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Let & be the planar Gaussian free field and let Dy, be a supercritical Liouville quantum gravity (LQG)
metric associated with 4. Such metrics arise as subsequential scaling limits of supercritical Liouville
first passage percolation (Ding and Gwynne, 2020) and correspond to values of the matter central charge
cum € (1, 25). We show that a.s. the boundary of each complementary connected component of a Dj,-metric
ball is a Jordan curve and is compact and finite-dimensional with respect to D;,. This is in contrast to the
whole boundary of the Dj,-metric ball, which is noncompact and infinite-dimensional with respect to D,
(Pfeffer, 2021). Using our regularity results for boundaries of complementary connected components
of Dj-metric balls, we extend the confluence of geodesics results of Gwynne and Miller (2019) to the
case of supercritical Liouville quantum gravity. These results show that two Dj-geodesics with the same
starting point and different target points coincide for a nontrivial initial time interval.

1. Introduction 1
2. Preliminaries 8
3. Estimates for the outer boundary of an LQG metric ball 13
4. Outer boundaries of LQG metric balls are Jordan curves 24
5. Confluence of geodesics 33
Acknowledgments 52
References 52

1. Introduction

1.1. Overview. Liouville quantum gravity (LQG) is a family of models of random surfaces originating in
the physics literature in the 1980s [4; 11; 35]. One way to define LQG surfaces is in terms of the matter
central charge, a parameter ¢y € (—o0, 25). Let U C C be open. For a Riemannian metric tensor g on U,
let A, be the associated Laplace—Beltrami operator and let det A, denote its determinant. Heuristically
speaking, an LQG surface parametrized by U is the random two-dimensional Riemannian manifold
(U, g), where g is sampled from the “uniform measure on Riemannian metric tensors on U weighted by
(det A g)_cM/ 2» We refer to the case when ¢y < 1 as the subcritical case and the case when ¢y € (1, 25)
as the supercritical case.

The above definition of LQG is very far from rigorous, but it is nevertheless possible to define LQG
surfaces rigorously. One way to do this is via the David—Distler—Kawai (DDK) ansatz [4; 11], which
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says that, at least in the subcritical phase, the Riemannian metric tensor associated with an LQG surface
can be expressed in terms of the exponential of a variant of the Gaussian free field (GFF) 7 on U. We
refer to [3; 39; 40] for background on the GFF. The GFF £ is a random distribution, not a function, so
its exponential is not well-defined. But, one can construct objects associated with the exponential of / by
replacing & by a family of continuous functions {A.}.-¢ which approximate %, then taking a limit as ¢ — 0.

In the subcritical and critical cases, i.e., when ¢y < 1, this approach has been used to construct the
Liouville quantum gravity area measure (i.e., the volume form) as a limit of regularized versions of e?”
integrated against Lebesgue measure [13; 14; 15; 25; 37], where y € (0, 2] is related to the central charge by

v =25 602, Q=§+%. (1-1)

Most mathematical works on LQG consider only the case when ¢y < 1 and use y, rather than ¢y, as
the parameter for the model.

The focus of the present paper is the metric (Riemannian distance function) associated with an LQG
surface, which can be defined for all ey € (—00, 25). Let us explain the construction of this metric for
the GFF on the whole plane. For ¢ > 0 and z € C, we define the heat kernel p,(z) := ﬁe"ﬂz/ 2 and we
denote its convolution with the whole-plane GFF! 4 by

h:(z)::(h*pgz/z)(z):/Ch(w)pgz/z(z—w)dwz forall z € C (1-2)

where the integral is interpreted in the sense of distributional pairing.
For a parameter £ > 0, we define the e-Liouville first passage percolation (LFPP) metric associated
with &, with parameter &, by

1 *
DE(z, w) :=i1;f/ ERPON P/ ()| dr forall z, w € C (1-3)
0

where the infimum is over all piecewise continuously differentiable paths P : [0, 1] — C from z to w.
To extract a nontrivial limit of the metrics Dj, we need to renormalize. We define our renormalizing
factor by

Uenr 2
a, := median of inf{/ e PO) (1) dr - P is a left-right crossing of [0, 1] }, (1-4)
0

where a left-right crossing of [0, 1]? is a piecewise continuously differentiable path P : [0, 1] — [0, 1]?
joining the left and right boundaries of [0, 1]>. We emphasize that q, is the median of a random variable
(the inf of the lengths of the left-right crossings) so is deterministic.

It was shown in [8, Proposition 1.1] that for each & > 0, there exists O = Q(&) > 0 such that

a, =gl 750t a5 e 5 0. (1-5)
Furthermore, Q is a nonincreasing function of & and satisfies limg .o Q(§) = oo and limg_, o Q(§) =0.

IThe whole-plane GFF £ is only defined modulo additive constant. Throughout the paper, we assume that the additive
constant is chosen so that the average of & over the unit circle is zero unless otherwise stated.
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As explained in [8] (see also [17]), the parameter & is (heuristically) related to the matter central
charge by

em =25-60(8)% (1-6)

The dependence of Q on &, or equivalently the dependence of £ on ¢y, is not known explicitly except
that Q(1/+/6) = 5/+/6, which corresponds to ¢y = 0 [6]. Define

Eerit :=1nf{§ > 0: Q(§) = 2. (1-7)

We do not know & explicitly, but the bounds from [22, Theorem 2.3] give the reasonably good approx-
imation & € [0.4135,0.4189]. By (1-6) and the properties of Q(&) from [8, Proposition 1.1], we have

eM<1l & E£<é&y and eme(1,25) & &> Eu. (1-8)

In the subcritical case, it was shown in [5] that for & < &, the rescaled LFPP metrics ae_lDfl admit
nontrivial subsequential scaling limits with respect to the topology of uniform convergence on compact
subsets of C x C. Subsequently, it was shown in [20] that the subsequential limit is unique and is
characterized by a certain list of natural axioms. The limit D, of a;lD,i is called the LQG metric with
parameter £.

The LQG metric in the subcritical case induces the same topology as the Euclidean metric, but its
geometric properties are very different. For example, the Hausdorff dimension of the metric space (C, Dj,)
is y/& > 2 [23]. Another important property of D, is confluence of geodesics, which states that two
Dy,-geodesics (i.e., paths of minimal Dj,-length) with the same starting point and different target points
typically coincide for a nontrivial initial time interval. Note that this is not true for geodesics for a smooth
Riemannian metric. Confluence of geodesics for the subcritical LQG metric was first established in [18]
and played a key role in the uniqueness proof in [20]. See also [16; 24] for extensions of the confluence
property for subcritical LQG, [26] for an earlier proof of confluence of geodesics for the Brownian map
(which is equivalent to LQG with ¢y = 0 [30; 32]), and [1; 27; 29] for stronger confluence results in the
Brownian map setting.

In this paper, we will mainly be interested in the supercritical and critical cases, i.e., & > & It
was shown in [8] that for this range of parameter values, the rescaled LFPP metrics a ! D; are tight
with respect to the topology on lower semicontinuous functions on C x C introduced by Beer [2] (see
Definition 2.1). Later, after this paper appeared on the arXiv, it was shown in [9] that the subsequential
limit is unique. The proof in [9] uses some of the results in this paper (in particular, those in Section 3.2),
so throughout this paper we will work with subsequential limits.

If Dy, is a subsequential limit of LFPP for & > &.;, then Dj, is a metric on C which is allowed to take
on infinite values. This metric does not induce the Euclidean topology: rather, there is an uncountable,
Euclidean-dense set of singular points z € C such that

Dy(z,w)=o00 forallweC\{z}. (1-9)
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On the other hand, for two fixed points z, w € C, a.s. Dy (z, w) < 0o, and the restriction of Dy, to the
complement of the set of singular points defines a complete metric [34]. Roughly speaking, singular
points for D, correspond to a-thick points of 4 for a > Q, i.e., points z € C for which £} (z) behaves like

alogs™!

as ¢ — 0 [8; 34]. It was shown in [7] that the metric Dj, induces the Euclidean topology on C
for & = &i. In particular, there are no singular points in this case.

Due to the existence of singular points, Dj-metric balls in the supercritical case are highly irregular
objects. A Dy,-ball has empty Euclidean interior (since the singular points are Euclidean dense). Moreover,
the Djy-boundary of a Dp-metric ball is not Dj-compact and has infinite Hausdorff dimension with respect

to Dy, [34] (see Theorem 1.2). See Figure 1 for a simulation of a supercritical LQG metric ball.

Figure 1. Simulation of an LFPP metric ball for & = 1.6 > &;. The colors indicate
distance to the center point (marked with a black dot) and the black curves are geodesics
from the center point to other points in the ball. These geodesics have a tree-like structure,
which is consistent with our confluence of geodesics results. We also note that there are
many “holes” corresponding to complementary connected components of the ball. The
boundary of each of these holes is of the form 38;"* for some y € C. The simulation was
produced using LFPP with respect to a discrete GFF on a 1024 x 1024 subset of Z2. It
is believed that this variant of LFPP falls into the same universality class as the variant
in (1-2). The geodesics go from the center of the metric ball to points in the intersection
of the metric ball with the grid 20Z>. The code for the simulation was provided by J. Miller.
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In contrast, we will show that the boundary of a filled Dj-metric ball (i.e., the union of the ball and
the points which it disconnects from some specified target point) is a Jordan curve and is compact and
finite-dimensional with respect to D, (Theorem 1.4).

Using our regularity results for outer boundaries of Dj-metric balls, we will then extend the confluence
of geodesic results from [18] to the critical and supercritical cases (Theorems 1.6 and 1.7). Unlike in
the subcritical case [20], these confluence results are not needed for the proof of the uniqueness of the
critical and supercritical LQG metrics in [9]. However, they are of independent interest.

An important tool in our work is [34], which shows that subsequential limits of supercritical LFPP
satisfy a list of axioms similar to the axioms for a weak LQG metric from [12] (see Definition 2.3), and
establishes a number of estimates for any metric satisfying these axioms. All of the results in this paper
are valid for any metric satisfying the axioms from [34].

1.2. Ordinary and filled LQG metric balls. Throughout the paper, we let & be a whole-plane GFF, we
fix £ > 0, and we let D;, be a weak LQG metric associated with ~# with parameter £. For now, the reader
can think of Dy, as a subsequential limit of the rescaled LFPP metrics a ! D;, but we emphasize that all
of our results also hold for any metric satisfying the axioms stated in Definition 2.3 below. Also, most
of our results are stated for £ > 0 (not just £ > &), but many of the statements are either obvious or
already proven elsewhere when & € (0, &.;). For & > &, the metric Dy, does not induce the Euclidean
topology. We therefore make the following notational convention.

LIS

Notation 1.1. Throughout, topological concepts such as “open”, “closed”, “boundary”, etc., are always
defined with respect to the Euclidean topology unless otherwise stated. Similarly, for a set A C C, dA
denotes its boundary with respect to the Euclidean topology and A denotes its closure with respect to
the Euclidean topology. Moreover, z, — z always refers to convergence with respect to the Euclidean
topology, unless otherwise stated.

For any set A, the boundary of A with respect to Dy, is contained in the Euclidean boundary 0A: this is
because the Euclidean metric is continuous with respect to Dj,. The reverse inclusion does not necessarily
hold. For example, a Dj-metric ball is Euclidean-closed (Lemma 3.1) and has empty Euclidean interior
(since the set of singular points is dense), so the Euclidean boundary of such a ball is equal to the whole
ball. On the other hand, the Dj-distance from each point in the Dj-boundary to the center point of the
ball is equal to the radius of the ball. Hence, any Dj-metric ball with the same center point and a strictly
smaller radius is disjoint from the Dj-boundary of the ball, so in particular the Dj-boundary of the ball is
not equal to the whole ball.

We also briefly recall the definition of Hausdorff dimension. For A > 0, the A-Hausdorff content of a
metric space (X, d) is

o0
inf { Zl rjA : there is a covering of X by d-metric balls with radii {r;} jeN}
Jj=

and the Hausdorff dimension of (X, d) is the infimum of the values of A for which the A-Hausdorff
content is zero.
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For x € C and s > 0, we write
Bs(x) :={z€C:Dy(x,z) <s} and B :=B;(0) (1-10)

for the closed Dj-metric ball of radius s. Recall that a singular point for D;, is a point which lies at
infinite distance from every other point. A nonsingular point is a point which is not a singular point (i.e.,
a point which lies at finite distance from some other point). Using the fact that the singular points for Dy,
are Euclidean-dense, Pfeffer [34, Proposition 1.14] established the following.

Theorem 1.2 [34]. Assume that & > &.i.. Almost surely, for each nonsingular point x € C and each
s >t > 0, the Dp-boundary (hence also the Euclidean boundary) of the Dy-metric ball Bs(x) cannot be
covered by finitely many Dy-metric balls of radius t. Furthermore, 0B;(x) = B, (x) is not Dy-compact
and has infinite Hausdorff dimension with respect to Dy,.

The reason why a5, (x) = B, (x) is that, as noted above, the fact that the set of singular points for D, is
Euclidean dense implies that B, (x) has empty Euclidean interior. Theorem 1.2 tells us that the boundaries
of Dj-metric balls are in some sense highly irregular. One of the main contributions of this paper is to
show that, in contrast, the boundaries of filled Dj-metric balls are well-behaved.

Definition 1.3. Let x € C and y € CU {oco}. For s > 0, we define the filled Dj-metric ball centered at x
and targeted at y with radius s > 0 by

the union of the closed metric ball B;(x) and the set
B (x) 1= of points which this metric ball disconnects from y for s < Dy(x,y),
p :

C for s > Dy (x, y).

We will most often work with filled metric balls centered at zero and filled metric balls targeted at infinity,
so to lighten notation, we abbreviate

Bi(x) :=B®*(x), B)*:=B*(0) and B::=B:(0). (1-11)

We note that filled Dj-metric balls differ from ordinary Dj-metric balls since the complement of an
ordinary Dj-metric ball is typically not connected (see Figure 1). In fact, a.s. each such complement has
infinitely many connected components; see [34, Proposition 1.14]. The following theorem summarizes
our main results concerning the boundaries of filled Dj,-metric balls.

Theorem 1.4. Almost surely, for each nonsingular point x e C, each y e CU{oo}, and each s € (0, D (x,y)),
the filled metric ball boundary 313} " (x) is a Jordan curve. Moreover, this boundary is Dy,-compact and
its Hausdorff dimension is bounded above by a finite constant which depends only on the law of Dj,.

We emphasize that the statement of Theorem 1.4 holds a.s. for all choices of x, y, s simultaneously.
We show in Lemma 3.4 below that the boundaries of B; *(x) with respect to the Euclidean metric and D),
coincide, so Theorem 1.4 also applies to the Dj,-boundary of B3 (x).

In the subcritical case & < &, Theorem 1.4 follows from the fact that Dy induces the Euclidean
topology and the Hausdorff dimension of (C, Dj,) is finite. See [31, Proposition 2.1] for a proof that the
boundary of a filled metric ball is a Jordan curve for any geodesic metric on C which induces the Euclidean
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topology. For & > &, however, the proof of Theorem 1.4 requires nontrivial ideas. In particular, we first
establish a general criterion for the boundary of an open domain to be a (not necessarily simple) curve
(Proposition 4.3), which is a variant of the well-known fact that if the boundary of a simply connected
domain in C is locally connected, then it is a curve (see, e.g., [36, Section 2.2]). We then use some
geometric estimates for supercritical LQG to check this criterion for the boundary of a filled supercritical
LQG metric ball (see Section 4.2), which shows that the filled metric ball boundary is a curve. Finally,
we use some fairly straightforward topological considerations to show that the boundary of a filled metric
ball does not have cut points, so is in fact a simple curve (see Lemma 4.10). The basic idea of our proof
is similar to the proof of [31, Proposition 2.1], which proceeds by checking that the boundary of a filled
metric ball for a geodesic metric which induces the Euclidean topology is locally connected and has no cut
points. However, our proof is much more involved since our metric does not induce the Euclidean topology.

Theorem 1.4 implies that for x € C and s > 0, the boundaries of the connected components of
C\ B, (x) have finite Dj,-Hausdorff dimension. Since 95, (x) itself has infinite Dj;-Hausdorff dimension
(Theorem 1.2), we get that “most” points of 95, (x) do not lie on the boundary of any connected component
of C\ B, (x). Points of this type can arise as accumulation points of arbitrarily small connected components
of C\ Bg(x). See [24, Theorem 1.14] for an analogous result in the subcritical case.

In fact, we will prove a slightly stronger Hausdorff dimension statement than the one in Theorem 1.4.
For x € C and y € CU {o0o}, we define the metric net

N )= U 0B (). (1-12)
1€[0,5]

Theorem 1.5. There is a deterministic constant A € (0, 00) (depending on the law of Dy,) such that a.s.
for each nonsingular point x € C, each y € CU {00}, and each s > 0 the Hausdor{f dimension of N (x)
with respect to Dy, is at most A.

The Hausdorff dimension of the metric net with respect to Dy, or with respect to the Euclidean metric
is not known, even heuristically, for any & > 0, with one exception: when ¢y = 0 (€ = 1/+/6), we expect
that the Hausdorff dimension with respect to Dy, is 3 (this is consistent with scaling relations for quantum
Loewner evolution in [30; 32; 33]). It was shown in [18, Theorem 1.11] that in the subcritical case,
the dimensions of the metric net with respect to the Euclidean and LQG metrics are each a.s. equal to
deterministic constants. We expect that the same is true in the supercritical case.

1.3. Confluence of geodesics. Theorem 1.4 (and the estimates which go into its proof) can be used to
extend the confluence of geodesic results from [18] to the critical and supercritical cases. In particular,
we obtain the following theorem for all £ > 0.

Theorem 1.6 (confluence of geodesics at a point). Almost surely, for each radius s > 0 there exists a
radius t € (0, s) such that any two Dy-geodesics from O to points outside of the filled Dy-metric ball
B; = B;(0) coincide on the time interval [0, t].

Another form of confluence concerns geodesics across an annulus between two filled Dj-metric balls
(Definition 1.3). Let us first note that every Dj,-geodesic from 0 to a point z € 313 stays in B;. For some
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points z there might be many such Dj-geodesics, but there is always a distinguished Dj-geodesic from 0
to z, called the leftmost geodesic, which lies (weakly) to the left of every other Dj-geodesic from O to z if
we stand at z and look outward from B; (see Lemma 5.4).

Theorem 1.7 (confluence of geodesics across a metric annulus). Almost surely, for each0 <t <s < 00
there is a finite set of Dj,-geodesics from O to 0B; such that every leftmost Dj-geodesic from 0 to a point
of dB; coincides with one of these Dy-geodesics on the time interval [0, t]. In particular, there are a.s.
only finitely many points of 0B; which are hit by leftmost Dy-geodesics from 0 to points of 9B;.

Theorems 1.6 and 1.7 are identical to [18, Theorems 1.3 and 1.4], except that they apply for all £ > 0
rather than just & < &.j. The proofs of Theorems 1.6 and 1.7 are given in Section 5. Many of the
proofs in [18] carry over verbatim to the critical and supercritical cases, but other parts require nontrivial
adaptations. To avoid unnecessary repetition, we will only explain the parts of the proofs which are
different in the critical and supercritical cases.

1.4. Outline. The rest of this paper is structured as follows. In Section 2 we review the axioms for a weak
LQG metric from [34], then restate some results from the existing literature (mostly from [34]) which we
will need for our proofs. In Section 3, we prove a number of regularity estimates for the boundaries of
filled Dp-metric balls, which enable us to prove Theorem 1.5 as well as all of Theorem 1.4 except for
the statement that 35;"° is a Jordan curve. In Section 4, we prove that 353;"* is a Jordan curve, which
completes the proof of Theorem 1.4. To do this, we first prove a general criterion for the boundary of
a simply connected domain to be a curve, then check this criterion for 353;"* using the estimates from
Section 3. In Section 5 we explain how to prove our confluence of geodesic results, Theorems 1.6 and 1.7,
by adapting the arguments of [18] and applying the estimates of Section 3.

2. Preliminaries

2.1. Notational conventions. We write N = {1,2, 3, ...} and Ny =N U {0}.
For a < b, we define the discrete interval [a, b]7 := [a, b]NZ.

If f:(0,00) — R and g: (0, 00) — (0, 00), we say that f(e) = O.(g(e)) (resp. f(e) = 0.(g(e))) as
e — 0if f(e)/g(e) remains bounded (resp. tends to zero) as ¢ — 0. We similarly define O(-) and o(-)
errors as a parameter goes to infinity.

Let {E®}.~( be a one-parameter family of events. We say that £¢ occurs with

o polynomially high probability as ¢ — 0 if there is a p > 0 (independent from ¢ and possibly from
other parameters of interest) such that P[E®] > 1 — O, (¢?);

e superpolynomially high probability as ¢ — 0 if P[E®] > 1 — O (g?) for every p > 0.

We similarly define events which occur with polynomially or superpolynomially high probability as a
parameter tends to oo.
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For z € C and r > 0, we write B, (z) for the open Euclidean ball of radius r centered at z. More generally,

for X C C we write B, (X) = B, (z). We also define the open annulus

zeX

A (@) =B, () \ By (z) forall0<r, <r <oo. (2-1)

For aregion A C C with the topology of a Euclidean annulus, we write Dj, (across A) for the Dj,-distances
between the inner and outer boundaries of A and Dy (around A) for the infimum of the Dj-lengths of
paths in A which disconnect the inner and outer boundaries of A.

2.2. Weak LQG metrics. In this subsection, we will state the axiomatic definition of a weak LQG metric
from [34]. We first define the topology on the space of metrics that we will work with.

Definition 2.1. Let X C C. A function f : X x X — RU{—o00, +00} is lower semicontinuous if whenever
(zn, wy) € X x X with (z,, w,) = (2, w), we have f(z, w) <liminf,_, f (24, wy). The topology on
lower semicontinuous functions is the topology whereby a sequence of such functions { f;, },en converges
to another such function f if and only if

(i) whenever (z,, w,) € X x X with (z,, w,) — (z, w), we have f(z, w) <liminf,_ o f, (21, Wy);
(i1) for each (z, w) € X x X, there exists a sequence (z,, w,) = (z, w) such that f,(z,, w,) = f(z, w).

It follows from [2, Lemma 1.5] that the topology of Definition 2.1 is metrizable (see [8, Section 1.2]).
Furthermore, [2, Theorem 1(a)] shows that this metric can be taken to be separable.

Definition 2.2. Let (X, d) be a metric space, with d allowed to take on infinite values.

e For a curve P : [a, b] — X, the d-length of P is defined by

#T
len(P; d) :=sup ) d(P(t;), P(ti-1))
T i=1
where the supremum is over all partitions 7 : a =1y < - - - < tayr = b of [a, b]. Note that the d-length
of a curve may be infinite.

o We say that (X, d) is a length space if for each x, y € X and each ¢ > 0, there exists a curve of
d-length at most d(x, y) 4+ ¢ from x to y. A curve from x to y of d-length exactly d(x, y) is called a
geodesic.

e For Y C X, the internal metric of d on Y is defined by

dx,y;Y):= }yclfy len(P;d) forallx,yeY (2-2)

where the infimum is over all paths P in Y from x to y. Note that d(-, - ; Y) is a metric on Y, except
that it is allowed to take infinite values.

o If X C C, we say that d is a lower semicontinuous metric if the function (x, y) — d(x, y) is lower
semicontinuous with respect to the Euclidean topology. We equip the set of lower semicontinuous
metrics on X with the topology on lower semicontinuous functions on X x X, as in Definition 2.1,
and the associated Borel o -algebra.
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The following is a restatement of [34, Definition 1.6].

Definition 2.3 (weak LQG metric). Let D’ be the space of distributions (generalized functions) on C,
equipped with the usual weak topology. For & > 0, a weak LOG metric with parameter & is a measurable
functions & — Dy, from D’ to the space of lower semicontinuous metrics on C with the following properties.
Let i be a GFF plus a continuous function on C: i.e., h is a random distribution on C which can be
coupled with a random continuous function f in such a way that 7 — f has the law of the whole-plane GFF.
Then the associated metric Dy, satisfies the following axioms.

I. Length space. Almost surely, (C, Dj) is a length space.

II. Locality. Let U C C be a deterministic open set. The Dj-internal metric D, (-, - ; U) is a.s. given by
a measurable function of A|y.

III. Weyl scaling. For a continuous function f : C — R, define

len(P;Dy)

(¥ - Dy)(z, w) := inf STPO) gr - forall z, w € C, (2-3)

Piz—wJO

where the infimum is over all Dj-continuous paths from z to w in C parametrized by Dj-length.
Then a.s. €5/ - Dy, = Dy, ¢ for every continuous function f: C — R.

IV. Translation invariance. For each deterministic point z € C, a.s. Dy(.4;) = Dp(- +z, - +2).

V. Tightness across scales. Suppose that / is a whole-plane GFF and let {/,(z)},;~0.;ec be its circle
average process. There are constants {c,},~o such that the following is true. Let A C C be a
deterministic Euclidean annulus. In the notation defined at the end of Section 2.1, the random
variables

cr_le_gh’(o)Dh(across rA) and cr_le_gh’(o)Dh (around rA)

and the reciprocals of these random variables for r > 0 are tight. Finally, there exists A > 1 such
that for each § € (0, 1),
ATlSM < ‘ci <A8™™ forall r > 0. (2-4)
r

The axioms of Definition 2.3 are the same as the axioms which define a weak LQG metric in
[12, Section 1.2], with two exceptions: one works with lower semicontinuous metrics instead of continuous
metrics, and the tightness across scales axiom (Axiom V) is formulated differently: we require tightness
for rescaled distances around and across Euclidean annuli, rather than requiring tightness of the rescaled
metrics themselves.

It was shown in [34] that if / is a GFF plus a continuous function and D is a weak LQG metric, then
a.s. the Euclidean metric is Dj,-continuous (see Proposition 2.11 below for a quantitative version of this).
In particular, a.s. every Dp-continuous path (e.g., a Dj-geodesic) is also Euclidean continuous.

Axiom V allows us to get bounds for Dj-distances which are uniform across different Euclidean scales.
This axiom serves as a substitute for exact scale invariance (i.e., the LQG coordinate change formula),
which is difficult to prove for subsequential limits of LFPP before we know that the subsequential limit is
unique. See [12; 20; 34] for further discussion of this point.
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The following theorem is proven as [34, Theorem 1.7], building on the tightness result from [8].

Theorem 2.4 [34]. Let & > 0. For every sequence of €’s tending to zero, there is a weak LQG metric D
with parameter & and a subsequence {e,}neN for which the following is true. Let h be a whole-plane
GFF, or more generally a whole-plane GFF plus a bounded continuous function. Then the rescaled LFPP
metrics ag_nlDZ”, as defined in (1-3) and (1-4), converge in probability to Dy with respect to the metric on
lower semicontinuous functions on C x C.

Theorem 2.4 implies in particular that for each & > 0, there exists a weak LQG metric with parameter &.

Remark 2.5. It was shown in [9], subsequently to this paper, that the axioms in Definition 2.3 uniquely
characterize Dy, up to multiplication by a deterministic positive constant. This implies that one has actual
convergence (not just subsequential convergence) in Theorem 2.4 and that Axiom V can be improved to
the LQG coordinate change formula for spatial scaling. Some of the results of this paper (in particular,
those in Section 3.2) are used in [9].

2.3. Results from prior work. Throughout the rest of the paper, we fix £ > 0 and a weak LQG metric
D : h— Dy, with parameter £. We will not make the dependence on the parameter £ or the particular choice
of metric D explicit in our estimates. We also let 4 be a whole-plane GFF and we let {/,(z) : ¥ > 0, z € C}
be its circle average process (as in Axiom V).

Many of the quantitative estimates in this paper involve a parameter r > 0, which represents the
“Euclidean scale”. The estimates are required to be uniform in the choice of r. The reason for including r
is the same as in other papers concerning weak LQG metrics, such as [12; 18; 20; 34]: we only have
tightness across scales (Axiom V), rather than exact scale invariance, so it is not possible to directly
transfer estimates from one Euclidean scale to another.

In this subsection, we state some previously known results for the GFF and the LQG metric (mostly
from [34]) which we will cite regularly. We start with the fact that Dj,-geodesics exist [34, Proposition 1.12],
which is not immediate from the axioms since Axiom I only shows that Dj(z, w) is the infimum of
the Dj,-lengths of paths joining z and w, not that a length-minimizing path exists.

Lemma 2.6 [34]. Almost surely, for any two nonsingular points z, w € C, there exists an LOG geodesic P
Jjoining z and w.

We will frequently use without comment the following fact, which implies in particular that every
Dy,-bounded set is Euclidean bounded. See [34, Lemma 3.12] for a proof.

Lemma 2.7 [34]. Almost surely, for every Euclidean-compact set K C C,
lim Dh(K, 8BR(0)) = Q.
R—o00

It was shown in [34, Lemma 3.1] that one has the following stronger version of Axiom V.

Lemma 2.8 [34]. Let U C C be open and let K|, K, C U be two disjoint, deterministic compact sets
(allowed to be singletons). The rescaled internal distances cr_le_ghf(o)Dh (rKy,rKo; rU) and their
reciprocals are tight.
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The following proposition, which is [34, Proposition 1.8], is a more quantitative version of Lemma 2.8
in the case when K, K, are connected and are not singletons. It will be our most important estimate for
Dy, -distances.

Proposition 2.9 [34]. Let U C C be an open set (possibly all of C) and let K, K, C U be connected,
disjoint compact sets which are not singletons. Also let {¢,},~o be the scaling constants from Axiom V.
For each r > 0, it holds with superpolynomially high probability as A — o0, at a rate which is uniform in
the choice of r, that

A7 e et < Dy (K, rKy: rU) < Acpe®n @, (2-5)

Recall the notation for Dj,-distance across and around Euclidean annuli from Section 2.1. We will most
frequently use Proposition 2.9 to lower-bound Dj, (across A, pr(z)) and upper-bound Dy, (around A pr(2))
where b > a > 0 are fixed. To do this, we first note that due to Axiom IV we can assume without loss of
generality that z = 0. To lower-bound Dy, (across A, pr(2)) we apply Proposition 2.9 with K1 = 9 B,(0),
K> = 9Bp(0), and U = C. To upper-bound Dj, (around A, p(z)), we apply Proposition 2.9 twice, with
the sets Ky, K», U and K|, K/, U’ chosen so that the union of any path from K to K3 in U and any path
from K| to K’ in U’ is contained in A, ;(0) and disconnects the inner and outer boundaries of A, ;(0).

Axiom V only gives polynomial upper and lower bounds for the ratios of the scaling constants c,. The
following proposition, which is [34, Proposition 1.9], gives much more precise bounds for these scaling
constants and relates them to LFPP.

Proposition 2.10 [34]. With Q as in (1-5), the scaling constants from Axiom V satisfy ¢, = rs2+or () gg
r— 0orr — oo.

We also have a Holder continuity condition for the Euclidean metric with respect to Dj,. See
[34, Proposition 3.8].

Proposition 2.11 [34]. Let x € (0, (E(Q + 2))"Y and let U C C be a Euclidean-bounded open set. For
each r > 0, it holds with polynomially high probability as ¢ — 0, at a rate which is uniform in r, that

|z —w| < Dp(z, w)* forallz,werU with |z —w| < er. (2-6)

In particular, the identity mapping from (C, Dy) to C, equipped with the Euclidean metric, is x-Holder
continuous when restricted to any Euclidean-compact set.

We note that in contrast to the subcritical case (see [18, Theorem 1.7]), the Holder continuity in
Proposition 2.11 only goes in one direction.

Finally, we state an estimate which is a consequence of the fact that the restrictions of the GFF & to
disjoint concentric annuli are nearly independent. See [19, Lemma 3.1] for a proof of a slightly more
general result.

Lemma 2.12 [19]. Fix 0 < 1 < up < 1. Let {r¢}ren be a decreasing sequence of positive real numbers
suchthat riq1/ry < i for each k € N and let { E,, }ren be events such that E,, € o ((h —h,, (0)) |AM]VMW (0))
for each k € N (here we use the notation for Euclidean annuli from Section 2.1). For K € N, let N(K)
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be the number of k € [1, K]z for which E,, occurs. For each a > 0 and each b € (0, 1), there exists
p=pla, b, uy, n2) €(0,1) and c = c(a, b, ju1, n2) > 0 such that if

PIE,]1>p forallk eN, 2-7)

then
PIN(K) <bK] < ce K forall K € N. (2-8)

3. Estimates for the outer boundary of an LQG metric ball

We continue to assume that & > 0, & is a whole-plane GFF, and Dj, is a weak LQG metric with parameter &.
In this section, we will prove a variety of estimates for Dj,-distance which will eventually lead to proofs
of Theorem 1.5 and the compactness and finite-dimensionality parts of Theorem 1.4. We start out in
Section 3.1 by proving some basic facts about D, which are relatively straightforward consequences of
existing results, e.g., the fact that Dj-metric balls are Euclidean closed and every filled Dj-metric ball
contains a Euclidean ball with the same center point. In Section 3.2, we will prove a technical lemma
which will be a key tool in our proofs: basically, it says that points on the boundary of a filled Dj-metric
ball can be surrounded by paths with small Dj-lengths (Lemma 3.6). Using this lemma, in Section 3.3
we will prove a lower bound for the Euclidean distance between the boundaries of two filled metric balls
with the same center point. Finally, in Section 3.4 we will prove Theorem 1.5 and part of Theorem 1.4.

3.1. Basic facts about the LQG metric. Before proving our main results for LQG metric ball boundaries,
we will record some facts about Dj;, which are easy consequences of the axioms from Definition 2.3 and
the estimates from Section 2.3. For our first statement, we recall that d always denotes the boundary with
respect to the Euclidean topology.

Lemma 3.1. Almost surely, for each x € C, each y € CU {00}, and each s € (0, Dy, (x, y)), the ordinary
metric ball By(x) and the filled metric ball B} * (x) are both Euclidean-closed and 3B} (x) C By (x).

Proof. The function z — Dj(x, z) is lower semicontinuous, so if z, is a sequence of points in B, (x) with
|zn —z] = 0, then Dy (x, z) <liminf,_ o Dp(x, z,) <s, s0 z € By(x). Hence B,(x) is Euclidean-closed.
Consequently, each connected component of C \ Bs(x) is Euclidean-open. In particular, the connected
component of C\ B,(x) containing y, namely C \ By (x), is Euclidean-open, so B)*(x) is Euclidean-
closed. Since B;(x) is Euclidean-closed, it contains the boundary of each of its complementary connected
components. In particular, 38 *(x) C By (x). O

Our next several lemmas are based on the following straightforward consequence of Lemma 2.12; see
[34, Proposition 1.13] for a proof.

Lemma 3.2 [34]. Almost surely, for each nonsingular point z € C there is a sequence of disjoint
Dy -continuous loops {1, },en, each of which separates a neighborhood of z from oo, such that the
Euclidean radius of m,,, the Dy,-length of w,, and the Dy-distance from z to 1, each tend to zero as n — Q.
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Since the set of singular points is a.s. Euclidean-dense, a.s. every Dp-metric ball has empty Euclidean
interior. In contrast, the following lemma tells us that a filled Dj-metric ball a.s. contains a Euclidean
ball with the same center.

Lemma 3.3. Almost surely, for each nonsingular point x € C, each y e CU {00}, and each s € (0, Dy (x, y)),
the filled Dy,-metric ball B (x) contains a Euclidean ball centered at x with positive radius.

Proof. Let {m,},en be a sequence of loops surrounding x as in Lemma 3.2. Let P be a Dj-geodesic
from x to y. The Euclidean radii and the Dj-lengths of the m,’s shrink to zero as n — oo and P is
Euclidean continuous. Hence a.s. for each sufficiently large n € N, the loop 7, disconnects x from y,
the Dj-length of m, is less than s/2, and P hits m,, before time s/2. This shows that m,, is contained in
B (x), so m, C By*(x). Since 7, disconnects a Euclidean ball of positive radius centered at x from y,
this gives the lemma statement. |

For our next lemma, we recall that d always denotes the boundary with respect to the Euclidean
topology.

Lemma 3.4. Almost surely, for each nonsingular point x € C, each y e CU {00}, and each s € (0, Dy (x, y)),

Dp(x,z)=s forallz €dB]*(x). 3-1)
Furthermore, the Euclidean boundary 383" (x) is equal to the Dy,-boundary of By * (x).

Proof. By Lemma 3.1, a.s. for each x, y, s as in the lemma statement we have 38;"*(x) C B,(x), so
Dy (x, z) < s for each z € 3B}"* (x). We need to prove the reverse inequality. To this end, we fix x, y, s as
in the lemma statement. All statements are required to hold for all choices of x, y, s simultaneously.

Let z € 0Bs(x). Then Dy (x, z) <s < oo so z is not a singular point. Let {7, },en be a sequence of
disjoint Dp-continuous loops surrounding z as in Lemma 3.2. Since Dj(x, w) <s < Dy(x, y) for each
w e 3B " (x) and 3B " (x) is Euclidean-closed, 313 *(x) lies at positive Euclidean distance from y. The
Euclidean radius of m,, tends to zero as n — oo and each ,, disconnects a neighborhood of z from oo.
Hence for each large enough n € N, y lies in the unbounded complementary connected component of 7,,,
and hence 7, disconnects a neighborhood of z from y.

If Dy (x, z) < s, then since the Dj-length of 7, and the Dj-distance from z to m, both tend to zero as
n — 0o, the triangle inequality shows that w,, C B, (x) for each large enough n € N. But, 7, disconnects
a neighborhood of z from y for each large enough #n, so if D, (x, z) < s then z must be in the interior of
B;"*(x), not in dB;"(x). We thus obtain (3-1).

Since 9B)*(x) C Bs(x) C By"(x) and the D;-boundary of any set is contained in its Euclidean
boundary, to get the last statement of the lemma, we need to show that each point z € 3B8; *(x) is a
Dy-accumulation point of C\ B3 *(x). Since the loop 7, disconnects z from y for each large enough n, it
follows that 7, disconnects C \ B;"*(x) into at least two connected components for each large enough 7.
Since C\ B *(x) is connected, it follows that 77, contains a point z,, € C\ By ™*(x) for each large enough n.
Since the Dp-distance from z to 7, and the Dj-length of m, each tend to zero as n — oo, we infer that z
is a Dj-accumulation point of C \ By*(x), as required. O
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Finally, we record a more quantitative version of Lemma 3.3 which applies when the center point of
the filled metric ball is fixed. In the lemma statement and later in the paper, we will use the notation

7, = Dyp(0,0B,(0)) =inf{r > 0: B, ¢ B,(0)} forall r > 0. (3-2)
Lemma 3.5. Let r > 0 and let t- be as in (3-2). It holds with polynomially high probability as ¢ — 0,
uniformly over the choice of v, that Ber(0) C B;, .

Proof. Let ¢ € (0,£0Q/100) be a small exponent. By Proposition 2.9, it holds with superpolynomially
high probability as ¢ — 0, uniformly in r, that

Dy, (across Ap 2 ~(0)) > gt cresh‘”(o) and Dp(around Agp 2.-(0)) < ¢ cgresh”(o). (3-3)

Here we use the notation for Dj,-distances across and around Euclidean annuli as explained in Section 2.1.
By Proposition 2.10, we have ¢./cp = g5 2+o:(D  with the rate of convergence of the o, (1) uniform
in r, so with superpolynomially high probability as ¢ — 0,

Dy (around Aer 2-(0)) _ £E0-20+0:(1) £ (her (0)—hr(0)) (3-4)
Dy, (across Arj2 (0)) — '

The random variable h.~(0) — h,(0) is centered Gaussian with variance log 7! so by the Gaussian tail

bound it holds with polynomially high probability as ¢ — 0 that e5"er(O=he(0) < ¢ =(E0=30) By (3-4), it
therefore holds with polynomially high probability as ¢ — 0 that

Dy (around A 2.~(0)) < Dy (across Arjz (0)). (3-5)

Suppose that (3-5) holds. We claim that B.~(0) C B;r. Let 7 be a path in Az 2.(0) which disconnects
the inner and outer boundaries of A 2¢~(0) and has Dj-length less than Dy, (across Ay ~(0)). Also
let P be a Dj-geodesic from 0 to a point of dB; NdBr(0). Then P hits 7 before leaving B/2(0) and the
segment of P after it leaves B;./»(0) has Dj-length at least Dy, (across A2 ~(0)). Since the Dj,-length
of 7 is smaller than Dy, (across A2 ~(0)), we get that 7 C By,.. Since 7 disconnects Be(0) from oo, it
follows that B.~(0) C B; . O

3.2. Regularity of distances on outer boundaries of metric balls. A key ingredient for many of the proofs
in this paper is the following lemma, which implies every point on the boundary of a filled Dj-metric
ball can be surrounded by a path of small Dj-length, in a sense which is uniform over all points in any
Euclidean-bounded open set (this is in contrast to Lemma 3.2, which does not give any uniform control
on the rate of convergence). A closely related lemma for LQG geodesics is proven in [34, Section 2.4].
Note that we include a Euclidean scale parameter r in the estimates of this subsection since we will need
them to be uniform across Euclidean scales.

Lemma 3.6. For each o € (0, 1), there exists B = B(«) > 0 such that for each Euclidean-bounded open
set U C C and each r > 0, it holds with polynomially high probability as ¢ — 0, uniformly over the choice
of v, that following is true. Suppose z € vU, x,y € C\ B (2), and s > 0 such that the boundary of the
filled metric ball 3By"* (x) intersects By (z). Then

Dy (around Agp gerr(z)) < e Dy (across Agr g0 (2)). (3-6)
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Figure 2. Illustration of the statement of Lemma 3.6. The lemma asserts that if z € rU,
x,y € C\ Ber(z), and s > 0 such that the filled metric ball boundary d8; °(x) (red)
intersects Bgr(z), then we can find a path (blue) which disconnects the inner and outer
boundaries of the annulus A,y e (z) which has short Dj-length, in the sense of (3-6).

See Figure 2 for an illustration of the statement of Lemma 3.6. We will most often use the following
slightly weaker estimate, which is an immediate consequence of Lemma 3.6.

Corollary 3.7. Suppose we are in the setting of Lemma 3.6. On the polynomially high probability event
of that lemma, the following is true. Suppose 7z € vU, x,y € C\ Bearn(2), and s > 0 such that either
0B)*(x) N By (2) # @ or there is a Dy,-geodesic P from x to y with P(s) € By (2). Then

Dy, (around Agp gor(2)) < ePs. (3-7)

Proof. If P is a Dj-geodesic from x to y, then necessarily P(s) € 3By "°(x), so if P(s) € By(z) then
0By"(x) N B.(z) # @. Hence, Lemma 3.6 implies that for z, x, y, s as in the lemma statement the
bound (3-6) is satisfied. Since any Dj,-geodesic from x to a point of 3B N B.r(z) has length s and must
cross between the inner and outer boundaries of B« (z) \ Ber(2), we see that (3-6) implies (3-7). O

Intuitively, the reason why Lemma 3.6 and Corollary 3.7 are true is that points on the boundary of a
filled Dy-metric ball or on a Dj-geodesic should be in some sense far from being singular points (since
they are at finite distance from at least one point). Hence it should be possible to find short paths which
disconnect small Euclidean neighborhoods of such points from oo (roughly speaking, this is a quantitative
version of Lemma 3.2).

Corollary 3.7 can be thought of as a substitute for the fact that for supercritical LQG (unlike in the
subcritical case) we do not know that the identity mapping (C, | - |) — (C, D) is Holder continuous. To
be more precise, the corollary tells us that points on the outer boundary of a filled Dj-metric ball or on a
Dj,-geodesic can be surrounded by paths of small Euclidean size whose Dj-length is small. By forcing
these paths to cross other paths, we will be able to establish upper bounds for the Dj-distance between
points near filled metric ball boundaries or geodesics in terms of their Euclidean distance. Since many
estimates for the LQG metric only require us to work with points near filled metric ball boundaries or
geodesics, this will be a suitable substitute for Holder continuity.
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The idea of the proof of Lemma 3.6 is to surround the Euclidean ball B,-(z) by logarithmically many
disjoint concentric Euclidean annuli contained in A .«r(z) with the property that the Dj-distances
around and across each of the annuli are comparable. This will be done using Lemma 2.12. We will order
these annuli from outside to inside. Using a deterministic lemma (see Lemma 3.9), we will argue that in
order for a filled metric ball boundary to intersect B.(z), there must be at least one annulus such that the
Dy,-distance around this annulus is smaller than a positive power of ¢ times the sum of the Dj-distances
across the subsequent annuli. This latter sum provides a lower bound for Dy (across Agp cor(2)).

Let us now construct the concentric annuli that we will work with. An annulus with aspect ratio 2 is
an open annulus of the form A = A 5,(z) for some z € C and r > 0. For an annulus A with aspect ratio 2
and a number ¢ > 0, we define

E.(A) = {Dh (around A) < (1/c¢) Dy (across A)}. (3-8)

Lemma 3.8. For each o € (0, 1), there exists n € (0, 1 —a) and c € (0, 1) such that for each Euclidean-
bounded open set U C C and each r > 0, it holds with polynomially high probability as ¢ — 0, uniformly
over the choice of r, that the following is true. For each z € rU, there exist N := [nloge™'] disjoint
concentric annuli Ay, ..., Ay C Agr c2r(2) which each disconnects 0 Ber(2) from 0 Bger(2) such that
E.(A,) occurs foreachn=1, ..., N.

Proof. This is a straightforward consequence of the near-independence of the restriction of the GFF to
disjoint concentric annuli (Lemma 2.12) together with a union bound over points in an fine mesh of rU.
Let us now give the details.

For z € Cand k € N, let Ay ¢(2) := Az p2kt1,-(2). Note that the annuli Ay ¢(z) for different values
of k are disjoint and for each k&, the region between the annuli Ay .(z) and Ag4+1.¢(z) is the annulus
Agais1op 242, (2). Furthermore, if we set K, := | 4 log, 6 =179 | — 1, then

Ak,s(Z) C A26[r*,e‘)‘rr/2(Z> forall k € [17 K:lz. (3'9)

The reason why we want 2er and ¢%r/2 instead of just er and £*r in (3-9) is that we will need to slightly
adjust the radii of our annuli when we pass from a statement for points in a fine mesh to a statement for
all points simultaneously.

By the definition (3-8) of E (A .(z)), this event is a.s. determined by the internal metric of Dy,
on Ay .(z). By the locality and Weyl scaling properties of D, (Axioms II and III), each of the events
E.(Ak.(2)) is a.s. determined by the restriction of & to A »(z), viewed modulo additive constant. By the
translation invariance and tightness across scales properties of D, (Axioms IV and V), for any p € (0, 1)
we can find ¢ = ¢(p) € (0, 1) such that P[E (A ¢(z))] > pforeachz € C, k e N, and ¢ > 0.

We may therefore apply Lemma 2.12 to find ¢ € (0, 1) and n € (0, 1 — «) such that for each z € C, it
holds with probability at least 1 — O, (¢3) that there are at least 1 log e~! values of k € [1, K, ]7 for which
E.(A¢ x(z)) occurs. By a union bound, it holds with polynomially high probability as ¢ — 0 that for each
Z € (%SH‘ZZ) N B (rU), there are at least n log e~ values of k € [1, K]z for which E.(A; x(z)) occurs.
Henceforth assume that this is the case.
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Let z € U. We can find 2’ € (36rZ%) N B.-(U) such that z € B,y /2(z)). Then By (z) C Brer(2) and
Bgar/2(z') C Bear(z). By (3-9), the conditions in the lemma statement hold with Ay, ..., Ay chosen to
be N = [nloge~!] of the annuli Ag.e(Z) for k € [1, K ]z for which E (A ¢(z)) occurs. O

The following deterministic lemma will allow us to choose one of the annuli A, from Lemma 3.8 in
such a way that Dy (around A,) is much smaller than ZI-V Dy (across Aj). See [34, Lemma 2.20]

j=n+1
for a proof.
Lemma 3.9. Let X1, ..., Xy be nonnegative real numbers. For each ¢ > 0,
N log L max 1Nz X 1
#nell Nz X, ze X x5} §max{l, 3y meXneutn, o) loge +2}. (3-10)
j=n+l log(c+ 1) log(c+ 1)

Proof of Lemma 3.6. Let o > 0 and let  and ¢ be chosen as in Lemma 3.8. Also fix a Euclidean-bounded
open set U C C and a number r > 0. Throughout the proof, we work on the polynomially high probability
event of Lemma 3.8.

Let z € rU and let Ay, ..., Ay C Ay cer(z) be the disjoint concentric annuli from Lemma 3.8,
numbered from outside in. For n € [1, N]z, define

X, := Dy(around A,), (3-11)
so that by the definition of E.(A,),
X, < (1/c)Dy(across A,). (3-12)

Suppose that there exists x, y € C\ Bger(z) and s > 0 such that ) * (x) N B,r-(z) # @. We need to show
that (3-6) holds for an appropriate choice of 8. With a view toward applying Lemma 3.9, we claim that

N
Xp>c ) X; forallne[l,N—1]z. (3-13)
j=n+1
Indeed, suppose by way of contradiction that (3-13) does not hold for some n € [1, N — 1]z, i.e.,
X, <YV, Xj. By (3-12), for this choice of n,

Dy, (around A,) < % Dyp(across Aj) < Dy(A,, Ber(2)), (3-14)
j=n+1
where the last inequality follows since the A ;’s are disjoint, numbered from outside in, and surround B (z).
Let 7 be a path in A, which disconnects the inner and outer boundaries of A,, and has Dj-length strictly
less than Dy (A, B (2)).

Let w € 8By (x) N Ber(2). By Lemma 3.4, D;,(x, w) =s. There is a Dj-geodesic P : [0, s] - C from x
to w. Let t be the first time that P hits r. Since P is a geodesic, the Dj-distance from x to each point
of 7 is at most T + (Dy-length of &), which by the preceding paragraph is less than T + Dy (A,, Ber(2)).

On the other hand, P must travel from A, to B.~(z) after time 7, so s >t + Dy (A,,, Ber(z)). Therefore,
each point of & lies at Dy-distance less than s from x, so m C Bs(x). Since x, y ¢ Bge-(z) and 7 is
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contained in Be~(z) and disconnects B (z) from d B.er(z), we get that B, (x) disconnects Bg~(z) from x
and y. Therefore, By(z) N B} *(x) = @, which is our desired contradiction. Hence (3-13) holds.
By (3-13), there are N values of n € [1, N]z for which X,, > ¢ Z?’ZHI X j. Therefore, Lemma 3.9 gives

log(XLN max,e(1,n1, Xn)
log(c+1)

where the O (1) denotes a constant depending only on ¢ (not on ¢). Therefore,

>N—-0(), (3-15)

Dy (around Bger(2) \ Ber(2)) < Xn  (by the definition (3-11) of X,,)

<(c+ l)*NJrO(l) max X, (by rearranging (3-15)) (3-16)
nell,Nlz

< O()(c+ )"V Dy(across Agr ger(z))  (by (3-12)).

Since N = [nloge~!], for small enough & the quantity O(1)(c 4+ 1)~" is bounded above by & for an
appropriate choice of 8 > 0. This gives (3-6). U

3.3. Lower bound for Dy-distances across LOG annuli. An easy consequence of Lemma 3.6 is the
following lemma, which gives a polynomial lower bound for the Euclidean distance between the outer
boundaries of concentric filled Dj-metric balls. This lemma will play an important role in the proof of
Theorem 1.5 and in the proof of confluence of geodesics.

Lemma 3.10. There exists 8 > 0 such that the following is true. Fix b > 1 and for r > 0 let 7. =
Dy (0, 0Br(0)) be as in (3-2). It holds with probability tending to 1 as § — 0, uniformly in the choice of r,
that for each s, t € [Ty, Tpe| With |s —t] < Scpefhr©@

O 2 i
dlSt(aBS, 8Bt) > W r, (3-17)

where dist denotes Euclidean distance.

Note that in the subcritical case, (3-17) is immediate from the local Holder continuity of D; with
respect to the Euclidean metric [12, Theorem 1.7], so the lemma has nontrivial content only in the case
when & > &.;. We will deduce Lemma 3.10 from the following more quantitative statement, which allows
for a general choice of starting points and target points for the filled metric balls. For the statement, we
recall the notation B,(X) = B, (z) for the Euclidean r-neighborhood of a set X C C.

zeX
Lemma 3.11. For each o € (0, 1), there exists B = B(a) > 0 such that the following is true. Let
U C C be a Euclidean-bounded open set and let v > 0. With polynomially high probability as ¢ — 0,
uniformly over the choice of v, it holds for each nonsingular point x € C, each y € CU {00}, and each
s € [ecpef O Dy (x, v)] that

dist(9B)*(x) N (rU \ Buss({x, y1)), 88", (x)) = &'/Pr, (3-18)

where dist denotes Euclidean distance, we define Boo/s ({x, 00}) = Boo/s(x), and we make the convention
that the distance from any set to the empty set is 0o (which is consistent with the convention that the
infimum of the empty set is o).
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Proof. Let B = B(«) > 0 be the parameter B from Corollary 3.7 and let 8 = 8/2. By Corollary 3.7
(applied with &!/# instead of ¢), it holds with polynomially high probability as & — 0 that for each x € C,
each y € CU {oo}, each s € [0, Dy (x, y)], and each z € 3B8}"*(x) N (rU \ Boas-({x, ¥})),

Dy, (around A 1/s,. o6 (2)) < 2. (3-19)

We henceforth work on the polynomially high probability event that this is the case.

Let x, y, s, z be as above with x nonsingular and let 7 be a path in A,1/s ce/6,~(z) Which disconnects the
inner and outer boundaries of this annulus and has Dj,-length at most (&/2)s. If 8B(y ils)s (X)NB,ys(2) D,
then since x, y ¢ B,«/s,.(z) it must be the case that each of 88{1"_8” (x) and B8] *(x) intersects 7. This
implies that the Dj-distance between BB(y]"_ s (x) and B8] °(x) is at most (¢/2)s. This cannot be the
case since Lemma 3.4 implies the Dj-distance between 88{1"_8)5 (x) and 3B)"(x) is es. Therefore,
aB(yflg)s (x) N By (z) = 9, so (3-18) holds. O

Proof of Lemma 3.10. Let B be the parameter from Lemma 3.11 with « = 1/2. By Lemma 3.5, it holds
with probability tending to 1 as § — 0 that B/ (0) C B;_, which means that also Bgi/es(0) C B for
each s > 7. Furthermore, by tightness across scales (Axiom V) it holds with probability tending to 1 as
8 — 0 that 7, > 8¢, Hence with probability tending to 1 as § — 0, we have

7 > 8¢ @ and 982N (Bpr(0) \ Bsyen(0) = 3B

for each s € [t Tpr].

We now apply Lemma 3.11 (with U = B,(0)) and a union bound over dyadic values of ¢, followed by
the estimate of the preceding paragraph, to get that with probability tending to 1 as § — 0, the following
is true. For & € (0, 8) N {2 F}xen and each s € [Ty, Tprl,

dist(dB;, 3B}, _,),) = &'/Pr. (3-20)
By Lemma 2.8, for any p € (0, 1) we can find C = C(p, b) > 1 such that for each r > 0,
P[C_lcreshr(o) < Tr < Tppr < Ccreghr(o)] > p. (3-21)

Now suppose that the event in (3-21) holds and the event in (3-20) holds with C§ in place of §, which
happens with probability at least p — o5(1). By (3-21), for any s, t € [Ty, Tp-] With s — Scpefr0) < <,
we have t < (1 — ¢)s for some dyadic ¢ € (0, C3) which satisfies

s—t 1 s—t
&> > — .
2s 2C cpeshe(0)

(3-22)

We conclude by combining (3-22) with (3-20), replacing 8 by a slightly smaller number to absorb the
factor of 1/(2C) into a small power of ¢, and noting that the parameter p from (3-21) can be made
arbitrarily close to 1. O
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3.4. The metric net is finite-dimensional. We will now use Lemma 3.11 to prove Theorem 1.5. Since
we are proving an a.s. statement, we no longer need to include the Euclidean scale parameter r.

Proof of Theorem 1.5. We write dim;, for Hausdorff dimension with respect to Dy. Fix a Euclidean-
bounded open set U C C, a number r > 0, and numbers s, > s; > 0. By the countable stability of
Hausdorff dimension, it suffices to show that there exists A € (0, co) (not depending on U, r, s1, 52) such
that a.s. for each nonsingular point x € U and each y € CU {00},

dimy, (V3 () \ N () N (U \ B ({x, y}))) < A. (3-23)

See Figure 3 for an illustration of the proof. The idea is as follows. We consider the set of £!/# x g!/P
squares with corners in &!/#7Z? which intersect a neighborhood of U. By Proposition 2.9 and an estimate
for the maximum of the circle average process h,15, each of these squares can be surrounded by a
path g of Euclidean diameter comparable to ¢!/ whose Dj,-length is at most a negative power of &.
The number of Dj-balls of radius ¢ needed to cover each of these paths is at most a negative power of &.
Using Lemma 3.11, we show that for each s € [sy, 2], each Dj,-geodesic from a point of OB (x) to x
must hit 7rg for one of the &!/# x ¢!/ squares S which intersects 32", (x), and it must do so before
time e. This shows that the set in (3-23) is contained in the union of a polynomial (in &) number of
Dy -balls of radius 2¢.

T TN

Z)):
A

oBY*(x) \
\ — Y,
AN 9B, (z)

N
.-

Figure 3. Illustration of the proof of Theorem 1.5. The figure shows a point z € 385" (x)
for some s € [s1, 2] (red) and the subset of S, consisting of squares S which intersect
0B, (x) (pink). Thanks to Lemma 3.11, we can arrange that each of these squares
lies at Euclidean distance at least ¢'/# from 33;°. Moreover, using basic estimates for
Dy, we can arrange that each square S is surrounded by a path g C B,1/5(S) \ S whose
Dy,-length is bounded above by a negative power of ¢ (one such path is shown in purple).
Hence the number of Djy-balls needed to cover g is at most a negative power of ¢. If P
is a Dj-geodesic from 0 to z, then P([s — ¢, s]) (red) must intersect g for some S € S,,
so z is contained in the e-neighborhood of one of the Dj-metric balls in our covering
of wg. This leads to an upper bound for the number of Dj-balls of radius 2¢ needed to
cover the metric net.
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Step 1: regularity events. Let B > 0 be the parameter B from Lemma 3.11 with o = 1/2, say, and let
B = /2. By Lemma 3.11, it holds with probability tending to 1 as & — O that for each nonsingular point
x € C, each y e CU {00}, and each s € [s1, s A Dy (x, y)],

dist(dBY*(x) N (U \ B, ({x, y})), dB)",(x)) > 4e'/F. (3-24)

Note that here we have used that s € [s1, s2] to absorb an s-dependent constant factor into a power of ¢.
Let S, be the set of £!/# x g!/# squares with corners in &!/#Z? which intersect the LQG s,-neighborhood
Bs,(U). For each S € S,, we define the annular region

Ags:=Bs(S)\S. (3-25)

Since By, (U) is a.s. contained in some Euclidean-bounded open set, we can apply Proposition 2.9 and a
union bound over S € S; to get that with probability tending to 1 as & — 0,

Dy, (around Ag) < g%We,1/5e5m060s)  forall § € S,, (3-26)

where vg is the center of § and the rate of convergence of the o.(1) is deterministic and uniform over
all S € S,.

The random variables 5176 (%) for § € S. are centered Gaussian with variances log e 1B+ 0,(1). By
the Gaussian tail bound and a union bound over O, (s~%/#) squares, we get that with probability tending
to 1 as ¢ — 0, we have h,15(vs) < (2/8 4+ 0-(1)) log e~ for each S € S.. By Proposition 2.10, we also
have c,i/p = ¢(I/P5C+0o:(D By plugging these estimates into (3-26), we get that with probability tending
tolase— 0,

Dy (around Ag) < g~ /PC=Dro:D for 1] § € S, (3-27)

where the rate of convergence of the o.(1) is deterministic and uniform over all S € S;.

Henceforth assume that (3-24) and (3-27) both hold, which happens with probability tending to 1 as
e — 0. We will prove an upper bound for the number of Dj-balls of radius ¢ needed to cover the set
on the left side of (3-23).

Step 2: defining a collection of Dj,-metric balls. For S € S, let g be a path in Ag which separates the
inner and outer boundaries of Ag and which has Dj,-length at most e ~(1/#@=@+o:(1) (gych a path exists
by (3-27)). There is a set Mg of # Mg < e~ /HC=0)=1+o:() p, _metric balls of radius ¢ whose union
contains 7g. Since #S, = O, (¢~*/#), we have

#( U Ms) =e270 for A= %(4 Q)+ 1. (3-28)
SeS,

By the definition of Hausdorff dimension, to prove (3-23) with A as in (3-28), it suffices to show
(continuing to assume (3-24) and (3-27)), that for each nonsingular point x € C and y € CU {oo},

WNZE\N )N W\B.(x,y))c U U B, (3-29)

SeS, Be Mg

where B’ denotes the Dj-ball with the same center as B and twice the radius.
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Step 3: covering the metric net. To prove (3-29), let x € C, y € CU {oo}, s € [s1, Dp(x, ¥) A s2], and
z€ 3By (x) N (U\ B-({x, y})). We need to show that z € B’ for some B € USGSS Mg. Let P be a
Dj,-geodesic from x to z. By Lemma 3.4, Dj,(x,z) =s so P : [0, s] — C. We have P(s —¢) € 885’_’8 (x).
Furthermore, since x € U and s < 52, we have P(s — ¢) € B,,(U), so there exists S € S, such that
P(s—¢) e S. By (3-24), P(s —¢) lies at Euclidean distance at least 4¢V/P from z = P(s), s0 2 ¢ B.1/8(S).
Therefore, the path g disconnects P (s — &) from z, so P must cross g between time s — ¢ and time s.
This implies that there is a point of 7 which lies at Dj,-distance at most € from z. This point is contained
in B for one of the ¢-balls B € M. Therefore, z € BB, as required. Ol

Our proof of Theorem 1.5 also yields the following proposition, which is a slightly stronger version of
the compactness statement from Theorem 1.4.

Proposition 3.12. Almost surely, for each x € C, each y € CU{oo}, and each 0 < 51 < s5 < Dj(x, y),
the set N sz (x) \My, (x) is precompact with respect to Dy, (i.e., its Dy-closure is compact).

Proof. Let so > s1 > 0, let U C C be a Euclidean-bounded open set, and let r > 0. The proof of
Theorem 1.5 shows there exists A > 0 such that with probability tending to 1 as & — 0, it holds for each
x € U and each y € CU {00} that the set (N3 (x) \ N3 (x)) N (U \ B, ({x, y})) can be covered by e ~4+2:(D
Dy,-balls of radius . Hence, a.s. there is a sequence ¢, — 0 (depending on U, r) such that for each x, y
as above and each k € N, this set can be covered by sk_M Dy -balls of radius ¢.

Let {U,},en be an increasing sequence of Euclidean-bounded open sets whose union is all of C
and let {r,},en be a sequence of positive radii tending to zero. By the conclusion of the preceding
paragraph, a.s. for each n € N there exists a sequence &, y — 0 such that for each k € N, each x € U,,,
and each y € C U {00}, the set (N, (x) \ N5 (x)) N (U, \ By, ({x, ¥})) can be covered by 8,1_%A Dj,-balls
of radius &, .

If x is a singular point or y = x, then N 32 () \N; Yyl (x) = @, so we can assume without loss of generality
that x is nonsingular and y # x. For each nonsingular x € C and each y € C U {oo} with y # x, the
set /\/}};(x) \/\/Sy1 (x) is Euclidean-bounded, so both x and this set are contained in U, for each large
enough n € N. By Lemma 3.3, B3,*(x) contains B,, (x) for each large enough n € N, which implies that
N3, (x) \ N3 (x) is disjoint from B,, (x) for each large enough n € N. Furthermore, if s < Dy, (x, y) then
since ZS’S}2 ‘x)D J\/sy2 (x) \j\/'sy1 (x) is Euclidean-closed (Lemma 3.1) and does not contain Yy, this set lies
at positive Euclidean distance from y.

Hence, a.s. for each nonsingular x € C and each y € CU {00} with 0 < s, < Dj(x, y), the set
J\/?2 (x) \/\/ﬁ (x) is contained in U, \ B,, ({x, y}) for each large enough n € N. Therefore, as shown above,
J\/Sy2 (x) \/\/'s)1 (x) can be covered by finitely many Dj,-balls of radius ¢, x for each large enough n € N and
each large enough k € N. Hence N3, (x) \ A5, (x) is totally bounded with respect to Dj,, hence precompact
with respect to Dj,.

This proves the proposition for a deterministic choice of s; and s,. Every interval [s1, s2] C (0, 00)
is contained in [s{, s3] for some s{, s5 € QN (0, co) with s7, s} arbitrarily close to s1, s>. This gives the
proposition statement in general. O
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4. Outer boundaries of LQG metric balls are Jordan curves

The goal of this section is to prove the following proposition, which is the missing ingredient needed to
prove Theorem 1.4.

Proposition 4.1. Almost surely, for each nonsingular point x € C, each y € C U {oo}, and each
s € (0, Dy(x, y)), the set 9By " (x) is a Jordan curve.

4.1. A criterion for a domain boundary to be a curve. In this subsection we will prove a general criterion
for the boundary of a planar domain to be a curve. Our criterion will be stated in terms of disconnecting
sets, defined as follows.

Definition 4.2. Let X,Y C C and A, A, C X. We say that Y disconnects A, from Ay in X if the
following is true: A; is disjoint from Y; and any two points x € A} and y € A \ Y lie in different
connected components of X \ Y.

We note that by definition Y disconnects any subset of ¥ N X from any subset of X \ Y.

Proposition 4.3. Let U C C be a domain containing 0, not all of C, such that dU is compact. We assume
that either U is bounded and simply connected; or U is unbounded and U U {oo} is a simply connected
subset of the Riemann sphere. Suppose that for each € > 0, there exists § > 0 such that each subset of U
which can be disconnected from O in U by a set Y of Euclidean diameter at most 6 with Y N 0U # @ has
Euclidean diameter at most €. Then U is the image of a (not necessarily simple) curve.

The criterion of Proposition 4.3 is similar in spirit to the concept of dU being locally connected (see,
e.g., [36, Section 2.2]), which is a different condition that implies that dU is a curve. The reason why
we require that Y N U # & is to rule out the possibility that Y is a small loop surrounding 0, in which
case Y would disconnect most of U from 0.

For the proof of Proposition 4.3, we first need to recall some standard definitions from complex
analysis. See, e.g., [36] for more detail on these concepts. A crosscut of a domain U C C is a simple
curve C : [0, 1] — U such that C(0), C(1) € 9U and C((0, 1)) C U. If 3U is bounded, we define a null
chain in U to be a sequence of crosscuts {C}, },en With the following properties.

(i) C,NCyy; = foreachn e N.
(i) C, disconnects C,y; from C; in U for each n € N.

(iii)) As n — oo, the Euclidean diameter of C,, converges to zero.

If {C,} and {C,} are two null chains, we say that {C,,} and {C,} are equivalent if for each large enough
m € N, there exists n € N for which C;, disconnects C,, from C; in U and C,, disconnects C;, from C}
in U. A prime end of dU is an equivalence class of null chains.

For a prime end p represented by a null chain {C,,}, we define A, to be the intersection over all n € N
of the closure of the set of points in U which are disconnected from C; by C, in U. Then A, C 0U. We
call A, the set of points corresponding to p.

In the next two lemmas, we assume that U is a domain satisfying the hypotheses of Proposition 4.3.
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Lemma 4.4. Each prime end of U corresponds to a single point of 0U.

Proof. Let p be a prime end for U and let {C,},en be a null chain corresponding to p. By possibly
removing finitely many of the C,’s, we can assume without loss of generality that C; disconnects 0
from C, for each n > 2. Since the diameter of C,, tends to zero as n — 0o, our assumption on U implies
that the diameter of the set of points in U which are disconnected from O in U by C,, hence also its
closure, tends to zero as n — co. Hence the (decreasing) intersection of the closures of these sets has
diameter zero, so is a single point. O

In what follows, if U is unbounded we view oo as a point of U, so that by the Riemann mapping
theorem there exists a conformal map from the open unit disk D to U.

Lemma 4.5. Every conformal map ¢ : D — U extends to a continuous map D — U.

Proof. By [36, Theorem 2.15] there is a bijection 5 from 9D to prime ends of U such that for each u € 0D
and each null chain {C}},¢n for the prime end a(u), {f~Y(C)}nen is a null chain for u. By Lemma 4.4,
for each u € 0D the prime end $ (u) corresponds to a single point of dU . Let ¢ (1) be this point. We need
to show that ¢, thus extended, is continuous.

Obviously, ¢ is continuous at each point of D, so consider a point # € D and a sequence {zx }xeny in D
which converges to u. We will show that ¢ (zx) — ¢ («).

For this purpose let ¢ > 0 and let {C,},en be a null chain for the prime end $(u), as above. By
possibly removing one of the C,,’s, we can assume without loss of generality that 0 ¢ C,, for each n. By
[36, Proposition 2.12], each of the cross cuts C, separates U into exactly two connected components.
Let G, be the one of these connected components which does not contain 0. Then ¢ (#) € dG,,. Since the
Euclidean diameter of C,, tends to 0 as n — oo, our hypothesis on U implies that the Euclidean diameter
of G,, and hence also the Euclidean diameter of G, tends to 0 as n — oco. Hence there is some n, € N
such that for n > n,, each point of G, lies at Euclidean distance at most & from ¢ (u).

By the defining property of ®, the sets ¢~ (C,,) are a null chain for the prime end u € dD. In particular,
each ¢~ (C,) separates [ into two connected components, namely ¢ (G, and ¢~ (U \ G,). Each
prime end of U which does not correspond to a point of dG,, corresponds to a point which lies at positive
distance from G, so can be represented by a null chain whose cross cuts (except for their endpoints) are
contained in U \ G,,.

We claim that ¢(¢—1(G,)) C G,. Since ¢|p is a homeomorphism from D to U, we have that
¢ (d~1(G,)ND) C G,. Now let w € $~'(G,)NID and suppose by way of contradiction that ¢ (w) ¢ G.
By the preceding paragraph there is a null chain { Cp}nen for ¢ (w) whose cross cuts (except for their

endpoints) are contained in U \ G,. But, then {¢~! (5 ) }nen 1s a null chain for w whose cross cuts (except
for their endpoints) are contained in o~ 1(U\ G,), hence lie at positive distance from ¢~ '(G,). This
contradicts the fact that w € ¢—1(G,,), as desired. Therefore, ¢ (¢~1(G,)) C G,.

Recall the sequence zx — z from above. For each large enough k, z is disconnected from ¢~'(0) in D

by ¢~ (C},), so zx € $~1(G,). It therefore follows from the conclusion of the preceding paragraph that
for each such k, we have ¢ (zx) € G, and hence |¢(zx) — ¢ (u)| < €. Since ¢ is arbitrary, this gives the
continuity of ¢. O
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Proof of Proposition 4.3. Lemma 4.5 implies that dU is a curve, since it is the continuous image of 9D
under ¢ (in fact, the statement of Lemma 4.5 is equivalent to the statement that oU is a curve; see
[36, Theorem 2.1]). O

4.2. Proof of Proposition 4.1. In this subsection we will use Proposition 4.3 to prove Proposition 4.1.
Let us first introduce the domain U that we will work with. For each nonsingular point x € C, each
y € CU {00}, and each s € (0, Dy (x, y)), we let

U] (x) := (connected component of the interior of B3}**(x) which contains x). 4-1)

By Lemma 3.3, a.s. x lies in the interior of B} °(x) for every x, y, s as above. Hence, almost surely U;’ (x)
is well-defined for every such x, y, s.

Once we show that 358;"*(x) is a Jordan curve, we will get that U; (x) is in fact the only connected
component of the interior of B;"*(x). However, we do not rule out the possibility that the interior of
BY*(x) is not connected a priori. The following lemma will allow us to work with U; (x) instead of
BY*(x) throughout the proof of Proposition 4.1.

Lemma 4.6. Almost surely, for each nonsingular point x € C, each y e CU{o0}, and each s € (0, Dy (x, y)),
the following is true, with U3 (x) as in (4-1). We have dU; (x) = AU (x) = By (x) and U] (x) is simply
connected. Furthermore, each Dy,-geodesic from x to a point of 03 *(x) is contained in U; (x) except for
its terminal endpoint.

Proof. All of the statements in the proof are required to hold a.s. for each x, y, s as in the lemma statement.
To prove that dU; (x) = B3 (x), we first argue that dU; (x) C dB8; *(x). Indeed, each z € dU; (x) is an
accumulation point of U; (x) C By *(x), so in particular dU; (x) C B} *(x). Hence it suffices to show
that if z is in the interior of B "(x), then z ¢ dU; (x). Indeed, for such a z either z € U; (x) or z belongs
to a connected component of the interior of B; *(x) other than U; (x). In the former case, z ¢ dU; (x)
since U; (x) is open. In the latter case, z ¢ U; (x) since the other connected components of the interior
of By*(x) are open sets disjoint from U; (x), so they are also disjoint from dU; (x).

To prove that 353;°(x) C dU; (x), let z € 3B;"*(x). By Lemma 3.4, Dy (x,z) =s. Let P : [0,s] — C
be a Dj-geodesic from x to z. Then P C B;™*(x). Furthermore, for t < s we have D, (x, P(t)) =1, so
Lemma 3.4 implies that P(¢) ¢ 385 *(x). Therefore, P([0, s)) is contained in the interior of B; *(x) and
hence P([0, s)) C U (x). This shows that z is an accumulation point of U (x), so z € dU; (x).

We have shown that 3By " (x) = dU; (x). Since U; (x) C U3 (x) C By"*(x), we have dU3 (x) = 0B8;"* (x).

The argument in the second paragraph of the proof shows that each Dj-geodesic from x to a point of
0By " (x) = dU; (x) is contained in U; (x) except for its terminal endpoint.

Since U; (x) is connected, to show that U; (x) is simply connected, it suffices to show that C\ Uy’ (x)
is connected. Let V be the set of connected components of the interior of B;°(x) other than U; (x) (we
will eventually show that V = &, but we do not know this yet). We can write C\ U; (x) as the union of
C\ By*(x) and the sets V for V € V. Each of the sets C \ BY*(x) and V is the closure of a connected set,
so is connected. Furthermore, each 8V for V C V is contained in 882" (x) (by the same argument that
we used for U; (x) above), which in turn is contained in C\ By *(x). Hence C\ U; (x) is the union of
connected sets which all intersect a common connected set, so is connected. Il
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The set U; (x) contains points z with Dy, (x, z) > s. For such points z, it is possible that a Dj,-geodesic
from x to z intersects dU; (x). Since we will be interested in sets which are disconnected from x in
U (x) (see Proposition 4.3), it is important for us to work with paths which are contained in U, J(x). The
following lemma will allow us to do so.

Lemma 4.7. Almost surely, for each nonsingular point x € C, each y € CU{oo}, and each s € (0, Dy, (x, y)),
the following is true. For each z € U; (x) and each § > 0, there is a path in U; (x) from x to z with
Dy,-length at most Dy (x, z) + 6.

Proof. See Figure 4 for an illustration of the proof. The statement is vacuous if z is a singular point (i.e.,
Dy (x, z) = 00), so assume that z is not a singular point.

Let P be a Dj,-geodesic from x to z. If t := Dy, (x, z) <s, then P C B;(x) C BY**(x). Furthermore, since
Dy (x,w) =s >t for each w € 3B, "(x) (Lemma 3.4), P([0, t)) is contained in the interior of B *(x).
Since P(t) =z € U; (x), we get that P is contained in the interior of 3;"*(x). By the definition (4-1) of
U{ (x), it follows that P C U (x).

Hence we only need to treat the case when Dj,(x, z) > s. By Lemma 3.4, the path P can hit 353 " (x)
at most once, namely at time s. Consequently, P cannot exit and subsequently reenter By *(x), so
P C B)*(x). Furthermore, P(t) is contained in the interior of B} *(x) for each t # s.

If P(s) ¢ 3By (x), then we are done so we can assume without loss of generality that P (s) € 98" (x).
Since Uj’ (x) is open and connected, hence path connected, we can find a simple path P’ in U; (x) from x
to z (we make no assumption on the Dj-length of P’). In fact, since U J(x) is homeomorphic to the disk
and P is a simple path, we can arrange that P’ does not intersect P except at x and z. Let V be the
unique bounded complementary connected component of C\ (P U P’). Then V is a Jordan domain and
P(s) € V. Furthermore, 8V C B;*(x), so each point of V is disconnected from y by By"*(x). Hence
V C BY*(x). In fact, 3V \ {P(s)} is contained in the interior of By *(x), so it follows that V \ {P(s)}
is contained in the interior of B;'*(x). Since V \ {P(s)} is connected and contains x it follows that
VA{P(®)} C U ).

OBY*(x) = OUY (x)

Figure 4. Illustration of the proof of Lemma 4.7. The path P is a Dj-geodesic from x
to z. If P(s) € dU; (x), we replace a segment of P by a segment of the small loop 7 to
get a path from x to z which is contained in U; (x) and which is not much longer than P.



28 JIAN DING AND EWAIN GWYNNE

By Lemma 3.2, there is a sequence of disjoint Dj-continuous loops {7, },en, €ach of which separates
a neighborhood of P(s) from oo, such that the Euclidean radius of m,, the Dj-length of m,, and the
Dj,-distance from z to m, each tend to zero as n — oo. If n € N is chosen to be sufficiently large, then
7, is disjoint from P’, the Dj-length of 7, is at most 8, and there is a segment 7, of m, which is a
crosscut of V (i.e., it is contained in V except for its endpoints). The segment n, joins P(t) to P(tp)
for some #; < s < 1. Let P be the concatenation of Plg,;,], ., and Plp,, Dy(x,2)]- Then P is a path in
V\ {P(s)} from x to z with Dj-length at most Dy, (x, z) + 8. By the preceding paragraph, P is contained
in Uj (x). Il

We will now check the criterion of Proposition 4.3 for the domain U (x).

Lemma 4.8. There exists 0 > 1 such that a.s. for each nonsingular point x € C, each y € CU {00}, and
each s € (0, Dy(x, y)), there exists a random & = £(x, y, s) > 0 with the following property. For each
e € (0, &], each set A C U (x) which can be disconnected from x in Uj (x) by a set Y of Euclidean
diameter at most €° which intersects dU; (x) has Euclidean diameter at most €.

Proof. See Figure 5 for an illustration of the proof.

Case 1: Dy(z,w) < s+ 2¢%s Case 2: Dy (x,w) > 5+ 2¢7s

Figure 5. Illustration of the proof of Lemma 4.8. The red set A C U (x) is disconnected
from x in Uj (x) by the Euclidean ball B,s (z). Using Corollary 3.7, we produce a path 7
(purple) disconnecting the inner and outer boundaries of the annulus As .4/2(z) with
Dy-length at most %5, We seek to bound the Euclidean distance from a point w € A
to Bea—(z) The left panel shows the case when Dj(x, w) < s + 26P%s. In this case,
Lemma 4.7 gives a path P from x to w whose Dj-length is at most s + 3¢#%s. The
path P must hit 7, say at a time 7. Our upper bound for the Dj-length of 7= shows
that Dy, (x, w) — © < 4eP%s. Using a Holder continuity bound for the Euclidean metric
with respect to Dj, (Proposition 2.11), we then obtain an upper bound for the Euclidean
diameter of P([t, Dy (x, w)]), which then gives an upper bound for the Euclidean distance
from w to B,s (z). The right panel shows the case when Dy, (x, w) > s+2”%5s. In this case,
we consider the complementary connected component V' of the ball B ,.s0,(x) with
w € V. We bound the Dj-distance from x to Bge—(z) in terms of sup, .5y dist(u, Bee—(z)),
then bound this last quantity using the previous case.
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Let 8 > 1 to be chosen later. We will first state some estimates which hold a.s. for each x, y, s as in
the lemma statement and each small enough ¢ > 0 (depending on x, y, s). We will then truncate on the
event that these estimates are satisfied and show that the conclusion of the lemma statement is satisfied.

Almost surely, for each s > 0 and each x € C, the Dj-ball B,(x) is Euclidean-bounded, so its Euclidean
1-neighborhood B (B;(x)) is also Euclidean-bounded. We note that this latter set contains every point
which lies at Euclidean distance less than 1 from 358; *(x) = dU;’ (x) (see Lemma 4.6) for each y € CU {o0}.

If we let {V,},en be an increasing sequence of Euclidean-bounded open sets whose union is all of C,
then a.s. for each x € C and each s > 0 we have B (Bs(x)) C V, for large enough n € N. Furthermore, if
y € CU{oo} and s € (0, Dy (x, y)), then x and y each lie at positive Euclidean distance from 913, *(x)
(see Lemma 3.3). We may therefore apply Corollary 3.7 (with a = 1/2, % instead of &, and U = V,,),
then send n — oo, to get that there exists § > 0 such that a.s. for each x, y, s as in the lemma statement,
it holds for small enough & > 0 that

Dy (around Ay w2 (2)) < ef?s  forall z € 9B (x). (4-2)

By Proposition 2.11 (again applied to each of the sets V,, above), if x € (0, (6(Q +2))~!), then for
each x € C and each s > 0, it is a.s. the case that for each small enough ¢ > 0,

lz—w| < e?sx  forall z, w € By (Bs(x)) with Dy (z, w) < 4eP%s. (4-3)

By Lemma 3.3, it is a.s. the case that for each x, y,s as in the lemma statement and each small
enough ¢ > 0,
By (x) C BY*(x). (4-4)

By the definition (4-1) of U; (x), we see that (4-4) implies that also By.e2(x) C U (x).

We henceforth work on the full-probability event that for each x, y, s as in the lemma statement, (4-2),
(4-3), and (4-4) all hold each small enough ¢ > 0. We will show that the lemma statement holds provided
0 > max{2, 1/(Bx)}. To see this, let x, y, s be as in the lemma statement, assume that ¢ > 0 is small
enough that the above three estimates hold. Let A C U; (x) be a set which can be disconnected from x in
U (x) by a set Y of Euclidean diameter at most £/ which intersects dU; (x). We claim that the Euclidean
diameter of A is at most &.

Choose z € Y NAU; (x). Then Y C Bge—(z) so A is disconnected from x in U; (x) by Bge—(z) We can
assume without loss of generality that A ¢ B,s2(z) (otherwise, the Euclidean diameter of A is at most
e?/2 < ¢). Furthermore, we have z € dU; (x) C B (B,(x)) and by (4-4), the Euclidean distance from x to
AU (x) = aBy " (x) is at least 46772, s0 x ¢ B,o2(z).

The estimate (4-2) implies that there is a path 7 in A, .6/2(z) which disconnects the inner and outer
boundaries of Ao .6/2(z) and satisfies

(Dp-length of ) < ePls. 4-5)
Since z € 3By (x), the path 7 intersects dU; (x) = B3 (x). So,

Dy (u, 382 (x)) < eP%s forallu e 7. (4-6)
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We claim that for each w € A\ B,s/2(2),
dist(w, B,o2(2)) < &/4, 4-7)

where dist denotes Euclidean distance. Once (4-7) is established, we will obtain that the Euclidean

0/2

diameter of A is at most £/2 + 2¢e%/~ < g, as desired. To prove (4-7), we treat two cases depending on the

value of Dy, (x, w).

Case 1: Dy (x, w) < s+ 2P, By Lemma 4.7, there is a path P from x to w in U; (x) with Dy,-length
T < Dy(x, w) + &P%. We take P to be parametrized by its D,-length. By our choice of z, P passes
through B,s(z). Since x, w ¢ B2(z), P must hit the path 7. Let 7 be the first time that P hits 7.
By (4-6), D;,(P (1), 0By " (x)) < &P¥s.
Since each point of 9By (x) lies at Dy,-distance s from x (Lemma 3.4), this implies that t > s — ehls
and hence that
T—t<T-—s +8P% < Dp(x,w)—s +2:P9 < 4sP%.

By (4-3), if we let
o:=sAinf{t > v : P(t) ¢ B1(0B)*(x))}

then the Euclidean diameter of P([r, o']) is at most eX#?5X which by our choice of @ is at most & /4
(provided ¢ is small enough).

Since P(r) € m and w C B,s2(3B)°(x)), each point of P([t, o]) lies at Euclidean distance at most
e%2 4 ¢/4 < 1 from 3B)"*(x). Therefore, 0 = Dj,(x, w) and P(c) = w. Hence w lies at Euclidean
distance at most /4 from B,s,2(z), as required.

Case 2: Dy, (x, w) > s +2eP%. Let V be the connected component of C \ By 20805 (x) which contains w.
Then V is contained in C\ BY*(x), which is the connected component of C \ B,(x) which contains w.
By Lemmas 3.1 and 3.4, 0V = 88;”;28%@) lies at positive Euclidean distance from dB{’**(x) and hence
also from By (x). It follows that V' lies at positive Euclidean distance from 35;™*(x), so V is contained in
the interior of By *(x). Since V is connected and w € U (x), we have V C U; (x).

We claim that V is disjoint from B,s(z). Indeed, if V intersects B,s(z), then since w € V \ B,o,2(z)
and V is connected, it must be the case that V intersects the inner and outer boundaries of the annulus
A .02(z). Hence V intersects . By (4-6), the Dj-distance from V to 98 *(x) is at most £#%s, so
the Dj,-distance from V to x is at most s + ¢/?s. But, by Lemma 3.4 (applied to 8[3;”4:28/393(@), the
Dj,-distance from V to x is equal to s +2eP%s, which is a contradiction.

Since V is connected, w € V, and w is disconnected from x by B, (z) in Uj (x), we get that V is
disconnected from x by Bse—(z) in U (x).

Let Voo =C\ B;,
reduce to the case when V # V. See Figure 6 for an illustration of this part of the argument. Obviously, if
Voo ¢ U{ (x), then V # Vi, so we can assume that V., C U (x) (which implies that U;’ (x) is unbounded).
Then C\ B3 (x) C Voo C U; (x). We can choose a path IT in U] (x) from x to a point of C\B5(x)ina
manner which depends only on U; (x) and C\ B3, (x) (not on ¢). Let gy be the Euclidean distance from IT

o0, (x) be the unbounded connected component of C\ By o¢p0(x). We will now

to dU; (x). Then &g is a random number depending on x, y, s (not on &). If e? < g then the path I1
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.
s+2eB8

Vo = C\ B, 4 ()

Figure 6. Illustration of how we reduce to the case when V # V4 in the proof of
Lemma 4.8. Here we have shown the case when U; (x) (the union of the pink, green, and
blue regions) is unbounded. The set V, is the union of the green and blue regions. We can
choose a path IT (red) in U (x) from x to the blue region C \ B5,(x) in a manner which
does not depend on ¢. The Euclidean distance from IT to U J(x)is a positive constant
&o > 0 which does not depend on ¢. Hence, if e? < g then C \ B, (x) 18 not disconnected
from x in Uj (x) by Bse—(z) Since C\ B;,(x) C Vo, the same is true for Vo. Since V is
disconnected from x in U; (x) by Bge—(z), we infer that if ¥ < g, then V # V.

cannot intersect B¢ (z). Hence if &% < g, then C\ B, (x) is not disconnected from x in Uy (x) by By (2).

Since C\ B3, (x) C Vi and V is disconnected from x in Ui (x) by Bee—(z) (as explained above), this

implies that so long as & < &g, we have V # V... We henceforth assume that & < &g, so that V is compact.
The Euclidean-furthest point of V from B,s (z) must lie on 3V, so since w € V we have

dist(w, B.e(z)) < sup dist(u, B.o(z)).
uedV
Each point of 3V lies at Dj-distance s + 2¢#?s from x, so we can apply Case 1 with 3V in place of A
to get that sup,, .,y dist(u, B,o(2)) < /4. This yields (4-7). Il

We can now apply Proposition 4.3 to get the following.

Lemma 4.9. Almost surely, for each nonsingular point x € C, each y € CU{o0}, and each s € (0, Dy, (x, y))
the set 3By *(x) is the image of a (not necessarily simple) curve.

Proof. By Lemma 4.6, 0B (x) = aU; (x), so it suffices to show that dU; (x) is a curve. By Lemma 4.6,
it is a.s. the case that for each x, y, s as in the lemma statement, the set U (x) is simply connected.
Furthermore, dU; (x) C 3By (x) is Euclidean-compact. By Proposition 4.3, to show that dU; (x) is a curve
it therefore suffices to show that for each & > 0, there exists 8§ > 0 such that each set A C U; (x) which
can be disconnected from x in U; (x) by a set of Euclidean diameter at most § which intersects dU. J(x)
has Euclidean diameter at most €. This follows from Lemma 4.8. O
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To prove that 93;"*(x) is a Jordan curve, we need to prove that it can be represented by a curve with
no double points. The following lemma will help us to do that.

Lemma 4.10. Almost surely, for each nonsingular point x € C, each y € C U {00}, and each s €
(0, Dy, (x, y)), the following is true. Let ¥ : D — 3By " (x) be a continuous map (which exists by
Lemma 4.9). Let u, v € 0D be distinct points such that ¥ (u) = ¥ (v). Let I and J be the two closed arcs
of 0D between u and v. Then either (1) C Y (J) or ¥ (J) C Y (I).

Proof. Since 3B, *(x) disconnects x from y, the homotopy class of the loop ¥ in (CU {oco}) \ {x, y}
is nontrivial. Since ¥ (#) = ¥ (v), each of ¥ |; and ¥|; is a loop in C, and ¥|3p is the concatenation
of these two loops. The concatenation of two homotopically trivial loops is also homotopically trivial.
Therefore, one of ¥|; or | is not homotopic to a point in (C U {oo}) \ {x, y}. This implies that one
of ¥ (I) or ¥(J) disconnects x from y.

Assume without loss of generality that ¥ (1) disconnects x from y. Since ¥ (), ¥ (J) C 8By*(x), no
point of 1 (J) \ ¥ (I) can be disconnected from y by v (I). Hence, ¥ (J) C O, where O is the connected
component of C\ v (I) which contains y. By assumption, x ¢ O.

If ze Y (J)\ () then z € ONIBY"(x). By Lemma 3.4, we have Dy (x,z) =s. If P:[0,s] - C
is a Dp-geodesic from x to z, then since z € O there is a time 7 < s such that P(r) € ¥ (/). But
V¥ (I) C 9By"(x), so by Lemma 3.4, Dy, (x, P(t)) =s. This contradicts the fact that P is a Dj-geodesic.
We conclude that ¢ (J) C ¥ (I). O

Proof of Proposition 4.1. Throughout the proof, we fix a nonsingular point x € C, a point y € CU {00},
and s € (0, Dy (x, y)). All statements are required to hold a.s. for all choices of x, y, s simultaneously.

Let U] (x) be as in (4-1) and let ¢ = ¢} : D — U, (x) be a conformal map (such a map exists
since U; (x) is simply connected, see Lemma 4.6). Since dU; (x) = 05;°(x) (Lemma 4.6), it follows
from Lemma 4.9 and [36, Theorem 2.1] (or just Lemma 4.5) that the map ¢ extends to a continuous map
D — U2 (x). We henceforth assume that ¢ has been replaced by such a continuous extension. We will
show that ¢, thus extended, is a homeomorphism.

We say that z € 3By (x) = dU; (x) is a cut point if dU; (x)\ {z} is not connected. By [36, Theorem 2.6],
it suffices to show that dU; (x) has no cut points.

Assume by way of contradiction that z € dU; (x) is a cut point. By [36, Proposition 2.5], #o () =>2
(in principle #¢~1(z) could be infinite, even uncountable). Furthermore, if 7 is the set of connected
components of 3D \ ¢! (z), then the set of connected components of dU; (x) \ {z} is {¢(I) : I € T}.

Each I € T is an open arc of 91D whose endpoints are distinct points of ¢~ (z). Let J = J(I) := D\ 1.
By Lemma 4.10, either ¢(1) C ¢(J) or ¢(J) C ¢(I). By the preceding paragraph, ¢ (/) is the union
of {z} and a connected component of dU; (x) \ {z}; and ¢ (J) is the union of {z} and the other connected
components of dU; (x) \ {z}. Therefore, () N@(J) = {z}. Hence one of ¢(I) or ¢ (J) is equal to {z}.
This means that dU; (x) \ {z} has only one connected component, so z was not a cut point after all. [J

Proof of Theorem 1.4. Proposition 4.1 implies that a.s. 38 *(x) is a Jordan curve for each nonsingular
x € C, each y € CU{oo}, and each s € (0, D (x, y)). Theorem 1.5 implies that a.s. each of these filled
metric ball boundaries has finite Hausdorff dimension with respect to Dj,. Proposition 3.12 implies that a.s.
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each of these filled metric ball boundaries is precompact with respect to Dj,. Since each such boundary is
Euclidean-closed, it is also Dj-closed, and hence Dj-compact. O

5. Confluence of geodesics

In this section we will explain how to adapt the proof of confluence of geodesics for subcritical LQG
from [18] to the supercritical case. This will lead to proofs of Theorems 1.6 and 1.7. Many of the
arguments of [18] carry over verbatim to the supercritical case, but in some places nontrivial modifications
to the arguments, using results from Sections 3 and 4 of the present paper, are needed. As such, we will
not repeat the full argument from [18]. Instead, we will only explain the parts of the argument which
require modification. We aim to strike a balance between minimizing repetition of arguments from the
subcritical case and making the paper readable without the reader having to frequently refer to [18].
The proof of confluence of geodesics for subcritical LQG has four steps.

1. Establish some preliminary facts about geodesics, such as uniqueness of geodesics between typical
points and certain monotonicity properties for the cyclic ordering of geodesics from O to points of
the boundary of the filled metric ball B; [18, Section 2.1].

2. Suppose we condition on (B, h|ss) and I C 0B; is an arc chosen in a way which depends only
on (B5, h|p:). Show that if I can be disconnected from oo in C\ B; by a set of small Euclidean
diameter, then it holds with high conditional probability that there is a “shield” in C \ B which
disconnects I from oo with the property that no Dj-geodesic started from O can cross this shield
[18, Sections 3.2 and 3.3].

3. Start with a positive radius ¢ and a collection of boundary arcs Zy of 93;. Iteratively apply Step 2
for several successive radii s; > ¢ to iteratively “kill off” all of the geodesics started from 0 which
pass through I € Zy. Repeat until the number of remaining arcs in Zy which have not yet been killed
off is at most a large deterministic constant (independent of the initial choice of Zp). By sending
the size of the arcs in Zj to zero (and the number of such arcs to co), conclude that for each fixed
s > t, there are a.s. only finitely many points on 03; which are hit by Dj,-geodesics from 0 to 03}
[18, Section 3.4]. This yields Theorem 1.7.

4. Reduce from finitely many points on d3; to a single point by “killing off” the points one at a time
[18, Section 4]. This yields Theorem 1.6.

See [18, Section 3.1] for a detailed overview of Steps 2 and 3.

Most of the arguments involved in Step 1 carry over verbatim to the supercritical case once we know
that the boundary of a filled metric ball is a Jordan curve (Proposition 4.1). So, we will not repeat many
of these arguments here. Rather, we will just state a few of the most important results; see Section 5.1.

Step 2 requires nontrivial modifications in the supercritical case. This is because the definition of the
event used to build the “shield” in the subcritical case involves a bound for the LQG diameters of certain
small squares, which are infinite in the supercritical case. So, we need to work with somewhat different
events in the supercritical case. Because of this, we will give most of the details for Step 2 in this paper.
This is done in Sections 5.2.1 and 5.2.2.



34 JIAN DING AND EWAIN GWYNNE

Step 3 requires only very minor modifications as compared to the subcritical case. In particular, in the
subcritical case, the Holder continuity of the LQG metric with respect to the Euclidean metric is used in
one place. In our setting, we can replace this use of Holder continuity by using Lemma 3.10, and then the
argument goes through verbatim. As such, we will not give much detail about this step; see Section 5.2.3.

As in the case of Step 2, Step 4 requires nontrivial modifications in the supercritical case. Again, this is
because the event used to “kill off” all but one of the geodesics in the subcritical case involves bounds for
LQG diameters. We will provide most of the details for the parts of Step 4 which require modification;
see Section 5.3.

5.1. Preliminary results about LQG metric balls and geodesics. We know that Dj-geodesics and
outer boundaries of filled Dj-metric balls are simple, Euclidean-continuous curves (Lemma 2.6 and
Proposition 4.1). Furthermore, we know that D;, (0, z) = s for each s > 0 and each z € 053; (Lemma 3.4).
With these facts in hand, most of the results in [18, Section 2.1] and their proofs carry over verbatim to
the supercritical case.

We first state a result to the effect that ordinary and filled LQG metric balls are local sets for & as
defined in [38, Lemma 3.9]. Let us recall the definition. Suppose (%, A) is a coupling of /& with a random
set A. We say that a closed set A C C is a local set for h if for any open set U C C, the event {ANU # &}
is conditionally independent from A|c\y given hly. If A is determined by & (which will be the case for
all of the local sets we consider), this is equivalent to the statement that A is determined by 4|y on the
event {A C U}. For a local set A, we can condition on the pair (A, k| 4): this is by definition the same as
conditioning on the o-algebra (),_, 0 (A, h|p,(a)). The conditional law of /|c\4 given (A, hl,) is that
of a zero-boundary GFF on C\ A plus a harmonic function on C \ A which is determined by (A, k|4).

Lemma 5.1. Let x € C and y € CU{o0} be deterministic. If T is a stopping time for the filtration generated
by (Bs(x), h|p,(x)), then B (x) is a local set for h. The same is true with B (x) in place of By (x).

Proof. Note that B, (x) and B, (x) are Euclidean-closed (Lemma 3.1). In light of this, the lemma follows
from exactly the same proof as [18, Lemma 2.1] (see also [19, Lemma 2.2]). U

Our next result gives the uniqueness of Dp-geodesics between typical points.
Lemma 5.2. For each fixed z, w € C, a.s. there is a unique Dy-geodesic from z to w.

Proof. We know that a.s. Dy, (z, w) < oo and there is at least one Dj-geodesic from z to w (Lemma 2.6).
The a.s. uniqueness of this geodesic follows from exactly the same argument as in the subcritical case;
see [28, Theorem 1.2]. O

We emphasize that Lemma 5.2 only holds a.s. for a fixed choice of z and w. We expect that there are
exceptional pairs of points z, w which are joined by multiple distinct Dj,-geodesics (such points are known
to exist in the subcritical case, see [1; 16; 29]). We also record the following analog of [18, Lemma 2.3].

Lemma 5.3. For g € Q?, let P, be the a.s. unique Dy-geodesic from 0 to q. The following holds a.s.
If ¢ € @2, P’ is a Dy-geodesic started from 0, and u € P, N P, then there is a time s > 0 such that
P,(s) = P'(s) =u and P, (t) = P'(t) for each t € [0, s].
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Proof. Lemma 5.2 implies that a.s. the Dj,-geodesic from 0 to ¢ is unique for each ¢ € Q2. The lemma
now follows from exactly the same argument as in [18, Lemma 2.3]. (|

The following result, which is the supercritical analog of [18, Lemma 2.4], tells us that for z € 0135,
there are two distinguished Dj,-geodesics from O to z.

Lemma 5.4. Almost surely, for each s > 0 and each z € 01}, there exists a (necessarily unique) leftmost
(resp. rightmost) geodesic P, (resp. P.") from 0 to z such that each Dy-geodesic from 0 to z lies (weakly)
to the right (resp. left) of P (resp. PZ+) if we stand at z and look outward from B;. Moreover, there
are sequences of points q,, , q," € Q?\ B such that the Dy-geodesics from 0 to g* satisfy P — PZi
uniformly with respect to the Euclidean topology.

See Figure 7 for an illustration of the statement and proof of Lemma 5.4. The proof of [18, Lemma 2.4]
uses the Arzela—Ascoli theorem and the continuity of the subcritical LQG metric with respect to the
Euclidean metric to take limits of Dj-geodesics. In order to do this in the supercritical case, we need the
following lemma.

Lemma 5.5. Almost surely, the following is true. Let {z,}neN, {Wh tnen, 2, and w be nonsingular points
for Dy, such that z, — z, w, = w, and limsup,,_, ., Dy(z,, w,) < 00. Let { P,},en De a sequence of Dj,-
rectifiable paths from z,, to w,, each parametrized by Dy-length, such that len(P,; D) — Dy (z,, wy,) — 0
as n — 0o, where len(P,; Dy) denotes the Dy-length. There is a subsequence along which the paths P,
converge uniformly with respect to the Euclidean metric to a Dy-rectifiable path P from z to w. If
lim,— o Dp(z,, wy,) = Dy (z, w), then P is a Dy-geodesic.

The statement of Lemma 5.5 allows for uniform convergence of paths which are defined on [0, 7},]
where 7, possibly depends on n. To make sense of uniform convergence under these circumstances, we
view all of our paths as being defined on [0, co) by extending them to be constant after time 7},.

Figure 7. Two points z1,z> € 9B; and their associated leftmost and rightmost D, -
geodesics (red and blue). Other Dj-geodesics from 0 to z; and z, are shown in purple.
We have also shown two Dj-geodesics from 0 to points of Q2 \ B; (green) which
approximate P, and P;]r, respectively. Note that P~ and P;lr intersect only at their
endpoints, whereas P_ and P;Zr coincide for an initial time interval. Theorem 1.6 implies
that a.s. the latter situation holds simultaneously for every z € d13;, but this has not been

established yet. A similar figure and caption appeared in [18].
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Proof of Lemma 5.5. Let T, := len(P,; Dy), so that P, : [0, T,] — C. Since P, is parametrized
by Dj-length, for 0 <t < s < T,, we have that Dj,(P,(s), P,(t)) < s — t and that D (z,, w,) <
(T, — s) + Dp(P,(s), P,(t)) +t. Therefore,

T, — Dp(zn, wy) = s —t — Dp (P, (s), Py(t)) > 0.
Since T,, — Dy(z,, w,) — 0 as n — 0o by hypothesis,

lim sup |s—t— Dy(P,(s), P,(t))|=0. (5-1)
=0 <r<s<T,
In particular, (5-1) implies that the P,’s are Dj-equicontinuous.

Since limsup,,_, o, D (z,, w,) < 0o and Dy-metric balls are Euclidean-bounded, there is a bounded
open subset of C which contains P, for each n € N. Since the identity mapping (C, D;) — (C, | -]) is con-
tinuous and the P,’s are Dj-equicontinuous, it follows that the P,’s are Euclidean equicontinuous. Hence
there is a sequence N of positive integers tending to oo and a Euclidean-continuous path P : [0, T] — C
from z to w such that P, — P uniformly with respect to the Euclidean topology along N

Since Dy, is lower semicontinuous with respect to the Euclidean metric, equation (5-1) implies that
Dy (P(s), P(t)) <|s —t]| for any two times s, ¢ € [0, T']. Consequently, P is Dj-rectifiable and for any
0 <t <s <T, the Dy-length of P([t,s]) is at most s — ¢. If lim,_. oo Dp(z,, w,) = Dp(z, w), then
T = Dy(z, w). Since the Dy-length of P is at most 7', it follows that the Dj-length of P is exactly T
and P is a Dy-geodesic. (|

Proof of Lemma 5.4. The proof is essentially the same as [18, Lemma 2.4], but there are a couple of
minor differences so we will give the details. Fix a point w € 3B; \ {z}. Let A~ and A™, respectively, be
the clockwise and counterclockwise arcs of 035 from w to z, not including w and z themselves. Note
that these arcs are well-defined since d; is a Jordan curve (Proposition 4.1). We can choose sequences
z, € A™ (resp. z7 € A™) which converge to z from the left (resp. right) with respect to the Euclidean
topology (with “left” and “right” defined as in the lemma statement).

The set Q7 is a.s. Dj-dense in C \ {singular points} [34, Proposition 1.13] and the set B, @5\ B:
contains a Dj,-open set for each ¢ > 0. Applying this with ¢ equal to the minimum of % and %Dh (z,jf, AT),
we see that for n € N we can find ¢ € @\ B: such that

Di(g; zy) < min{, 1 Dy(g;’, AT}, (5-2)

Let P+ be the (a.s. unique, by Lemma 5.2) Dj,-geodesic from 0 to qni. Then P :(s) € 9B;. Since

D;(0, zE) = s (Lemma 3.4),

Dy(P(s). q;7) = Di(0, ;) — s < Di(q; . 27)-
From this and (5-2),
Dy(P,x(s), AT) = Dy(qy. AT) — Dy(P,x(s). ¢F) = 1Dy(gf, AT) > 0.

Hence Pqni (s) ¢ AT. From (5-2) and since z,, — z from the left, we see that also Pq; (s) — z from the
left. The same is true for z;, but with “right” in place of “left”.
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Since Dy, (0, z,jf) =5, we have 0 < Dy (0, qni) —5 < % We may therefore apply Lemma 5.5 to get
that after possibly passing to a subsequence, we can arrange that the paths P = converge uniformly with
respect to the Euclidean metric to Dj,-geodesics PZjE from O to z. By Lemma 5.3, no Dj-geodesic from 0
to z can cross any of the geodesics P +. If a geodesic from 0 to z does not lie in the closure of the open
subset of B; lying to the right of P~ and to the left of P.", then it must cross P, or P+ for some n.
Hence each geodesic from 0 to z lies to the right of P~ and to the left of P O

Our next lemma is used in the iterative argument used to prove confluence of geodesics (see Step 3 of
the outline at the beginning of this section).

Lemma 5.6. Almost surely, the following is true for each 0 < s < s’ < 00. Let T be a finite collection
of disjoint arcs of 3B;. For each I € I, let 1" be the set of z € 0B, such that the leftmost Dj,-geodesic
from O to z passes through 1. Then each 1" is either empty or is a connected arc of B, and the arcs 1’ for
different choices of I € T are disjoint.

Proof. Since we know that each 9B is a Jordan curve and D; (0, z) = s for each z € 01;, the proofs
of [18, Lemmas 2.6 and 2.7] extend verbatim to the supercritical case (note that [18, Lemma 2.5] is a
deterministic statement which can be reused in the supercritical case). In particular, [18, Lemma 2.7]
gives precisely the statement of the present lemma. O

Finally, we record an FKG inequality for the LQG metric, which is proven in exactly the same way
as [18, Proposition 2.8]. For the statement, we note that if D is a weak LQG metric with parameter
& as in Definition 2.3, U C C is open, and jiis a zero-boundary GFF on U, then we can define Dj,
as a random lower semicontinuous metric on U follows. Let 2 be a whole-plane GFF. We can write
hly = h + b, where b is a random harmonic function on U (see, e.g., [21, Lemma 2.2]). We then define
Dj = e %Y. D;, using the notation (2-3). As explained in [18, Remark 1.2], it is easily seen that D; is a
measurable function 4.

Proposition 5.7 (FKG for the LQG metric). Let &€ > 0, let U C C be an open domain, let I be a
zero-boundary GFF on U, and let D be a weak LQG metric with parameter §. Let ® and ¥ be
bounded, real-valued measurable functions on the space of lower semicontinuous metrics on U which
are nondecreasing in the sense that for any two such metrics Dy, Dy with D1(z, w) < D»(z, w) for
all z,w € U, one has ®(D1) < ®(D,) and V(D) < V(D). Suppose further that ® and V are a.s.
continuous at Dy, in the sense that for every (possibly random) sequence of continuous functions { f" },en
which converges to zero uniformly on U, one has G Dj) — ®(Dj) and Wt Dj) — V(D).
Then Cov(®(Dj,), W(Dj)) > 0.

Proof. This follows from Weyl scaling (Axiom III) together with the FKG inequality for the GFF given in
[18, Lemma 2.10], via exactly the same argument as in the proof of [18, Proposition 2.8]. g

5.2. Finitely many leftmost geodesics across an LQG annulus. In this subsection we explain how to
extend the core part of the argument in [18], corresponding to Steps 2 and 3 above, to the supercritical
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case. We start in Section 5.2.1 by defining an event for a Euclidean annulus which will be used to build
“shields” which Dj-geodesics cannot cross. Then, in Section 5.2.2, we explain how to use this event to
“kill off” all of the geodesics which pass through a given boundary arc of a filled Dj-metric ball. We
will give most of the details of the arguments in these two subsections since nontrivial modifications are
required as compared to the analogous arguments in [18]. In Section 5.2.3, we state a more quantitative
version of Theorem 1.7 (Theorem 5.15) and explain why the theorem follows from the same proof as its
subcritical analog from [18, Section 3.4], except for one trivial modification.

5.2.1. Good annuli. We now define an event for a Euclidean annulus which will eventually be used to
build “shields” surrounding boundary arcs of a filled Dj-metric ball through which Dj-geodesics to 0
cannot pass. See Figure 8 for an illustration.

For e > 0, z € C, and a set V C C, we define the collection of Euclidean squares

SEV)i={lx, x+elx [y, y+el: (x,y) €eZ?+z, ([x,x+elx [y, y+e) NV # o} (5-3)

Note that SZ(V') depends only on the value of z modulo eZ? and that SX(V)—z= SS( V —2).

Forze C,r >0, and 6 € (0, 1), we define U, (z) = U, (z; §) to be the (finite) set of open subsets U of
the annulus A3, 4-(z) such that Az, 4-(z) \ U is a finite union of sets of the form S N Az, 4, (z) for squares
S € S5, (A31.4-(2)). For U € U,(z; 8) and & > 0, we define

Uy :={u e U :dist(z, dU) > ¢} (5-4)

where dist denotes Euclidean distance.

Figure 8. Illustration of the definitions in Section 5.2.1. The set U, (z) = U, (z; &) consists
of open subsets U of Az, 4,(z) such that Az, 4-(z) \ U is a finite union of sets of the form
S N Az, 4r(2) for §r x §r squares S € Ss (A, 4,(2)) (i-e., with corners in 87%). One such
set is shown in light green in the right panel. For each U € U, (z), EY (z) is the event
that (1) the Dj,-distance across the yellow annulus Ay, 3,(z) is bounded below, (2) there
is a path of squares in Az, 4, (z) which disconnects the inner and outer boundaries of this
annulus, with the property that the Dj,-distance around Bjs, (S) \ Bs,(S) is small for each
square S in the path (the squares are shown in pink in the left panel), and (3) the harmonic
part of &y is bounded above on the set Us,/4 C U (outlined in black in right panel).
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For z € C, r > 0, parameters ¢, § € (0, 1) and A > 0, and U € U,(z; 8), we let EV (z) = EY(z; ¢, 8, A)
be the event that the following is true.
1. Dy (across Ay 3r(2)) = ccreéhr(z).

2. There exists a collection of §r x dr squares S, ..., Sy € Ssr(A3.1r.3.9-(z)) with the following
properties.
(a) The squares S;_1 and S; share a side for each j =1, ..., N, where here we set Sop = Sy.
(b) The union of the squares Sy, ..., Sy contains a path which disconnects the inner and outer

boundaries of A3 1,3.9,(z).

(c) Foreach j=1,..., N, we have Dj,(around By (S;) \ Bs(S;)) < tpgceres ).

3. Let hY be the harmonic part of /|y Then, in the notation (5-4),

sup [hY(u) — h,(2)| < A. (5-5)
u€Usy/a
We also define
E,(2)=E/(z¢,8,A):= [ E!@. (5-6)
Uel,(z;5)

The first two conditions in the definition of £ ,U (z) donotdepend on U, so the only difference between E, (z)
and EV (z) is that for the former event, Condition 3 is required to hold for all choices of U simultaneously.

The events E,(z) and E ,U (z) are defined in exactly the same manner as in [18, Section 3.2] except that
in [18], Condition 2 is replaced by an upper bound for the Dj,-diameters of the squares in S5, (A3, 4-(2)).
Of course, such a diameter upper bound does not hold in the supercritical case, which is the reason for
the modification.

The occurrence of E,U (z) or E,(z) is unaffected by adding a constant to the field. By this and the
locality of Dj, (Axiom II), these events are determined by 4|, , (;), viewed modulo additive constant.

We think of annuli A, 5,(z) for which E,(z) occurs as “good”. We will show in Lemma 5.8 just below
that P[E,(z)] can be made close to 1 by choosing the parameters §, ¢, A appropriately, in a manner which
is uniform over the choices of r and z, The reason for separating E,(z) and E,U (z) is that conditioning
on ErU (z) is easier than conditioning on E,(z) (see Lemma 5.10 just below).

We will eventually apply Condition 3 with U equal to A3, 4,(z) minus the union of the set of squares in
SZ(Asy 4r(z)) which intersect a filled Dj,-metric ball B3, for an appropriate stopping time t. Condition 3
together with the Markov property of & allows us to show that with uniformly positive conditional
probability given &|c\y and the event EVY(z), the maximal Dj-distance between the centers of any two
squares in S, (U) which are contained in the same connected component of U is small (see Lemma 5.10).
This combined with Condition 2 will show that with uniformly positive conditional probability given |c\y
and ErU (2), there is a collection of paths in Az, 4,(z) which each have small Dj-length and whose
union disconnects the inner and outer boundaries of Az, 4,(z) in C\ B; (see Lemma 5.13). Due to
Condition 1, we can arrange that Dj,-distance from each point of each of these paths to d3; will be
smaller than Dy, (across Ay, 3,(z)). This will show that no Dj-geodesic from a point outside of By, (z) UB;
can cross Ay, 3,(z) before entering B;. See Figure 9 for an illustration of how the events ErU (z) will
eventually be used.
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Lemma 5.8. For each p € (0, 1), we can find parameters c,5 € (0,1) and A > 0 such that, in the
notation (5-6), we have P[E,(z)] > p for each z € C and r > 0.

In order to show that Condition 2 in the definition of EY (z) occurs with high probability, we will use
the following lemma.

Lemma 5.9. Fix { > 0and 0 <a < b < oco. For each 7 € C and r > 0, it holds with superpolynomially
high probability as 5 — 0, uniformly over the choice of 7 and r, that there exists a collection of ér x dr

squares Sy, ..., Sy € Ssr(Aarpr(2)) with the following properties.
1. The squares S;_1 and S; share a side for each j =1, ..., N, where here we set Sy = Sy.
2. The union of the squares S1, . .., Sy contains a path which disconnects the inner and outer boundaries
Oanr,br (Z)

3. Foreach j =1, ..., N, we have Dy(around Bys,(S;) \ Bs/(S;)) < 8508 ¢, fhr(@),

Proof. This can be proven using level sets of the GFF (see, e.g., the arguments in [10, Section 2] or
[17, Section 5.1]), but we will give a different argument based on estimates for weak LQG metrics with
parameter &, where & is large.

Let € > & to be chosen later, in a manner depending on ¢. Let 5;, be a weak £-LQG metric with
respect to / (e.g., a subsequential limit of LEPP with parameter £). We denote objects associated with &
and Dj, with a tilde.

By Proposition 2.9 and a union bound, it holds with superpolynomially high probability as § — O,
uniformly over the choices of z and r, that for each S € S (A4pr(2)),

Dy (around Bas, (S) \ Bs,(S)) <8 5 ¢ e85 @5) Dy (across Bas, (S) \ By, (S)) = 85 & eFor(vs),
where vy is the center of S. Since ¢s5 = 8521 (¢, and similarly for ¢s,, we can rewrite this as

Dy (around Bas, (S) \ Bs,(8)) < 85701, oShr(vs),
N . i (5-7)
Dy (across By, (S) \ Bsr(8)) = §° @+, g5l vs),
By another application of Proposition 2.9, it holds with superpolynomially high probability as § — 0
that there is a path 7 in A, 5, (z) which disconnects the inner and outer boundaries of A, ,(z) and
has 5h—length at most 8 65,5 Let Sy, ..., Sy be the squares in Sy, (A pr(z)) which are hit by 7,
listed in numerical order. Then S, ..., Sy satisfy Properties 1 and 2 in the lemma statement.
For each j, the path 7 crosses between the inner and outer boundaries of Bys(S;) \ Bs(S;), so
by (5-7),

§EQT0+osNg oFhsr(0s)) < B (across Basy (S7) \ Bsy(S;)) < (Dp-length of 7) < 8756%,65 @ (5.8)

Rearranging this inequality, then taking the 1/& power of both sides, gives

hirs))=he () < 5=(0+20) (5-9)
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As & — 00, we have é — 0 [8, Proposition 1.1]. Hence, if £ is chosen to be sufficiently large (depending

hsr (USj )—hy(2)

on ¢) then we can arrange that é <{,s0e < 873 Plugging this into the first inequality

in (5-7) shows that for each j,
Dy (around Bas, (S)) \ By, (S))) < 85@ 740 Fos ¢ o8 @),
Since ¢ is arbitrary, this implies that can arrange for the S;’s to satisfy Condition 3. O

Proof of Lemma 5.8. By translation invariance and tightness across scales (Axioms IV and V), the laws
of the reciprocals of the scaled distances cr_le_5 hr(@) p, (across Ay, 3,(z)) for z € C and r > 0 are tight.
Therefore, we can find ¢ = ¢(p) > 0 such that for each z € C and r > 0, Condition 1 in the definition of
E,U (z) occurs with probability at least 1 — (1 — p)/3. By Lemma 5.9, we can find § =6(p, c) € (0, 1)
such that Condition 2 in the definition of E,(z) occurs with probability at least 1 — (1 — p)/3. For a given
choice of &, the collection of open sets U, (z; §) is finite, and is equal to rif;(0; §) + z (here we use the
translation by z in (5-3)). Since hY is continuous away from dU, for any fixed choice of U € U (0; §),
a.s. Sup, ey, |hY (u)| < co. By combining this with the translation and scale invariance of the law of 7,
modulo additive constant, we find that there exists A > 0 (depending on §) such that with probability at
least 1 — (1 — p)/3, Condition 3 in the definition of E ,U (z) holds simultaneously for every U € U, (z; §). U

We now want to show that if we condition on EV (z), then with positive conditional probability the
Dj,-distances between certain points in U are very small. For r > 0, z € C, and U € U, (z), let V(U) be
the set of connected components of U. Also let

Z(U) := {center points of squares S € S5, (U) with S C U} (5-10)
be the set of centers of squares which are entirely contained in U. We define the event

HrU(z) = { max sup  Dp(u,v; V) < %ccreéhf(”}, (5-11)
VeVl u,vevnz ()
ie., HrU (z) is the event that for any V € V(U), the Dj-internal distance in V between any two of the centers
of the squares which are entirely contained in V' is bounded above by %ccr 5" @ (this quantity is relevant
due to Condition 1 in the definition of E,U (z)). We think of annuli Ay, 5,(z) for which E ,U ()N H,U ()
occurs (for a suitable choice of U) as “very good”.

We note that HY (z) does not include an upper bound for the Dj-distance between two arbitrary points
of V. This is because there are a.s. singular points contained in V, but a.s. none of the (finitely many)
points in Z(U) are singular points, so a.s. any two points in Z(U) lie at finite Dj,-distance from each other.

The following is the analog of [18, Lemma 3.3] in our setting. It says that an annulus has positive
conditional probability to be “very good” given that it is “good”.

Lemma 5.10. For any choice of parameters c, 8, A, there is a constant p = p(c, 8, A) > 0 such that for
eachr > 0, each z € C, and each U € U, (z),

PIHY @) | klew, E} ()] = p. (5-12)
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Proof. This is proven via essentially the same argument as [18, Lemma 3.3]: we subtract a large
bump function from /|y to get a lower bound for IP’[H,U (2) | hle\w], then we use the FKG inequality
(Proposition 5.7) to add in the conditioning on E,U (z) (we only need to use the FKG inequality for the
second condition in the definition of E rU (z) since the other two conditions are determined by &[c\y). The
proof is actually slightly simpler than that of [18, Lemma 3.3] since we are not trying to bound distances
between points which are arbitrarily close to 0V, so unlike in [18] we do not need to worry about the
diameters of the squares in S5, (V). O

5.2.2. Cutting off geodesics from a boundary arc. Forc,§€(0, 1) and A >0, define E,(z) =E,(z; ¢, §, A)
as in (5-6). We will use the events E,(z) to build “shields” which prevent Dj-geodesics from hitting a
given arc of a filled metric ball. For z € C and r > 0, let p2(z) := r and for n € N, inductively define

pr(z) == inf{r > 6pﬂ’1_1(z) . r = 2% for some k € Z, E,(2) occurs}. (5-13)

Since E,(z) is determined by £|a,, s, (z), it follows that p'(z) is a stopping time for the filtration generated
by h|ps, ;) for r > r. The following lemma allows us to produce lots of annuli for which E, (z) occurs.

Lemma 5.11. There exists a choice of parameters c, é € (0, 1) and A > 0 and another parameter n > 0,
depending only on the choice of metric D, such that the following is true. For each compact set K C C, it
holds with probability 1 — O, (¢?) (at a rate depending on K) that

plitoee™ 2y < o120 forall 7 € (LerZ?) N Bor(rK). (5-14)

r

Proof. This follows from the variant of Lemma 2.12 where our radii are increasing rather than decreasing
[18, Lemma 2.12] together with a union bound, exactly as in the proof of [18, Lemma 3.4]. (|

We henceforth let ¢, §, A, and n be as in Lemma 5.11. For ¢ > 0, rr > 0, and a compact set K C C, let
RE(K) = 6sup{pl1'°2¢ ™) (2) : z € (LerZ?) N Bep(K)) +er, (5-15)

so that each of the radii p}.(z) for z € (}TSTZZ) N By (K) and n € [1, nloge~']z is determined by RI(K)
and hlgRg(K)(K). Lemma 5.11 shows that for each fixed choice of K, P[R.(rK) < (62 4+ ¢)r] tends
to 1 as ¢ — 0, at a rate which is uniform in r.

For s > 0, define

oy . i=1inf{s" > s : Bge(se)(B;) C By}, (5-16)

s,

so that B;,ﬁr contains B6p$§l toge =11 (z) for each z € B.(B;). Since each ,Ostfl loge™'] (z) is a stopping time
for the filtration generated by /|, (;) for r > er, it follows that if  is a stopping time for {(B;, h|5:)}r>0,
then so is o7 . (this would still be true if we replaced 6 by 5 in (5-16)). The following lemma, which
is analogous to [18, Lemma 3.6], will be used to “kill off”” the Dj-geodesics from O which hit a given
boundary arc of a filled Dj-metric ball.

Lemma 5.12. There exists a > 0, depending only on the choice of metric, such that the following is true.
Let v > 0, let T be a stopping time for the filtration generated by {(B;, h|ps)}s>0, and let x € 0B; and
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¢ € (0, 1) be chosen in a manner depending only on (By, h|g:). There is an event G, € G(Bga , hlggs )
with the following properties. ’

A. If, in the notation (5-15), we have R:(B;) < diam B, (where diam denotes Euclidean diameter) and
G, occurs, then no Dy-geodesic from 0 to a point in C\ Bge 5+)(By) can enter Byr(x) \ B;.

B. There is a deterministic constant Coy > 1 depending only on the choice of metric such that a.s.
P[G: | B, hlps ] = 1 — Coe.

Proof. The proof is similar to that of the subcritical version [18, Lemma 3.6], but the geometric part of
the argument (i.e., the verification of Property A) is slightly different due to the different way in which
the events E,(z) are defined in the supercritical case. We will therefore repeat part of the proof in order
to explain the details of this geometric argument. See Figure 9 for an illustration.

Figure 9. Illustration of the proof of Lemma 5.12. The point z € %LSII‘ZZ is chosen so that
B (x) C Byern(2). On the event G¢ defined in (5-20), there is some n € [1, nlog e~ 117 for

which the event H g (z) as defined in (5-11) occurs. For this choice of n, . We can use the def-
inition of Hp (z) together with Condition 2 in the definition of E v (z) to build paths
Iy (purple) in the connected components of Az n 451 (z) \ By which dlsconnect Ao 35n(2)
from oo in C\ B; and whose Dj-lengths are each less than cczne5" ). That is, each
of the purple paths is Dj,-shorter than the Dj-distance across Ay 35+(z). In order for a
path P from a point outside of Bgess)(B5) to 0 to enter Ber(x) \ B, it would first have to
hit one of these purple paths, which would give us a path to O which is shorter than P.
Hence such a path P cannot be a Dj-geodesic. The condition that R?(B;) < diam B;
ensures that Az 457 (2) intersects B;. We can also prevent Dj,-geodesics from hitting an
arc I of 93; by choosing x so that B, (x) disconnects / from oo in C\ B;; see Lemma 5.13.
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Step 1: setup. We can choose z € ( su“ZZ) N B (B;) such that By (x) C Bogr(2), in a manner depending
only on (B;, h|g.). Recalling the set of squares S5, (+) from (5-3), for r > 0 we define

U :=U"(2) :=Asar(2) \ULS € S5, (A3:4-(2)) : SN B; 3 B}, (5-17)

Note that U” belongs to the set U, (z) of Section 5.2.1 and U" is determined by (B, hlgs).
Let 5% := er and for n € N, inductively define

p" = pp(2) == inf{r > 65" r =2k for some k € Z, Erﬁr (z) occurs}. (5-18)

In~0ther words, p" is defined in the same manner as p..(z) from (5-13) (with er in place of r) but with
ErU "(z) instead of E,(z). This means that Eg,, (z) is only required to occur for U = U?" instead of for
every U € Uz (z). By this and the definition (5-15) of R{.(B3),

p"<pi(z) forallneNy  andhence pl¢e ) <lRe(B:). (5-19)

The reason for considering p" instead of p;.(z) is because we can only condition on E ,U (z),noton E,(z),
in Lemma 5.10.
Recalling that V(ﬁ ") denotes the set of connected components of U?", we define

G = {Eln € [1, nloge ™'z such that Hg,ﬁn () occurs}, (5-20)

where H () is the event of (5-11) with U = J7".

Since z and U" for r > 0 are each determined by (B;, h|p:), it follows that each E o (z) is determined
by (B;, hig:) and h|a,, s, (;)- Hence p" is a stopping time for the filtration generated by 4|g;, ;) for r > er
and (B;, h|p:). By (5-19) and the definition (5-16) of o*r o
statements with (5-20) and the locality of the metric (Axiom II), we get that G, € G(B

We need to check Properties A and B for the event G¢.

we have Bs;n(z) C B;, . . By combining these
(TF ’ hlB.g )'

Step 2: proof that G%, satisfies Property A. Assume that RS(B;) < diam B; and G occurs. Choose
n€[l,nlog £~ 17 as in the definition (5-20) of G¢. Then

er < p" < tRE(BY) < ¢ diam BB;.

By our choice of z, this means that both the inner and outer boundaries of A3z» 45+ () intersect B; and
A n 357 (z) disconnects Bgr(x) from co. We will argue that no Dj-geodesic from a point outside of
C\ Bge (s (B;) to 0 can cross between the inner and outer boundaries of Ayzn 351 (z) before hitting B;,

which implies that no such Dy-geodesic can hit B (x) before entering ;. The 1dea of the proof is that the
definition (5-11) of H g (z) together with Condition 2 in the definition of E o” (z) allow us to build a col-
lection of paths in Azn 45 (z) which act as “shortcuts”. Let us now explain the construction of these paths.

Step 2(a): constructing paths in A3 sn 45 (z) Let Sy, ..., Sy be the path of squares in Sszn (A3 157 3.957(2))
as in Condition 2 in the definition of E o’ (z). Let K be the number of squares in {Sy, ..., Sy} which
intersect B (equivalently, the number of such squares which are not contained in u” ). For k e[1, K]z,
let ji be the k-th smallest value of j € [1, N]z for which §; intersects B;. Also set Sj, = S,
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For each k € [1, K]z such that §;, intersects d3;, we will define a path IT associated with S, in such
a way that the following properties are satisfied.

(1) Each I has Dj-length strictly less than cc[)neE h# (@) and intersects oB:.

(ii) The union of the paths IT; over all k such that Sy N 9B; # & disconnects Ay 35 (z) \ By from
0B4;(2)\ By in C\ B;.

The paths IT; are shown in purple in Figure 9.

To define these paths, let k € [1, K]z such that S;, N0B; # &. We consider two cases. If ji_1 +1= j,
we let Iy be a path around By (S ]k) \ B,; 5 (Sj,) whose Dj-length is at most mcc et (3 ag afforded
by Condition 2 in the definition of E g7 (2).

If jx—1+1 < ji, then there is a connected component V of U?" whose boundary intersects the boundaries
of each of S;, , and S, such that S, ,41,...,S;,—1 C V. Since the event HUﬂ (z) of (5-11) occurs,
there i 1s a path ry in V from the center point of S;,_, 4 to the center pomt 0f Sj.—1 whose Dj-length is at
most 5 cc s1e57" () By the last part of Condition 2 in the definition of EY, n (z) there are paths 7y and 7y
in the annular regions Bosjn (Sj,_+1) \ Bspn (Sj,_,+1) and Boszn (Sj—1) \ B(gpn (8j,—1), respectively, which
disconnect the inner and outer boundaries of these annular regions and whose Dj-lengths are each at
most mcc 51 @) Note that the paths 7o and 71 necessarily intersect both 7y and 95;. Let I1; be
a concatenation of g, wy, 7.

It is clear from the above definitions that our desired property (i) is satisfied. To check property (ii),
consider a path I3 from a point of d B4 (z) \ B; to a point of Ay 5» 357 (2) \B; in C\B;. There is a subpath 3’
of B which is contained in Wﬁ(z) and whose endpoints lie on the inner and outer boundaries of
Az n 457 (z), respectively. Since the union of the squares Sy, ..., Sy contains a path which disconnects the
inner and outer boundaries of A3 ;» 45+ (z) (Condition 2 in the deﬁnmon of E U (z)), there must be some j
such that S; ¢ B: and P’ intersects S;. If S;N3B; # @, then j = ji for some k and P’ intersects the path
[T, so we are done. Otherwise, there exists k € [1, K]z for which j € [ji_1 + 1, jr — 1]z. Let O be the
connected component of Azz» 45+ (z) \ By which contains S;,_,11,..., Sj,—1. Then P’ C O. Furthermore,
by construction, the path IT; disconnects O N9 B3z (z) and 90 N 9By (z) in O. Therefore, P’ must
intersect [T, as required.

Step 2(b): preventing a Dy-geodesic from crossing Ayn 351 (z). Due to Lemma 3.4, a Dj-geodesic from a
point outside of B; to 0 hits dB; exactly once. So, if such a geodesic hits By (x) \ B;, then it hits B (x)
before entering ;. Therefore, to prove Property A, it suffices to consider a path P from a point outside of
C\ Bge (e (B;) to 0 which enters B.(x) before entering B; and show that P cannot be a Dj,-geodesic.

Since Ayjn 357(z) disconnects Bgr(x) from oo, the path P must cross from the outer boundary of
Ay sn 357 (z) to the inner boundary of Az 5,357 (2) before hitting B, (x), and hence also before hitting B; . By
Condition 1 in the definition of E g (z), each path between the inner and outer boundaries of Ayzn 35 (z)
has Dj-length at least ccpneg h @) Hence, the Dj-length of the segment of P after the first time it
enters Ay 35+ (z) must be at least ccjn efhin @) 4 ¢,

But, P must cross between the inner and outer boundaries of A3z 457 (z) before entering Ayzn 351 (2),
so P must hit one of the paths IT; above before entering Ay 357(z). Since Iy intersects dB3; and has
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Dy-length strictly less than cczn 51 @ it follows that each point of TT; lies at Dj,-distance strictly less
than cczn et @) 4 ¢ from 0. Combining this with the conclusion of the preceding paragraph shows that P
cannot be a Dj-geodesic to 0.

Step 3: proof that G, satisfies Property B. Recall the definition of G¢ from (5-20). From Lemma 5.10
and an elementary conditioning argument, exactly as in the proof of [18, Lemma 3.6, Step 3], we obtain
that for every n € [1, nlog e 17, as.

PHE ()| U7 hlgygm ] = p. (5-21)

where p > 0 is as in Lemma 5.10. Note that by the definition (5-18) of p", it is automatically the case that
the event E; o” (Z) occurs. By the definition (5-11) and the locality property of Dh, the event H g7 (2)
is a.s. determined by U?" and the restriction of h to U?". Since the open sets U?" for different Values
of n are disjoint from each other and from B}, we can apply (5-21) iteratively to get

PIG 1 5B;, hlgs]=1—(1- p)Lnlogs*‘J'

See [18, Lemma 3.6, Step 3] for details. This last estimate gives Property B for an appropriate choice
of Cp and «. O

Analogously to [18, Lemma 3.7], we also have the following variant of Lemma 5.12 where we prevent
Dy,-geodesics from hitting a boundary arc rather than a neighborhood of a point.

Lemma 5.13. Let o be as in Lemma 5.12. Let v > 0, let T be a stopping time for the filtration generated
by {(B;, h|ps)}s=0. Also let € € (0, 1) and I C dB; be an arc, each chosen in a manner depending only on
(B3, hlgs), such that I can be disconnected from 0o in C\ B; by a set of Euclidean diameter at most er.
There is an event G; € o (3:

ot

h| B, ) with the following properties.

A. If R:(B;) < diam B, and G occurs, then no Dy-geodesic from 0 to a point in C\ B;rer can pass
through 1.

B. There is a deterministic constant Cy > 1 depending only on the choice of metric such that a.s.
P[G;|B:, hlg:] = 1 — Coe®.

Proof. This follows from Lemma 5.12 via exactly the same argument as in the proof of [18, Lemma 3.7]. [J

5.2.3. Proof of Theorem 1.7. To prove Theorem 1.7, it remains to carry out Step 3 in the outline at the
beginning of this subsection. For this step, the argument from [18] carries over almost verbatim so we
will not give details.

We first define the regularity event that we will work on. Fix r > 0 and define 7. as in (3-2). Also
let B > O be the parameter from Lemma 3.10. For a € (0, 1), we define £-(a) to be the event that the
following is true.

1. Bur(0) C By, .

2. T3y — Top > acpefhir @
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3. For each s, t € [To, T3] With |s — 7| < acpefm© | we have

U siseomn, a8y > (=LY
- ist(dB5, 0B;) > W ,

where dist denotes Euclidean distance.

4. In the notation (5-13), we have p%logs_”(z) < &!/2r for each z € (}erZ?) N By(0) and each
g€ (0,alN{2 %}ren (here 7 is as in Lemma 5.11).

Our above definition of £-(a) is identical to the analogous definition in [18, Section 3.4] except that
in [18], Condition 3 is replaced by a Holder continuity condition for Dj, with respect to the Euclidean
metric. This condition is of course not true in the supercritical case.

Lemma 5.14. For each p € (0, 1), there exists a = a(p) > 0 such that P[E-(a)] > p for every r > 0.

Proof. By Lemma 3.5, if a is chosen to be sufficiently small then the probability of Condition 1 is at least
1— (1 — p)/4. By tightness across scales (Axiom V), after possibly decreasing a we can arrange that
the probability of Condition 2 is also at least 1 — (1 — p)/4. By Lemma 3.10, after possibly shrinking a
we can arrange that the probability that Condition 1 holds is at least 1 — (1 — p)/4. By Lemma 5.11
and a union bound over dyadic values of ¢ with ¢ € (0, a], the probability of Condition 4 is at least
1—( — p)/4. Combining these estimates shows that P[&-(a)] > p. U

The following is a more quantitative version of Theorem 1.7, analogous to [18, Theorem 3.9].

Theorem 5.15. For each a € (0, 1), there is a constant by > 0 depending only on a and constants by, a >0
depending only on the choice of metric D such that the following is true. For eachr > 0, each N € N,
and each stopping time t for {(B;, h|gs)}s>0 with T € [T, Tor] a.s., the probability that E-(a) occurs and
there are more than N points of BB; which are hit by lefimost Dy,-geodesics from 0 to 913; N b ©) is

at most bge 21V°

It is easy to see that Theorem 5.15 implies Theorem 1.7; see the beginning of [18, Section 3] for a proof
of this in the subcritical case. The supercritical case is identical, with the caveat that we use Lemma 3.10
to show that r — 7, is continuous and surjective.

The proof of Theorem 5.15 is identical to the proof of its subcritical analog, which is given in
[18, Section 3.4], with one minor exception, which we discuss just below.

For the sake of completeness, we provide a short outline of the argument; see [18, Section 3.4]
for details. We work on the event &.(a) defined at the beginning of this subsection. Start with an
arbitrary initial collection Zy of arcs of d3; which cover d13; and intersect only at their endpoints. By a
deterministic geometric lemma [18, Lemma 2.14], if #Z is large then at least half of the arcs in Zy can
be disconnected from oo in C\ B; by a set of Euclidean diameter at most a constant times (#To) /2.
We apply Lemma 5.12 (with & =< (#Zy) ™/ 2) to each of these arcs to get that with high probability, the
following is true. For at least 1/4 of the arcs I € 7y, there is no Dj-geodesic from 0 to a point outside of
the Euclidean rr-neighborhood of B; which passes through 7; here r > 0 is related to the number R{.(3;)
from Lemma 5.12 and can be bounded above by a negative power of #Zj.
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We then choose a new radius s; > 7 so that B,~(B;) C B;,. By Condition 3 in the definition of &-(a),
we have that s; — 7 is small if r is small, and hence if #Z; is large. We apply the same argument with
7 replaced by s; and with 7 replaced by the set 7, of arcs of d5;, defined so that for each I € 7y, all
of the leftmost geodesics from 0 to points of I pass through the same arc in Zy (see Lemma 5.6). With
high probability we have #Z; < %#Io. We then iterate this procedure, defining radii 7 < s1 <s2.... At
each step we typically reduce the number of surviving arcs by a constant factor. Moreover, since the
increase in the radius at each step is bounded above by a negative power of the number of surviving
arcs, the total increase in the radius of the metric ball needed to get down to N surviving arcs can be
bounded above independently of the choice of Zy. To conclude, we apply this to a sequence of initial arc
collections {I(’)‘}keN such that #I(’)‘ — oo and the maximal Euclidean diameter of the arcs in I(’)‘ tends to zero.

Roughly speaking, the reason why we get the quantitative estimate bye 1 N*

is that for each step of
the iteration, if we condition on the previous steps, there is a positive conditional probability to kill off a
positive fraction of the remaining arcs; and we only need to “succeed” for a positive fraction of the steps.
See [18, Lemma 3.10].

The one minor point where the argument in the supercritical case differs from the argument of [18,
Section 3.4] is as follows. In [18] Condition 3 in the definition of £.(a) is replaced by a Holder continuity
condition. However, this condition is only used once in [18], in the proof of [18, Lemma 3.11], in order to
prove that a filled Dj,-metric ball contains a small Euclidean neighborhood of a smaller filled Dj,-metric
ball. Condition 3 can be used in place of the Holder continuity condition from [18] for this purpose.

We note that the proof of Theorem 5.15 uses Lemmas 5.6 and 5.13 and also reuses the deterministic

estimate from [18, Lemma 2.15].

5.3. Reducing to a single geodesic. In this subsection we will explain how to deduce Theorem 1.6 from
Theorem 1.7. That is, we will explain how to go from finitely many points on the boundary of a filled
metric ball which are hit by Dj-geodesics, to just one such point. The main tool which allows us to do
this is Lemma 5.16 just below, which says that for certain appropriately chosen arcs I of the boundary
of a filled metric ball centered at 0, there is a positive chance that every Dj-geodesic from O to a point
sufficiently far away from the filled metric ball passes through 1.

To state this result precisely, we need to introduce a particular way of measuring (Euclidean) distances
in a planar domain. Let O C C be a domain bounded by a Jordan curve. Following [18, equation (2.18)],
for z, w € O, we define

d°(z,w) = inf{diam(X) : X is a connected subset of O with z, w € )_(}, (5-22)

where here diam denotes the Euclidean diameter. Then d€ is a metric on O which is bounded below
by the Euclidean metric on C restricted to O and bounded above by the internal Euclidean metric on O.
Note that 49 is not a length metric.

Lemma 5.16. For each A > 1, ¢ € (0, (A —1)/100), and p € (0, 1), there exists p = p(A, &, p) >0
such that the following is true. Let v > 0 and let . = Dj(0, 3 Br(0)) be as in (3-2). Let I C 9B;_ be
a closed boundary arc, chosen in a manner depending only on (B;_, h|5;r), with the property that the
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d®\Bir -neighborhood of radius er of aB; \ I (with d®\B defined as in (5-22)) does not disconnect I
Jfrom oo in C\ B; . With probability at least p, it holds with conditional probability at least p given
(B;, . hip: ) that every Dy-geodesic from O to a point of C\ Bar(0) passes through 1.

The proof of Lemma 5.16 is very similar to the proof of its subcritical analog, [18, Lemma 4.1].
However, just like in the setting of Sections 5.2.1 and 5.2.2, we need to make some nontrivial changes to
the definitions of the events involved so we will explain most of the details of the proof.

The proof of Lemma 5.16 is similar to the proof of Lemma 5.13, but simpler since we only need
something to happen with positive probability, not probability close to 1, and this probability is allowed
to depend on the parameter . We will define “good” events EY for certain domains U, which occur
with high probability (see (5-27)). We will then argue that if EY occurs, then there is a positive chance
that the distances between certain points in U are very small (Lemma 5.17). We will then choose U in a
manner which depends on 5; and /. We will use Lemma 5.17 to argue that with positive conditional
probability given (B;_, i|g: ), there is a “shortcut” in U which prevents Dj-geodesics from 0 to points of
C\ Bar(0) from hitting 98; \ 1.

To lighten notation, let

B*:={zeC\B; :d“\%w (2,8, \I) <er/4} (5-23)

be a slightly smaller d©\5%-neighborhood of dB; \ 1 than the one appearing in Lemma 5.16.

By the Holder continuity of the Euclidean metric with respect to D, (Proposition 2.11), we can find
c=c(A, ¢, p) > 0 such that with probability at least 1 — (1 — p)/3, each subset of B4,(0) with Euclidean
diameter at least er/4 has Dj-diameter at least cc.ef=@ . By the definition (5-23) of B*, each path
in C\ B;_ from dB; \ 1 to apoint of C\ (B; U B*) has Euclidean diameter at least er/4. Hence, with
probability at least 1 — (1 — p)/3,

D,(3B; \1,C\ (B, UB*); C\B; ) > ccret=?, (5-24)

Define the collection of §r x ér squares Ssi(B4r(0)) = ng(B 4r~(0)) with corners in §rZ? as in (5-3)
with z = 0. By Lemma 2.8, the random variables ¢ 'e~5"+© 7. and their reciprocals are tight. By
combining this with Corollary 3.7, we can find § = 8(c, A, €) € (0, £2/100) such that with probability at
least 1 — (1 — p)/3,

Dy (around Byi12,.(S) \ Bs(S)) < qagcere™™ @ forall S € S5 (3B;). (5-25)

Let U, be the (finite) set of subdomains U of B4, (0) such that B4,(0)\ U is a finite union of sets of the
form S N Bar(0) for S € S5r.(B4r(0)). For U € U,, let hV be the harmonic part of h[y. Also let Usy/4 be
the set of points in U which lie at Euclidean distance at least 6r/4 from dU. Since there are only finitely
many sets in Uy and by the translation and scale invariance of the law of 4, modulo additive constant, we
can find C = C(4, A, €) > 0 such that with probability at least 1 — (1 — p)/3, it holds simultaneously for
each U € U, that

sup |9 (u) —hr(0)] < C. (5-26)

u€Usrya



50 JIAN DING AND EWAIN GWYNNE

For a given choice of U € U, let Eﬂlf be the event that (5-24), (5-25), and (5-26) all hold, so that

[P’[UQ{ TE;’ ] > p. (5-27)

The reason for considering EY instead of (¢, EY is the same as in Section 5.2.1: it is easier to

condition on EY than on [, U, EY (see Lemma 5.17 just below).

We note that the definition of EY given just above is identical to the definition of the analogous
event in [18, Section 4.1], except that in [18] the condition (5-25) is replaced by an upper bound for the
Dy, -diameters of the squares S € S5~ (B4r~(0)). Such an upper bound does not hold in the supercritical case.

For U € U, let

Z(U) := {centers of squares S € S5r-(U) with § C U} (5-28)

and let H;/ to be the event that for each z € Z(U), there is a path I1 = I1; in U which disconnects 0
from oo and hits z and which has Dj-length at most %cres h=(©)  Note that for some choices of U € U,
and z € Z(U), there is no path in U which disconnects O from oo and hits z. For such a choice of U we
have P[HY] = 0. The following lemma will play an analogous role to Lemma 5.10 from Section 5.2.1.

Lemma 5.17. There is a constant p = p(A, &, p) > 0 such that the following is true. Suppose U € Uy is
connected and contains a path which disconnects 0 from 0o. On the event that U N (B; U B*) = &, a.s.

P[HY | hlew, EX] = p. (5-29)

Proof. This follows from the Markov property of the GFF and the FKG inequality (Proposition 5.7), via
exactly the same argument as in the proof of [18, Lemma 3.3 or Lemma 4.2]. U

Proof of Lemma 5.16. Most of the proof is exactly the same as the proof of [18, Lemma 4.1], but the
geometric part of the argument is slightly different so we will repeat part of the argument to explain the
differences. See Figure 10 for an illustration of the proof.

Step 1: choosing a random domain U. We first choose the domain U to which we will apply Lemma 5.17.
The choice will depend on B; and /, which is why we need a lower bound for the probability of the
intersection of all of the EY’s in (5-27).

Since B; C B(0) and ¢ < (A — 1)/100, we have B; UB* C Bat+1)r/2(0). By hypothesis, the
d®\Be -neighborhood of 9B; \ I of radius er does not disconnect / from oo in C\ B; . Hence we can
choose, in a manner depending only on B; and /, a path B in B4r(0) \ B;_ from a point of / to a point
of B(a+1)r/2(0) such that each point of ‘B lies at d“\P= distance at least er from dB; \ 1. By slightly
perturbing 13 if necessary, we can assume that 3 does not hit any of the corners of any of the squares in
Ssr(Bar(0)).

Let U be the interior of the union of all of the §r x §r squares S € Ss5-(Bar~(0)) which intersect
PBUAU+1)r/2,4r(0) but do not intersect B;T or dB4r(0). Let U be the connected component of U which
intersects Aa41)r/2,4r(0). Then U € U, as defined just above (5-26).
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Figure 10. Illustration of the proof of Lemma 5.16. If EY N HY occurs for the domain
U € U, defined in the proof, then by the definition of HY we can find a path IT in U
which contains the center of the square S|, disconnects B;r U B* from oo, and whose
Dy -length is small. Furthermore, we can find a path 7 C (C\ B; UB,)—a segment
of the path around Bjs-~(Sp) \ Bsr-(So) given by (5-25) — which intersects both I and IT.
By (5-24), the sum of the Dj-lengths of 7 and IT is smaller than the Dj-distance from
C\ (B; UB*) to aB; \ I restricted to paths which do not enter 5; . This prevents a
Dj-geodesic from 0 to a point outside of Bar(0) from hitting B; \ 1.

By definition, U N B; = &. We claim that also U N B* = &. Indeed, each of the dr x dr squares S in
the union defining U is contained in C\ B;_ and has Euclidean diameter at most V28r < er/4. If one
of these squares intersected B*, then by the triangle inequality and the definition (5-22) of d®\B% | the
d®\B% _distance from 3 to dB;_\ I would be at most er/2, contrary to the definition of ‘B.

Hence U N (B;rr U B*) = @. Since B;T is a local set for 4 (Lemma 5.1) and ‘P is determined by
(B;T, h| B;r)’ for each deterministic { € U, the event {U = i} is determined by A|c\y. Furthermore,
by definition the set U is connected and contains a path which disconnects 0 from co. Therefore, the
bound (5-29) of Lemma 5.17 holds a.s. for our (random) choice of U.

Step 2: bounding conditional probabilities. By (5-27) and Markov’s inequality
P[PIEY | B; . hlg 1= 1—(1—p)?]=1-(1-p)'/2 (5-30)

By this together with the bound (5-29), and since p can be made arbitrarily close to 1, to conclude the
proof of the lemma we only need to show that if EY N HY occurs, then every Dj,-geodesic from 0 to a
point of C\ Bar(0) passes through /. This will be accomplished via a similar argument to the proof of
Lemma 5.12, as we now explain.
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Step 3: preventing Dy-geodesics from hitting 9B; \ 1. Let Sy be the first square in Ssr-(Bar(0)) hit by P
whose interior is contained in U. Since I3 starts from a point of / C dB; and U NdB; = &, S is not
the first square of Ss~(Bar(0)) hit by 3. Hence, there is a square Sy which is hit by I3 prior to the first
time 8 hits S| such that Sy and S; share a side (here we use that 3 does not hit any of the four corners
of S1). By the definition of S;, we have Sy N 0B, #9.

By (5-25), there is a path 7 in the annular region Bgi/2.(So) \ Bsr~(Sp) which disconnects the inner
and outer boundaries of this annular region and has Dj-length at most llmccreéhf(o). Since §; C
Bs12,.(S0) \ Bsr(Sp) and S is disjoint from B;r, there is a subpath 7 of 7 which is contained in C\ B;T
and which disconnects S; from oo in GT[)’T[r . Since Sy intersects 7w N I, which is disjoint from B,, and
81/2 < £/10, the definition (5-22) of d\5% shows that the path 7 cannot intersect 35;_\ I. Hence 7
must intersect /.

By the definition of HY (just below (5-28)), there is a path IT in U which contains a point of S; and
which disconnects 0 from oo (and hence also B; from C\ B4(0)). The union of 7 and II is connected,
has Dj-length strictly less than ceref O intersects 7, and disconnects B;r from C\ Ba(0).

Any path P from a point of Bar(0) to O which first hits d53; at a point not in / must hit IT and then
must subsequently cross from a point of C\ (B, UB; ) to dB; \ I. By the preceding paragraph, the
Dy,-distance from the first point of IT hit by P to O is strictly smaller than 7. + cep 1@ On the other
hand, (5-24) shows that the Dj,-length of the segment of P which crosses from C\ (5, U B; ) todB; \1
is at least ccpefv (@ 50 the Dy, -length of the segment of P after it first hits U is at least 7 + cepelir©)
Therefore, P cannot be a Dj-geodesic. O

Now that Lemma 5.16 is established, we can conclude the proof of Theorem 1.6 in exactly the same
way as in the subcritical case (see [18, Section 4.2]). The proof of [18, Lemma 4.3] requires some
containment relations between filled Dj-metric balls and Euclidean balls, but these are easily supplied by
Lemma 3.5 and Proposition 2.11.
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