wp = wp} the event that the color configuration inside D coincides with
o.

Proposition 2.12 (Slightly stronger separation lemma). Forany K > j > 2, there exists
¢ = c(j, K) > 0 such that for any 10j - 2K < 2Ky < 2KR, < R, <R, letting T be
the set of interfaces crossing A*(R1, Ry), the following holds:

e (Outward) For any configuration of inner faces ® around C IJQ] with no more than K

faces, and any color configuration wq that coincides with © and satisfies P[B; (r, R) |
wpe = wol > 0,

IP[|1"| = j —land Qex(T) > j~" | Bj(r, R)., wp, =a)0] e (212)

e (Inward) In a similar fashion, for any configuration of outer faces ® around C ;2
with no more than K faces, and any suitable color configuration wy,

The same inequality holds with Q.x replaced by Q. (2.13)
The claims (2.12) and (2.13) above also hold if B;(r, R) is replaced by H ;(r, R).
Proof. We focus on (2.12) as all other cases are almost the same. Given any configuration

of inner faces ® around C; with k (j < k < K) faces, and any configuration wq that
coincides with ® and satisfies P[B; (r, R) | wp, = wp] > 0, denote

B=Bj(r,R), Q={wp, =wo}andU ={|T| = j — land Qex(I") > j '}

for conciseness. Our aim is to show P[I/ | BN Q] > ¢(j, K) for some constant ¢(j, K) >
0.

We first deal with the case R, = R and we proceed by induction on K. The case
K = j reduces to (2.11) since when ® has exactly j faces, P[ - | B N Q] is identical to
Pl- | B]@ (r, R)] in V(®). Now, for some K > j, assume the result (wWhen Ry = R ) is
true for (K — 1) and ® has exactly K faces.

Consider the event

BY(R1,2Ry) = {all of these (K — 1) interfaces reach Cyp, }.

Assume that Bg (R1, 2Ry) fails, then once we explore the (K — 1) interfaces starting
from the (K — 1) endpoints and stop exploring immediately upon reaching R U C3 R,
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we will see that some of them merge together or hit the real line before reaching C3 R
Thus the exploration process induces a configuration of inner faces ®” around C3, r, With
no more than (K — 1) faces. Hence, the induction hypothesis gives

P [u | B. Q. (BL(R, 2R1))C] > e, K —1). (2.14)
On the other hand, assume that B? (R1, 2Ry) happens. Clearly
BNBY(R,2R)) C BL(R1,2R1) N B;(4Ry, R),
and also B;(4R1, R), B? (R1, 2R1) and Q are mutually independent, so
]P’[B, BO(Ry.2R)) | Q] < P[B,?(Rl, 2R1)] -P[Bj(zml, R)]. (2.15)
Furthermore, let 'y, T'; be the set of interfaces crossing A*(Ry, 2R|) and A*(4R;, R),

respectively. Then, by RSW-FKG gluing, (2.9) and (2.11) (taking j therein as K), we
see there exist c; = c1(j, K) > 0,¢c2 = c2(j) > 0 and ¢3 = ¢3(K) > 0 such that

P[U. B, BRI, 2R1) | Q] > 1 - P[Bj(4R1, R), 0un(T2) > j~' [P[BR(R1L 2Ry,

Ox(T') > K]
> ¢ - 2P[Bj(4R1, R)] - c3PIBL(R1, 2R))]
> c1c2e3PIB, BR(R1, 2R))],

where the last inequality follows from (2.15). This implies

PV, B, BY(R1,2Ry) | Q]
PB. BR(R1.2R) | Q]

P [u | B, O, B}?(R],ZRI)] - > ¢1eac3 = ca, K).

(2.16)

Now we pick ¢(j, K) = ¢(j, K — 1) A ca(j, K), then (2.14) and (2.16) together with
the total probability formula yields P[U | B, Q] > ¢(j, K). This proves (2.12) for the
case Rp = R.

For the general case of (2.12), by the quasi-multiplicativity (see [30, (3.14)]) and
what we just proved, we have for some constants cs, cg, c;7 > 0 depending only on
jﬂ K9

PlU, B | Q] > csPIU, Bj(r, Ry) | QIPIB;(R2, R)] > c6P[B;(r, R2) | QI
PIBj(R2, R)] > c7P[B | Q.

This shows P[U | B, Q] > c¢7(j, K), as required. |

Remark 2.13. The constant 2 in the condition 2r < R in the statement of Lemma 2.10
and Proposition 2.11 is not essential. Indeed, similar results still hold for any constant
greater than 1 when r is large enough, and the proof is just a verbal change of the proof
given in Appendix C. Then it is clear from the above proof that Proposition 2.12 still
holds for large r when the constant 2X is replaced by any constant greater than 1.
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2.7. Separation lemmas in the plane. This subsection is devoted to separation lemmas in
the plane. As the arguments are similar to the half-plane case, we only give the statements
in Proposition 2.14 and omit the proofs.

To start, we give the definition of the quality of interfaces, just as in the half-plane
case. For u < v, let I be a set of percolation interfaces that start from C,, and end at the
first visit of C,,. Suppose that I" contains j interfaces with endpoints x!, ..., x/ on C,,
then we define the exterior quality of I" as

Qex(T) := %d(xl,xz) AdE2 ) A Add, XD, (2.17)

Again, we define the interior quality for interfaces in the same fashion and denote it
by Qi as well as the quality for a configuration of faces ® and denote it by Q(®). If ®
satisfies Q(®) > j~!, we call it well-separated. Recall the notation Vg and Dg from
Sect.2.5.

There are counterparts of Lemma 2.10 and Proposition 2.11 in case of plane. How-
ever, some additional complicacy arises from parity: since the number of interfaces
crossing an annulus must be even, we cannot not naively argue something like “the j
interfaces are well-separated” for an arbitrary j. Lemma A.4 and Proposition A.1in [11]
only consider the case when j is even, but the same argument with little change yields
similar results for odd j. More precisely, for any j > 2, we set J/ = 2|j/2]. For any
10j < 2r < R, and any configuration of outer faces ® = {61, ..., 0,} around Cg, let
" be the set of interfaces crossing A(r, R). Then, there exists ¢ = c¢(j) > 0 such that

P[Qin(D) > J ' | A9 (r, R)] > c. (2.18)

Similar result holds for any configuration of inner faces with J faces. From this we can
prove (by almost identical arguments) the counterpart of Proposition 2.12 in the plane
case.

Proposition 2.14. For any K > j > 2, there exists ¢ = ¢(j, K) > 0 such that for any
10 - 2K < 2Ky < 2K R, < Ry < R, let T be the set of interfaces crossing A(R1, R»),
then the following holds. For any configuration of outer faces ® around Cg, with no
more than K faces, any color configuration wo which coincides with © and satisfies
PLX; (1. R) | @p, = wol > O,

P[|T| = J and Qux(T) > J~' | Xj(r, R), wp, = wo] > c. (2.19)

Moreover, the same claim also holds for Y;(r, R).

The first claim (2.19) can be deduced similarly as before. For the second claim, we note
that although conditioning on Y; (r, R) involves more requirements on connectedness,
it could be resolved by a similar RSW-FKG gluing technique as in the proof of Lemma
3.3 in [11]. We omit the details.

2.8. Percolation exploration process and scaling limits. In this subsection, we define the
percolation exploration process and discuss its power-law convergence towards SLEg
obtained in an unpublished work by Binder and Richards. In particular, we give in
Proposition 2.16 a variant of their results tailored for our work. We will provide some
estimates about the exploration process in Lemma 2.17 and show that it is stable under
perturbations of the boundary in Proposition 2.18.
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Given a Jordan domain €2 and two boundary points a, b, for any 0 < n < 1, recall
from Sect. 2.2 that Q) is a connected subgraph of nT (where we assume that n is small
enough) and a, and b, are two vertices on the boundary of (] In addition, a, and b,
divide the boundary of €[, into two connected parts, and we will assign red and blue
colors to the external hexagons adjacent to these two parts, respectively, according to
the context. Define the exploration process y, as a directed path from a,, to b, on nT*
which is the interface between the two red and blue clusters containing the boundary.

The Schramm-Loewner evolution (SLE), first introduced by Schramm in [28], is a
family of conformally invariant random curves that serves as the canonical candidate
for the scaling limit of curves, in particular interfaces of various critical models in 2D.
In the case of critical planar percolation, Smirnov proved in [31] that the scaling limit
of the exploration process y; is indeed the chordal SLEg path from a to b in €2, which
we denote by y below.

As discussed in Sect. 1.2, Binder and Richards improve the above convergence by
giving a power-law rate for curves up to some stopping time. We now describe their
results in more detail. Given U C £2, let T;; be the first time that y,, enters U}, and T be
the first time that y enters U. Define the distance d between two paths [} : [0, ;] — R2
and I : [0, n] — RZ as

dh, ) =1nf sup 5(0(s)) = L)l

0=<s=n

where 6 runs over all increasing homeomorphisms from [0, #1] to [0, #2]. We call Q a
nice domain if €2 is a domain with a piecewise smooth boundary. Note that the domains
we consider in Sects. 4.1 and 4.3 (both denoted by €2) are nice domains.

In Theorem 4.1.11 of Richards’ thesis [26], it is proved that under some coupling of
v and yy, they are close upon specific stopping times with high probability. We collect
their results here.

Theorem 2.15 ([26], not yet peer-reviewed). When Q2 is a nice domain and U =
B(b,e) N Q for some € > 0, there exists u = u(2,U) > 0 such that under some
coupling of y and yy

P[d (vylio.1,1. ¥ Ijo.71) > "] = O0(") asn — 0.

Combined with estimates on critical percolation, we can prove the following proposi-
tion which states that the time can be taken as the hitting time of a nice domain containing
the endpoint in our setup.

Proposition 2.16. For a nice domain Q2 and some nice domain U C 2 that contains a
neighborhood of b, there exists u = u(2, U) > 0 such that under some coupling of y
and y, (which we will later call good coupling),

P [d (%7'[0,737]’ V|[0,T]) > nu] < 0(7]“) asn — 0. (2.20)

We will also use a variant of this proposition, i.e., Proposition 4.1, in the proof of
Proposition 1.4.

Proof. Fix e > Osuchthat U N Q D B(b,e) N QL and let V = B(b, €) N Q2. We write
T, for the first time that y; enters V};; and T" for the first time that y enters V. Note that
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Ay

Qpy

U—— -~ Upy

by
Fig. 5. Left: Illustration of the event £. On this event, there exist three arms of alternating colors from
9B (x,3n°) to dB(x, nc/) in B(x, n¢ )\17. Right: For a point y away from the non-smooth point of dU, we can
find a (7w +0.01)-cone that contains B(y, nC//Z)\ﬁ. If there exists x € B(y, n¢) such that the event £ occurs

n . 9 .
for this point, then there exist three arms of alternating colors from inner radius 5n¢ to outer radius n° /3 in
this cone. For a point z on the non-smooth point of dU, if the event £ occurs for some point x contained in

B(z, n"/), we have at least one arm from B(z, 27;"/) to distance ﬁ away from z

the stopping times in Theorem 2.15 are T,; and T’ by taking the same 2 and €. Hence,
there exists ¢ > 0 such that under some coupling IP of y;, and y,

Pld (valorp. Vo) > 0] < 0. 221)

We now show that P is indeed a good coupling which satisfies (2.20). Since Up;;; D V[
andU D V,wehave T, < T,; and T < T'. Now, it is sufficient to prove that vy and y
respectively hit U, and U almost at the same time and place with high probability. Let

U ={z € Uy :d(z, Qy\Up) = n}; see Fig. 5 (left). Write

E = {there does not exist x € Uy and 0 < 11 < tp < 13 < t4 such that y, (t1), y,(t4) € 0B(x, r]",),

vn(t2), vy (13) € dB(x, 3n°), and moreover, ;| -1 does not intersect with lNJ}
(2.22)

where ¢’ is a constant to be chosen and ¢ > ¢’ > 0.

Next, we bound P[£€] from above using Claim (2) of Lemma 2.6. If £¢ happens, then
we have three arms of alternating colors from B(x, 3n) to B(x, nc/) in B(x, n"/) \ U ;
see Fig. 5 (left). Specifically, there are four arms along y; (1,1, and ¥y |13, However,
the arms in the region bounded by y;|s,.1,1 and y;[1;,,,) Mmay intersect.

Since © and U are piecewise smooth, we can find a net N with O (n~°) points on
dUpy) such that each point x on Uy, is n°-close to a point y in A. Then we have
B(x,3n°) C B(y,4n°) and B(x,n°) D B(y,n°/2). Hence, the event £ implies
that for some point y € N, there are three arms of alternating colors from B(y, 41°)
to B(y, n"/ /2) in B(y, 77"/ /2)\& . For the points in N which are away from the non-
smooth point of dU, say a large constant (depending on €2, U) times 17"/, the domain
B(y, 17"//2)\17 is contained in a (7 +0.01)-cone centered at a point in U thatis n-close
to y. In such cases, if the preceding event occurs for y, then there is a three-arm event for
this cone from inner radius 51° to outer radius ne /3; see Fig. 5 (right). Therefore, using
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Claim (2) of Lemma 2.6 with b3, we can bound the probability of this event from above

by O (n(“‘”(c_c/)) for some universal constant § > O (we can take § to be close to 1 here,
however, any § > 0 is sufficient for our purpose). Note that Lemma 2.6 is stated for the
half-plane case, however, it is relatively easy to extend to the (7 + 0.01)-cone case by

the conformal invariance of critical percolation. For points in A that are O(n"/)-close

to the non-smooth point of dU, the domain B(y, 77"/ / 2)\[7 may be much larger than a
half space. In this case, we can cover all these points by O (1) number of balls, each

with radius 7. If the event £ occurs for a point x contained in these balls, then there
exists at least one monochromatic arm from these balls to distance ﬁ since the curve
¥y must reach within distance nc/ from one of these balls; see Fig.5 (right). Here ﬁ
means that the sequence is larger than some positive constant depending on 2 and U
for all sufficiently small 5. Using Claim (2) of Lemma 2.6 with p, we can bound this
probability from above by O (1) x O (n‘sc/) where we decrease the value of § if necessary.
Therefore,

PIEC] < O ) x Oy 4 0 ().

Hence, we can choose ¢’ small such that P[£¢] < O(ncﬂ).
Next, we show that

EnN {d (an[o,T,;], V|[0,T/]> < UC} C {d (valio.1,1 ¥ l10.71) < n° } :

Assume that d (y,7|[0,Tn/], y|[0,T/]) < n° and the event £ occurs. When y,, hits Uy, for
the first time, by the event £, we see that it also hits U before traveling a distance of
nc/. Specifically, we can take z be the hit point of y;, on dUj;;) and let the time be 7. Let
t> be the last hit time of d B(z, 3n¢) before 1y, and #; be the last hit time of d B(z, 17"/)
before #,. Similarly, define #3 be the first hit time of d B(z, 3n°) after #y, and #4 be the
first hit time of 3 B(z, ) after t1. Then, by the event &, the path ¥ l[r1,14] Must intersect

U. Therefore, ¥y must hit U before traveling n”/ which implies that the process y must
also hit U around z. Similarly, when the process y first hits U, y, must get n° close
to some point on U, and by the event & it must hit U before traveling a distance of

n"/. So, y, and y hit respectively U, and U almost at the same time and place, and

their d-distance is smaller than nc/. This completes the proof of the above relationship.
Therefore, under the coupling of y,, and y in (2.21),

P [d (volto.71. ¥ l1o.71) > UC]

< P[d (ylio.771 vlo.r) > ] +PIETT = 0G1) + O ().
Letting u = min{c, ¢/, ¢"} yields (2.20) as desired. O

We will also use the following estimate frequently in Sect.4. The proof follows
verbatim from the same argument as in the previous proposition, using Claim (3) in
Lemma 2.6 with b3 and pj, so we omit it here.

Lemma 2.17. For any u > 0, there exists a constant v € (0, u) depending on u such
that the following holds. For a nice domain Q and two boundary points a, b, let P be a
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piecewise smooth path contained in Q that has a positive distance away from a, b and
Py, be its discretization; see Sect.2.2. Define the event

E= {there does not exist x € Pyand 0 < t] <ty <13 < t4 such that y,(t)), y,(t4) € 9B(x,n"),

vu(2), vy (t3) € 0B(x, n"), and moreover, yy(,.1,) does not intersect P,,}. (2.23)
Then, we have
P[E]1 = 1—- 00",

where c is a constant depending only on u, v and the O (n°) term depends on Q2 and P.
Furthermore, on the event £, whenever yy reaches within distance n* from Py, it hits P,
before travelling a distance of n*

In applications, we can also take P, as part of the discretization of a smooth path
with a bounded number of connected components. This lemma also extends to the case
where P, is n™"-close to a, b as long as €2 is locally close to the half-plane at these
parts of P,. For instance, when Q = B*(0,1),a = (1,0),b = (-1, 0), we can take
P, = C{\(B(a,n™") U B(b,n™")) where C{ is the discretization of C{ with lattice
scale 7.

The next proposition states that the exploration process is insensitive to the change

of boundaries. More precisely, when the boundary changes by 1%, then the exploration
process changes by at most 7°®) with probability at least (1 — n¢®).
Proposition 2.18. Suppose Q is a nice domain and Q) be the discretization of Q
defined in Sect. 2.2. Let Q/ﬂ be a Jordan set of hexagons on nT*, i.e., Q;Y contains a set
of hexagons on n'T* and this set is simply connected when embedded in C. Let a,’7, b;) be
two boundary points of Q;, If for some § > 0,

Ay, 02) <n’, day.a) <n’, dby. b)) <1,

then there exists a coupling P of y, and y,; and a constant ¢(§) > 0 such that
P [d (Vn, V,Q) > nc] < 0.

Proof. Without loss of generality, we assume that 9;7 D ;) (otherwise we can compare
Qpy) and ), both with @7/, where Q) = {x € Qpy; : d(x, 9Qpy)) > 1n°}). We can couple
the critical percolation on €[, and ] such that the two configurations have the same
color on 2[;). Under this coupling, the exploration processes in these two domains
can only be different after one of them hits 92, (since they have the same path in
the interior of €2[;;). However, we can find some ¢ € (0, §) such that with more than
(1 —n°) probability, each time they hit 9€2,, they will remain the same after travelling
a distance of 1° (otherwise we either have a half plane 3-arm event from an 1’ ball on
the boundary to distance 1, or, not a non-smooth point, a whole plane 1-arm event from
distance n° to ﬁ. This happens with probability less than nc/ for some ¢’ > 0 when ¢
is close enough to 0). This completes the proof. O

Remark 2.19. With similar arguments, we can show that the sharp asymptotics we ob-
tain in this paper for arm events under the specific discretization, also hold for other
discretizations, as they differ by at most a power of the mesh size. In other words, arm
events are insensitive to the way we discretize domains. In particular, the good cou-
pling we construct in Proposition 2.16 (as well as Proposition 4.1) also works for the
discretized domains under the convention given at the end of Sect.2.2.
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3. Couplings and Conditional Arm Probabilities

In this section, we will give various couplings concerning arm events in the half-plane
and the plane (see Propsitions 3.1, 3.3 and 3.6) and deduce useful estimates on the
conditional arm probabilities from these couplings (see Propositions 3.4, 3.5, 3.8, 3.10).
In [11], the authors have established the coupling results concerning one-arm ([11,
Proposition 5.2]) and four-arm ([11, Proposition 3.1]) events in the plane, respectively.
Although many techniques developed in [11] can be adapted for variants of arm events
we are considering here (e.g., H; (r, R), X;(r, R) and Y (r, R)), certain intricacies arise
from our choice of such events, causing extra difficulties. We postpone the proofs to
Sect.5 as they are rather technical and independent of the main story. To simplify the
statements of the results, we assume the mesh size n = 1 throughout this section.

3.1. The half-plane case. In this subsection, we deal the coupling results in the half-
plane. For simplicity of presentation, the j = 1 case and the j > 2 cases are stated
separately.

3.1.1. One-arm In this subsection, we will state the coupling result for the one-arm
event in the half-plane. We say that a b-path in the half-plane is a circuit if it connects
the discretized negative real line to the discretized positive real line. If | < r < u, let
Cout (7, u) (resp. I'in(r, u)) be the outermost (resp. innermost) red circuit in the semi-
annulus A*(r, u), i.e., the red circuit which is closest to C;} (resp. C;"). If such circuits
do not exist, then set I'(r, ) = @.

Proposition 3.1. There exists § > 0 such that for all 100 < 10r < R and m € (1.1, 10),
denoting u := ~/r R, then the following hold:

e (Inward coupling) There is a coupling Q of the conditional laws P[- | H1(r, R)] and
P[- | Hi(r, mR)] such that if we sample (w1, wp) ~ Q, then with probability at least
(l —(r/ R)‘S), [Cout (7, u) for both wy and w; are non-empty and identical, Furthermore,
the percolation configurations in the connected component of H \ [y (7, u) whose
boundary contains 0 are also identical.

o (Outward coupling) A similar coupling exists for the conditional lawsP[- | H1(r, R)]
and P[- | By (r, R)] with I oy and O replaced by Ty, and oo respectively.

Remark 3.2. In the statement above, we take u = +/r R merely for convenience. In fact,
it can be taken as r¢ R'~? for any 0 < d < 1 (with the corresponding §(d)). The same
applies to all couplings in this section.

The proof of the above proposition is essentially the same as that of [11, Proposition 5.2],
which deals with one-arm events in the plane (the proof in fact dates back to Kesten’s
work on the IIC [15]) in which the key tools are the RSW theory and FKG inequality.
Therefore, we omit the proof and refer the readers to the said paper for details.

3.1.2. j-arms with j > 2 In this subsection, we concentrate on the j-arm events with
Jj = 2 in the half-plane. We shall present couplings in both the inward and outward
directions simultaneously since they share the same virtue. Note that for j > 2, H;(r, R)
is equivalent to the event that there are at least (j — 1) interfaces starting from C and
end at their first hitting of [—r, r]; similarly, B; (r, R) is equivalent to the event that there
are at least (j — 1) interfaces crossing the annulus A*(r, R). In both cases, we write
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' ={y1,..., ¥} (where n > j — 1) for the set of interfaces crossing the whole region,
and order them counterclockwise. We say two interfaces in I" are adjacent if there is a
hexagon on T* touched by both of them.

Proposition 3.3. Forany j > 2, there exists 5(j) > Osuchthatforany100j < 10r < R
and m € (1.1, 10), denoting u = ~/r R, the following hold:

e (Inward coupling) There is a coupling Q of P - | H;(r, R)] and P - | H ;(r, mR)]
such that, if we sample (w1, wy) ~ Q, then with probability at least (1 — (r/R)‘S),
there exists a common configuration of outer faces ©* with j faces around C;; in both
w1 and wy, and w| coincides with wy in Ve+. Furthermore, when this is the case, ©*
is a stopping set (recall the definition in Sect. 2.5) and for any 1 < r’ < r, we have

P[H,; (', R) | H;(r, R), © 1 =P[H,;(r',mR) | H;(r,mR), ®*].  (3.1)

e (Outward coupling) A similar coupling exists for P[- | H;(r, R)] andP[- | B (r, R)]
with outer faces replaced by inner faces. Forany R' > R, when the coupling succeeds
(so that the common inner faces ©* exists), we have

P[H;(r, R') | H;(r, R), ©*1 = P[B,(r, R') | B,(r, R), ®*]. (3.2)

Asaconsequence of these couplings in Proposition 3.1 (forthe j = 1 case) and Propo-
sition 3.3 (for the j > 2 cases), we know that the law IP[-|H ; (n*, n)] will coincide with
P[-|'H;(n%, mn)] at scale n* with high probability for & € (0, 1) (not to be confused with
the arm exponents « ;). From the (slightly stronger) separation lemma Proposition 2.12,
we can show that the failure event will not contribute much to P[H; (r, n)|H ; (n®, n)].
Thus, we obtain the following comparison of conditional arm probabilities.

Proposition 3.4. For anyr > rp(j), m € (1.1, 10) and « € (0, 1),
P [, m[H 0%, m)] = B[ omm) [0, mm)] (1+0079)). (3.3)

Here, O (n™°) may depend on r and «, but not m.

Proof. We only give the proof for j > 2, since the case j = 1 is similar (and easier
indeed). Denote 8 = (1 + «)/2, and choose a large integer Ko = Ko (j, o) such that

P[Bk,(n®, n?)] < n=Pi=t, (3.4)

Consider probability measures Py = P[- | H;(n%, n)] and P, = P[- | 'H;(n%, mn)]
with sample spaces €21 and €2;. For a pair (w1, w2) € Q1 X 2, we say w| =, wy if
there exists a common configuration ®* of outer faces around C;ﬂ , such that w and w,
are identical in Vg+. Divide €1 x 7 into the union of K; = {(w1, @2) : w1 =, w2},
]Cz = {(a)l, (,02) O} IS BKO(n"‘, nﬂ) or wp € BKO(nO‘, nﬂ)}\lCl and ’C3 = (/Cl U/Cz)c.
By Proposition 3.3, we can couple Py, P, by Q in a way that

Q[K1]1=1—n"C for some C(«, j) > 0. (3.5)

We define a pair of random stopping sets (@1, ®,) under Q as follow. For (w1, wp) ~
Q, since ®* is a stopping set by Proposition 3.3, we can perform an exploration process
outside C;ﬂ for both configurations to check whether there exists acommon configuration
of outer faces ®* with j faces for both w;, i = 1, 2 and without exploring any hexagon
in Ve+ when this is the case. If so (see the left part of Fig.6), we then further explore
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n® nb n

Fig. 6. Proof of Proposition 3.4. Sketch for P[- | H3(n%, n)]. Left: The case when the coupling succeeds:
there is a common configuration of outer faces ®* with 3 faces around C;ﬂ for both wy ~ P[- | H; (n%, n)]

and wy ~ P[- | H;j(n®, mn)]. The two interfaces that cross the annulus AT (n®") are in green. Faces ©F
together with hexagons that are adjacent to these two interfaces further create a common configuration of outer
faces around C:l’a , which is sketched in dashed red/blue curves. The region that has been explored (Vg+) is in

gray. Right: The case when the coupling fails. In this case, we reveal the color of all hexagons in A*(nP n),
which is illustrated in gray. Then, the color of all hexagons neighboring C;ﬁ are revealed, which is sketched

in dotted/dashed red/blue arcs on C;ﬁ . Running all of the exploration processes (in green) from C;ﬁ towards

C:L’a , we obtain a configuration of outer faces around C:L’a , which is sketched in dashed red/blue curves. In
this case, the number of faces could be larger than j

the (j — 1) interfaces starting from the endpoints of ®* and end upon reaching C;.
and hence obtain a pair of configurations of outer faces (®1(w;), ®2(w;)) around C;{a.
Otherwise (see the right part of Fig. 6), we further explore all the hexagons outside C;ﬁ

together with all the interfaces in A*(n%, n®) from C;ﬂ to C,\x for both w;, i = 1,2.

This will also yield a pair of configurations of outer faces (®1(w;), ®2(wz)) around
C;;,. Note that in either case, all hexagons in Vg, (), I = 1, 2 are left unexplored, hence
we get a pair of stopping sets (01, ©2) (w1, w2) = (O1(w1), O2(w2)).

For (w1, ) € Ky, ®1(w;) and ®,(wy) are identical with j faces, and we deduce
from (3.1) that

P[Hj(r,n) | Hj(n®, n), oDy, ) = @1] = PIH;(r,mn) | Hj 0, mn), opy, = @2l- (3.6)
For (w1, w2) € K3, we claim it holds uniformly that
P[H;(r.n) | Hj(n® n), 0p,,,, = 1] <n~ Pt 3.7

P[H;(r,mn) | Hj(n®, mn), wp,, = an] <n et (3.8)

Since H;(r,n) C B;(r,27%on*) N B;(27Kon®, n) and B (r, 27X0n®) is independent
of B; 2 %op* n)and {a)D@l(wl) = wy }, the left hand side of (3.7) is uniformly bounded
by

PB; (r, 2~ Kon9)|P[B; (2= Kon® n) | ®Dg,(,,, = @1]

— K
< pBiato(D) PIB;7"n%, ) | “Do) @) = wil
P[H;(n% n) | @Dy, (), = @1] - P[H;(n% n) | @Dy, (,,, = @1]

Noting that ®(w;) has no more than K¢ faces for any (w;, wp) € K3, and letting I/ be
the event that the interfaces crossing A*(27X0n% n®) are well-separated on C* it

271(()”0(’
follows that
o RSW . —Ko.
PIH;(n.n) | opg,,, =1] = c(j. KOPIUNB;Q K0n® n) | wp,, ) = o]
(2.13)

> (j, KOP[B;27%n% n) | wpy, ) = @1].



182 Page 26 of 51 H. Du, Y. Gao, X. Li, Z. Zhuang

This proves (3.7), and (3.8) follows in the same fashion.
Now, writing

F:=P[H;@ n)| Hj(n“,n),wpgl(wl) = w1],
G :=P[H;(r,mn) | H;(n*, mn), ODg () = 7]

for short, by the total probability formula we have

PuH;m] = PalH omm)]| = | D2 (F = G)QUO1, 02) = (01, 02)]- 39)
(01,02)

The right-hand side of (3.9) can be bounded by

| Y (F-6)Q[©1.02) = ©1,0), K1]|

(01,02)

3
+3 Y (F+G6)Q[01.02) = (01, 02). Ki].

i=2(01,07)

The first term equals O by (3.6), the second term (that corresponds to K> in the sum) is
bounded by 2Q[/C;] < 4n~Pi~! from (3.4), and the last term is bounded by n~#i¢=C+o(D
from (3.5), (3.7) and (3.8). As a result we see |P([H;(r,n)] — Po[H;(r,mn)]| <
n—Pie=C+o() for some C > 0. In addition, by Lemma 2.6 and (2.7) in Remark 2.7,
P [H;j(r,n)|Hjn*, n)] = n=Fie+*(D The claim (3.3) hence follows. O

Proposition 3.5. For any r > r,(j)(= rp(j)), m € (1.1, 10) and a € (0, 1),
P [B;(r, n)|B;(r, n*)] = P [H;(r. m)|H,; (r, n)] (1 + O(n*")). (3.10)

Proof. In contrast to Proposition 3.4, this is an outward coupling, in which case we do not
need to spare an additional scale n” to use Proposition 2.12, and thus much easier to deal
with. Concretely, we first examine whether P [- | B; (r, n*)] and P [- | H,(r, n%)] induce
the same configuration of inner faces around C;\., which will happen with probability
larger than (1 — n=%) by (3.2). If it fails, for both events B (r, n) and ‘H ; (r, n), we further
need to fulfill an arm event B (n*, n) which has probability bounded by n=Ajero() by
(2.7). The result follows immediately. O

3.2. The planar cases. In this subsection, we provide the coupling results in the plane,
which are analogous to those in the half-plane in the previous subsection. The one-arm
and four-arm cases have already been developed in [11], but as new difficulties arise for
the variants we consider in this work and for general j, we decide to include a proof,
which we postpone to the last section. Recall the definitions of X;, J;, A; for j > 2in
(2.5) and (2.4) and below (2.5) resp. We let

J=21j/2].

In the next proposition, we couple together conditional laws in the planar case. For
discussions of these couplings, see Remark 3.7 below.

Proposition 3.6. For any j > 2, there exists §(j) > 0 such that forall 100j < 10r < R
and m € (1.1, 10), denoting u = ~/r R, then the following hold.
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o (Inward coupling) There is a coupling Q of the conditional laws P[- | X;(r, R)] and
P[- | A;(r, R)] such that if we sample (w1, w2) ~ Q, then with probability at least
(1 —(r/ R)‘S), there exists a common configuration of outer faces ®* with J faces
around C,, in both w1 and wy, and w| coincides with w;y in Ve«. Furthermore, when
this is the case, ©* is a stopping set and for any 1 <r’ <r,

P[X;(r', R) | Xj(r, R), wp,. = w1] =PLA;(', R) | A;(r, R), op,. = »2].
(3.11)

e (Another inward coupling) A similar coupling exists for the the conditional laws
P[- | Yj(r, )] and P[- | Y;(r, mR)]. In this case, if the coupling succeeds (i.e., ®*
exists),

PLY;(r', R) | Y;(r, R), wp,, = w11 =PLY;(r",mR) | V;(r,mR), wp,,. = w1].
(3.12)

Remark 3.7. The major difference of these couplings with Proposition 3.3 lies in (3.11)
and (3.12). In the half-plane case, the “domain Markov property” can be easily applied,
and thus (3.1) and (3.2) follows naturally from the existence of common faces for both
percolation configurations. In the planar case, however, due to the parity issue and the
complicacy of V;(r, R), (3.11) and (3.12) do not hold trivially. We tackle this kind of
difficulty in Sect.5 by coupling together extra structures rather than just configurations
of faces.

As a result of Proposition 3.6, we get the following estimates on conditional arm
probabilities.

Proposition 3.8. For any r > ry(j), m € (1.1, 10) and a € (0, 1), we have
PV m)|Y; (%, )] = P[V;(r.mm)| Y (n® mn)] (1 + O(n*")), (3.13)

where O (n~°) may depend on r and «, but not m.

Proposition 3.9. For any r > ry(j)(= r4(j)) and ¢ > 0, we have
PLX;(r, n) | X;(en,n)] = PLA;(r.n) | A;(en, n)](l + 0(86)>. (3.14)

The proof of Proposition 3.8 is almost identical to that of Proposition 3.4, and by similar
arguments and replacing n® with en, we obtain a similar proof of Proposition 3.9. We
omit the proofs.

We now consider outward coupling in the plane. Recall the definition of Z; (7, R).
There are similar couplings of P[- | A;(r, n*)] and P[- | Z;(r, n*)] as in the half-plane
case, from which we can deduce a comparison of the probability of X; conditioned on
A;j and Y; on Z;, which is summarized in the following proposition. As the key idea
is essentially same as before, for brevity we choose not to state the precise coupling
results, and only give a sketch of the proof for the comparison result.

Proposition 3.10. Forany r > r,(j)(> rs(j)), m € (1.1, 10) and o € (0, 1), we have

PLX;(r, 1) | Aj(r.n®)] = PLY; (r.n) | Z;(r, n“)](D(j) + O(n—f)) (3.15)
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(a) Ve(r,n). (b) X2 (r,n). (c) X2(r,n). (d) &2 (r,n).

Fig. 7. An illustration of the events Vg (r, n) and Xg(r, n) of three different types of connecting patterns.
All four annuli are A(n%, n) with the same configuration of inner faces ®* in dashed red/blue curves. The
three marked points on C,, are n - a, n - b and n - ¢, respectively (from bottom, counterclockwise). The outer
connecting patterns for ©* are sketched in dotted red/blue curves, and there is an additional inner connecting
pattern in the first picture which results in the only possibility for the outer connection for Vg (r, n)

where D(j) is a constant given by

I, j=1 (mod?2)
D(j)=1%. j=2 (mod4) (3.16)
I, j=0 (mod 4)

and O (n~¢) may depend on r, a and j, but not m.

We first explain why the constant D(j) in (3.16) appears. As in Proposition 3.6, we
cancouple P[- | A;(r,n*)]andP[- | Z;(r, n%)] in a way such that if we sample (w1, @2)
according to this coupling, w; and w» will coincide on a configuration of inner faces
©* around Cpe with high probability. We now consider the events X;(r, n) and )V; (r, n)
conditioned on the color configuration in Dg+. When j is odd, conditioned on D+,
X (r,n) is equivalent to Y;(r, n) and the proof is almost identical with the previous
cases. However, when j is even, these two events are distinct: there are j/2 kinds of
connecting patterns for X’ (r, n), since the information inside ®* cannot tell us which
faces should be connected to the corresponding segments on Cy; but for V; (r, n), there
are only 1 (if j = 2 (mod 4)) or 2 (if j = 0 (mod 4)) possible connecting patterns,
because the information inside ®* already determines the order of faces in ®*. See Fig.7
for an illustration of the case when j = 6. If we realize that all possible connecting
patterns have nearly the same probability, then the definition of D(j) in (3.16) makes
sense. For this equality fact, we draw an analogy with the evolution of a Markov chain
at a heuristic level. Similar to how states in a Markov chain lose memory of the initial
values and converge to a stationary distribution, the interfaces tend to “forget” their
initial positions and “mix” into a common distribution after traversing a long distance.
On a more technical level, this equality can be established by comparing each pattern to
a specific reference pattern via coupling arguments, as shown in (3.18) below.

Sketch of Proof for Proposition 3.10 when j is even. Denote G for the event that there
are exactly j interfaces crossing A(r,n), then conditioned on the evnet X (r, n) or
Yj(r,n), G¢ has negligible conditional probability by BK-Reimer’s inequality. We par-
tition X (r, n) N G into the disjoint union of D(j) events according to the locations of
interfaces. More precisely, let I" be the set of the % interfaces with red on their left (seen
from outside to inside). We label each y € [ in the following two ways: label y by y;
(resp. y') with 1 <i < £, if y is the i-th element in I when counting around the circle
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C; (resp. Cy,) counterclockwise starting from (0, —r) (resp. (0, —n)).For 1 <i < D(j),
define X]’. (r,n) as

Xi(r,m)NGN{y =y'} =2 (mod 4),

X! r,n) = . L
i Xj(r,n)ﬂgﬂ{)/l:y’ory”%} j=0 (mod4).

(3.17)

See Fig.7 for illustration of the events X j’ (r,n)’s. Then X;(r,n) N G is the disjoint
union of XJ’: (r,n),1 < i < D(j). We construct a coupling of P[ - | A(r, n%)] and
Pl - | Zj(r,n%)] foreach 1 < i < D(j). In such couplings, we keep a record of the
relative location of interfaces, so once we successfully couple a face, the conditional
version of X ]’ (r,n) and YV;(r,n) N G are identical. This allows us to deduce that

PLXE(r.n) | Aj(r.n™)] = PLYV;(r.n) N G | Z;(r, no‘)](l + O(n*C)) (3.18)
holds for each 1 < i < D(}j), and the desired result follows readily. O

4. Proof of Main Theorems

In this section, we will combine the coupling results from the previous section and
the power-law convergence of the exploration process discussed in Sect.2.8 to prove
the main results of this work, namely Theorems 1.1, 1.2 and 1.3. In Sects. 4.1 and 4.2,
we will prove Theorem 1.1, which is derived directly from Proposition 1.4. In order
to prove Proposition 1.4, we use Propositions 3.4, 3.5 and 4.2 as inputs. In Sects.4.3
and 4.4, we will prove Theorems 1.2 and 1.3. The former is derived directly from
Proposition 1.5, while the latter theorem is a quick corollary of the former. In order
to prove Proposition 1.5, we use Propositions 3.8 and 4.6 (the latter is an analogue of
Proposition 4.2 in the plane), as inputs.

Note that in Sects. 4.1 and 4.3, we will consider the rescaled lattice and the discretiza-
tion scheme in Sect.2.2 comes into play.

4.1. Comparison estimates in the half-plane. In this subsection, our main goal is Propo-
sition 4.2 in which we compare the probabilities of 7, the modified half-plane arm
events (recall (2.2) for definitions), at different scales.

As discussed in Sect. 1.2, the key ingredient is the convergence rate of percolation
exploration process towards SLEg upon some stopping time as shown in Theorem 4.1.10
in [26] and discussed in Sect. 2.8. Instead of citing Proposition 2.16 directly, we will use
a modified version stated as follows.

Recall the notation from Sect.2.8. We consider the nice domain (in the sense of
Sect.2.2)

Q= B0, 1)U B((—3/4, 0), 1/4), a=(1,0)and b = (=3/4, —1/4);

see Fig.8 for an illustration. We assign red color to the counterclockwise arc ab and
blue color to the counterclockwise arc ba. Given a mesh size n > 0, the percolation
exploration process starts from a, and ends at b,. For a € (0, 1) and m > 0, let Ty,
(resp. Tl/(m,,)) denote the first time that yy/, (resp. y1/(mun)) hits [—1, —n"‘_l). Then we
have Tl Ins T 1/(mn) < o0 for all sufficiently large n. Sometimes we may use Tl /mn and
Y1/mn to simplify the notation.
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Recall (2.2) that H;(r, R) is the event that in B} with the lattice scale 7 = 1 there
exist j disjoint arms connecting [—r, r] to C} with alternating colors. Rescaling the
lattice by n = 1/R (in fact we will consider the cases R = n and R = mn in this and the
next subsection) we get that 7 (r, R) is equivalent to the event that in B} with the lattice
scale 7, there exist j such arms connecting [—r/R, r/R] to C}. From here to the end
of this subsection, with slight abuse of notation, we will tacitly assume the equivalence
between events on the rescaled and those on the unrescaled lattices.

Proposition 4.1. There exists u(2) > 0 such that for any a € (0, 1) and m € (1.1, 10)
there exists a coupling of y1/n and y1mn) (Which we will refer to as the good coupling)
satisfying

P [d (Vl/n |[Oil/n]’ )/1/('"")|[0i1/<mn)]) = n—u] =0@n™).

Moreover, forany B > 0, O (n™") depends only on B foralla € (B8, 1)andm € (1.1, 10).

Proof. Let U = B((—3/4,0),1/4) \ B(0, 1) where B(0, 1) is the closure of B(0, 1).
Applying Proposition 2.16 with € and U, we obtain that there exists a coupling of y1/,
and y1/(mn) such that

P [d (J/l/n|[0’Tl/”], Vl/(mn)|[0yTl/(m”)]> > n*é‘] =0(@n"). 4.1)

where T/, is the first time that yy,, enters Uj1/u1, T1/(un) is the first time that y1 /(un)
enters Ujy/(mn)], and c is the constant in Proposition 2.16 which depends only on U and

The remaining part is similar to Proposition 2.16 except that here we let £ be the
event that there does not exist x € [—1, —n*~!) such that y; /n enters B(x, n™°) but does

not hit [—1, —n?~!) between the last entrance of B(x, n_C/) before hitting B(x, n=¢)

and the first exit time of B(x, n_c/) after hitting B(x, n~°), and the same condition holds
for ¥1/(un). We refer to Lemma 2.17 for a quantitative version. Then, by Lemma 2.17,

we can choose ¢’ € (0, ¢) such that P[£¢] < O(n’c//). Similar to Proposition 2.16, we
have

& ﬁ [d (yl/"|[0,T1/,,]’ Vl/(mn)|[0,T1/(,,m)]> = n_c}
C {d (}/l/n|[0j‘l/n]v J/l/(;nn)|[0j]/(mn)]> <n ¢ } .

Hence, under the coupling of y1,, and y1/(un) in (4.1),

P [d (Vl/n|[ojl/n], 7/1/<mn)|[0,ﬁ/(m,,)]) > ”76]
<P [d (Vl/”|[O,T1/n]’ yl/(’””>|[0,T1/<mn)]) > n_c] +PE1I<Om™+0m™ ).

Taking u = min{c, ¢/, ¢”}, we obtain the proposition. |

Recall the definition of /2 (r, R) in (2.6). The following proposition states that /2 j are
almost the same at different scales within a power-law error at different scales when r
is not too small compared to R.
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b

Fig. 8. Sketch of the event H; (n%, n) when j = 2. The whole domain is Q[1/n]- The exploration process

Y1/n from ay;y, to by, on Q[p/p) is in green. Tl/n is the first time that yy/,, hits [—1, —n®~1), after which

time y}/, is sketched in dotted. The segment [—n*~1 n®~1]is in bold blue line. Two arms, neighboring the

interface y1/,,, from this segment to the top boundary C f' are in dashed red and blue respectively

Proposition 4.2. There existcg, ¢ > Osuchthatforalloa € (1—cg, 1)andm € (1.1, 10),
hj(n®, n) = hj(mn®, mn)<1 + O(n*")).

Importantly, here O (n~°) is independent of m and «.

To prove it, we need Lemmas 4.3 and 4.4. In Lemma 4.3, we will show that H ; (n*, n)
can be determined by the exploration process yi/, upon time T /n and similarly
H j(mn®, mn) can be determined by y /,, upon 7~"1 /mn-InLemma 4.4, we will show that
the indicator functions of corresponding events of the exploration process are identical
under three constraints. Finally, we prove that all of these constraints happen with high
probability under the good coupling of y1,, and y1,,. Therefore, the probabilities of
H;(n%, n) and H;j(mn®, mn) are close.

We say that yy,, travels j times between C} and [—n®~ 1, n*=1] before T} /n if there
exist0 =190 <1 <hh <...<1 < fl/n such that y1/,(to) € CT, yi/u(t1) €
[—no~ L pe-ly Yi/n(t2) € CT, etc.; the same for (4.3). Following from simple geomet-
rical arguments, we arrive at the following lemma. See also Fig. 8 for an illustration.

Lemma 4.3. One has

H;(n, n) = {yi/n travels j times between C{ and [—n®~', n®™ 1 before Tl/n}
(4.2)

and

Hj(mn®, mn) = {y1/mn travels j times between C and [=n®" Y, n*™ 1 before ﬁ/m,,}.

(4.3)

Note that if we work with B;(n*, n) instead, we need to deal with a varying domain
which is a less-than-ideal strategy. This is the main reason that we introduce and work
with H; (n®, n). We refer readers to Remark 2.5 and the paragraph below Proposition
1.4 for more discussions.

Before stating the second lemma, we introduce three events which all happen with
high probability under the good coupling of yi/, and yi/, in Proposition 4.1. Let
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u = u(£2) be the constant from Proposition 4.1. We will call C{ U [—n®~ L n®=1] the
designated boundary and note that (—1, 0), (1, 0), (—n‘)"1 ,0) and (n‘”’1 , 0) are the
extremal points of the designated boundary. Define 71, J», J3 as

T = {d<yl/n “0-71/71]’ Y1/mn |[O-Tl//nnj) =< niu};
T = {there does not exist x on the boundary such that it is n~ away from the extremal
points, and yy/, enters B(x, n~*) but does not hit the designated boundary between

the last entrance and first exit times of B(x, n~"), and the same for 1/, } ;
Tz = {}/1/;1 and yi/mn do not enter B((—1,0),2n7"), B((fn“_l, 0),2n7")

or B((n"‘_l, 0),2n") and do not reenter B((1,0), 2n~") after leaving B((1, 0), 1/4)} .

In the event 7>, we refer to the last entrance of B(x, n~") before hitting B(x, n™") and
the first exit time of B(x, n~") after hitting; see Lemma 2.17 for a quantitative version.
We will let v be the constant in Lemma 2.17 applied with u. If 7> happens, then each
time yy/, (OF y1/mn) enters B(x, n™*), it will hit the designated boundary between the
last entrance and first exit times of B(x, n~") for all points x on the designated boundary
that are n~V away from the extremal points.

We now give the second lemma which states that the indicator functions of H ; (n%, n)
and H;(mn®, mn) are identical under three constraints. In the proof, we will use the
equivalence established in Lemma 4.3.

Lemma 4.4. One has
IL7‘(,'(}1’1,:1) = lHj(mn",mn) on Ji N TN Js. 4.4)

Proof. Assume that 71, J>, J3 and H ; (n%, n) happen so that yy, fulfills the right-hand
side of (4.2). Suppose that y, hits [—n*~!, n*~1] at the point x. From 73 we know
that x is n~" away from the extremal points. By J; and 7>, the process y1/m, enters
B(x,n™") and so must hit the designated boundary between the last entrance and first
exittimes of B(x, n™"), therefore also before T /,,,,,. Thus, 1/, musthit [, ne— 1
nearly at the same place as yy,, before fl /mn- Similarly, when y1,, hits a point x in
C T before T] /n and after hitting [—n®~ 1, 1] (this together with J3 ensures that the
hitting point is 2n~" away from the point (1, 0)), the process i /,,, must hit C{ nearly
at the same place as yy,, before Tl /mn- Hence, y1/m, fulfilling the right-hand side of
(4.3) and so H j (mn®, mn) happens. Therefore,

TiNHNT3NHj(n* n) CHj(mn*, mn) and similarly
TN NTzNHj(mn* mn) CH;(n%, n).

This completes the proof of (4.4). O

Proof of Proposition 4.2. First, we give upper bounds to P[], P[75] and P[J5]. By
Proposition 4.1, under the good coupling of y1,, and y1 /jn, P[] < O(n™"). Taking v
as the constant in Lemma 2.17 applied with the same u, we obtain that P[7;] < O(n™°)
for some constant ¢ > 0 depending only on u, v. In our case, the designated boundary
is not a discretization of a smooth path, but Lemma 2.17 can still be applied to this case,
as 2 is locally contained in a half-space at every point on the designated boundary. If
J5 happens, we have a planar 1-arm event from a (2n~")-ball centered at one of the
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extremal points to distance 1/4 since we can find an arm along the exploration process
that is 2n~"-close to that extremal point. So,

PI7Z1 < 0(1) x O(n™ ")

(where we reduce the value of ¢ if necessary).
Therefore, under the good coupling

@4
lhj(n®, n) —hjmn®, mn)| < 1-PJ7 VT3 UT5] < PJ)) +P(T5) +P(T5)
= 0™ +0(n " )+0mn"").

By applications of the RSW theory, i ; (mn®, mn) > n€@=D We can take cg such that
—Ccg > max{—u, —c, —cv}.

Then, forall & € (1 —cg, 1), |h;(n*, n) — h;(mn®, mn)| = O(n_“/)hj(mn"‘, mn) as
desired. O

Remark 4.5. When j = 1, the event H; (r, R) is simply equivalent to the event that there
is a red crossing between [—r/R, r/R] and C{ in Bf with the lattice scale n = 1/R.
This special case of Proposition 4.2 has been proved in Proposition 5.6 of [23] and the
main theorem of [4].

4.2. Proof of Theorem 1.1. In this subsection, we will prove Proposition 1.4 and com-
plete the proof of Theorem 1.1. We will first prove a version of (1.8) for the case of
hj with Propositions 4.2 and 3.4 as inputs, whose proof is simpler than that of (1.8)
for b; yet already contains the main idea. Then, we will turn back to (1.8) for b; with
Proposition 3.5 as an additional input.

Proof of Proposition 1.4. As discussed above, we start with the case of 4. Fix r >
rp(j).Letm € (1.1, 10) and o € (1—cg, 1) (cg is the constant defined in Proposition 4.2).
In this proof we write f(n) ~ g(n) as the shorthand of f(n) = g(n) (1 +0 (n_c)) where
O (n™°) may depend on j and on the choice of « but are independent of the choice of
m.

We first transform hj(r.mn)

G0) into comparisons of mesoscopic arm probabilities thanks
A
to Proposition 3.4. Since H;(r,n) C H;j(n%, n) and H;(r, mn) C 'H;(n*, mn),

hj(r,mn) . P[Hj(r, mn)|Hj(n“,mn)] ~P[Hj(n°‘,mn)] 3.3) ]P’[Hj(n“,mn)]
hir,n) — P[Hj(nm)|[Hjn, )] -P[H;n%n)]  — P[H;n*n)] "
4.5)

We then use Proposition 4.2 to pass from scales mn, n to scales m%n, mn:

P [Hj (n*, mn)] N P [Hj (mn®, mzn)]

]P’['Hj(n"‘,n)] o P[Hj(mno‘,mn)]' (46)

Next, similar to the reverse of the first step, we transform from mesoscopic comparison
. 2

h,;j((rr’?n:)) . By Proposition 3.4, we have

IP[’Hj(mn‘y,m2n)] 3G3) P[Hj(mn“,mzn)] P[H_,- (r, m2n)|H/(mn°‘,m2n)] _ hj(r, mzn) (4 7)

P [’Hj(mn"‘, mn)] TP [Hj (mn%, mn)] P [’Hj (r, mn)|Hj (mn®, mn)] - hj(r,mn) ’ '

to the ratio
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The combination of (4.5), (4.6) and (4.7) gives

hj(r, mn) 4.5) ]P’[Hj(n“, mn)] 4.6) P[Hj(mn“, mzn)] @.7) hj(r, mzn)
hj(r,n) P[Hj(n“,n)] o P[Hj(mn“,mn)] " hj(r,mn)

(4.8)

We now turn back to b;. First, by Proposition 3.5,
bj(r, mn) _ P [Bj (r, mn)![)’j (r, n“)] (3.10) P ['Hj (r, mn)|Hj (r, n‘)‘)] @.5) P ['Hj (n*, mn)]
bi(r,n) — P[Bjr.n)|Bi(r,n®)] T P[H;r.m)|H;r.n®)] T P[H;n*n)] "
4.9)

Similarly, we can use Proposition 3.5 and (4.7) instead of (4.5) to obtain

P [H;(mn®, m*n)] b, m2n)

~ . (4.10)
P [Hj (mn®, mn)] bj(r,mn)
The combination of the above two estimates as well as (4.6) gives
bj(r, mn) 49 ]P’[’Hj(n"‘,mn)] 4.6) P[Hj(mn"‘, mzn)] 4.10) bj(r, m?2n) @.11)
bj(r,n) ]P’[Hj(n“,n)] o P[Hj(mna’mn)] ~ bj(r,mn) ’
This finishes the proof of Proposition 1.4. O

Proof of Theorem 1.1. For a given j, it suffices to consider only » > r(j). It follows
from Proposition 1.4 and Lemmas 2.8 and 2.9 that there exist 0 < C < oo and —o0 <

a < oosuch that bj(r,n) = Cn"‘(l + O(n_”)>. By Lemma 2.6, « = —f; and so

bj(r,n) = CnPi(1+0(n™)).

And the same holds for £ ;. This finishes the proof of Theorem 1.1. O

4.3. Comparison estimates in the plane. Our goal of this subsection is Proposition 4.6
in which we compare the probabilities of )); at different scales. The proof is similar to
that of the half-plane case in spirit, in which we relate ); to the exploration process
and then make use of the power-law rate of convergence from [26]. However when the
number of arms is odd, there are inevitably two neighboring ones of the same color that
are not separated by an interface. This issue poses extra difficulties. See Lemma 4.7 and
the paragraph right above it for more details.

Fix in this subsection the nice domain (in the sense of Sect.2.2) and four points on
its boundary

Q=B U B((o, D, Zsin(n/12)>, a=0.-1), b= (—%, %5) ,

= (%, J;) Candd = (0, 1).
See Fig.9 for an illustration. We also let

e=(0,1+2sin(r/12)) and U = B(d, 2sin(/2))\B; C Q
which contains a neighborhood of e.
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a

Fig. 9. Sketch of events V4 (n%, n) on the left and Y5(n*, n) on the right. The whole domain is [ /,,]. The
small circle inside this domain is C,—1. The exploration process yi/, from aj;, to e/, on Q[1/,) is in
green. Ty, is the first time that yj/,, enters U||,), after which time yy, is sketched in dotted curves. The
arms, neighboring the interface yj,,, to enforce the occurrence of arm events are in dashed red and blue.

Note that on the right the “disjointness condition” holds: yy/, (2, 14) does not hit c/%, & = t3, and the left
boundaries of yy/, (t2, 0) and y1/, (7, t4) are disjoint

Note that the value 2 sin(;r/12) equals to the length of be (and cd). Given a mesh size n,
the percolation exploration process starts from a; and ends at e,. We assign red color to

the counterclockwise arc eba and blue color to the counterclockwise arc ace. See Fig.9
for an illustration of the setup. Recall from Sect.2.8 that 77, is the first time that y;,
enters Uy ;. The stopping times 77/, and T are defined similarly.

Recall (2.5) that YV;(r, R) is the event that in Cg with mesh size n = 1 there exist
J disjoint arms connecting C, with Cr with the prescribed color pattern and some
additional constraints. Rescaling the lattice by 1/R, we get that J; (r, R) is equivalent to
the event there exist j such arms connecting C,/g to C; in By with mesh size n = 1/R.
Similar to the half-plane case in Sect.4.1, we will consider two cases R = n and mn
in this subsection and we will tacitly assume the equivalence between events on the
rescaled and those on the unrescaled lattices.

Recall the definition of y;(r, R) in (2.6). The following proposition plays a similar
role to that of Proposition 4.2 in the half-plane case. It states that y; are almost the same
at different scales within a power-law error when r is not too small compared to R.

Proposition 4.6. There exists co > 0 suchthat foralla € (1—c9, 1) andm € (1.1, 10),
yj(m®, n) = y;(mn®, mn)(l + O(n_c)).
Here, O (n™°) is independent of m and «.

We postpone the proof until the end of this subsection and turn to Lemmas 4.7 and 4.8
which play same roles as Lemmas 4.3 and 4.4 in the half-plane case.

We say that yy,, hits C,e-1, @, C a1, ac, ..., (j — 1) times before Ty if there
exists a sequence of times 0 =19 <] <t <--- <tj_1 < T1/, such that

Yi/n(t1) € Cpa-t, Yi/n(12) € ba, Yi/n(13) € Cha-1, Yi/n(ta) € ac, etc. (4.12)
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In particular, y;,, is allowed to hit other arcs in the middle of two consecutive hitting

times. For instance, it can hit ac between the times hitting C,.o—1 and ba. We say that
this time sequence satisfies the “disjointness condition” if

left boundaries of y/,[t; 3, 0] and y1/,[T, ;1] @.13)
(which are the last two red arms) are disjoint , '

where & denotes the first hitting time of C,,a—1 after #;_3 and 7 denotes the last exit time
from C,a-1 before ¢;_1. Following from simple geometrical arguments, we arrive at the
following lemma. See also Fig.9 for an illustration.

Lemma 4.7. For even j > 2, one has
yj(n“, n) = {y1/n hits Cpa-1, l/);, C a1, ac, ..., (j — 1) times before Ti/n}, (4.14)
and for odd j > 3, one has
Vj(n®, n) = {yl/,, hits Cpa-t, ba, Cyat, @, ..., (j — 1) times before Ty )y and the last

two crossings satisfy the “disjointness condition” defined in (4.13)}. 4.15)

The situation here is more complicated, since V;(n*, n) corresponds to different
events according to whether j is even or odd. When j is odd, in the event Y;(n%, n)
there are two neighboring arms of the same color which lead to the introduction of the
“disjointness condition”.

Similarly, we can show that for even j > 2,

yj(mn“, mn) = {y1/mn hits Ca-1, l/);, Cna_l,Zz?, ..., (j — 1) times before T1 .},
(4.16)
and the same for odd j > 3 with the extra “disjointness condition”.
Before stating the second lemma, we introduce several events K1, K>, K3 (and K4

when j is odd) which all happen with high probability under the good coupling from
Proposition 2.16 of y1/,, ¥1/mn and y, whose joint law we also denote by PP. Let u be the

constant from Proposition 2.16. We will call baUacu 6,1%1 the designated boundary
and note that b, a, d are the extremal points of the designated boundary. Define Ky, /Cp
and K3 as

Ky = {d(Vl/n“O,T]/nls V1m0, 71/ ]) > 2n7”} ;
Ky = {there does not exist any point x on the designated boundary such that it is n =" away

from the extremal points, and y1/, enters B(x, 2n~") but does not hit the designated

hit the designated boundary between the last entrance and first exit times of B(x,n~"),

and the same for y) /mn} B
Ky = {yl/n and y1/mn do not enter B(b,2n™"), or B(d,2n""), and do not reenter B(a,2n"")

after leaving B(a, 1/4)} s
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and for odd j’s, define /4 as
Ky = {there does not exist a time sequence that satisfies (4.12) and (4.13)
but the last two arms are (2n~")-close for neither y; /n NOT Y /m,,} .

Here, v € (0, u) is a constant to be chosen. If K, happens, then each time y,,, (or
Y1/mn) enters B(x, 2n™"), it will hit the designated boundary between the last entrance
and first exit times of B(x, n~") for all points x on the designated boundary that are n~"
away from the extremal points.

We now give the second lemma which states that the indicator functions of JV; (n*, n)
and );(mn®, mn) are identical under M; ;. In the proof, we will use the equivalence
between arm events and behavior of exploration processes. established in Lemma 4.7
and (4.16).

Lemma 4.8. One has
Ly;ne.ny = Ly;une mn) 00 ﬂ?zl Ki (for j even) or ﬂ?zl Ki (for j odd). (4.17)

Proof. We begin with the case where j is even. Assume that ICy, K5, K3 and YV; (n*, n)
happen and so yy/, fulfills the right-hand side of (4.14). Suppose that y1,, hits C,a—1 at
the point x. By Ky and K2, the process |/, enters B(x,2n™") and so must hit C,ja-1
between the last entrance and first exit times of B(x, n™"). Thus, y1/mp hits C,«-1 nearly
at the same place. Suppose that yy,, hits ba at the point x. From K3 we know that x is
n~ " away from the extremal points. By K and K5, the process y1 /. enters B(x, 2n™")
and so hits % between the last entrance and first exit times of B(x, n~"), therefore also
before T /m,. The same holds for ac. Therefore, y; /mn hits each side nearly at the same
place as y1/, before T/, and so Y1, fulfills the right-hand side of (4.16) which
implies that V; (mn®, mn) happens. Therefore,

KinkKynKsnYjn®, n) CYj(mn*, mn).
In the same way, we can show that
KinKaNK3NY;(mn*, mn) C Y;(n*, n).

This completes the proof of (4.17).

For odd j, we add one more constraint K4 to ensure that we can still find a time
sequence that satisfies the “disjointness condition” even after minor perturbation of the
process. Then, it is easy to verify that 1y, e n) = Ly); une,mny 00 K1 N2 N K3 N Ky,
since after a minor perturbation of 2n ™%, the same time sequence (which may differ by
a distance of n™") still satisfies (4.12) and the “disjointness condition”. |

We are now ready to prove the main result of this subsection.

Proof of Proposition 4.6. First, we give upper bounds to P[KS], P[K5], P[K5] and
P[K4]. By Proposition 2.16, there exists # > 0 such that under the good coupling
of Y1/n, Y1/mn and y

PIK{] =P [d (v1/al0.71)01> Y1/mn|10.T1 ) > 207" ] = O(™"). (4.18)

Taking v as the constant in Lemma 2.17 applied with the same u, we obtain that P[] <
O(n™°) for some ¢ > 0 depending only on u, v. Similar to the estimates of P[ 7]
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and P[j;] in the proof of Proposition 4.2, we can choose some vy € (0, u) such that
P[KS5] < O(n™°) for all v € (0, vg] where c is a constant depending only on u (note
that f is an increasing event in v). In addition, for all v > 0, P[K5] < O(n™°") where
we reduce c if necessary.

Therefore, for even j and v = vg, under the good coupling

|)’j(”a, n) — yj(mn“, mn)|
@ 4.19)

" BUCH) + BUCY) + BUC) < 07 + 007) + 0(n=™).

Now, we give an upper bound to P[K3 ]. We will call C1UC,,«—1 the extended boundary
(which is different from the designated boundary we defined before). We will argue that
if K happens, we have a whole-plane 6-arm event from a (2n~*)-ball in B to distance
n~?, or on the extended boundary a half-plane 4-arm event from distance 3n~" to 1/4.
We assume that Kj happens for 1/, and j = 1 (mod 4). The cases for y;/p, or j =3
(mod 4) can be treated similarly.

If g happens, then the last two red arms, i.e., the left boundaries of yy,,[t;_3, 5]
and y1/,[7, tj—1] are both (2n™*)-close to a point x. If x is n~" away from the extended
boundary, we write ol (resp. o3) for the first hitting time of C (x, 2n™") after ;3 (resp.
7)and 7! (resp. ) for the last exit time of C(x, n™") before o'! (resp. o3). Write o2
(resp. o*) for the first exit time of C(x, n~?) after o'! (resp. o3)and 72 (resp. ) for the
last exit time of C(x, 2n~*) before o2 (resp. o). Then,

1’1<01§‘52<62<r3<03§r4<a4.

Furthermore, the left boundaries ofyl/n[rl, oll, yl/n[rz, o?], yl/n[r3, o3, yl/,,[t4, o

are four disjoint red arms from B(x, 2n~™") to distance n~", and the right boundaries of

)/1/"[7,'1, ol yl/n[r3, 03] are two disjoint blue arms from B(x, 2n™") to distance n~".

So, there is a whole-plane 6-arm event from a (2n~%)-ball in Bj to distance n~". If x is
n~"-close to a point y on the extended boundary, then the left and right boundaries of
yl/,,[tz, a?], )/1/,,[1’3, 03] (where we replace 2n ™" in the definition to 2n~" and n™" to
1/4) are four disjoint crossings from B(y, 3n~") to distance 1/4. We can cover B; by
a (2n~")-net with O (n**) elements and cover the extended boundary by a (2rn~")-net
with O (n") elements. Thus,

PIK{1=0m"")+ 0 <n2“+(2+")(“*“) ), where we reduce c if necessary.
Therefore, for odd j > 3 and v < vy, under the good coupling
lyj(n®, n) — y;(mn®, mn)| < PIK{]+ PIK3] + PIK5] + PIKY]
< 0™+ 0(™) + 0™ ") + O (™Y + O (2=,
Take v < vg such that
2u+ 2+c)(v—u) < 0. (4.20)
By applications of RSW theory, y;(mn*, mn) > n€@=D_We can take co such that
—Cc9 > max{—u, —c, —cv,2u+ 2 +c)(v — u)}.

Then, forall o € (1 —c9, 1), |y;j(n%, n) — y;j(mn*, mn)| = O(n_"/)yj(mn“, mn) as
desired. O



Sharp Asymptotics for Arm Probabilities Page 39 of 51 182

4.4. Proof of Theorems 1.2 and 1.3. In this subsection, we will complete the proof of
Theorems 1.2 and 1.3.

The proof of Proposition 1.5 is the same as that of Proposition 1.4 except that we will
replace Proposition 3.4 with Proposition 3.8 and Proposition 4.2 with Proposition 4.6,
and is therefore omitted. We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. We start with y;. For a given j, it suffices to consider only r >
7y(j). Combining with Proposition 1.5 and Lemmas 2.8 and 2.9, there exist0 < C < oo
and « such that y; (r, n) = Cn“(l + O(n_c)). By Lemma 2.6, « = —a;.

We now turn to x ;. By applying Proposition 3.10 we obtain that

xj(r,mn)  y;j(r,mn)

xj(r,n) - yj(r,n)

(1 + O(n—C)) 421)
for r, m satisfying the requirement of Proposition 1.5. We thus establish an estimate
similar to (1.9) for x;, which yields (1.5) for x;. |
We now turn to Theorem 1.3.
Proof of Theorem 1.3. By Proposition 3.9,
aj(l,n) 3.14) aj(en, n)
xj(1,n) - xj(en,n)

Thanks to Claim (4) of Lemma 2.6, the first term of the right-hand side of (4.22) con-
verges to gj(e)/fj(e) as n — oo. Hence the LHS of (4.22) must also converge to a
constant as n — 00. Combined with (1.5) for x;, this finishes the proof. O

(1 + 0(6‘)). (4.22)

Remark 4.9. Note that although ae(1,n) > 0, we did not include the case j = 6 in
the statement of Theorem 1.3, because yg(1, n) = 0 by definition and hence (4.21) no
longer holds. In this case (plus some other inner initial configurations), obtaining sharp
asymptotics for x¢(1, n) as well as for ag(1, n) requires some extra coupling argument,
which we omit for brevity.

5. Proof of Coupling Results

In this section, we give the proof of the couplings in the half-plane and plane cases
stated in Propositions 3.3 and 3.6 respectively. As the idea for all these couplings are
quite similar, we will give a detailed proof for Proposition 3.3 in Sect. 5.1 but only sketch
the differences in the details of the proof for Proposition 3.6 in Sect.5.2.

Before going into details for each specific setup, we briefly explain here the core idea
of these couplings. In essence, one divides the domain into exponential scales (“layers”
in the text) and couples configurations of each layer step by step. In each step, when
passing from one scale to the next, one can show by the separation lemma and RSW-FKG
gluing technique that (although under different types of conditioning) the laws of nice
configurations in previous scales are absolutely continuous with respect to each other
with bounded Radon-Nykodym derivative, and hence different conditional laws can be
coupled with positive probability at each scale. Thus the coupling will succeed in the end
with high probability. It can also be proved that with high probability, some good events
will happen which encompass all the dependence of the past and future configurations
under the conditional laws. The result we want follows from the combination of these
two facts.
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5.1. j = 2 arms in the half-plane. In this subsection, we give the proof of Propo-
sition 3.3. We divide the (discretized) half-plane H into the disjoint union of dyadic
semi-annuli A; = B\ B} (for simplicity in this subsection we do not add the + in the
superscript), where r; = 2 fori =0,1,2,....Call the A;’s the layers in H. We will do
the coupling layer by layer.

In the following, we fix some annulus region A; U A;;1 between C; and C} and
consider the percolation configuration inside this annulus. We start by defining the good
event in A; U A;41.

Definition 5.1 (Good event). Define the good event g;’) associated with the percolation
configuration inside A; U A; as follows:
e There are exactly (j — 1) interfaces crossing the annulus A; U A;41. Denote them
by ¥1, ..., ¥j—1 in counterclockwise order, then y; is adjacent to y41 for any 1 <
k < j —2.In addition, y1, ..., yj—1 are well-separated on both ends.
e There is ared path connecting [r;, 2r;] to y| in A; and ared path connecting [2r;, 47;]
to ypin Ajyq.
e There are two red (if j is odd) or blue (if j is even) paths which connect [—27;, —r;]
and [—4r;, —2r;] to yj_1 in A; and A;41, respectively.

We will need that the good event G ;i) in A; UA; 41 happens with at least some positive
probability depending only on j.

Lemma 5.2. There is a constant c(j) > 0 such that for any r; > 10j, we have P[g;")] >
c.

This lemma could be proved in a way similar to the second proof of [11, Lemma 3.4]
by constructing pivotal points through the exploration process (to ensure the interface
conditions) together with RSW-FKG gluing (to ensure the well-separateness conditions).
Here we present the following alternative proof which relies on a combination of RSW-
FKG gluing and BK-Reimer’s inequality.

Proof. Define a quasi-good event I/ in A; U A; 41 as follows:

e There are two configurations of well-separated inner and outer faces, say ® =
{61,...,0;}and ® = {0, ..., 9]/.}), which are around Cj"ri and Cr+,- resp., and lying
completely in H \ Bj,. andin B]_ resp.

e Foreach 1 < k < j, both 6 and 0,2 are red (if k is odd) or blue (if k is even).
Furthermore, there is a path connecting 6y, 6, together with the aforementioned color.

From RSW-FKG gluing technique we see P[L/] > c¢p for some positive constant co(j).
If U happens, there will be exactly (j — 1) interfaces crossing A; U A;4; which end at
the (2 — 2) endpoints of ®, @', respectively. Write

W= {each interface is adjacent to both of its neighbors }

By the observation that /MWW C g}") andU NW* C UIB, (2r;, 3r;) (recall the notation

[ from Sect. 2.3), we conclude that (by applying BK-Reimer’s inequality (Lemma 2.3)
in the last step)

PIGY] = PIUNWI = PIU] — PIUOIB (21, 3r)] = PIUI(L = PLB1 2y, 3r:)])
(5.1)

which is bounded below by some c(j) > 0. O
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—4r; =2y -1y T 2r; 4r;

Fig. 10. The good set S when g;") holds with j = 4. The three interfaces y;, i = 1, 2, 3 crossing A* (r;, 4r;)

are in green. All the hexagons that are adjacent to these interfaces are sketched in dashed red or blue curves,
and they make up part of the good set S. The gray regions on both sides are bounded by the interfaces y; and
y3 with some innermost paths (crossings) in A;;1 and outermost ones in A;. The (colored) hexagons in these
gray regions make up the rest part of S

Definition 5.3 (Good set). If Q;i) holds, let S be the union of the following colored

hexagons (we keep the notation used in the definition of Q](.i)):

e The hexagons that touch at least one of the (j — 1) interfaces;

e The hexagons in the region enclosed by four curves, namely the innermost red path
in A;41 from [2r;, 4r;] to y1, the outermost red path in A; from [r;, 2r;] to y1, y1, and
the real axis;

e The hexagons in the region enclosed by four curves, namely the innermost red (if j
is odd) or blue (if j is even) path in A;41 from [—4r;, —2r;] to y;, the outermost red
(if j is odd) or blue (if j is even) path in A; from [—2r;, —r;] to ¥; 1, ¥j—1, and the
real axis.

If Q;i) fails, set S = . For a nonempty set S of hexagons in A; U A;+1, we say that S
is a good set if S is a possible realization for S such that gj.") holds. See Fig. 10 for an
illustration.

Fix a large integer K1(j) such that
p(K1) = supP[B, (rj, riz)] < 2710780, (5.2)
ieN

Note that this is possible since 8; < j 2: same for the definition of K> and K later in

this section, noting that a; =< j? too. The following proposition is a generalization of
(3.1)and (3.2) of [11].

Lemma 5.4. There are constants C,C' > 0 depending only on j, such that for any
2K+l < < dr; < 27K7LR, the following holds: for any good set S C A; U A4y,

any configuration of outer faces © around C;L 1.3 With no more than K faces, and any

color configuration wy coincides with © and satisfies P[H ;(r, R) | wp, = wo] > 0,
C'27B < P[S=5|H;(r R), wp, = wpy] < C2715I, (5.3)
Furthermore,

]P[Q]@ | H;(r, R), wp,, = a)o] > . (5.4)
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And similar bounds also hold if we replace H j(r, R) by Bj(r, R). In a similar fashion,
same results also hold for inner faces ® around C;;_ X satisfying the same require-
ments.

-1
Proof. We give the proof of (5.3) and (5.4), and the rest are similar. Rewrite the proba-
bility in (5.3) by Bayes’ theorem as

P[H;(r,R) | S =S, wpy, = wo]
P[H;(r,R) | op, = wo]l

P[S = S | H;(r, R), wp, = wol = 275! x (5.5)

Let ©1 (resp. ®7) be the configuration of inner faces around Cj{rl, (resp. the configuration

of outer faces around C ;:) induced by S. Denote R for the event that there are j arms
connecting C}, to each face of ®1, and W for the event that there are j arms connecting
[—r, r] to each face of ®; (each arm has the same color with the face it connects to).
Then we see that the event in numerator of (5.5) is equivalent to R N W conditioned
on {wp, = wp}. By independence it has probability P[R | wp, = wo] - P[W].

Since ©; is well-separated, by the separation lemma (Lemma 2.10) and RSW-FKG
gluing,

PIW] < P[H;(r, ri—1)]. (5.6)
In addition, by (2.13) in Proposition 2.12 and RSW-FKG gluing, we also have
P[R | wpy = wo]l < P[Bj(ris3, R) | wp, = wol. (5.7)

Finally, similar to the proof of Proposition 2.12, we can show the following quasi-
multiplicativity

P[Bj(ri+3, R) | wpg = wol - P[H(r, ri—1)] < P[K;(r, R) | @p, = wo]. (5.8)

Combining (5.5) and (5.6), (5.7) and (5.8) we see that (5.3) holds. Summing over all
good set § C A; U Aj41, and using Lemma 5.2, we get (5.4) as desired. O

Proof of Proposition 3.3. We focus on the first claim in Proposition 3.3. Recall that
u = JrR. Let ip < iy be the integers such that rjy—1 < u <rjy <riy <R <riys1.
We inductively couple the conditional laws Py = P[ - | H;(r, R)] and P, = PP[ - |
H ; (r, mR)] from outside to inside layer by layer. The virtue of the coupling is same as
the maximal coupling for a Markov chain on a finite state space.

For initialization, sample the color configuration w1, w> outside C 1+N according to Py
and P; independently, and set an index / = 0. Assume now we have sampled two color
configurations w; and w, outside Cr+,-+ P for some i > ip according to some coupling
of these two conditional distribution, we proceed as follow:

If I > 0, then for both configurations, we independently explore all the interfaces
crossing A* (ri+k,, ri+k,+1) from outside to inside and stop exploring when reaching
RU C;:+ K This exploration process will induce two configurations of outer faces around

Cr+,-+1<1 for both w;, i = 1, 2, denoted by @i, i = 1, 2. Also note that V(;)l and V(;)z are

left unexplored. If either ©| or O, has more than K faces, we just keep I unchanged,
explore all the hexagons outside C ;;+ e and proceed the previous procedure on the scale

Crivk, - Otherwise, we increase I by 1, and by applying Lemma 5.4 for both H; (r, R)
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and H ;(r, mR), we can construct a coupling Q; of the laws P([ - | wp, = w1] and
1
Pyl - | wp, = w] with the following property:
92

Qi [S(w1) = S(w2) # ¥ > C”, for some C”(j) > 0, (5.9

where S(w1), S(w2) are the sets induced by wy, w» in A; U A;4, respectively.

We sample the pair of color configurations (w1, w2) outside C; from Q;, and perform
the following exploration process to detect whether {S(w;) = 8 (a)z) # (0} holds:
Step 1 For each of the endpoints x of Oy, we explore the interface of ) inside B, ok

starting from x, and stop exploring until it hits RU C ;: Denote I' for the subset
of the aforementioned interfaces reaching C;;. Then we can check whether
IT| = j — 1 and each interface in " is adjacent to its neighbors in A*(r;, 4r;).
Step 2 If the condition in Step 1 holds, denote | and y; ; for the leftmost and rightmost
interface in I". In the quad Q; enclosed by Cj{r .71, C and R, we start from
o N C2r and explore in w; to find the innermost red path in A;41 connecting
[2r;, 4r;i] to y1, and the outermost red path in A; connecting [r;, 2r;] to y1.
Our exploration process stops whenever we find such paths, or if we cannot find
them, we stop exploring until reaching Cr+,- or Cj{ri . Perform the same exploration
on the left side of A; U A;+1. Up to now, we already have enough information

to fix S(w1) and to assert whether the good event gj‘.i) happens or not for wy.

Step 3 Run the same exploration process for w;. Now we can check whether Q;i)

happens for both @ and w, and S(w;) = S(wy). If so, we set I = —1;
otherwise we keep / unchanged.

If 7 is still non-negative, we explore the entire color configuration w1, w> outside
C +, and proceed the procedure above on the scale r;. Otherwise I = —1, then the
identical nonempty good set S(w1) = S(wy) induces a configuration of outer faces
®* with j faces around C;;, which is common for both w;,i = 1, 2. Note that our
exploration process ensures that none of the hexagons in Vg+ are explored, i.e. the
law in Vg+ is still the critical Bernoulli percolation, and thus by the domain Markov
property, P[ - | H;(r, R), wop,, = wi]and P[ - | V;(r, mR), wp,. = w2] are precisely
equal. Hence, we can couple the color configuration in Vg« of these two distributions
identically. In this case we have (w1, w2) satisfies the requirement in proposition 3.3,
and ©* is a stopping set as desired.

Finally, we control the probability that our coupling remains unsuccessful until scale
riy. Write Ni = ]ngle, then Ny > 4K11+4 log, % — 2 since N > %log2§ — 1. On
the one hand, every time [ increases by 1, we always have a positive probability C” to
couple successfully, no matter how things went in previous layers. Thus

P[I > Nl < —=C"N' < @/R)® for some §(j) > 0.

On the other hand, / < Nj implies there are more than N — (K1 + 1)N; — K1 = N/2
integers i € [ip, iy — 1] satisfying lBKl(ri,rm)(wl) + IBKl (ri.rie) (@2) > 1, so that

in—1

[ Z lBKl(rl rl+l) N/4}

i=ip
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happens for either w; or w;. Combining
P71 <2V p(KO)NAPIH;(r, B)],  PaAT1 < 2V p(K)N*/PIHj (r, mR)],

with the a priori estimates of arm probabilities, we obtain
P10 < 1 = Ml =2V p(K)N* [(R/r) o s mR fry P D]

which is bounded by (r/ R)? forsome 8(j) > 0from the choice of K1 in (5.2). Altogether

we conclude P[/ > 0] < (r/R)‘S for some &(j) > 0, as desired.
With these tools in hand, we can rerun the coupling from inside to outside to conclude
the proof of the second claim of Proposition 3.3. O

5.2. Coupling arm events in the plane. In this subsection, we prove Proposition 3.6.
Recall the definitions of events X;(r, R), V;(r, R), and A j(r, R). We shall couple
Pl Xj(r, )] withP[ - | A;j(r, )] and P[ - | V;(r, )] with P[ - | V;(r, mR)].
Just as in the half-plane case, it is quite feasible to couple these conditional laws so that
w1 and w; coincide on some outer face ®* around C, (u = ﬁ) with high probability.
However, as hinted earlier in Remark 3.7, the sole existence of an outer face is insuf-
ficient for decoupling the configurations on the inner and outer sides of ®* and thus
we cannot establish (3.11), (3.12) immediately. To tackle this issue, we aim to couple
the configurations on some “good set” which not only induces an outer face, but also
encodes enough geometric information that decouples the configurations on both sides
of the face. We will present the precise definitions for the whole-plane good sets later and
obtain very similar estimates as before. As discussed at the beginning of this section, we
will just sketch the proofs and note necessary modifications of arguments from Sect.5.1.
For clarification, the cases of odd j’s and even j’s are dealt with separately.

As before, we divide the plane into the union of dyadic annuli A; = B,,,, \ B,,, where
ri = 20 fori =0,1,2,....Call them the layers in the plane.

5.2.1. Inward coupling: the odd j case We begin with the case for odd j. For each
ri > 10j, define good event in A; U A;41 as follows:

e There are exactly (j — 1) interfaces crossing the annulus, say y1,...,yj—1, in
counterclockwise order and they are well-separated on both sides of the annulus.

o for1 <k < j —2, y is adjacent to yx41, while y is not adjacent to y; .

e The hexagons between y; and y;_; that touch y; U y;_; are all red (if j = 1
(mod 4)) or blue (if j = 3 (mod 4)). Further, there are two paths with the afore-
mentioned color connecting y; and y;_1, which lie in A; and A;41, respectively.

And if g](.") holds, let S be the union of all hexagons which touch at least one of the
interfaces yx, 1 < k < j — 1, or lie in the quad enclosed by y1, y;_1, the outermost and
innermost paths connecting y; and y;_; in A; and A;,1, respectively. We set S = ¢ if
g;.") fails, and for a nonempty set of colored hexagons in A; U A;41, we say that S #
is a good set if S is a possible realization of S. The key feature regarding to the good
set is the following: for any good set S C A; U A1, denoting ® the outer face around
C,, induced by S, then for any w, w, such that S(w;) = S(w2) = S,

Pl | X;(r, R), WDg, = o] =P[- | A;(r, R), WDg = wa], (5.10)
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and
]P)[' | yj(ra R)aa)D(;)S :(,()1] ZP[' | yj(r’mR)va@)S =(,()2] (511)
We have the following estimates similarly as before:

e There exists c¢(j) > 0, such that for any r; > 10, we have ]P’[Q;.l)] > c.

e For any fixed large integer K>, there exists C = C(j, K2) > 0, such that for any
good set S in A; U A;41 with 2K+l < ri <riygp < 2-K2-lR any configuration of
outer faces ® around C,\ K43 with no more than K faces and any color configuration

wo which satisfies P[A; (r, R) | wpy, = wo] > 0,
C 127l < P[S =S| Aj(r, R), wp, = wo] < C275I. (5.12)

As a result, P[Q;i) | Aj(r, R), wpy, = wol > cC 1.
e In addition, similar results also hold for A j(r, R) replaced by X (r, R) or Y (r, R).

Sketch of Proof for Proposition 3.6, odd j case. Fix a large integer Ko = K»(j) such
that

p(K2) i= sup PLA, (i, riz)] < 271075
ieN
The first two items can be established similarly as in Lemmas 5.2 and 5.4, results for
X (r, R) and Y; (r, R) can also be obtained from the same manner. From these estimates,
following the framework of the proof of Proposition 3.3, we can construct a coupling of
PL- [ Aj(r, R)] (resp. P[ - [ Y (r, R)]) and P[ - | X;(r, R)] (resp. P[ - | V;(r, mR)])
such that if we sample (w1, w2) according to such coupling, then with probability at
least (1 —(r/ R)‘S) for some §(j) > 0, w1 and w, are identical on some good set lying
outside of B,. Thanks to (5.10) (resp. (5.11)), we may further couple the configurations
inside the face identically. Therefore, under such a coupling, with probability at least
(1 —(r/ R)‘s) there exists a common outer face ®* around C, which is a stopping set
for both w1, wy, and (3.11) (resp. (3.12)) holds. This completes the proof. |

5.2.2. Inward coupling: even j case Finally, we deal with the case for even j. This is
essentially the case studied in [11]; we follow the idea therein and define good events

g]@ in A; U A;4 as
e There are exactly j interfaces crossing the annulus A; U A;41, and they are well-

separated on both ends. In addition, each of the interfaces is adjacent with its two
neighbors.

If g]‘.") holds, let S be the union of all colored hexagons in A; U A;4; which touch at

least one of the j interfaces, otherwise we set S = ). For a nonempty set S of colored
hexagons in A; U A;41, we say that S is a good set if S # (J is a possible realization of
S.

The proof of the first item in Proposition 3.6 is essentially same as before. More
precisely, for any good set S and wy, w; such that S(w1) = S(wy) = S, it holds that

Pl | X;(r, R), WDy = w1l =P | A;(r, R), WDgg = w?], (5.13)

which implies (3.11) for ®* = ®g. However, for the second item, in order to guarantee
(3.12), it is not enough to make w; and wy coincide on some good set. Indeed, we
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need to further specify the xconnecting pattern between this good set and the outer
boundary C (or Cy,; g). For a color configuration wp sampled from P[ - | V; (r, R)] (resp.
Pl - | Yj(r, mR)]), assume that under wy, for some u' € [r, R] there is a configuration
of outer faces ® around C, with j faces. Denote 6 for the first red face in © when
counting from (0, —u’) counterclockwise, and denote 6 for the red face in ® which is
connected to Cg (resp. C,, r) by the first red arm counting from (0, — R) (resp. (0, —mR))
counterclockwise. Similarto (5.11), for any good set S and any w1, ws such that S(w;) =
S and O (w;) = é(a)i) fori =1, 2, we have

P[ | yj(r7 R)v wD@S = Cl)]] = ]P)[ | yj(ramR)v wD@S = w2]° (514)

Then we have the following estimates:

e There exists ¢(j) > 0, such that for any r; > 10, we have ]P’[Q;')] > c.

e Fix a large integer K3, there exists C = C(j) > 0, such that for any good set S in
A; U A with 253+ <4 < i < 27K3-1R, any configuration of outer faces ®
around C;° Kas3 with no more than K3 faces and any color configuration wy satisfies
PLY;(r, R) | wpy = wo] > 0, denoting O for the configuration of outer faces
around C,, induced by S, then it holds that

C 1278l < P[S = 8,65 =85 | V;(r, R), wp, = wol < C271I. (5.15)

Asaresult, PG\, s = fs | Y(r. R). wp, = w] = cC~".

Sketch of Proof for Proposition 3.6, even j case. Fix alarge integer K3(j) such that

p(KS) = SupIP[_AK3 (ria ri+l)] < 2*107800"
ieN

The estimates above can be proved similarly, with the caveat that for (5.15), we construct

some specific gluing to make sure that 65 coincides with fs. Then, following the same
framework as before, (5.13), (5.14) together with the estimates above yield the desired
results. O
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A. Proof of Lemmas 2.6 and 2.8

Proof of Lemma 2.6. We begin with the proof of h;(n) < bj(n). Since H;(r,n) C
Bj(r,n), we have hj(n) < bj(n). It sufﬁces to prove that £ ; (n) > cbj(n) for some
constant ¢ > 0and all n large enough. Let 7/ = 10/ v r and F be the set of interfaces
connecting C;; and C, in A*(r’, n). Then,

hj(r,n) = P[H;(r,n)| Qi) > j~', B, n)]
x P[Qin(D) > j M IB;(r', n)] x P[B;(+', n)] (A.1)
>cxexbj(r',n)=cbj(r,n).

(The second inequality follows from RSW theory and Lemma 2.10. The third inequality
follows from the fact that B;(r,n) C B;(r’, n).) We can derive in the same way that
xj(n) < aj(n) < y;j(n) using Proposition 2.14 instead of Lemma 2.10. The relation
pj(n) < a;(n) follows from a color-switching argument; see Remark 6 in [32] for more
details.

Now, we consider Claim (3). We can show the up-to-constants equivalence between
arm probabilities using similar arguments as in (A.1). The methods in [32] for calculating
asymptotics of arm probabilities down to microscopic scales (i.e., b (n) or p;(n) in our
notation) can also be applied to derive mesoscopic asymptotics.

Claim (4) follows from [6,31] and the estimates of the half-plane there arm event and
whole- plane six arm event in critical percolation. One can refer to the proof of Lemma
2.9 in [11] for more details. |

Proof of Lemma 2.8. We only prove the case of /1 ;. The cases for other arm probabilities
can be proved in the same way. Let I be the set of interfaces connecting [—r, r] and C;
in B;. For € > 0, define H;- (r,n) by

H;(}’, I’l) = Hj(rv l’l) N {QCX(F) Z E}'

Let R€ denote the event that there exists a point x on C;' such that there are three disjoint
arms (not all of the same color) connecting C(x, en) and C(x, n/2). By Claim (3) in
Lemma 2.6, P[R€] < O(1/€) x O(e'*¢) = O(€°). Thanks to the spatial independence
of percolation

PIH ;i (r, m)\HS (r, m)] < P[H;(r,n/2)] - P[R€]

< CP[H(r,n)] x O(€°) = O(e)P[H;(r,n)].
Therefore,

P[Hg(r,n)ﬂ-{j(r, n)]>1— 0(€). (A2)

Foralln <t < (1+¢/K)n, P[H;(r, t)|H6 (r,n)] = 1—j(1 —¢)X. This is because on
the event H; (r, n) each outer face has a length of atleast en which can be partitioned into

atleast K pieces with a length of at least (1+¢/K)n, and by applications of RSW theory,
each piece has a probability at least ¢ to be connected with C; independently of

others. Therefore, foralln <t < (1 +¢/K)n,
hj(t) = P[H;(r, )] = PIH; (r, OHS (r, )] x PIHS (r, n)[H ;i (r, n)] < PIH; (r, n)]
> (1 —jl =% -0 n.

(1+€/K)n>

Picking K large and € small, we then complete the proof. O
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B. Proof of Lemma 2.9

Proof of Lemma 2.9. For m € (1.1, 10) and integer k > 1, let by(m) = a, i+ /a,,k.
We note that all constants in O(-)’s in this proof are uniform w.r.t. m € (1.1, 10). By
Assumption (1) in the statement, b1 (m) = bx(m)(1 + O (m~%)). Then, it is easy to
see that limy_, o br(m) exists (which will be denoted as C(m)) and is positive (since
by (m) is positive when k is sufficiently large). In addition,

Ay a,k

by (m) = C(m)(l + O(m_Ck))’ and equivalently Clmye = W(] + O(m—ck)).

Therefore, limy_, % exists (which will be denoted by B(m)) and is positive. In
addition,

a, = B(m)C(m)k(l + O(m_Ck)). (B.1)

Next, we use Assumption (2) to prove that there exist « € (—o0, 00) and C € (0, 00)
such that C(m) = m® and B(m) = C for all m. It suffices to show that

log(C(my))/log(m;) = log(C(m2))/log(m>) and
B(my1) = B(my) for all my, m, € (1.1, 10).

Fix m1,my € (1.1, 10). Without loss of generality, we can assume that logm2 (my) is
irrational, because we can always find another m3 such that logm3 (m1) and logm3 (my)
are both irrational and the case of m 1, my follows from those of m, m3 and m,, m3. Let
8, € > 0 denote two small constants to be chosen later. Since logmz(ml) is irrational,
we can find a sequence of increasing integers {p;};>1 and {g; = |p;log,,, (m1)]};=>1
such that for all j > 1

qj < pj logm2 (my) < gj+e. (B.2)
By Assumption (2), there exists a constant ¢ = ¢(8) > 0 such that forall € < ¢
liminf  inf 2> 1-s.
n—00 10~ ¢n<s<t<n dg
By (B.2) and the fact that my < 10, we have 10~¢m}’ < mym}’ < m3 < m}’ and
so for j large enough

1
- 5)ami’/ 4,0 = T 5%

Together with (B.1)

(1— 3)(1 +0(m; ")+ O(mz_cqj)> < % < ﬁ(l +0(my ")+ O(mz_““)).

Let j tend to infinity. Since lim; % = log,,, (m1), we have
J

a :=log (C(my))/log(m;) = log (C(m2))/log(my).

P Pj

_ opi oqi api _ o
Note that when o« > 0, 10 ‘“mlp" < mzq" < my’;when @ < 0, 107%m,
oqi api
mzq’ > mlp’. Therefore,

>

eps 1 .
(1= 51070 ny) (14 0 m, ”’)) < B(my) < ﬁB(ml)IO“WO)(I +0(m, p’))-

Let j tend to infinity, then € to zero and finally § to zero. We have B(m{) = B(m>).
This completes the proof. O
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C. Proof of the Strong Separation Lemma

Proof of Proposition 2.11. The proof we employ here is a combination of techniques
used in [11,30]. We only prove the first bullet point (2.11). Write s = dist(r, x2, .. .,
xj,—r). Then Q(®) =s/r.Let M = [log, (r/s)] vV 0and L = [log, (R/r)]. Set

T, i =0;
ri={r+2-ls 1<i<M:
2i=My. M+1<i<M+L.

Let I'; be the collection of interfaces in I" truncated at their first hitting on C,t. Recall
that Qex(T;) is the exterior quality of I'; on C;j defined in (2.8). Let d; := r; Qex(I'})
be the minimal distance between —r;, r; and the endpoints of I';. Define the relative
qualities

di/(2's), 0<i<M,

@)= iQex(Fi), M+1<i<M+L.

We set Q*(i) := 0 if not all j interfaces manage to reach C;:. Furthermore, set
fi :=PlO*(@) > 0], gi(p) :=P[Q*(@i) > p]forp > 0.
With the above definitions, it suffices to show
emsr (G = c() fusr (C.1)

for some c¢(j) > 0 that only depends on j. To this end, we need the following facts about
the quality, which can be obtained by using RSW-FKG gluing techniques, similar to the
appendices of [11,30] for the plane case. We omit the details.

e By application of the RSW theory, there is c¢19(j) > 0 such that
J1 = cro. (C.2)

e For any § > 0, there exists pg(8, j) such that for all p < pp andi > 0,

fis1 — giv1(p) < 8f;. (C.3)

e For any p > 0, there exists R(p, j) > 0 such that for all i > 0,

gi+1G7") > Rgi(p). (C4)

Let K = K(p) be the smallest integer in the range 1 < K < M + L such that
gi(p) < fi/2forall K <i < M+L,whereweset K = M+ L if gprer(0) > frsr/2.
We claim that there exists p; > 0 such that for all p < pj,

fx = 2gk(p). (C.5)

This follows by definition if K > 2. If K = 1, we set §¢ := c10/2 and p1 := po(o, j)
with c19 and pg from the first and second bullet points above respectively. By (C.3), for
all p < p1, wehave f1—g1(p) < 8o. This combined with (C.2) gives f1 —g1(p) < f1/2
for all p < p1, which implies (C.5).
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In the following, for any 6 > 0, we let p < po(8, j) A p1, then both (C.3) and (C.5)
hold. Furthermore, by (C.3), f; < 26fi_; forall K <i < M + L. Iterating this, we get

fusr < QOMILK £ < M=K 201 (p), (C.6)

where in the last inequality we have used (C.5). Repeated application of (C.4) gives that

gx(p) < R() ' RG™HF Mgy (570, (C7)
Combining (C.6) with (C.7), we have

fusr <2R(0)'RGTHQS/RGTDM K gprar G771,

Letting § be sufficiently small such that 28/R(j~') < 1, we obtain (C.1) by setting
c(j)~ " =2R(p)"'R(j~1). This completes the proof. O
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