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REGULARITY AND CONFLUENCE OF GEODESICS FOR

THE SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRIC

JIAN DING AND EWAIN GWYNNE

Let h be the planar Gaussian free field and let Dh be a supercritical Liouville quantum gravity (LQG)

metric associated with h. Such metrics arise as subsequential scaling limits of supercritical Liouville

first passage percolation (Ding and Gwynne, 2020) and correspond to values of the matter central charge

cM ∈ (1, 25). We show that a.s. the boundary of each complementary connected component of a Dh-metric

ball is a Jordan curve and is compact and finite-dimensional with respect to Dh . This is in contrast to the

whole boundary of the Dh-metric ball, which is noncompact and infinite-dimensional with respect to Dh

(Pfeffer, 2021). Using our regularity results for boundaries of complementary connected components

of Dh-metric balls, we extend the confluence of geodesics results of Gwynne and Miller (2019) to the

case of supercritical Liouville quantum gravity. These results show that two Dh-geodesics with the same

starting point and different target points coincide for a nontrivial initial time interval.
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1. Introduction

1.1. Overview. Liouville quantum gravity (LQG) is a family of models of random surfaces originating in

the physics literature in the 1980s [4; 11; 35]. One way to define LQG surfaces is in terms of the matter

central charge, a parameter cM ∈ (−∞, 25). Let U ¢ C be open. For a Riemannian metric tensor g on U ,

let 1g be the associated Laplace–Beltrami operator and let det1g denote its determinant. Heuristically

speaking, an LQG surface parametrized by U is the random two-dimensional Riemannian manifold

(U, g), where g is sampled from the “uniform measure on Riemannian metric tensors on U weighted by

(det1g)
−cM/2”. We refer to the case when cM < 1 as the subcritical case and the case when cM ∈ (1, 25)

as the supercritical case.

The above definition of LQG is very far from rigorous, but it is nevertheless possible to define LQG

surfaces rigorously. One way to do this is via the David–Distler–Kawai (DDK) ansatz [4; 11], which
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says that, at least in the subcritical phase, the Riemannian metric tensor associated with an LQG surface

can be expressed in terms of the exponential of a variant of the Gaussian free field (GFF) h on U . We

refer to [3; 39; 40] for background on the GFF. The GFF h is a random distribution, not a function, so

its exponential is not well-defined. But, one can construct objects associated with the exponential of h by

replacing h by a family of continuous functions {hε}ε>0 which approximate h, then taking a limit as ε→ 0.

In the subcritical and critical cases, i.e., when cM f 1, this approach has been used to construct the

Liouville quantum gravity area measure (i.e., the volume form) as a limit of regularized versions of eµ h

integrated against Lebesgue measure [13; 14; 15; 25; 37], where µ ∈ (0, 2] is related to the central charge by

cM = 25 − 6Q2, Q = 2

µ
+ µ

2
. (1-1)

Most mathematical works on LQG consider only the case when cM f 1 and use µ , rather than cM, as

the parameter for the model.

The focus of the present paper is the metric (Riemannian distance function) associated with an LQG

surface, which can be defined for all cM ∈ (−∞, 25). Let us explain the construction of this metric for

the GFF on the whole plane. For t > 0 and z ∈ C, we define the heat kernel pt(z) := 1
2Ã t e−|z|2/2t and we

denote its convolution with the whole-plane GFF1 h by

h∗
ε(z) := (h ∗ pε2/2)(z)=

∫

C

h(w)pε2/2(z −w) dw2 for all z ∈ C (1-2)

where the integral is interpreted in the sense of distributional pairing.

For a parameter À > 0, we define the ε-Liouville first passage percolation (LFPP) metric associated

with h, with parameter À , by

Dε
h(z, w) := inf

P

∫ 1

0
eÀh∗

ε (P(t))|P ′(t)| dt for all z, w ∈ C (1-3)

where the infimum is over all piecewise continuously differentiable paths P : [0, 1] → C from z to w.

To extract a nontrivial limit of the metrics Dε
h , we need to renormalize. We define our renormalizing

factor by

aε := median of inf
{∫ 1

0
eÀh∗

ε (P(t))|P ′(t)| dt : P is a left-right crossing of [0, 1]2
}
, (1-4)

where a left-right crossing of [0, 1]2 is a piecewise continuously differentiable path P : [0, 1] → [0, 1]2

joining the left and right boundaries of [0, 1]2. We emphasize that aε is the median of a random variable

(the inf of the lengths of the left-right crossings) so is deterministic.

It was shown in [8, Proposition 1.1] that for each À > 0, there exists Q = Q(À) > 0 such that

aε = ε1−ÀQ+oε(1), as ε→ 0. (1-5)

Furthermore, Q is a nonincreasing function of À and satisfies limÀ→0 Q(À)= ∞ and limÀ→∞ Q(À)= 0.

1The whole-plane GFF h is only defined modulo additive constant. Throughout the paper, we assume that the additive

constant is chosen so that the average of h over the unit circle is zero unless otherwise stated.
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As explained in [8] (see also [17]), the parameter À is (heuristically) related to the matter central

charge by

cM = 25 − 6Q(À)2. (1-6)

The dependence of Q on À , or equivalently the dependence of À on cM, is not known explicitly except

that Q(1/
√

6)= 5/
√

6, which corresponds to cM = 0 [6]. Define

Àcrit := inf{À > 0 : Q(À)= 2}. (1-7)

We do not know Àcrit explicitly, but the bounds from [22, Theorem 2.3] give the reasonably good approx-

imation Àcrit ∈ [0.4135, 0.4189]. By (1-6) and the properties of Q(À) from [8, Proposition 1.1], we have

cM < 1 ô À < Àcrit and cM ∈ (1, 25) ô À > Àcrit. (1-8)

In the subcritical case, it was shown in [5] that for À < Àcrit, the rescaled LFPP metrics a−1
ε Dε

h admit

nontrivial subsequential scaling limits with respect to the topology of uniform convergence on compact

subsets of C × C. Subsequently, it was shown in [20] that the subsequential limit is unique and is

characterized by a certain list of natural axioms. The limit Dh of a−1
ε Dε

h is called the LQG metric with

parameter À .

The LQG metric in the subcritical case induces the same topology as the Euclidean metric, but its

geometric properties are very different. For example, the Hausdorff dimension of the metric space (C, Dh)

is µ /À > 2 [23]. Another important property of Dh is confluence of geodesics, which states that two

Dh-geodesics (i.e., paths of minimal Dh-length) with the same starting point and different target points

typically coincide for a nontrivial initial time interval. Note that this is not true for geodesics for a smooth

Riemannian metric. Confluence of geodesics for the subcritical LQG metric was first established in [18]

and played a key role in the uniqueness proof in [20]. See also [16; 24] for extensions of the confluence

property for subcritical LQG, [26] for an earlier proof of confluence of geodesics for the Brownian map

(which is equivalent to LQG with cM = 0 [30; 32]), and [1; 27; 29] for stronger confluence results in the

Brownian map setting.

In this paper, we will mainly be interested in the supercritical and critical cases, i.e., À g Àcrit. It

was shown in [8] that for this range of parameter values, the rescaled LFPP metrics a
−1
ε Dε

h are tight

with respect to the topology on lower semicontinuous functions on C × C introduced by Beer [2] (see

Definition 2.1). Later, after this paper appeared on the arXiv, it was shown in [9] that the subsequential

limit is unique. The proof in [9] uses some of the results in this paper (in particular, those in Section 3.2),

so throughout this paper we will work with subsequential limits.

If Dh is a subsequential limit of LFPP for À > Àcrit, then Dh is a metric on C which is allowed to take

on infinite values. This metric does not induce the Euclidean topology: rather, there is an uncountable,

Euclidean-dense set of singular points z ∈ C such that

Dh(z, w)= ∞ for all w ∈ C \ {z}. (1-9)
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On the other hand, for two fixed points z, w ∈ C, a.s. Dh(z, w) <∞, and the restriction of Dh to the

complement of the set of singular points defines a complete metric [34]. Roughly speaking, singular

points for Dh correspond to ³-thick points of h for ³ > Q, i.e., points z ∈ C for which h∗
ε(z) behaves like

³ log ε−1 as ε→ 0 [8; 34]. It was shown in [7] that the metric Dh induces the Euclidean topology on C

for À = Àcrit. In particular, there are no singular points in this case.

Due to the existence of singular points, Dh-metric balls in the supercritical case are highly irregular

objects. A Dh-ball has empty Euclidean interior (since the singular points are Euclidean dense). Moreover,

the Dh-boundary of a Dh-metric ball is not Dh-compact and has infinite Hausdorff dimension with respect

to Dh [34] (see Theorem 1.2). See Figure 1 for a simulation of a supercritical LQG metric ball.

Figure 1. Simulation of an LFPP metric ball for À = 1.6 > Àcrit. The colors indicate

distance to the center point (marked with a black dot) and the black curves are geodesics

from the center point to other points in the ball. These geodesics have a tree-like structure,

which is consistent with our confluence of geodesics results. We also note that there are

many “holes” corresponding to complementary connected components of the ball. The

boundary of each of these holes is of the form ∂B
y,•
s for some y ∈ C. The simulation was

produced using LFPP with respect to a discrete GFF on a 1024 × 1024 subset of Z2. It

is believed that this variant of LFPP falls into the same universality class as the variant

in (1-2). The geodesics go from the center of the metric ball to points in the intersection

of the metric ball with the grid 20Z2. The code for the simulation was provided by J. Miller.
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In contrast, we will show that the boundary of a filled Dh-metric ball (i.e., the union of the ball and

the points which it disconnects from some specified target point) is a Jordan curve and is compact and

finite-dimensional with respect to Dh (Theorem 1.4).

Using our regularity results for outer boundaries of Dh-metric balls, we will then extend the confluence

of geodesic results from [18] to the critical and supercritical cases (Theorems 1.6 and 1.7). Unlike in

the subcritical case [20], these confluence results are not needed for the proof of the uniqueness of the

critical and supercritical LQG metrics in [9]. However, they are of independent interest.

An important tool in our work is [34], which shows that subsequential limits of supercritical LFPP

satisfy a list of axioms similar to the axioms for a weak LQG metric from [12] (see Definition 2.3), and

establishes a number of estimates for any metric satisfying these axioms. All of the results in this paper

are valid for any metric satisfying the axioms from [34].

1.2. Ordinary and filled LQG metric balls. Throughout the paper, we let h be a whole-plane GFF, we

fix À > 0, and we let Dh be a weak LQG metric associated with h with parameter À . For now, the reader

can think of Dh as a subsequential limit of the rescaled LFPP metrics a−1
ε Dε

h , but we emphasize that all

of our results also hold for any metric satisfying the axioms stated in Definition 2.3 below. Also, most

of our results are stated for À > 0 (not just À g Àcrit), but many of the statements are either obvious or

already proven elsewhere when À ∈ (0, Àcrit). For À > Àcrit, the metric Dh does not induce the Euclidean

topology. We therefore make the following notational convention.

Notation 1.1. Throughout, topological concepts such as “open”, “closed”, “boundary”, etc., are always

defined with respect to the Euclidean topology unless otherwise stated. Similarly, for a set A ¢ C, ∂A

denotes its boundary with respect to the Euclidean topology and A denotes its closure with respect to

the Euclidean topology. Moreover, zn → z always refers to convergence with respect to the Euclidean

topology, unless otherwise stated.

For any set A, the boundary of A with respect to Dh is contained in the Euclidean boundary ∂A: this is

because the Euclidean metric is continuous with respect to Dh . The reverse inclusion does not necessarily

hold. For example, a Dh-metric ball is Euclidean-closed (Lemma 3.1) and has empty Euclidean interior

(since the set of singular points is dense), so the Euclidean boundary of such a ball is equal to the whole

ball. On the other hand, the Dh-distance from each point in the Dh-boundary to the center point of the

ball is equal to the radius of the ball. Hence, any Dh-metric ball with the same center point and a strictly

smaller radius is disjoint from the Dh-boundary of the ball, so in particular the Dh-boundary of the ball is

not equal to the whole ball.

We also briefly recall the definition of Hausdorff dimension. For 1> 0, the 1-Hausdorff content of a

metric space (X, d) is

inf
{ ∞∑

j=1

r1j : there is a covering of X by d-metric balls with radii {r j } j∈N

}

and the Hausdorff dimension of (X, d) is the infimum of the values of 1 for which the 1-Hausdorff

content is zero.
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For x ∈ C and s > 0, we write

Bs(x) := {z ∈ C : Dh(x, z)f s} and Bs := Bs(0) (1-10)

for the closed Dh-metric ball of radius s. Recall that a singular point for Dh is a point which lies at

infinite distance from every other point. A nonsingular point is a point which is not a singular point (i.e.,

a point which lies at finite distance from some other point). Using the fact that the singular points for Dh

are Euclidean-dense, Pfeffer [34, Proposition 1.14] established the following.

Theorem 1.2 [34]. Assume that À > Àcrit. Almost surely, for each nonsingular point x ∈ C and each

s > t > 0, the Dh-boundary (hence also the Euclidean boundary) of the Dh-metric ball Bs(x) cannot be

covered by finitely many Dh-metric balls of radius t. Furthermore, ∂Bs(x)= Bs(x) is not Dh-compact

and has infinite Hausdorff dimension with respect to Dh .

The reason why ∂Bs(x)= Bs(x) is that, as noted above, the fact that the set of singular points for Dh is

Euclidean dense implies that Bs(x) has empty Euclidean interior. Theorem 1.2 tells us that the boundaries

of Dh-metric balls are in some sense highly irregular. One of the main contributions of this paper is to

show that, in contrast, the boundaries of filled Dh-metric balls are well-behaved.

Definition 1.3. Let x ∈ C and y ∈ C ∪ {∞}. For s g 0, we define the filled Dh-metric ball centered at x

and targeted at y with radius s > 0 by

B
y,•
s (x) :=





the union of the closed metric ball Bs(x) and the set

of points which this metric ball disconnects from y for s < Dh(x, y),

C for s g Dh(x, y).

We will most often work with filled metric balls centered at zero and filled metric balls targeted at infinity,

so to lighten notation, we abbreviate

B
•
s(x) := B

∞,•
s (x), B

y,•
s := B

y,•
s (0) and B

•
s := B

•
s(0). (1-11)

We note that filled Dh-metric balls differ from ordinary Dh-metric balls since the complement of an

ordinary Dh-metric ball is typically not connected (see Figure 1). In fact, a.s. each such complement has

infinitely many connected components; see [34, Proposition 1.14]. The following theorem summarizes

our main results concerning the boundaries of filled Dh-metric balls.

Theorem 1.4. Almost surely, for each nonsingular point x∈C, each y ∈C∪{∞}, and each s ∈(0,Dh(x,y)),

the filled metric ball boundary ∂By,•
s (x) is a Jordan curve. Moreover, this boundary is Dh-compact and

its Hausdorff dimension is bounded above by a finite constant which depends only on the law of Dh .

We emphasize that the statement of Theorem 1.4 holds a.s. for all choices of x, y, s simultaneously.

We show in Lemma 3.4 below that the boundaries of B
y,•
s (x) with respect to the Euclidean metric and Dh

coincide, so Theorem 1.4 also applies to the Dh-boundary of B
y,•
s (x).

In the subcritical case À < Àcrit, Theorem 1.4 follows from the fact that Dh induces the Euclidean

topology and the Hausdorff dimension of (C, Dh) is finite. See [31, Proposition 2.1] for a proof that the

boundary of a filled metric ball is a Jordan curve for any geodesic metric on C which induces the Euclidean
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topology. For À g Àcrit, however, the proof of Theorem 1.4 requires nontrivial ideas. In particular, we first

establish a general criterion for the boundary of an open domain to be a (not necessarily simple) curve

(Proposition 4.3), which is a variant of the well-known fact that if the boundary of a simply connected

domain in C is locally connected, then it is a curve (see, e.g., [36, Section 2.2]). We then use some

geometric estimates for supercritical LQG to check this criterion for the boundary of a filled supercritical

LQG metric ball (see Section 4.2), which shows that the filled metric ball boundary is a curve. Finally,

we use some fairly straightforward topological considerations to show that the boundary of a filled metric

ball does not have cut points, so is in fact a simple curve (see Lemma 4.10). The basic idea of our proof

is similar to the proof of [31, Proposition 2.1], which proceeds by checking that the boundary of a filled

metric ball for a geodesic metric which induces the Euclidean topology is locally connected and has no cut

points. However, our proof is much more involved since our metric does not induce the Euclidean topology.

Theorem 1.4 implies that for x ∈ C and s > 0, the boundaries of the connected components of

C \Bs(x) have finite Dh-Hausdorff dimension. Since ∂Bs(x) itself has infinite Dh-Hausdorff dimension

(Theorem 1.2), we get that “most” points of ∂Bs(x) do not lie on the boundary of any connected component

of C\Bs(x). Points of this type can arise as accumulation points of arbitrarily small connected components

of C \Bs(x). See [24, Theorem 1.14] for an analogous result in the subcritical case.

In fact, we will prove a slightly stronger Hausdorff dimension statement than the one in Theorem 1.4.

For x ∈ C and y ∈ C ∪ {∞}, we define the metric net

N
y

s (x) :=
⋃

t∈[0,s]
∂B

y,•
t (x). (1-12)

Theorem 1.5. There is a deterministic constant 1 ∈ (0,∞) (depending on the law of Dh) such that a.s.

for each nonsingular point x ∈ C, each y ∈ C ∪ {∞}, and each s > 0 the Hausdorff dimension of N y
s (x)

with respect to Dh is at most 1.

The Hausdorff dimension of the metric net with respect to Dh or with respect to the Euclidean metric

is not known, even heuristically, for any À > 0, with one exception: when cM = 0 (À = 1/
√

6), we expect

that the Hausdorff dimension with respect to Dh is 3 (this is consistent with scaling relations for quantum

Loewner evolution in [30; 32; 33]). It was shown in [18, Theorem 1.11] that in the subcritical case,

the dimensions of the metric net with respect to the Euclidean and LQG metrics are each a.s. equal to

deterministic constants. We expect that the same is true in the supercritical case.

1.3. Confluence of geodesics. Theorem 1.4 (and the estimates which go into its proof) can be used to

extend the confluence of geodesic results from [18] to the critical and supercritical cases. In particular,

we obtain the following theorem for all À > 0.

Theorem 1.6 (confluence of geodesics at a point). Almost surely, for each radius s > 0 there exists a

radius t ∈ (0, s) such that any two Dh-geodesics from 0 to points outside of the filled Dh-metric ball

B•
s = B•

s(0) coincide on the time interval [0, t].

Another form of confluence concerns geodesics across an annulus between two filled Dh-metric balls

(Definition 1.3). Let us first note that every Dh-geodesic from 0 to a point z ∈ ∂B•
s stays in B•

s . For some
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points z there might be many such Dh-geodesics, but there is always a distinguished Dh-geodesic from 0

to z, called the leftmost geodesic, which lies (weakly) to the left of every other Dh-geodesic from 0 to z if

we stand at z and look outward from B•
s (see Lemma 5.4).

Theorem 1.7 (confluence of geodesics across a metric annulus). Almost surely, for each 0< t < s <∞
there is a finite set of Dh-geodesics from 0 to ∂B•

t such that every leftmost Dh-geodesic from 0 to a point

of ∂B•
s coincides with one of these Dh-geodesics on the time interval [0, t]. In particular, there are a.s.

only finitely many points of ∂B•
t which are hit by leftmost Dh-geodesics from 0 to points of ∂B•

s .

Theorems 1.6 and 1.7 are identical to [18, Theorems 1.3 and 1.4], except that they apply for all À > 0

rather than just À < Àcrit. The proofs of Theorems 1.6 and 1.7 are given in Section 5. Many of the

proofs in [18] carry over verbatim to the critical and supercritical cases, but other parts require nontrivial

adaptations. To avoid unnecessary repetition, we will only explain the parts of the proofs which are

different in the critical and supercritical cases.

1.4. Outline. The rest of this paper is structured as follows. In Section 2 we review the axioms for a weak

LQG metric from [34], then restate some results from the existing literature (mostly from [34]) which we

will need for our proofs. In Section 3, we prove a number of regularity estimates for the boundaries of

filled Dh-metric balls, which enable us to prove Theorem 1.5 as well as all of Theorem 1.4 except for

the statement that ∂B
y,•
s is a Jordan curve. In Section 4, we prove that ∂B

y,•
s is a Jordan curve, which

completes the proof of Theorem 1.4. To do this, we first prove a general criterion for the boundary of

a simply connected domain to be a curve, then check this criterion for ∂B
y,•
s using the estimates from

Section 3. In Section 5 we explain how to prove our confluence of geodesic results, Theorems 1.6 and 1.7,

by adapting the arguments of [18] and applying the estimates of Section 3.

2. Preliminaries

2.1. Notational conventions. We write N = {1, 2, 3, . . . } and N0 = N ∪ {0}.

For a < b, we define the discrete interval [a, b]Z := [a, b] ∩ Z.

If f : (0,∞)→ R and g : (0,∞)→ (0,∞), we say that f (ε) = Oε(g(ε)) (resp. f (ε) = oε(g(ε))) as

ε→ 0 if f (ε)/g(ε) remains bounded (resp. tends to zero) as ε→ 0. We similarly define O(·) and o(·)
errors as a parameter goes to infinity.

Let {Eε}ε>0 be a one-parameter family of events. We say that Eε occurs with

• polynomially high probability as ε→ 0 if there is a p > 0 (independent from ε and possibly from

other parameters of interest) such that P[Eε] g 1 − Oε(ε
p);

• superpolynomially high probability as ε→ 0 if P[Eε] g 1 − Oε(ε
p) for every p > 0.

We similarly define events which occur with polynomially or superpolynomially high probability as a

parameter tends to ∞.
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For z ∈ C and r > 0, we write Br (z) for the open Euclidean ball of radius r centered at z. More generally,

for X ¢ C we write Br (X)=
⋃

z∈X Br (z). We also define the open annulus

Ar1,r2
(z) := Br2

(z) \ Br1
(z) for all 0< rr < r2 <∞. (2-1)

For a region A ¢ C with the topology of a Euclidean annulus, we write Dh(across A) for the Dh-distances

between the inner and outer boundaries of A and Dh(around A) for the infimum of the Dh-lengths of

paths in A which disconnect the inner and outer boundaries of A.

2.2. Weak LQG metrics. In this subsection, we will state the axiomatic definition of a weak LQG metric

from [34]. We first define the topology on the space of metrics that we will work with.

Definition 2.1. Let X ¢ C. A function f : X × X → R∪{−∞,+∞} is lower semicontinuous if whenever

(zn, wn) ∈ X × X with (zn, wn)→ (z, w), we have f (z, w) f lim infn→∞ f (zn, wn). The topology on

lower semicontinuous functions is the topology whereby a sequence of such functions { fn}n∈N converges

to another such function f if and only if

(i) whenever (zn, wn) ∈ X × X with (zn, wn)→ (z, w), we have f (z, w)f lim infn→∞ fn(zn, wn);

(ii) for each (z, w) ∈ X × X , there exists a sequence (zn, wn)→ (z, w) such that fn(zn, wn)→ f (z, w).

It follows from [2, Lemma 1.5] that the topology of Definition 2.1 is metrizable (see [8, Section 1.2]).

Furthermore, [2, Theorem 1(a)] shows that this metric can be taken to be separable.

Definition 2.2. Let (X, d) be a metric space, with d allowed to take on infinite values.

• For a curve P : [a, b] → X , the d-length of P is defined by

len(P; d) := sup
T

#T∑
i=1

d(P(ti ), P(ti−1))

where the supremum is over all partitions T : a = t0 < · · ·< t#T = b of [a, b]. Note that the d-length

of a curve may be infinite.

• We say that (X, d) is a length space if for each x, y ∈ X and each ε > 0, there exists a curve of

d-length at most d(x, y)+ ε from x to y. A curve from x to y of d-length exactly d(x, y) is called a

geodesic.

• For Y ¢ X , the internal metric of d on Y is defined by

d(x, y; Y ) := inf
P¢Y

len(P; d) for all x, y ∈ Y (2-2)

where the infimum is over all paths P in Y from x to y. Note that d(·, · ; Y ) is a metric on Y , except

that it is allowed to take infinite values.

• If X ¢ C, we say that d is a lower semicontinuous metric if the function (x, y)→ d(x, y) is lower

semicontinuous with respect to the Euclidean topology. We equip the set of lower semicontinuous

metrics on X with the topology on lower semicontinuous functions on X × X , as in Definition 2.1,

and the associated Borel Ã -algebra.
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The following is a restatement of [34, Definition 1.6].

Definition 2.3 (weak LQG metric). Let D′ be the space of distributions (generalized functions) on C,

equipped with the usual weak topology. For À > 0, a weak LQG metric with parameter À is a measurable

functions h 7→ Dh from D′ to the space of lower semicontinuous metrics on C with the following properties.

Let h be a GFF plus a continuous function on C: i.e., h is a random distribution on C which can be

coupled with a random continuous function f in such a way that h− f has the law of the whole-plane GFF.

Then the associated metric Dh satisfies the following axioms.

I. Length space. Almost surely, (C, Dh) is a length space.

II. Locality. Let U ¢ C be a deterministic open set. The Dh-internal metric Dh(·, · ; U ) is a.s. given by

a measurable function of h|U .

III. Weyl scaling. For a continuous function f : C → R, define

(eÀ f · Dh)(z, w) := inf
P:z→w

∫ len(P;Dh)

0
eÀ f (P(t)) dt for all z, w ∈ C, (2-3)

where the infimum is over all Dh-continuous paths from z to w in C parametrized by Dh-length.

Then a.s. eÀ f · Dh = Dh+ f for every continuous function f : C → R.

IV. Translation invariance. For each deterministic point z ∈ C, a.s. Dh(·+z) = Dh(· + z, · + z).

V. Tightness across scales. Suppose that h is a whole-plane GFF and let {hr (z)}r>0,z∈C be its circle

average process. There are constants {cr }r>0 such that the following is true. Let A ¢ C be a

deterministic Euclidean annulus. In the notation defined at the end of Section 2.1, the random

variables

c
−1
r e−Àhr (0)Dh(across r A) and c

−1
r e−Àhr (0)Dh(around r A)

and the reciprocals of these random variables for r > 0 are tight. Finally, there exists 3> 1 such

that for each ¶ ∈ (0, 1),

3−1¶3 f c¶r

cr
f3¶−3 for all r > 0. (2-4)

The axioms of Definition 2.3 are the same as the axioms which define a weak LQG metric in

[12, Section 1.2], with two exceptions: one works with lower semicontinuous metrics instead of continuous

metrics, and the tightness across scales axiom (Axiom V) is formulated differently: we require tightness

for rescaled distances around and across Euclidean annuli, rather than requiring tightness of the rescaled

metrics themselves.

It was shown in [34] that if h is a GFF plus a continuous function and D is a weak LQG metric, then

a.s. the Euclidean metric is Dh-continuous (see Proposition 2.11 below for a quantitative version of this).

In particular, a.s. every Dh-continuous path (e.g., a Dh-geodesic) is also Euclidean continuous.

Axiom V allows us to get bounds for Dh-distances which are uniform across different Euclidean scales.

This axiom serves as a substitute for exact scale invariance (i.e., the LQG coordinate change formula),

which is difficult to prove for subsequential limits of LFPP before we know that the subsequential limit is

unique. See [12; 20; 34] for further discussion of this point.
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The following theorem is proven as [34, Theorem 1.7], building on the tightness result from [8].

Theorem 2.4 [34]. Let À > 0. For every sequence of ε’s tending to zero, there is a weak LQG metric D

with parameter À and a subsequence {εn}n∈N for which the following is true. Let h be a whole-plane

GFF, or more generally a whole-plane GFF plus a bounded continuous function. Then the rescaled LFPP

metrics a−1
εn

Dεn
h , as defined in (1-3) and (1-4), converge in probability to Dh with respect to the metric on

lower semicontinuous functions on C × C.

Theorem 2.4 implies in particular that for each À > 0, there exists a weak LQG metric with parameter À .

Remark 2.5. It was shown in [9], subsequently to this paper, that the axioms in Definition 2.3 uniquely

characterize Dh , up to multiplication by a deterministic positive constant. This implies that one has actual

convergence (not just subsequential convergence) in Theorem 2.4 and that Axiom V can be improved to

the LQG coordinate change formula for spatial scaling. Some of the results of this paper (in particular,

those in Section 3.2) are used in [9].

2.3. Results from prior work. Throughout the rest of the paper, we fix À > 0 and a weak LQG metric

D : h 7→ Dh with parameter À . We will not make the dependence on the parameter À or the particular choice

of metric D explicit in our estimates. We also let h be a whole-plane GFF and we let {hr (z) : r > 0, z ∈ C}
be its circle average process (as in Axiom V).

Many of the quantitative estimates in this paper involve a parameter r > 0, which represents the

“Euclidean scale”. The estimates are required to be uniform in the choice of r. The reason for including r

is the same as in other papers concerning weak LQG metrics, such as [12; 18; 20; 34]: we only have

tightness across scales (Axiom V), rather than exact scale invariance, so it is not possible to directly

transfer estimates from one Euclidean scale to another.

In this subsection, we state some previously known results for the GFF and the LQG metric (mostly

from [34]) which we will cite regularly. We start with the fact that Dh-geodesics exist [34, Proposition 1.12],

which is not immediate from the axioms since Axiom I only shows that Dh(z, w) is the infimum of

the Dh-lengths of paths joining z and w, not that a length-minimizing path exists.

Lemma 2.6 [34]. Almost surely, for any two nonsingular points z, w ∈ C, there exists an LQG geodesic P

joining z and w.

We will frequently use without comment the following fact, which implies in particular that every

Dh-bounded set is Euclidean bounded. See [34, Lemma 3.12] for a proof.

Lemma 2.7 [34]. Almost surely, for every Euclidean-compact set K ¢ C,

lim
R→∞

Dh(K , ∂BR(0))= ∞.

It was shown in [34, Lemma 3.1] that one has the following stronger version of Axiom V.

Lemma 2.8 [34]. Let U ¢ C be open and let K1, K2 ¢ U be two disjoint, deterministic compact sets

(allowed to be singletons). The rescaled internal distances c
−1
r e−Àhr (0)Dh(r K1, r K2; rU ) and their

reciprocals are tight.
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The following proposition, which is [34, Proposition 1.8], is a more quantitative version of Lemma 2.8

in the case when K1, K2 are connected and are not singletons. It will be our most important estimate for

Dh-distances.

Proposition 2.9 [34]. Let U ¢ C be an open set (possibly all of C) and let K1, K2 ¢ U be connected,

disjoint compact sets which are not singletons. Also let {cr }r>0 be the scaling constants from Axiom V.

For each r> 0, it holds with superpolynomially high probability as A → ∞, at a rate which is uniform in

the choice of r, that

A−1
creÀhr(0) f Dh(rK1, rK2; rU )f AcreÀhr(0). (2-5)

Recall the notation for Dh-distance across and around Euclidean annuli from Section 2.1. We will most

frequently use Proposition 2.9 to lower-bound Dh(across Aar,br(z)) and upper-bound Dh(around Aar,br(z))

where b > a > 0 are fixed. To do this, we first note that due to Axiom IV we can assume without loss of

generality that z = 0. To lower-bound Dh(across Aar,br(z)) we apply Proposition 2.9 with K1 = ∂Ba(0),

K2 = ∂Bb(0), and U = C. To upper-bound Dh(around Aar,br(z)), we apply Proposition 2.9 twice, with

the sets K1, K2,U and K ′
1, K ′

2,U
′ chosen so that the union of any path from K1 to K2 in U and any path

from K ′
1 to K ′

2 in U ′ is contained in Aa,b(0) and disconnects the inner and outer boundaries of Aa,b(0).

Axiom V only gives polynomial upper and lower bounds for the ratios of the scaling constants cr . The

following proposition, which is [34, Proposition 1.9], gives much more precise bounds for these scaling

constants and relates them to LFPP.

Proposition 2.10 [34]. With Q as in (1-5), the scaling constants from Axiom V satisfy cr = r ÀQ+or (1) as

r → 0 or r → ∞.

We also have a Hölder continuity condition for the Euclidean metric with respect to Dh . See

[34, Proposition 3.8].

Proposition 2.11 [34]. Let Ç ∈ (0, (À(Q + 2))−1) and let U ¢ C be a Euclidean-bounded open set. For

each r> 0, it holds with polynomially high probability as ε→ 0, at a rate which is uniform in r, that

|z −w| f Dh(z, w)
Ç for all z, w ∈ rU with |z −w| f εr. (2-6)

In particular, the identity mapping from (C, Dh) to C, equipped with the Euclidean metric, is Ç-Hölder

continuous when restricted to any Euclidean-compact set.

We note that in contrast to the subcritical case (see [18, Theorem 1.7]), the Hölder continuity in

Proposition 2.11 only goes in one direction.

Finally, we state an estimate which is a consequence of the fact that the restrictions of the GFF h to

disjoint concentric annuli are nearly independent. See [19, Lemma 3.1] for a proof of a slightly more

general result.

Lemma 2.12 [19]. Fix 0< µ1 < µ2 < 1. Let {rk}k∈N be a decreasing sequence of positive real numbers

such that rk+1/rk fµ1 for each k ∈N and let {Erk }k∈N be events such that Erk ∈Ã
(
(h−hrk (0))|Aµ1rk ,µ2rk (0)

)

for each k ∈ N (here we use the notation for Euclidean annuli from Section 2.1). For K ∈ N, let N (K )
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be the number of k ∈ [1, K ]Z for which Erk occurs. For each a > 0 and each b ∈ (0, 1), there exists

p = p(a, b, µ1, µ2) ∈ (0, 1) and c = c(a, b, µ1, µ2) > 0 such that if

P[Erk ] g p for all k ∈ N, (2-7)

then

P[N (K ) < bK ] f ce−aK for all K ∈ N. (2-8)

3. Estimates for the outer boundary of an LQG metric ball

We continue to assume that À > 0, h is a whole-plane GFF, and Dh is a weak LQG metric with parameter À .

In this section, we will prove a variety of estimates for Dh-distance which will eventually lead to proofs

of Theorem 1.5 and the compactness and finite-dimensionality parts of Theorem 1.4. We start out in

Section 3.1 by proving some basic facts about Dh which are relatively straightforward consequences of

existing results, e.g., the fact that Dh-metric balls are Euclidean closed and every filled Dh-metric ball

contains a Euclidean ball with the same center point. In Section 3.2, we will prove a technical lemma

which will be a key tool in our proofs: basically, it says that points on the boundary of a filled Dh-metric

ball can be surrounded by paths with small Dh-lengths (Lemma 3.6). Using this lemma, in Section 3.3

we will prove a lower bound for the Euclidean distance between the boundaries of two filled metric balls

with the same center point. Finally, in Section 3.4 we will prove Theorem 1.5 and part of Theorem 1.4.

3.1. Basic facts about the LQG metric. Before proving our main results for LQG metric ball boundaries,

we will record some facts about Dh which are easy consequences of the axioms from Definition 2.3 and

the estimates from Section 2.3. For our first statement, we recall that ∂ always denotes the boundary with

respect to the Euclidean topology.

Lemma 3.1. Almost surely, for each x ∈ C, each y ∈ C ∪ {∞}, and each s ∈ (0, Dh(x, y)), the ordinary

metric ball Bs(x) and the filled metric ball By,•
s (x) are both Euclidean-closed and ∂By,•

s (x)¢ Bs(x).

Proof. The function z 7→ Dh(x, z) is lower semicontinuous, so if zn is a sequence of points in Bs(x) with

|zn − z| → 0, then Dh(x, z)f lim infn→∞ Dh(x, zn)f s, so z ∈ Bs(x). Hence Bs(x) is Euclidean-closed.

Consequently, each connected component of C \Bs(x) is Euclidean-open. In particular, the connected

component of C \Bs(x) containing y, namely C \By,•
s (x), is Euclidean-open, so B

y,•
s (x) is Euclidean-

closed. Since Bs(x) is Euclidean-closed, it contains the boundary of each of its complementary connected

components. In particular, ∂B
y,•
s (x)¢ Bs(x). □

Our next several lemmas are based on the following straightforward consequence of Lemma 2.12; see

[34, Proposition 1.13] for a proof.

Lemma 3.2 [34]. Almost surely, for each nonsingular point z ∈ C there is a sequence of disjoint

Dh-continuous loops {Ãn}n∈N, each of which separates a neighborhood of z from ∞, such that the

Euclidean radius of Ãn , the Dh-length of Ãn , and the Dh-distance from z to Ãn each tend to zero as n → ∞.
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Since the set of singular points is a.s. Euclidean-dense, a.s. every Dh-metric ball has empty Euclidean

interior. In contrast, the following lemma tells us that a filled Dh-metric ball a.s. contains a Euclidean

ball with the same center.

Lemma 3.3. Almost surely, for each nonsingular point x ∈C, each y ∈C∪{∞}, and each s ∈(0, Dh(x, y)),

the filled Dh-metric ball By,•
s (x) contains a Euclidean ball centered at x with positive radius.

Proof. Let {Ãn}n∈N be a sequence of loops surrounding x as in Lemma 3.2. Let P be a Dh-geodesic

from x to y. The Euclidean radii and the Dh-lengths of the Ãn’s shrink to zero as n → ∞ and P is

Euclidean continuous. Hence a.s. for each sufficiently large n ∈ N, the loop Ãn disconnects x from y,

the Dh-length of Ãn is less than s/2, and P hits Ãn before time s/2. This shows that Ãn is contained in

Bs(x), so Ãn ¢ B
y,•
s (x). Since Ãn disconnects a Euclidean ball of positive radius centered at x from y,

this gives the lemma statement. □

For our next lemma, we recall that ∂ always denotes the boundary with respect to the Euclidean

topology.

Lemma 3.4. Almost surely, for each nonsingular point x ∈C, each y ∈C∪{∞}, and each s ∈(0, Dh(x, y)),

Dh(x, z)= s for all z ∈ ∂By,•
s (x). (3-1)

Furthermore, the Euclidean boundary ∂By,•
s (x) is equal to the Dh-boundary of By,•

s (x).

Proof. By Lemma 3.1, a.s. for each x, y, s as in the lemma statement we have ∂B
y,•
s (x) ¢ Bs(x), so

Dh(x, z)f s for each z ∈ ∂By,•
s (x). We need to prove the reverse inequality. To this end, we fix x, y, s as

in the lemma statement. All statements are required to hold for all choices of x, y, s simultaneously.

Let z ∈ ∂Bs(x). Then Dh(x, z) f s <∞ so z is not a singular point. Let {Ãn}n∈N be a sequence of

disjoint Dh-continuous loops surrounding z as in Lemma 3.2. Since Dh(x, w)f s < Dh(x, y) for each

w ∈ ∂By,•
s (x) and ∂B

y,•
s (x) is Euclidean-closed, ∂B

y,•
s (x) lies at positive Euclidean distance from y. The

Euclidean radius of Ãn tends to zero as n → ∞ and each Ãn disconnects a neighborhood of z from ∞.

Hence for each large enough n ∈ N, y lies in the unbounded complementary connected component of Ãn ,

and hence Ãn disconnects a neighborhood of z from y.

If Dh(x, z) < s, then since the Dh-length of Ãn and the Dh-distance from z to Ãn both tend to zero as

n → ∞, the triangle inequality shows that Ãn ¢ Bs(x) for each large enough n ∈ N. But, Ãn disconnects

a neighborhood of z from y for each large enough n, so if Dh(x, z) < s then z must be in the interior of

B
y,•
s (x), not in ∂B

y,•
s (x). We thus obtain (3-1).

Since ∂B
y,•
s (x) ¢ Bs(x) ¢ B

y,•
s (x) and the Dh-boundary of any set is contained in its Euclidean

boundary, to get the last statement of the lemma, we need to show that each point z ∈ ∂By,•
s (x) is a

Dh-accumulation point of C \By,•
s (x). Since the loop Ãn disconnects z from y for each large enough n, it

follows that Ãn disconnects C \By,•
s (x) into at least two connected components for each large enough n.

Since C\By,•
s (x) is connected, it follows that Ãn contains a point zn ∈ C\By,•

s (x) for each large enough n.

Since the Dh-distance from z to Ãn and the Dh-length of Ãn each tend to zero as n → ∞, we infer that z

is a Dh-accumulation point of C \By,•
s (x), as required. □
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Finally, we record a more quantitative version of Lemma 3.3 which applies when the center point of

the filled metric ball is fixed. In the lemma statement and later in the paper, we will use the notation

Är = Dh(0, ∂Br (0))= inf{t > 0 : Bt ̸¢ Br (0)} for all r > 0. (3-2)

Lemma 3.5. Let r> 0 and let Är be as in (3-2). It holds with polynomially high probability as ε → 0,

uniformly over the choice of r, that Bεr(0)¢ B•
Är

.

Proof. Let · ∈ (0, ÀQ/100) be a small exponent. By Proposition 2.9, it holds with superpolynomially

high probability as ε→ 0, uniformly in r, that

Dh(across Ar/2,r(0))g ε· creÀhr(0) and Dh(around Aεr,2εr(0))f ε−·
cεreÀhεr(0). (3-3)

Here we use the notation for Dh-distances across and around Euclidean annuli as explained in Section 2.1.

By Proposition 2.10, we have cεr/cr = εÀQ+oε(1), with the rate of convergence of the oε(1) uniform

in r, so with superpolynomially high probability as ε→ 0,

Dh(around Aεr,2εr(0))

Dh(across Ar/2,r(0))
f εÀQ−2·+oε(1)eÀ(hεr(0)−hr(0)). (3-4)

The random variable hεr(0)− hr(0) is centered Gaussian with variance log ε−1, so by the Gaussian tail

bound it holds with polynomially high probability as ε→ 0 that eÀ(hεr(0)−hr(0)) f ε−(ÀQ−3· ). By (3-4), it

therefore holds with polynomially high probability as ε→ 0 that

Dh(around Aεr,2εr(0)) < Dh(across Ar/2,r(0)). (3-5)

Suppose that (3-5) holds. We claim that Bεr(0)¢B•
Är

. Let Ã be a path in Aεr,2εr(0) which disconnects

the inner and outer boundaries of Aεr,2εr(0) and has Dh-length less than Dh(across Ar/2,r(0)). Also

let P be a Dh-geodesic from 0 to a point of ∂B•
Är

∩∂Br(0). Then P hits Ã before leaving Br/2(0) and the

segment of P after it leaves Br/2(0) has Dh-length at least Dh(across Ar/2,r(0)). Since the Dh-length

of Ã is smaller than Dh(across Ar/2,r(0)), we get that Ã ¢ BÄr. Since Ã disconnects Bεr(0) from ∞, it

follows that Bεr(0)¢ B•
Är

. □

3.2. Regularity of distances on outer boundaries of metric balls. A key ingredient for many of the proofs

in this paper is the following lemma, which implies every point on the boundary of a filled Dh-metric

ball can be surrounded by a path of small Dh-length, in a sense which is uniform over all points in any

Euclidean-bounded open set (this is in contrast to Lemma 3.2, which does not give any uniform control

on the rate of convergence). A closely related lemma for LQG geodesics is proven in [34, Section 2.4].

Note that we include a Euclidean scale parameter r in the estimates of this subsection since we will need

them to be uniform across Euclidean scales.

Lemma 3.6. For each ³ ∈ (0, 1), there exists ´ = ´(³) > 0 such that for each Euclidean-bounded open

set U ¢ C and each r> 0, it holds with polynomially high probability as ε→ 0, uniformly over the choice

of r, that following is true. Suppose z ∈ rU , x, y ∈ C \ Bε³r(z), and s > 0 such that the boundary of the

filled metric ball ∂By,•
s (x) intersects Bεr(z). Then

Dh(around Aεr,ε³r(z))f ε´Dh(across Aεr,ε³r(z)). (3-6)
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x

∂By,•

s
(x)

z

Aϵr,ϵαr(z)

y

Figure 2. Illustration of the statement of Lemma 3.6. The lemma asserts that if z ∈ rU ,

x, y ∈ C \ Bε³r(z), and s > 0 such that the filled metric ball boundary ∂B
y,•
s (x) (red)

intersects Bεr(z), then we can find a path (blue) which disconnects the inner and outer

boundaries of the annulus Aεr,ε³r(z) which has short Dh-length, in the sense of (3-6).

See Figure 2 for an illustration of the statement of Lemma 3.6. We will most often use the following

slightly weaker estimate, which is an immediate consequence of Lemma 3.6.

Corollary 3.7. Suppose we are in the setting of Lemma 3.6. On the polynomially high probability event

of that lemma, the following is true. Suppose z ∈ rU , x, y ∈ C \ Bε³r(z), and s > 0 such that either

∂B
y,•
s (x)∩ Bεr(z) ̸= ∅ or there is a Dh-geodesic P from x to y with P(s) ∈ Bεr(z). Then

Dh(around Aεr,ε³r(z))f ε´s. (3-7)

Proof. If P is a Dh-geodesic from x to y, then necessarily P(s) ∈ ∂By,•
s (x), so if P(s) ∈ Bεr(z) then

∂B
y,•
s (x) ∩ Bεr(z) ̸= ∅. Hence, Lemma 3.6 implies that for z, x, y, s as in the lemma statement the

bound (3-6) is satisfied. Since any Dh-geodesic from x to a point of ∂B
•,y
s ∩ Bεr(z) has length s and must

cross between the inner and outer boundaries of Bε³r(z) \ Bεr(z), we see that (3-6) implies (3-7). □

Intuitively, the reason why Lemma 3.6 and Corollary 3.7 are true is that points on the boundary of a

filled Dh-metric ball or on a Dh-geodesic should be in some sense far from being singular points (since

they are at finite distance from at least one point). Hence it should be possible to find short paths which

disconnect small Euclidean neighborhoods of such points from ∞ (roughly speaking, this is a quantitative

version of Lemma 3.2).

Corollary 3.7 can be thought of as a substitute for the fact that for supercritical LQG (unlike in the

subcritical case) we do not know that the identity mapping (C, | · |)→ (C, Dh) is Hölder continuous. To

be more precise, the corollary tells us that points on the outer boundary of a filled Dh-metric ball or on a

Dh-geodesic can be surrounded by paths of small Euclidean size whose Dh-length is small. By forcing

these paths to cross other paths, we will be able to establish upper bounds for the Dh-distance between

points near filled metric ball boundaries or geodesics in terms of their Euclidean distance. Since many

estimates for the LQG metric only require us to work with points near filled metric ball boundaries or

geodesics, this will be a suitable substitute for Hölder continuity.
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The idea of the proof of Lemma 3.6 is to surround the Euclidean ball Bεr(z) by logarithmically many

disjoint concentric Euclidean annuli contained in Aεr,ε³r(z) with the property that the Dh-distances

around and across each of the annuli are comparable. This will be done using Lemma 2.12. We will order

these annuli from outside to inside. Using a deterministic lemma (see Lemma 3.9), we will argue that in

order for a filled metric ball boundary to intersect Bε(z), there must be at least one annulus such that the

Dh-distance around this annulus is smaller than a positive power of ε times the sum of the Dh-distances

across the subsequent annuli. This latter sum provides a lower bound for Dh(across Aεr,ε³r(z)).

Let us now construct the concentric annuli that we will work with. An annulus with aspect ratio 2 is

an open annulus of the form A = Ar,2r (z) for some z ∈ C and r > 0. For an annulus A with aspect ratio 2

and a number c > 0, we define

Ec(A) :=
{
Dh(around A)f (1/c)Dh(across A)

}
. (3-8)

Lemma 3.8. For each ³ ∈ (0, 1), there exists ¸ ∈ (0, 1 −³) and c ∈ (0, 1) such that for each Euclidean-

bounded open set U ¢ C and each r> 0, it holds with polynomially high probability as ε→ 0, uniformly

over the choice of r, that the following is true. For each z ∈ rU , there exist N := +¸ log ε−1, disjoint

concentric annuli A1, . . . , AN ¢ Aεr,ε³r(z) which each disconnects ∂Bεr(z) from ∂Bε³r(z) such that

Ec(An) occurs for each n = 1, . . . , N.

Proof. This is a straightforward consequence of the near-independence of the restriction of the GFF to

disjoint concentric annuli (Lemma 2.12) together with a union bound over points in an fine mesh of rU .

Let us now give the details.

For z ∈ C and k ∈ N, let Ak,ε(z) := A22kεr,22k+1εr(z). Note that the annuli Ak,ε(z) for different values

of k are disjoint and for each k, the region between the annuli Ak,ε(z) and Ak+1,ε(z) is the annulus

A22k+1εr,22k+2εr(z). Furthermore, if we set Kε :=
⌊

1
3

log2 ε
−(1−³)⌋ − 1, then

Ak,ε(z)¢ A2εr,ε³r/2(z) for all k ∈ [1, Kε]Z. (3-9)

The reason why we want 2εr and ε³r/2 instead of just εr and ε³r in (3-9) is that we will need to slightly

adjust the radii of our annuli when we pass from a statement for points in a fine mesh to a statement for

all points simultaneously.

By the definition (3-8) of Ec(Ak,ε(z)), this event is a.s. determined by the internal metric of Dh

on Ak,ε(z). By the locality and Weyl scaling properties of Dh (Axioms II and III), each of the events

Ec(Ak,ε(z)) is a.s. determined by the restriction of h to Ak,ε(z), viewed modulo additive constant. By the

translation invariance and tightness across scales properties of Dh (Axioms IV and V), for any p ∈ (0, 1)

we can find c = c(p) ∈ (0, 1) such that P[Ec(Ak,ε(z))] g p for each z ∈ C, k ∈ N, and ε > 0.

We may therefore apply Lemma 2.12 to find c ∈ (0, 1) and ¸ ∈ (0, 1 −³) such that for each z ∈ C, it

holds with probability at least 1− Oε(ε
3) that there are at least ¸ log ε−1 values of k ∈ [1, Kε]Z for which

Ec(Aε,k(z)) occurs. By a union bound, it holds with polynomially high probability as ε→ 0 that for each

z ∈
(

1
4
εrZ2

)
∩ Bεr(rU ), there are at least ¸ log ε−1 values of k ∈ [1, Kε]Z for which Ec(Aε,k(z)) occurs.

Henceforth assume that this is the case.
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Let z ∈ U . We can find z′ ∈
(

1
4
εrZ2

)
∩ Bεr(U ) such that z ∈ Bεr/2(z′). Then Bεr(z)¢ B2εr(z′) and

Bε³r/2(z′)¢ Bε³r(z). By (3-9), the conditions in the lemma statement hold with A1, . . . , AN chosen to

be N = +¸ log ε−1, of the annuli Ak,ε(z′) for k ∈ [1, Kε]Z for which Ec(Ak,ε(z′)) occurs. □

The following deterministic lemma will allow us to choose one of the annuli An from Lemma 3.8 in

such a way that Dh(around An) is much smaller than
∑N

j=n+1 Dh(across A j ). See [34, Lemma 2.20]

for a proof.

Lemma 3.9. Let X1, . . . , X N be nonnegative real numbers. For each c > 0,

#
{

n ∈ [1, N ]Z : Xn g c
N∑

j=n+1

X j

}
f max

{
1,

log
(

1
X N

maxn∈[1,N ]Z
Xn

)

log(c + 1)
−

log c

log(c + 1)
+ 2

}
. (3-10)

Proof of Lemma 3.6. Let ³ > 0 and let ¸ and c be chosen as in Lemma 3.8. Also fix a Euclidean-bounded

open set U ¢ C and a number r> 0. Throughout the proof, we work on the polynomially high probability

event of Lemma 3.8.

Let z ∈ rU and let A1, . . . , AN ¢ Aεr,ε³r(z) be the disjoint concentric annuli from Lemma 3.8,

numbered from outside in. For n ∈ [1, N ]Z, define

Xn := Dh(around An), (3-11)

so that by the definition of Ec(An),

Xn f (1/c)Dh(across An). (3-12)

Suppose that there exists x, y ∈ C\Bε³r(z) and s> 0 such that ∂B
y,•
s (x)∩Bεr(z) ̸=∅. We need to show

that (3-6) holds for an appropriate choice of ´. With a view toward applying Lemma 3.9, we claim that

Xn g c
N∑

j=n+1

X j for all n ∈ [1, N − 1]Z. (3-13)

Indeed, suppose by way of contradiction that (3-13) does not hold for some n ∈ [1, N − 1]Z, i.e.,

Xn < c
∑N

j=n+1 X j . By (3-12), for this choice of n,

Dh(around An) <
N∑

j=n+1

Dh(across A j )f Dh(An, Bεr(z)), (3-14)

where the last inequality follows since the A j ’s are disjoint, numbered from outside in, and surround Bεr(z).

Let Ã be a path in An which disconnects the inner and outer boundaries of An and has Dh-length strictly

less than Dh(An, Bεr(z)).

Letw∈ ∂By,•
s (x)∩Bεr(z). By Lemma 3.4, Dh(x, w)= s. There is a Dh-geodesic P : [0, s]→ C from x

to w. Let Ä be the first time that P hits Ã . Since P is a geodesic, the Dh-distance from x to each point

of Ã is at most Ä + (Dh-length of Ã), which by the preceding paragraph is less than Ä + Dh(An, Bεr(z)).

On the other hand, P must travel from An to Bεr(z) after time Ä , so s g Ä+ Dh(An, Bεr(z)). Therefore,

each point of Ã lies at Dh-distance less than s from x , so Ã ¢ Bs(x). Since x, y /∈ Bε³r(z) and Ã is
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contained in Bε³r(z) and disconnects Bεr(z) from ∂Bε³r(z), we get that Bs(x) disconnects Bεr(z) from x

and y. Therefore, Bεr(z)∩B
y,•
s (x)= ∅, which is our desired contradiction. Hence (3-13) holds.

By (3-13), there are N values of n ∈[1, N ]Z for which Xn g c
∑N

j=n+1 X j . Therefore, Lemma 3.9 gives

log
(

1
X N

maxn∈[1,N ]Z
Xn

)

log(c + 1)
g N − O(1), (3-15)

where the O(1) denotes a constant depending only on c (not on ε). Therefore,

Dh(around Bε³r(z) \ Bεr(z))f X N (by the definition (3-11) of Xn)

f (c + 1)−N+O(1) max
n∈[1,N ]Z

Xn (by rearranging (3-15))

f O(1)(c + 1)−N Dh(across Aεr,ε³r(z)) (by (3-12)).

(3-16)

Since N = +¸ log ε−1,, for small enough ε the quantity O(1)(c + 1)−N is bounded above by ε´ for an

appropriate choice of ´ > 0. This gives (3-6). □

3.3. Lower bound for Dh-distances across LQG annuli. An easy consequence of Lemma 3.6 is the

following lemma, which gives a polynomial lower bound for the Euclidean distance between the outer

boundaries of concentric filled Dh-metric balls. This lemma will play an important role in the proof of

Theorem 1.5 and in the proof of confluence of geodesics.

Lemma 3.10. There exists ´ > 0 such that the following is true. Fix b > 1 and for r > 0 let Är =
Dh(0, ∂Br(0)) be as in (3-2). It holds with probability tending to 1 as ¶→ 0, uniformly in the choice of r,

that for each s, t ∈ [Är, Äbr] with |s − t | f ¶creÀhr(0),

dist(∂B•
s, ∂B

•
t )g

(
|s − t |
creÀhr(0)

)1/´

r, (3-17)

where dist denotes Euclidean distance.

Note that in the subcritical case, (3-17) is immediate from the local Hölder continuity of Dh with

respect to the Euclidean metric [12, Theorem 1.7], so the lemma has nontrivial content only in the case

when À g Àcrit. We will deduce Lemma 3.10 from the following more quantitative statement, which allows

for a general choice of starting points and target points for the filled metric balls. For the statement, we

recall the notation Br (X)=
⋃

z∈X Br (z) for the Euclidean r -neighborhood of a set X ¢ C.

Lemma 3.11. For each ³ ∈ (0, 1), there exists ´ = ´(³) > 0 such that the following is true. Let

U ¢ C be a Euclidean-bounded open set and let r > 0. With polynomially high probability as ε → 0,

uniformly over the choice of r, it holds for each nonsingular point x ∈ C, each y ∈ C ∪ {∞}, and each

s ∈ [εcreÀhr(0), Dh(x, y)] that

dist
(
∂By,•

s (x)∩ (rU \ Bε³/´r({x, y})), ∂By,•
(1−ε)s(x)

)
g ε1/´

r, (3-18)

where dist denotes Euclidean distance, we define Bε³/´ ({x,∞})= Bε³/´ (x), and we make the convention

that the distance from any set to the empty set is ∞ (which is consistent with the convention that the

infimum of the empty set is ∞).
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Proof. Let ˜́ = ˜́(³) > 0 be the parameter ´ from Corollary 3.7 and let ´ = ˜́/2. By Corollary 3.7

(applied with ε1/´ instead of ε), it holds with polynomially high probability as ε→ 0 that for each x ∈ C,

each y ∈ C ∪ {∞}, each s ∈ [0, Dh(x, y)], and each z ∈ ∂By,•
s (x)∩ (rU \ Bε³/´r({x, y})),

Dh(around Aε1/´
r,ε³/´r(z))f ε2s. (3-19)

We henceforth work on the polynomially high probability event that this is the case.

Let x, y, s, z be as above with x nonsingular and let Ã be a path in Aε1/´
r,ε³/´r(z) which disconnects the

inner and outer boundaries of this annulus and has Dh-length at most (ε/2)s. If ∂B
y,•
(1−ε)s(x)∩Bε1/´

r
(z) ̸=∅,

then since x, y /∈ Bε³/´r(z) it must be the case that each of ∂B
y,•
(1−ε)s(x) and ∂B

y,•
s (x) intersects Ã . This

implies that the Dh-distance between ∂B
y,•
(1−ε)s(x) and ∂B

y,•
s (x) is at most (ε/2)s. This cannot be the

case since Lemma 3.4 implies the Dh-distance between ∂B
y,•
(1−ε)s(x) and ∂B

y,•
s (x) is εs. Therefore,

∂B
y,•
(1−ε)s(x)∩ Bε1/´

r
(z)= ∅, so (3-18) holds. □

Proof of Lemma 3.10. Let ´ be the parameter from Lemma 3.11 with ³ = 1/2. By Lemma 3.5, it holds

with probability tending to 1 as ¶ → 0 that B¶1/(2´)
r
(0)¢ B•

Är
, which means that also B¶1/(2´)

r
(0)¢ B•

s for

each s g Är. Furthermore, by tightness across scales (Axiom V) it holds with probability tending to 1 as

¶ → 0 that Är g ¶creÀhr(0). Hence with probability tending to 1 as ¶ → 0, we have

Är g ¶creÀhr(0) and ∂B•
s ∩ (Bbr(0) \ B¶1/(2´)

r
(0))= ∂B•

s

for each s ∈ [Är, Äbr].
We now apply Lemma 3.11 (with U = Bb(0)) and a union bound over dyadic values of ε, followed by

the estimate of the preceding paragraph, to get that with probability tending to 1 as ¶ → 0, the following

is true. For ε ∈ (0, ¶)∩ {2−k}k∈N and each s ∈ [Är, Äbr],

dist(∂B•
s, ∂B

•
(1−ε)s)g ε1/´

r. (3-20)

By Lemma 2.8, for any p ∈ (0, 1) we can find C = C(p, b) > 1 such that for each r> 0,

P
[
C−1

creÀhr(0) f Är f Äbr f CcreÀhr(0)
]
g p. (3-21)

Now suppose that the event in (3-21) holds and the event in (3-20) holds with C¶ in place of ¶, which

happens with probability at least p − o¶(1). By (3-21), for any s, t ∈ [Är, Äbr] with s − ¶creÀhr(0) f t f s,

we have t f (1 − ε)s for some dyadic ε ∈ (0,C¶) which satisfies

ε g
s − t

2s
g

1

2C

s − t

creÀhr(0)
. (3-22)

We conclude by combining (3-22) with (3-20), replacing ´ by a slightly smaller number to absorb the

factor of 1/(2C) into a small power of ε, and noting that the parameter p from (3-21) can be made

arbitrarily close to 1. □
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3.4. The metric net is finite-dimensional. We will now use Lemma 3.11 to prove Theorem 1.5. Since

we are proving an a.s. statement, we no longer need to include the Euclidean scale parameter r.

Proof of Theorem 1.5. We write dimh for Hausdorff dimension with respect to Dh . Fix a Euclidean-

bounded open set U ¢ C, a number r > 0, and numbers s2 > s1 > 0. By the countable stability of

Hausdorff dimension, it suffices to show that there exists 1 ∈ (0,∞) (not depending on U, r, s1, s2) such

that a.s. for each nonsingular point x ∈ U and each y ∈ C ∪ {∞},

dimh
(
(N y

s2
(x) \N y

s1
(x))∩ (U \ Br ({x, y}))

)
f1. (3-23)

See Figure 3 for an illustration of the proof. The idea is as follows. We consider the set of ε1/´ × ε1/´

squares with corners in ε1/´Z2 which intersect a neighborhood of U . By Proposition 2.9 and an estimate

for the maximum of the circle average process hε1/´ , each of these squares can be surrounded by a

path ÃS of Euclidean diameter comparable to ε1/´ whose Dh-length is at most a negative power of ε.

The number of Dh-balls of radius ε needed to cover each of these paths is at most a negative power of ε.

Using Lemma 3.11, we show that for each s ∈ [s1, s2], each Dh-geodesic from a point of ∂B
y,•
s (x) to x

must hit ÃS for one of the ε1/´ × ε1/´ squares S which intersects ∂B
y,•
s−ε(x), and it must do so before

time ε. This shows that the set in (3-23) is contained in the union of a polynomial (in ε) number of

Dh-balls of radius 2ε.

πSz

x∂By,•
s (x)

∂B
y,•
s−ε(x)

Figure 3. Illustration of the proof of Theorem 1.5. The figure shows a point z ∈ ∂By,•
s (x)

for some s ∈ [s1, s2] (red) and the subset of Sε consisting of squares S which intersect

∂B
y,•
s−ε(x) (pink). Thanks to Lemma 3.11, we can arrange that each of these squares

lies at Euclidean distance at least ε1/´ from ∂B
y,•
s . Moreover, using basic estimates for

Dh we can arrange that each square S is surrounded by a path ÃS ¢ Bε1/´ (S) \ S whose

Dh-length is bounded above by a negative power of ε (one such path is shown in purple).

Hence the number of Dh-balls needed to cover ÃS is at most a negative power of ε. If P
is a Dh-geodesic from 0 to z, then P([s − ε, s]) (red) must intersect ÃS for some S ∈ Sε,

so z is contained in the ε-neighborhood of one of the Dh-metric balls in our covering

of ÃS . This leads to an upper bound for the number of Dh-balls of radius 2ε needed to

cover the metric net.
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Step 1: regularity events. Let ˜́ > 0 be the parameter ´ from Lemma 3.11 with ³ = 1/2, say, and let

´ = ˜́/2. By Lemma 3.11, it holds with probability tending to 1 as ε→ 0 that for each nonsingular point

x ∈ C, each y ∈ C ∪ {∞}, and each s ∈ [s1, s2 ' Dh(x, y)],

dist
(
∂By,•

s (x)∩ (U \ Br ({x, y})), ∂By,•
s−ε(x)

)
g 4ε1/´ . (3-24)

Note that here we have used that s ∈ [s1, s2] to absorb an s-dependent constant factor into a power of ε.

Let Sε be the set of ε1/´×ε1/´ squares with corners in ε1/´Z2 which intersect the LQG s2-neighborhood

Bs2
(U ). For each S ∈ Sε, we define the annular region

AS := Bε1/´ (S) \ S. (3-25)

Since Bs2
(U ) is a.s. contained in some Euclidean-bounded open set, we can apply Proposition 2.9 and a

union bound over S ∈ Sε to get that with probability tending to 1 as ε→ 0,

Dh(around AS)f εoε(1)
cε1/´eÀh

ε1/´
(vS) for all S ∈ Sε, (3-26)

where vS is the center of S and the rate of convergence of the oε(1) is deterministic and uniform over

all S ∈ Sε.

The random variables eÀh
ε1/´

(vS) for S ∈ Sε are centered Gaussian with variances log ε−1/´+ Oε(1). By

the Gaussian tail bound and a union bound over Oε(ε
−2/´) squares, we get that with probability tending

to 1 as ε→ 0, we have hε1/´ (vS)f (2/´ + oε(1)) log ε−1 for each S ∈ Sε. By Proposition 2.10, we also

have cε1/´ = ε(1/´)ÀQ+oε(1). By plugging these estimates into (3-26), we get that with probability tending

to 1 as ε→ 0,

Dh(around AS)f ε−(1/´)(2−Q)+oε(1) for all S ∈ Sε, (3-27)

where the rate of convergence of the oε(1) is deterministic and uniform over all S ∈ Sε.

Henceforth assume that (3-24) and (3-27) both hold, which happens with probability tending to 1 as

ε → 0. We will prove an upper bound for the number of Dh-balls of radius ε needed to cover the set

on the left side of (3-23).

Step 2: defining a collection of Dh-metric balls. For S ∈ Sε, let ÃS be a path in AS which separates the

inner and outer boundaries of AS and which has Dh-length at most ε−(1/´)(2−Q)+oε(1) (such a path exists

by (3-27)). There is a set MS of #MS f ε−(1/´)(2−Q)−1+oε(1) Dh-metric balls of radius ε whose union

contains ÃS . Since #Sε = Oε(ε
−2/´), we have

#
( ⋃

S∈Sε
MS

)
f ε−1+oε(1) for 1= 1

´
(4 − Q)+ 1. (3-28)

By the definition of Hausdorff dimension, to prove (3-23) with 1 as in (3-28), it suffices to show

(continuing to assume (3-24) and (3-27)), that for each nonsingular point x ∈ C and y ∈ C ∪ {∞},

(N y
s2
(x) \N y

s1
(x))∩ (U \ Br ({x, y}))¢

⋃
S∈Sε

⋃
B∈MS

B
′, (3-29)

where B′ denotes the Dh-ball with the same center as B and twice the radius.
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Step 3: covering the metric net. To prove (3-29), let x ∈ C, y ∈ C ∪ {∞}, s ∈ [s1, Dh(x, y)' s2], and

z ∈ ∂By,•
s (x) ∩ (U \ Br ({x, y})). We need to show that z ∈ B′ for some B ∈

⋃
S∈Sε MS . Let P be a

Dh-geodesic from x to z. By Lemma 3.4, Dh(x, z)= s so P : [0, s] → C. We have P(s − ε) ∈ ∂By,•
s−ε(x).

Furthermore, since x ∈ U and s f s2, we have P(s − ε) ∈ Bs2
(U ), so there exists S ∈ Sε such that

P(s −ε) ∈ S. By (3-24), P(s −ε) lies at Euclidean distance at least 4ε1/´ from z = P(s), so z /∈ Bε1/´ (S).

Therefore, the path ÃS disconnects P(s − ε) from z, so P must cross ÃS between time s − ε and time s.

This implies that there is a point of ÃS which lies at Dh-distance at most ε from z. This point is contained

in B for one of the ε-balls B ∈ MS . Therefore, z ∈ B′, as required. □

Our proof of Theorem 1.5 also yields the following proposition, which is a slightly stronger version of

the compactness statement from Theorem 1.4.

Proposition 3.12. Almost surely, for each x ∈ C, each y ∈ C ∪ {∞}, and each 0< s1 < s2 < Dh(x, y),

the set N y
s2
(x) \N y

s1
(x) is precompact with respect to Dh (i.e., its Dh-closure is compact).

Proof. Let s2 > s1 > 0, let U ¢ C be a Euclidean-bounded open set, and let r > 0. The proof of

Theorem 1.5 shows there exists 1> 0 such that with probability tending to 1 as ε→ 0, it holds for each

x ∈ U and each y ∈ C∪{∞} that the set (N
y

s2
(x)\N y

s1
(x))∩ (U \ Br ({x, y})) can be covered by ε−1+oε(1)

Dh-balls of radius ε. Hence, a.s. there is a sequence εk → 0 (depending on U, r ) such that for each x, y

as above and each k ∈ N, this set can be covered by ε−21
k Dh-balls of radius εk .

Let {Un}n∈N be an increasing sequence of Euclidean-bounded open sets whose union is all of C

and let {rn}n∈N be a sequence of positive radii tending to zero. By the conclusion of the preceding

paragraph, a.s. for each n ∈ N there exists a sequence εn,k → 0 such that for each k ∈ N, each x ∈ Un ,

and each y ∈ C ∪ {∞}, the set (N
y

s2
(x) \N y

s1
(x))∩ (Un \ Brn ({x, y})) can be covered by ε−21

n,k Dh-balls

of radius εn,k .

If x is a singular point or y = x , then N
y

s2
(x)\N y

s1
(x)=∅, so we can assume without loss of generality

that x is nonsingular and y ̸= x . For each nonsingular x ∈ C and each y ∈ C ∪ {∞} with y ̸= x , the

set N
y

s2
(x) \ N

y
s1
(x) is Euclidean-bounded, so both x and this set are contained in Un for each large

enough n ∈ N. By Lemma 3.3, B
y,•
s1
(x) contains Brn (x) for each large enough n ∈ N, which implies that

N
y

s2
(x) \N y

s1
(x) is disjoint from Brn (x) for each large enough n ∈ N. Furthermore, if s2 < Dh(x, y) then

since B
y,•
s2
(x) £ N

y
s2
(x) \N y

s1
(x) is Euclidean-closed (Lemma 3.1) and does not contain y, this set lies

at positive Euclidean distance from y.

Hence, a.s. for each nonsingular x ∈ C and each y ∈ C ∪ {∞} with 0 < s2 < Dh(x, y), the set

N
y

s2
(x) \N y

s1
(x) is contained in Un \ Brn ({x, y}) for each large enough n ∈ N. Therefore, as shown above,

N
y

s2
(x) \N y

s1
(x) can be covered by finitely many Dh-balls of radius εn,k for each large enough n ∈ N and

each large enough k ∈ N. Hence N
y

s2
(x)\N y

s1
(x) is totally bounded with respect to Dh , hence precompact

with respect to Dh .

This proves the proposition for a deterministic choice of s1 and s2. Every interval [s1, s2] ¢ (0,∞)

is contained in [s ′
1, s ′

2] for some s ′
1, s ′

2 ∈ Q ∩ (0,∞) with s ′
1, s ′

2 arbitrarily close to s1, s2. This gives the

proposition statement in general. □
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4. Outer boundaries of LQG metric balls are Jordan curves

The goal of this section is to prove the following proposition, which is the missing ingredient needed to

prove Theorem 1.4.

Proposition 4.1. Almost surely, for each nonsingular point x ∈ C, each y ∈ C ∪ {∞}, and each

s ∈ (0, Dh(x, y)), the set ∂By,•
s (x) is a Jordan curve.

4.1. A criterion for a domain boundary to be a curve. In this subsection we will prove a general criterion

for the boundary of a planar domain to be a curve. Our criterion will be stated in terms of disconnecting

sets, defined as follows.

Definition 4.2. Let X, Y ¢ C and A1, A2 ¢ X . We say that Y disconnects A2 from A1 in X if the

following is true: A1 is disjoint from Y ; and any two points x ∈ A1 and y ∈ A2 \ Y lie in different

connected components of X \ Y .

We note that by definition Y disconnects any subset of Y ∩ X from any subset of X \ Y .

Proposition 4.3. Let U ¢ C be a domain containing 0, not all of C, such that ∂U is compact. We assume

that either U is bounded and simply connected; or U is unbounded and U ∪ {∞} is a simply connected

subset of the Riemann sphere. Suppose that for each ε > 0, there exists ¶ > 0 such that each subset of U

which can be disconnected from 0 in U by a set Y of Euclidean diameter at most ¶ with Y ∩ ∂U ̸= ∅ has

Euclidean diameter at most ε. Then ∂U is the image of a (not necessarily simple) curve.

The criterion of Proposition 4.3 is similar in spirit to the concept of ∂U being locally connected (see,

e.g., [36, Section 2.2]), which is a different condition that implies that ∂U is a curve. The reason why

we require that Y ∩ ∂U ̸= ∅ is to rule out the possibility that Y is a small loop surrounding 0, in which

case Y would disconnect most of U from 0.

For the proof of Proposition 4.3, we first need to recall some standard definitions from complex

analysis. See, e.g., [36] for more detail on these concepts. A crosscut of a domain U ¢ C is a simple

curve C : [0, 1] → U such that C(0),C(1) ∈ ∂U and C((0, 1))¢ U . If ∂U is bounded, we define a null

chain in U to be a sequence of crosscuts {Cn}n∈N with the following properties.

(i) Cn ∩ Cn+1 = ∅ for each n ∈ N.

(ii) Cn disconnects Cn+1 from C1 in U for each n ∈ N.

(iii) As n → ∞, the Euclidean diameter of Cn converges to zero.

If {Cn} and {C ′
n} are two null chains, we say that {Cn} and {C ′

n} are equivalent if for each large enough

m ∈ N, there exists n ∈ N for which C ′
m disconnects Cn from C1 in U and Cm disconnects C ′

n from C ′
1

in U . A prime end of ∂U is an equivalence class of null chains.

For a prime end p represented by a null chain {Cn}, we define Ap to be the intersection over all n ∈ N

of the closure of the set of points in U which are disconnected from C1 by Cn in U . Then Ap ¢ ∂U . We

call Ap the set of points corresponding to p.

In the next two lemmas, we assume that U is a domain satisfying the hypotheses of Proposition 4.3.
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Lemma 4.4. Each prime end of U corresponds to a single point of ∂U.

Proof. Let p be a prime end for U and let {Cn}n∈N be a null chain corresponding to p. By possibly

removing finitely many of the Cn’s, we can assume without loss of generality that C1 disconnects 0

from Cn for each n g 2. Since the diameter of Cn tends to zero as n → ∞, our assumption on U implies

that the diameter of the set of points in U which are disconnected from 0 in U by Cn , hence also its

closure, tends to zero as n → ∞. Hence the (decreasing) intersection of the closures of these sets has

diameter zero, so is a single point. □

In what follows, if U is unbounded we view ∞ as a point of U , so that by the Riemann mapping

theorem there exists a conformal map from the open unit disk D to U .

Lemma 4.5. Every conformal map Æ : D → U extends to a continuous map D → U.

Proof. By [36, Theorem 2.15] there is a bijection Æ̂ from ∂D to prime ends of U such that for each u ∈ ∂D

and each null chain {Cn}n∈N for the prime end Æ̂(u), { f −1(Cn)}n∈N is a null chain for u. By Lemma 4.4,

for each u ∈ ∂D the prime end Æ̂(u) corresponds to a single point of ∂U . Let Æ(u) be this point. We need

to show that Æ, thus extended, is continuous.

Obviously, Æ is continuous at each point of D, so consider a point u ∈ ∂D and a sequence {zk}k∈N in D

which converges to u. We will show that Æ(zk)→ Æ(u).

For this purpose let ε > 0 and let {Cn}n∈N be a null chain for the prime end Æ̂(u), as above. By

possibly removing one of the Cn’s, we can assume without loss of generality that 0 /∈ Cn for each n. By

[36, Proposition 2.12], each of the cross cuts Cn separates U into exactly two connected components.

Let Gn be the one of these connected components which does not contain 0. Then Æ(u) ∈ ∂Gn . Since the

Euclidean diameter of Cn tends to 0 as n → ∞, our hypothesis on U implies that the Euclidean diameter

of Gn , and hence also the Euclidean diameter of Gn , tends to 0 as n → ∞. Hence there is some n∗ ∈ N

such that for n g n∗, each point of Gn lies at Euclidean distance at most ε from Æ(u).

By the defining property of Æ̂, the sets Æ−1(Cn) are a null chain for the prime end u ∈ ∂D. In particular,

each Æ−1(Cn) separates D into two connected components, namely Æ−1(Gn) and Æ−1(U \ Gn). Each

prime end of U which does not correspond to a point of ∂Gn corresponds to a point which lies at positive

distance from Gn , so can be represented by a null chain whose cross cuts (except for their endpoints) are

contained in U \ Gn .

We claim that Æ(Æ−1(Gn)) ¢ Gn . Since Æ|D is a homeomorphism from D to U , we have that

Æ(Æ−1(Gn)∩D)¢ Gn . Now let w ∈ Æ−1(Gn)∩∂D and suppose by way of contradiction that Æ(w) /∈ Gn .

By the preceding paragraph there is a null chain {C̃n}n∈N for Æ(w) whose cross cuts (except for their

endpoints) are contained in U \Gn . But, then {Æ−1(C̃n)}n∈N is a null chain for w whose cross cuts (except

for their endpoints) are contained in Æ−1(U \ Gn), hence lie at positive distance from Æ−1(Gn). This

contradicts the fact that w ∈ Æ−1(Gn), as desired. Therefore, Æ(Æ−1(Gn))¢ Gn .

Recall the sequence zk → z from above. For each large enough k, zk is disconnected from Æ−1(0) in D

by Æ−1(Cn), so zk ∈ Æ−1(Gn). It therefore follows from the conclusion of the preceding paragraph that

for each such k, we have Æ(zk) ∈ Gn and hence |Æ(zk)−Æ(u)|< ε. Since ε is arbitrary, this gives the

continuity of Æ. □
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Proof of Proposition 4.3. Lemma 4.5 implies that ∂U is a curve, since it is the continuous image of ∂D

under Æ (in fact, the statement of Lemma 4.5 is equivalent to the statement that ∂U is a curve; see

[36, Theorem 2.1]). □

4.2. Proof of Proposition 4.1. In this subsection we will use Proposition 4.3 to prove Proposition 4.1.

Let us first introduce the domain U that we will work with. For each nonsingular point x ∈ C, each

y ∈ C ∪ {∞}, and each s ∈ (0, Dh(x, y)), we let

U y
s (x) := (connected component of the interior of By,•

s (x) which contains x). (4-1)

By Lemma 3.3, a.s. x lies in the interior of B
y,•
s (x) for every x, y, s as above. Hence, almost surely U y

s (x)

is well-defined for every such x, y, s.

Once we show that ∂B
y,•
s (x) is a Jordan curve, we will get that U y

s (x) is in fact the only connected

component of the interior of B
y,•
s (x). However, we do not rule out the possibility that the interior of

B
y,•
s (x) is not connected a priori. The following lemma will allow us to work with U y

s (x) instead of

B
y,•
s (x) throughout the proof of Proposition 4.1.

Lemma 4.6. Almost surely, for each nonsingular point x ∈C, each y ∈C∪{∞}, and each s ∈(0, Dh(x, y)),

the following is true, with U y
s (x) as in (4-1). We have ∂U y

s (x)= ∂U y
s (x)= ∂B

y,•
s (x) and U y

s (x) is simply

connected. Furthermore, each Dh-geodesic from x to a point of ∂By,•
s (x) is contained in U y

s (x) except for

its terminal endpoint.

Proof. All of the statements in the proof are required to hold a.s. for each x, y, s as in the lemma statement.

To prove that ∂U y
s (x)= ∂B

y,•
s (x), we first argue that ∂U y

s (x)¢ ∂B
y,•
s (x). Indeed, each z ∈ ∂U y

s (x) is an

accumulation point of U y
s (x) ¢ B

y,•
s (x), so in particular ∂U y

s (x) ¢ B
y,•
s (x). Hence it suffices to show

that if z is in the interior of B
y,•
s (x), then z /∈ ∂U y

s (x). Indeed, for such a z either z ∈ U y
s (x) or z belongs

to a connected component of the interior of B
y,•
s (x) other than U y

s (x). In the former case, z /∈ ∂U y
s (x)

since U y
s (x) is open. In the latter case, z /∈ U y

s (x) since the other connected components of the interior

of B
y,•
s (x) are open sets disjoint from U y

s (x), so they are also disjoint from ∂U y
s (x).

To prove that ∂B
y,•
s (x)¢ ∂U y

s (x), let z ∈ ∂By,•
s (x). By Lemma 3.4, Dh(x, z)= s. Let P : [0, s] → C

be a Dh-geodesic from x to z. Then P ¢ B
y,•
s (x). Furthermore, for t < s we have Dh(x, P(t))= t , so

Lemma 3.4 implies that P(t) /∈ ∂By,•
s (x). Therefore, P([0, s)) is contained in the interior of B

y,•
s (x) and

hence P([0, s))¢ U y
s (x). This shows that z is an accumulation point of U y

s (x), so z ∈ ∂U y
s (x).

We have shown that ∂B
y,•
s (x)= ∂U y

s (x). Since U y
s (x)¢ U y

s (x)¢B
y,•
s (x), we have ∂U y

s (x)= ∂By,•
s (x).

The argument in the second paragraph of the proof shows that each Dh-geodesic from x to a point of

∂B
y,•
s (x)= ∂U y

s (x) is contained in U y
s (x) except for its terminal endpoint.

Since U y
s (x) is connected, to show that U y

s (x) is simply connected, it suffices to show that C \ U y
s (x)

is connected. Let V be the set of connected components of the interior of B
y,•
s (x) other than U y

s (x) (we

will eventually show that V = ∅, but we do not know this yet). We can write C \ U y
s (x) as the union of

C \By,•
s (x) and the sets V for V ∈ V . Each of the sets C \By,•

s (x) and V is the closure of a connected set,

so is connected. Furthermore, each ∂V for V ¢ V is contained in ∂B
y,•
s (x) (by the same argument that

we used for U y
s (x) above), which in turn is contained in C \By,•

s (x). Hence C \ U y
s (x) is the union of

connected sets which all intersect a common connected set, so is connected. □
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The set U y
s (x) contains points z with Dh(x, z) > s. For such points z, it is possible that a Dh-geodesic

from x to z intersects ∂U y
s (x). Since we will be interested in sets which are disconnected from x in

U y
s (x) (see Proposition 4.3), it is important for us to work with paths which are contained in U y

s (x). The

following lemma will allow us to do so.

Lemma 4.7. Almost surely, for each nonsingular point x ∈C, each y ∈C∪{∞}, and each s ∈ (0, Dh(x, y)),

the following is true. For each z ∈ U y
s (x) and each ¶ > 0, there is a path in U y

s (x) from x to z with

Dh-length at most Dh(x, z)+ ¶.

Proof. See Figure 4 for an illustration of the proof. The statement is vacuous if z is a singular point (i.e.,

Dh(x, z)= ∞), so assume that z is not a singular point.

Let P be a Dh-geodesic from x to z. If t := Dh(x, z)f s, then P ¢Bs(x)¢B
y,•
s (x). Furthermore, since

Dh(x, w)= s g t for each w ∈ ∂By,•
s (x) (Lemma 3.4), P([0, t)) is contained in the interior of B

y,•
s (x).

Since P(t)= z ∈ U y
s (x), we get that P is contained in the interior of B

y,•
s (x). By the definition (4-1) of

U y
s (x), it follows that P ¢ U y

s (x).

Hence we only need to treat the case when Dh(x, z) > s. By Lemma 3.4, the path P can hit ∂B
y,•
s (x)

at most once, namely at time s. Consequently, P cannot exit and subsequently reenter B
y,•
s (x), so

P ¢ B
y,•
s (x). Furthermore, P(t) is contained in the interior of B

y,•
s (x) for each t ̸= s.

If P(s) /∈ ∂By,•
s (x), then we are done so we can assume without loss of generality that P(s) ∈ ∂By,•

s (x).

Since U y
s (x) is open and connected, hence path connected, we can find a simple path P ′ in U y

s (x) from x

to z (we make no assumption on the Dh-length of P ′). In fact, since U y
s (x) is homeomorphic to the disk

and P is a simple path, we can arrange that P ′ does not intersect P except at x and z. Let V be the

unique bounded complementary connected component of C \ (P ∪ P ′). Then V is a Jordan domain and

P(s) ∈ ∂V . Furthermore, ∂V ¢ B
y,•
s (x), so each point of V is disconnected from y by B

y,•
s (x). Hence

V ¢ B
y,•
s (x). In fact, ∂V \ {P(s)} is contained in the interior of B

y,•
s (x), so it follows that V \ {P(s)}

is contained in the interior of B
y,•
s (x). Since V \ {P(s)} is connected and contains x it follows that

V \ {P(s)} ¢ U y
s (x).

∂By,•

s
(x) = ∂Uy

s
(x)

x

z

P

P ′

P (s)

V πn

Figure 4. Illustration of the proof of Lemma 4.7. The path P is a Dh-geodesic from x
to z. If P(s) ∈ ∂U y

s (x), we replace a segment of P by a segment of the small loop Ã to

get a path from x to z which is contained in U y
s (x) and which is not much longer than P .
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By Lemma 3.2, there is a sequence of disjoint Dh-continuous loops {Ãn}n∈N, each of which separates

a neighborhood of P(s) from ∞, such that the Euclidean radius of Ãn , the Dh-length of Ãn , and the

Dh-distance from z to Ãn each tend to zero as n → ∞. If n ∈ N is chosen to be sufficiently large, then

Ãn is disjoint from P ′, the Dh-length of Ãn is at most ¶, and there is a segment ¸n of Ãn which is a

crosscut of V (i.e., it is contained in V except for its endpoints). The segment ¸n joins P(t1) to P(t2)

for some t1 < s < t2. Let P̃ be the concatenation of P|[0,t1], ¸n , and P|[t2,Dh(x,z)]. Then P̃ is a path in

V \ {P(s)} from x to z with Dh-length at most Dh(x, z)+ ¶. By the preceding paragraph, P̃ is contained

in U y
s (x). □

We will now check the criterion of Proposition 4.3 for the domain U y
s (x).

Lemma 4.8. There exists ¹ > 1 such that a.s. for each nonsingular point x ∈ C, each y ∈ C ∪ {∞}, and

each s ∈ (0, Dh(x, y)), there exists a random ε = ε(x, y, s) > 0 with the following property. For each

ε ∈ (0, ε], each set A ¢ U y
s (x) which can be disconnected from x in U y

s (x) by a set Y of Euclidean

diameter at most ε¹ which intersects ∂U y
s (x) has Euclidean diameter at most ε.

Proof. See Figure 5 for an illustration of the proof.

∂By,•
s (x) = ∂Uy

s (x)

x Bεθ (z)

z

π

A
w

P (τ)

P

∂By,•
s (x) = ∂Uy

s (x)

x Bεθ (z)

z

π

A
w

P (τ)

∂V

Case 1: Dh(x,w) ≤ s+ 2εβθs Case 2: Dh(x,w) > s+ 2εβθs

Figure 5. Illustration of the proof of Lemma 4.8. The red set A ¢ U y
s (x) is disconnected

from x in U y
s (x) by the Euclidean ball Bε¹ (z). Using Corollary 3.7, we produce a path Ã

(purple) disconnecting the inner and outer boundaries of the annulus Aε¹ ,ε¹/2(z) with

Dh-length at most ε´¹ s. We seek to bound the Euclidean distance from a point w ∈ A
to Bε¹ (z). The left panel shows the case when Dh(x, w) f s + 2ε´¹ s. In this case,

Lemma 4.7 gives a path P from x to w whose Dh-length is at most s + 3ε´¹ s. The

path P must hit Ã , say at a time Ä . Our upper bound for the Dh-length of Ã shows

that Dh(x, w)− Ä f 4ε´¹ s. Using a Hölder continuity bound for the Euclidean metric

with respect to Dh (Proposition 2.11), we then obtain an upper bound for the Euclidean

diameter of P([Ä, Dh(x, w)]), which then gives an upper bound for the Euclidean distance

fromw to Bε¹ (z). The right panel shows the case when Dh(x, w)> s+2ε´¹ s. In this case,

we consider the complementary connected component V of the ball Bs+2ε´¹ s(x) with

w ∈ V . We bound the Dh-distance from x to Bε¹ (z) in terms of supu∈∂V dist(u, Bε¹ (z)),
then bound this last quantity using the previous case.
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Let ¹ > 1 to be chosen later. We will first state some estimates which hold a.s. for each x, y, s as in

the lemma statement and each small enough ε > 0 (depending on x, y, s). We will then truncate on the

event that these estimates are satisfied and show that the conclusion of the lemma statement is satisfied.

Almost surely, for each s > 0 and each x ∈ C, the Dh-ball Bs(x) is Euclidean-bounded, so its Euclidean

1-neighborhood B1(Bs(x)) is also Euclidean-bounded. We note that this latter set contains every point

which lies at Euclidean distance less than 1 from ∂B
y,•
s (x)=∂U y

s (x) (see Lemma 4.6) for each y ∈C∪{∞}.
If we let {Vn}n∈N be an increasing sequence of Euclidean-bounded open sets whose union is all of C,

then a.s. for each x ∈ C and each s > 0 we have B1(Bs(x))¢ Vn for large enough n ∈ N. Furthermore, if

y ∈ C ∪ {∞} and s ∈ (0, Dh(x, y)), then x and y each lie at positive Euclidean distance from ∂B
y,•
s (x)

(see Lemma 3.3). We may therefore apply Corollary 3.7 (with ³ = 1/2, ε¹ instead of ε, and U = Vn),

then send n → ∞, to get that there exists ´ > 0 such that a.s. for each x, y, s as in the lemma statement,

it holds for small enough ε > 0 that

Dh(around Aε¹ ,ε¹/2(z))f ε´¹ s for all z ∈ ∂By,•
s (x). (4-2)

By Proposition 2.11 (again applied to each of the sets Vn above), if Ç ∈ (0, (À(Q + 2))−1), then for

each x ∈ C and each s > 0, it is a.s. the case that for each small enough ε > 0,

|z −w| f εÇ´¹ sÇ for all z, w ∈ B1(Bs(x)) with Dh(z, w)f 4ε´¹ s. (4-3)

By Lemma 3.3, it is a.s. the case that for each x, y, s as in the lemma statement and each small

enough ε > 0,

B4ε¹/2(x)¢ B
y,•
s (x). (4-4)

By the definition (4-1) of U y
s (x), we see that (4-4) implies that also B4ε¹/2(x)¢ U y

s (x).

We henceforth work on the full-probability event that for each x, y, s as in the lemma statement, (4-2),

(4-3), and (4-4) all hold each small enough ε > 0. We will show that the lemma statement holds provided

¹ > max{2, 1/(´Ç)}. To see this, let x, y, s be as in the lemma statement, assume that ε > 0 is small

enough that the above three estimates hold. Let A ¢ U y
s (x) be a set which can be disconnected from x in

U y
s (x) by a set Y of Euclidean diameter at most ε¹ which intersects ∂U y

s (x). We claim that the Euclidean

diameter of A is at most ε.

Choose z ∈ Y ∩ ∂U y
s (x). Then Y ¢ Bε¹ (z) so A is disconnected from x in U y

s (x) by Bε¹ (z). We can

assume without loss of generality that A ̸¢ Bε¹/2(z) (otherwise, the Euclidean diameter of A is at most

ε¹/2 < ε). Furthermore, we have z ∈ ∂U y
s (x)¢ B1(Bs(x)) and by (4-4), the Euclidean distance from x to

∂U y
s (x)= ∂B

y,•
s (x) is at least 4ε¹/2, so x /∈ Bε¹/2(z).

The estimate (4-2) implies that there is a path Ã in Aε¹ ,ε¹/2(z) which disconnects the inner and outer

boundaries of Aε¹ ,ε¹/2(z) and satisfies

(Dh-length of Ã)f ε´¹ s. (4-5)

Since z ∈ ∂By,•
s (x), the path Ã intersects ∂U y

s (x)= ∂B
y,•
s (x). So,

Dh(u, ∂B
y,•
s (x))f ε´¹ s for all u ∈ Ã. (4-6)
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We claim that for each w ∈ A \ Bε¹/2(z),

dist(w, Bε¹/2(z))f ε/4, (4-7)

where dist denotes Euclidean distance. Once (4-7) is established, we will obtain that the Euclidean

diameter of A is at most ε/2 + 2ε¹/2 f ε, as desired. To prove (4-7), we treat two cases depending on the

value of Dh(x, w).

Case 1: Dh(x, w)f s + 2ε´¹ s. By Lemma 4.7, there is a path P from x to w in U y
s (x) with Dh-length

T f Dh(x, w)+ ε´¹ s. We take P to be parametrized by its Dh-length. By our choice of z, P passes

through Bε¹ (z). Since x, w /∈ Bε¹/2(z), P must hit the path Ã . Let Ä be the first time that P hits Ã .

By (4-6), Dh(P(Ä ), ∂B
y,•
s (x))f ε´¹ s.

Since each point of ∂B
y,•
s (x) lies at Dh-distance s from x (Lemma 3.4), this implies that Ä g s − ε´¹ s

and hence that

T − Ä f T − s + ε´¹ s f Dh(x, w)− s + 2ε´¹ s f 4ε´¹ s.

By (4-3), if we let

Ã := s ' inf{t > Ä : P(t) /∈ B1(∂B
y,•
s (x))}

then the Euclidean diameter of P([Ä, Ã ]) is at most εÇ´¹ sÇ , which by our choice of ¹ is at most ε/4

(provided ε is small enough).

Since P(Ä ) ∈ Ã and Ã ¢ Bε¹/2(∂B
y,•
s (x)), each point of P([Ä, Ã ]) lies at Euclidean distance at most

ε¹/2 + ε/4 < 1 from ∂B
y,•
s (x). Therefore, Ã = Dh(x, w) and P(Ã ) = w. Hence w lies at Euclidean

distance at most ε/4 from Bε¹/2(z), as required.

Case 2: Dh(x, w) > s + 2ε´¹ s. Let V be the connected component of C \Bs+2ε´¹ s(x) which contains w.

Then V is contained in C \Bw,•s (x), which is the connected component of C \Bs(x) which contains w.

By Lemmas 3.1 and 3.4, ∂V = ∂B
w,•
s+2ε´¹ s(x) lies at positive Euclidean distance from ∂Bw,•s (x) and hence

also from Bs(x). It follows that V lies at positive Euclidean distance from ∂B
y,•
s (x), so V is contained in

the interior of B
y,•
s (x). Since V is connected and w ∈ U y

s (x), we have V ¢ U y
s (x).

We claim that V is disjoint from Bε¹ (z). Indeed, if V intersects Bε¹ (z), then since w ∈ V \ Bε¹/2(z)

and V is connected, it must be the case that V intersects the inner and outer boundaries of the annulus

Aε¹ ,ε¹/2(z). Hence V intersects Ã . By (4-6), the Dh-distance from V to ∂B
y,•
s (x) is at most ε´¹ s, so

the Dh-distance from V to x is at most s + ε´¹ s. But, by Lemma 3.4 (applied to ∂B
w,•
s+2ε´¹ s(x)), the

Dh-distance from V to x is equal to s + 2ε´¹ s, which is a contradiction.

Since V is connected, w ∈ V , and w is disconnected from x by Bε¹ (z) in U y
s (x), we get that V is

disconnected from x by Bε¹ (z) in U y
s (x).

Let V∞ = C \B•
s+2ε´¹ s(x) be the unbounded connected component of C \Bs+2ε´¹ s(x). We will now

reduce to the case when V ̸= V∞. See Figure 6 for an illustration of this part of the argument. Obviously, if

V∞ ̸¢U y
s (x), then V ̸= V∞, so we can assume that V∞ ¢U y

s (x) (which implies that U y
s (x) is unbounded).

Then C \B•
2s(x)¢ V∞ ¢ U y

s (x). We can choose a path 5 in U y
s (x) from x to a point of C \B•

2s(x) in a

manner which depends only on U y
s (x) and C\B•

2s(x) (not on ε). Let ε0 be the Euclidean distance from 5

to ∂U y
s (x). Then ε0 is a random number depending on x, y, s (not on ε). If ε¹ < ε0 then the path 5
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y

C \ By,•

s
(x)

V∞ = C \ B•

s+2εβθ (x)
C \ B•

2s(x)

x

Figure 6. Illustration of how we reduce to the case when V ̸= V∞ in the proof of

Lemma 4.8. Here we have shown the case when U y
s (x) (the union of the pink, green, and

blue regions) is unbounded. The set V∞ is the union of the green and blue regions. We can

choose a path 5 (red) in U y
s (x) from x to the blue region C \B•

2s(x) in a manner which

does not depend on ε. The Euclidean distance from 5 to ∂U y
s (x) is a positive constant

ε0 > 0 which does not depend on ε. Hence, if ε¹ < ε0 then C \B•
2s(x) is not disconnected

from x in U y
s (x) by Bε¹ (z). Since C \B•

2s(x)¢ V∞, the same is true for V∞. Since V is

disconnected from x in U y
s (x) by Bε¹ (z), we infer that if ε¹ < ε0, then V ̸= V∞.

cannot intersect Bε¹ (z). Hence if ε¹ < ε0, then C\B•
2s(x) is not disconnected from x in U y

s (x) by Bε¹ (z).

Since C \ B•
2s(x) ¢ V∞ and V is disconnected from x in U y

s (x) by Bε¹ (z) (as explained above), this

implies that so long as ε < ε0, we have V ̸= V∞. We henceforth assume that ε < ε0, so that V is compact.

The Euclidean-furthest point of V from Bε¹ (z) must lie on ∂V , so since w ∈ V we have

dist(w, Bε¹ (z))f sup
u∈∂V

dist(u, Bε¹ (z)).

Each point of ∂V lies at Dh-distance s + 2ε´¹ s from x , so we can apply Case 1 with ∂V in place of A

to get that supu∈∂V dist(u, Bε¹ (z))f ε/4. This yields (4-7). □

We can now apply Proposition 4.3 to get the following.

Lemma 4.9. Almost surely, for each nonsingular point x ∈C, each y ∈C∪{∞}, and each s ∈(0, Dh(x, y))

the set ∂By,•
s (x) is the image of a (not necessarily simple) curve.

Proof. By Lemma 4.6, ∂B
y,•
s (x)= ∂U y

s (x), so it suffices to show that ∂U y
s (x) is a curve. By Lemma 4.6,

it is a.s. the case that for each x, y, s as in the lemma statement, the set U y
s (x) is simply connected.

Furthermore, ∂U y
s (x)¢ ∂Bs(x) is Euclidean-compact. By Proposition 4.3, to show that ∂U y

s (x) is a curve

it therefore suffices to show that for each ε > 0, there exists ¶ > 0 such that each set A ¢ U y
s (x) which

can be disconnected from x in U y
s (x) by a set of Euclidean diameter at most ¶ which intersects ∂U y

s (x)

has Euclidean diameter at most ε. This follows from Lemma 4.8. □



32 JIAN DING AND EWAIN GWYNNE

To prove that ∂B
y,•
s (x) is a Jordan curve, we need to prove that it can be represented by a curve with

no double points. The following lemma will help us to do that.

Lemma 4.10. Almost surely, for each nonsingular point x ∈ C, each y ∈ C ∪ {∞}, and each s ∈
(0, Dh(x, y)), the following is true. Let È : ∂D → ∂B

y,•
s (x) be a continuous map (which exists by

Lemma 4.9). Let u, v ∈ ∂D be distinct points such that È(u)= È(v). Let I and J be the two closed arcs

of ∂D between u and v. Then either È(I )¢ È(J ) or È(J )¢ È(I ).

Proof. Since ∂B
y,•
s (x) disconnects x from y, the homotopy class of the loop È in (C ∪ {∞}) \ {x, y}

is nontrivial. Since È(u) = È(v), each of È |I and È |J is a loop in C, and È |∂D is the concatenation

of these two loops. The concatenation of two homotopically trivial loops is also homotopically trivial.

Therefore, one of È |I or È |J is not homotopic to a point in (C ∪ {∞}) \ {x, y}. This implies that one

of È(I ) or È(J ) disconnects x from y.

Assume without loss of generality that È(I ) disconnects x from y. Since È(I ), È(J )¢ ∂B
y,•
s (x), no

point of È(J )\È(I ) can be disconnected from y by È(I ). Hence, È(J )¢ O , where O is the connected

component of C \È(I ) which contains y. By assumption, x /∈ O .

If z ∈ È(J ) \È(I ) then z ∈ O ∩ ∂By,•
s (x). By Lemma 3.4, we have Dh(x, z) = s. If P : [0, s] → C

is a Dh-geodesic from x to z, then since z ∈ O there is a time Ä < s such that P(Ä ) ∈ È(I ). But

È(I )¢ ∂B
y,•
s (x), so by Lemma 3.4, Dh(x, P(Ä ))= s. This contradicts the fact that P is a Dh-geodesic.

We conclude that È(J )¢ È(I ). □

Proof of Proposition 4.1. Throughout the proof, we fix a nonsingular point x ∈ C, a point y ∈ C ∪ {∞},
and s ∈ (0, Dh(x, y)). All statements are required to hold a.s. for all choices of x, y, s simultaneously.

Let U y
s (x) be as in (4-1) and let Æ = Æ

y
s : D → U y

s (x) be a conformal map (such a map exists

since U y
s (x) is simply connected, see Lemma 4.6). Since ∂U y

s (x) = ∂B
y,•
s (x) (Lemma 4.6), it follows

from Lemma 4.9 and [36, Theorem 2.1] (or just Lemma 4.5) that the map Æ extends to a continuous map

D → U y
s (x). We henceforth assume that Æ has been replaced by such a continuous extension. We will

show that Æ, thus extended, is a homeomorphism.

We say that z ∈ ∂By,•
s (x)= ∂U y

s (x) is a cut point if ∂U y
s (x)\{z} is not connected. By [36, Theorem 2.6],

it suffices to show that ∂U y
s (x) has no cut points.

Assume by way of contradiction that z ∈ ∂U y
s (x) is a cut point. By [36, Proposition 2.5], #Æ−1(z)g 2

(in principle #Æ−1(z) could be infinite, even uncountable). Furthermore, if I is the set of connected

components of ∂D \Æ−1(z), then the set of connected components of ∂U y
s (x) \ {z} is {Æ(I ) : I ∈ I}.

Each I ∈ I is an open arc of ∂D whose endpoints are distinct points of Æ−1(z). Let J = J (I ) := ∂D\ I .

By Lemma 4.10, either Æ(I ) ¢ Æ(J ) or Æ(J ) ¢ Æ(I ). By the preceding paragraph, Æ(I ) is the union

of {z} and a connected component of ∂U y
s (x) \ {z}; and Æ(J ) is the union of {z} and the other connected

components of ∂U y
s (x) \ {z}. Therefore, Æ(I )∩Æ(J )= {z}. Hence one of Æ(I ) or Æ(J ) is equal to {z}.

This means that ∂U y
s (x) \ {z} has only one connected component, so z was not a cut point after all. □

Proof of Theorem 1.4. Proposition 4.1 implies that a.s. ∂B
y,•
s (x) is a Jordan curve for each nonsingular

x ∈ C, each y ∈ C ∪ {∞}, and each s ∈ (0, Dh(x, y)). Theorem 1.5 implies that a.s. each of these filled

metric ball boundaries has finite Hausdorff dimension with respect to Dh . Proposition 3.12 implies that a.s.
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each of these filled metric ball boundaries is precompact with respect to Dh . Since each such boundary is

Euclidean-closed, it is also Dh-closed, and hence Dh-compact. □

5. Confluence of geodesics

In this section we will explain how to adapt the proof of confluence of geodesics for subcritical LQG

from [18] to the supercritical case. This will lead to proofs of Theorems 1.6 and 1.7. Many of the

arguments of [18] carry over verbatim to the supercritical case, but in some places nontrivial modifications

to the arguments, using results from Sections 3 and 4 of the present paper, are needed. As such, we will

not repeat the full argument from [18]. Instead, we will only explain the parts of the argument which

require modification. We aim to strike a balance between minimizing repetition of arguments from the

subcritical case and making the paper readable without the reader having to frequently refer to [18].

The proof of confluence of geodesics for subcritical LQG has four steps.

1. Establish some preliminary facts about geodesics, such as uniqueness of geodesics between typical

points and certain monotonicity properties for the cyclic ordering of geodesics from 0 to points of

the boundary of the filled metric ball B•
s [18, Section 2.1].

2. Suppose we condition on (B•
s, h|B•

s
) and I ¢ ∂B•

s is an arc chosen in a way which depends only

on (B•
s, h|B•

s
). Show that if I can be disconnected from ∞ in C \ B•

s by a set of small Euclidean

diameter, then it holds with high conditional probability that there is a “shield” in C \ B•
s which

disconnects I from ∞ with the property that no Dh-geodesic started from 0 can cross this shield

[18, Sections 3.2 and 3.3].

3. Start with a positive radius t and a collection of boundary arcs I0 of ∂B•
t . Iteratively apply Step 2

for several successive radii sk > t to iteratively “kill off” all of the geodesics started from 0 which

pass through I ∈ I0. Repeat until the number of remaining arcs in I0 which have not yet been killed

off is at most a large deterministic constant (independent of the initial choice of I0). By sending

the size of the arcs in I0 to zero (and the number of such arcs to ∞), conclude that for each fixed

s > t , there are a.s. only finitely many points on ∂B•
t which are hit by Dh-geodesics from 0 to ∂B•

s

[18, Section 3.4]. This yields Theorem 1.7.

4. Reduce from finitely many points on ∂B•
t to a single point by “killing off” the points one at a time

[18, Section 4]. This yields Theorem 1.6.

See [18, Section 3.1] for a detailed overview of Steps 2 and 3.

Most of the arguments involved in Step 1 carry over verbatim to the supercritical case once we know

that the boundary of a filled metric ball is a Jordan curve (Proposition 4.1). So, we will not repeat many

of these arguments here. Rather, we will just state a few of the most important results; see Section 5.1.

Step 2 requires nontrivial modifications in the supercritical case. This is because the definition of the

event used to build the “shield” in the subcritical case involves a bound for the LQG diameters of certain

small squares, which are infinite in the supercritical case. So, we need to work with somewhat different

events in the supercritical case. Because of this, we will give most of the details for Step 2 in this paper.

This is done in Sections 5.2.1 and 5.2.2.
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Step 3 requires only very minor modifications as compared to the subcritical case. In particular, in the

subcritical case, the Hölder continuity of the LQG metric with respect to the Euclidean metric is used in

one place. In our setting, we can replace this use of Hölder continuity by using Lemma 3.10, and then the

argument goes through verbatim. As such, we will not give much detail about this step; see Section 5.2.3.

As in the case of Step 2, Step 4 requires nontrivial modifications in the supercritical case. Again, this is

because the event used to “kill off” all but one of the geodesics in the subcritical case involves bounds for

LQG diameters. We will provide most of the details for the parts of Step 4 which require modification;

see Section 5.3.

5.1. Preliminary results about LQG metric balls and geodesics. We know that Dh-geodesics and

outer boundaries of filled Dh-metric balls are simple, Euclidean-continuous curves (Lemma 2.6 and

Proposition 4.1). Furthermore, we know that Dh(0, z)= s for each s > 0 and each z ∈ ∂B•
s (Lemma 3.4).

With these facts in hand, most of the results in [18, Section 2.1] and their proofs carry over verbatim to

the supercritical case.

We first state a result to the effect that ordinary and filled LQG metric balls are local sets for h as

defined in [38, Lemma 3.9]. Let us recall the definition. Suppose (h, A) is a coupling of h with a random

set A. We say that a closed set A ¢ C is a local set for h if for any open set U ¢ C, the event {A∩U ̸=∅}
is conditionally independent from h|C\U given h|U . If A is determined by h (which will be the case for

all of the local sets we consider), this is equivalent to the statement that A is determined by h|U on the

event {A ¢ U }. For a local set A, we can condition on the pair (A, h|A): this is by definition the same as

conditioning on the Ã -algebra
⋂
ε>0 Ã(A, h|Bε(A)). The conditional law of h|C\A given (A, h|A) is that

of a zero-boundary GFF on C \ A plus a harmonic function on C \ A which is determined by (A, h|A).

Lemma 5.1. Let x ∈ C and y ∈ C∪{∞} be deterministic. If Ä is a stopping time for the filtration generated

by (Bs(x), h|Bs(x)), then BÄ (x) is a local set for h. The same is true with B
y,•
s (x) in place of Bs(x).

Proof. Note that Bs(x) and B
y,•
s (x) are Euclidean-closed (Lemma 3.1). In light of this, the lemma follows

from exactly the same proof as [18, Lemma 2.1] (see also [19, Lemma 2.2]). □

Our next result gives the uniqueness of Dh-geodesics between typical points.

Lemma 5.2. For each fixed z, w ∈ C, a.s. there is a unique Dh-geodesic from z to w.

Proof. We know that a.s. Dh(z, w) <∞ and there is at least one Dh-geodesic from z to w (Lemma 2.6).

The a.s. uniqueness of this geodesic follows from exactly the same argument as in the subcritical case;

see [28, Theorem 1.2]. □

We emphasize that Lemma 5.2 only holds a.s. for a fixed choice of z and w. We expect that there are

exceptional pairs of points z, w which are joined by multiple distinct Dh-geodesics (such points are known

to exist in the subcritical case, see [1; 16; 29]). We also record the following analog of [18, Lemma 2.3].

Lemma 5.3. For q ∈ Q2, let Pq be the a.s. unique Dh-geodesic from 0 to q. The following holds a.s.

If q ∈ Q2, P ′ is a Dh-geodesic started from 0, and u ∈ Pq ∩ P ′, then there is a time s g 0 such that

Pq(s)= P ′(s)= u and Pq(t)= P ′(t) for each t ∈ [0, s].
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Proof. Lemma 5.2 implies that a.s. the Dh-geodesic from 0 to q is unique for each q ∈ Q2. The lemma

now follows from exactly the same argument as in [18, Lemma 2.3]. □

The following result, which is the supercritical analog of [18, Lemma 2.4], tells us that for z ∈ ∂B•
s ,

there are two distinguished Dh-geodesics from 0 to z.

Lemma 5.4. Almost surely, for each s > 0 and each z ∈ ∂B•
s , there exists a (necessarily unique) leftmost

(resp. rightmost) geodesic P−
z (resp. P+

z ) from 0 to z such that each Dh-geodesic from 0 to z lies (weakly)

to the right (resp. left) of P−
z (resp. P+

z ) if we stand at z and look outward from B•
s . Moreover, there

are sequences of points q−
n , q+

n ∈ Q2 \ B•
s such that the Dh-geodesics from 0 to q±

n satisfy Pq±
n

→ P±
z

uniformly with respect to the Euclidean topology.

See Figure 7 for an illustration of the statement and proof of Lemma 5.4. The proof of [18, Lemma 2.4]

uses the Arzelà–Ascoli theorem and the continuity of the subcritical LQG metric with respect to the

Euclidean metric to take limits of Dh-geodesics. In order to do this in the supercritical case, we need the

following lemma.

Lemma 5.5. Almost surely, the following is true. Let {zn}n∈N, {wn}n∈N, z, and w be nonsingular points

for Dh such that zn → z, wn → w, and lim supn→∞ Dh(zn, wn) <∞. Let {Pn}n∈N be a sequence of Dh-

rectifiable paths from zn to wn , each parametrized by Dh-length, such that len(Pn; Dh)− Dh(zn, wn)→ 0

as n → ∞, where len(Pn; Dh) denotes the Dh-length. There is a subsequence along which the paths Pn

converge uniformly with respect to the Euclidean metric to a Dh-rectifiable path P from z to w. If

limn→∞ Dh(zn, wn)= Dh(z, w), then P is a Dh-geodesic.

The statement of Lemma 5.5 allows for uniform convergence of paths which are defined on [0, Tn]
where Tn possibly depends on n. To make sense of uniform convergence under these circumstances, we

view all of our paths as being defined on [0,∞) by extending them to be constant after time Tn .

B•
s

z1

0

P
−

z1 P
+
z1

z2

P
−

z2

P
+
z2

Figure 7. Two points z1, z2 ∈ ∂B•
s and their associated leftmost and rightmost Dh-

geodesics (red and blue). Other Dh-geodesics from 0 to z1 and z2 are shown in purple.

We have also shown two Dh-geodesics from 0 to points of Q2 \ B•
s (green) which

approximate P−
z1

and P+
z1

, respectively. Note that P−
z1

and P+
z1

intersect only at their

endpoints, whereas P−
z2

and P+
z2

coincide for an initial time interval. Theorem 1.6 implies

that a.s. the latter situation holds simultaneously for every z ∈ ∂B•
s , but this has not been

established yet. A similar figure and caption appeared in [18].
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Proof of Lemma 5.5. Let Tn := len(Pn; Dh), so that Pn : [0, Tn] → C. Since Pn is parametrized

by Dh-length, for 0 f t f s f Tn , we have that Dh(Pn(s), Pn(t)) f s − t and that Dh(zn, wn) f
(Tn − s)+ Dh(Pn(s), Pn(t))+ t . Therefore,

Tn − Dh(zn, wn)g s − t − Dh(Pn(s), Pn(t))g 0.

Since Tn − Dh(zn, wn)→ 0 as n → ∞ by hypothesis,

lim
n→∞

sup
0ftfsfTn

|s − t − Dh(Pn(s), Pn(t))| = 0. (5-1)

In particular, (5-1) implies that the Pn’s are Dh-equicontinuous.

Since lim supn→∞ Dh(zn, wn) <∞ and Dh-metric balls are Euclidean-bounded, there is a bounded

open subset of C which contains Pn for each n ∈ N. Since the identity mapping (C, Dh)→ (C, | · |) is con-

tinuous and the Pn’s are Dh-equicontinuous, it follows that the Pn’s are Euclidean equicontinuous. Hence

there is a sequence N of positive integers tending to ∞ and a Euclidean-continuous path P : [0, T ] → C

from z to w such that Pn → P uniformly with respect to the Euclidean topology along N .

Since Dh is lower semicontinuous with respect to the Euclidean metric, equation (5-1) implies that

Dh(P(s), P(t))f |s − t | for any two times s, t ∈ [0, T ]. Consequently, P is Dh-rectifiable and for any

0 f t f s f T , the Dh-length of P([t, s]) is at most s − t . If limn→∞ Dh(zn, wn) = Dh(z, w), then

T = Dh(z, w). Since the Dh-length of P is at most T , it follows that the Dh-length of P is exactly T

and P is a Dh-geodesic. □

Proof of Lemma 5.4. The proof is essentially the same as [18, Lemma 2.4], but there are a couple of

minor differences so we will give the details. Fix a point w ∈ ∂B•
s \ {z}. Let A− and A+, respectively, be

the clockwise and counterclockwise arcs of ∂B•
s from w to z, not including w and z themselves. Note

that these arcs are well-defined since ∂B•
s is a Jordan curve (Proposition 4.1). We can choose sequences

z−
n ∈ A− (resp. z+

n ∈ A+) which converge to z from the left (resp. right) with respect to the Euclidean

topology (with “left” and “right” defined as in the lemma statement).

The set Q2 is a.s. Dh-dense in C \ {singular points} [34, Proposition 1.13] and the set Bε(z±
n ) \ B•

s

contains a Dh-open set for each ε > 0. Applying this with ε equal to the minimum of 1
n and 1

4
Dh(z±

n , A∓),

we see that for n ∈ N we can find q±
n ∈ Q2 \B•

s such that

Dh(q
±
n , z±

n )f min
{

1
n ,

1
2

Dh(q
±
n , A∓)

}
. (5-2)

Let Pq±
n

be the (a.s. unique, by Lemma 5.2) Dh-geodesic from 0 to q±
n . Then Pq±

n
(s) ∈ ∂B•

s . Since

Dh(0, z±
n )= s (Lemma 3.4),

Dh(Pq±
n
(s), q±

n )= Dh(0, q±
n )− s f Dh(q

±
n , z±

n ).

From this and (5-2),

Dh(Pq±
n
(s), A∓)g Dh(q

±
n , A∓)− Dh(Pq±

n
(s), q±

n )g 1
2

Dh(q
±
n , A∓) > 0.

Hence Pq±
n
(s) /∈ A∓. From (5-2) and since z−

n → z from the left, we see that also Pq−
n
(s)→ z from the

left. The same is true for z+
n , but with “right” in place of “left”.
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Since Dh(0, z±
n ) = s, we have 0 f Dh(0, q±

n )− s f 1
n . We may therefore apply Lemma 5.5 to get

that after possibly passing to a subsequence, we can arrange that the paths Pq±
n

converge uniformly with

respect to the Euclidean metric to Dh-geodesics P±
z from 0 to z. By Lemma 5.3, no Dh-geodesic from 0

to z can cross any of the geodesics Pq±
n

. If a geodesic from 0 to z does not lie in the closure of the open

subset of B•
s lying to the right of P−

z and to the left of P+
z , then it must cross Pq−

n
or Pq+

n
for some n.

Hence each geodesic from 0 to z lies to the right of P−
z and to the left of P+

z . □

Our next lemma is used in the iterative argument used to prove confluence of geodesics (see Step 3 of

the outline at the beginning of this section).

Lemma 5.6. Almost surely, the following is true for each 0 < s < s ′ <∞. Let I be a finite collection

of disjoint arcs of ∂B•
s . For each I ∈ I, let I ′ be the set of z ∈ ∂B•

s′ such that the leftmost Dh-geodesic

from 0 to z passes through I . Then each I ′ is either empty or is a connected arc of ∂B•
s′ and the arcs I ′ for

different choices of I ∈ I are disjoint.

Proof. Since we know that each ∂B•
s is a Jordan curve and Dh(0, z) = s for each z ∈ ∂B•

s , the proofs

of [18, Lemmas 2.6 and 2.7] extend verbatim to the supercritical case (note that [18, Lemma 2.5] is a

deterministic statement which can be reused in the supercritical case). In particular, [18, Lemma 2.7]

gives precisely the statement of the present lemma. □

Finally, we record an FKG inequality for the LQG metric, which is proven in exactly the same way

as [18, Proposition 2.8]. For the statement, we note that if D is a weak LQG metric with parameter

À as in Definition 2.3, U ¢ C is open, and h̊ is a zero-boundary GFF on U , then we can define Dh̊

as a random lower semicontinuous metric on U follows. Let h be a whole-plane GFF. We can write

h|U = h̊ + h, where h is a random harmonic function on U (see, e.g., [21, Lemma 2.2]). We then define

Dh̊ = e−Àh · Dh̊ , using the notation (2-3). As explained in [18, Remark 1.2], it is easily seen that Dh̊ is a

measurable function h̊.

Proposition 5.7 (FKG for the LQG metric). Let À > 0, let U ¢ C be an open domain, let h̊ be a

zero-boundary GFF on U , and let D be a weak LQG metric with parameter À . Let 8 and 9 be

bounded, real-valued measurable functions on the space of lower semicontinuous metrics on U which

are nondecreasing in the sense that for any two such metrics D1, D2 with D1(z, w) f D2(z, w) for

all z, w ∈ U , one has 8(D1) f 8(D2) and 9(D1) f 9(D2). Suppose further that 8 and 9 are a.s.

continuous at Dh̊ in the sense that for every (possibly random) sequence of continuous functions { f n}n∈N

which converges to zero uniformly on U , one has 8(eÀ f n · Dh̊)→ 8(Dh̊) and 9(eÀ f n · Dh̊)→ 9(Dh̊).

Then Cov(8(Dh̊),9(Dh̊))g 0.

Proof. This follows from Weyl scaling (Axiom III) together with the FKG inequality for the GFF given in

[18, Lemma 2.10], via exactly the same argument as in the proof of [18, Proposition 2.8]. □

5.2. Finitely many leftmost geodesics across an LQG annulus. In this subsection we explain how to

extend the core part of the argument in [18], corresponding to Steps 2 and 3 above, to the supercritical
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case. We start in Section 5.2.1 by defining an event for a Euclidean annulus which will be used to build

“shields” which Dh-geodesics cannot cross. Then, in Section 5.2.2, we explain how to use this event to

“kill off” all of the geodesics which pass through a given boundary arc of a filled Dh-metric ball. We

will give most of the details of the arguments in these two subsections since nontrivial modifications are

required as compared to the analogous arguments in [18]. In Section 5.2.3, we state a more quantitative

version of Theorem 1.7 (Theorem 5.15) and explain why the theorem follows from the same proof as its

subcritical analog from [18, Section 3.4], except for one trivial modification.

5.2.1. Good annuli. We now define an event for a Euclidean annulus which will eventually be used to

build “shields” surrounding boundary arcs of a filled Dh-metric ball through which Dh-geodesics to 0

cannot pass. See Figure 8 for an illustration.

For ε > 0, z ∈ C, and a set V ¢ C, we define the collection of Euclidean squares

S
z
ε (V ) :=

{
[x, x + ε] × [y, y + ε] : (x, y) ∈ εZ

2 + z, ([x, x + ε] × [y, y + ε])∩ V ̸= ∅

}
. (5-3)

Note that Sz
ε (V ) depends only on the value of z modulo εZ2 and that Sz

ε (V )− z = S0
ε (V − z).

For z ∈ C, r > 0, and ¶ ∈ (0, 1), we define Ur (z)= Ur (z; ¶) to be the (finite) set of open subsets U of

the annulus A3r,4r (z) such that A3r,4r (z) \ U is a finite union of sets of the form S ∩ A3r,4r (z) for squares

S ∈ S
z
¶r (A3r,4r (z)). For U ∈ Ur (z; ¶) and ε > 0, we define

Uε := {u ∈ U : dist(z, ∂U ) > ε} (5-4)

where dist denotes Euclidean distance.

A3r,4r(z)

z

A2r,3r(z)
A3r,4r(z)

z
U

A2r,3r(z)

∂Uδr/4

Figure 8. Illustration of the definitions in Section 5.2.1. The set Ur (z)= Ur (z; ¶) consists

of open subsets U of A3r,4r (z) such that A3r,4r (z) \ U is a finite union of sets of the form

S ∩ A3r,4r (z) for ¶r × ¶r squares S ∈ S¶r (A3r,4r (z)) (i.e., with corners in ¶Z2). One such

set is shown in light green in the right panel. For each U ∈ Ur (z), EU
r (z) is the event

that (1) the Dh-distance across the yellow annulus A2r,3r (z) is bounded below, (2) there

is a path of squares in A3r,4r (z) which disconnects the inner and outer boundaries of this

annulus, with the property that the Dh-distance around B2¶r (S) \ B¶r (S) is small for each

square S in the path (the squares are shown in pink in the left panel), and (3) the harmonic

part of h|U is bounded above on the set U¶r/4 ¢ U (outlined in black in right panel).
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For z ∈ C, r > 0, parameters c, ¶ ∈ (0, 1) and A> 0, and U ∈ Ur (z; ¶), we let EU
r (z)= EU

r (z; c, ¶, A)

be the event that the following is true.

1. Dh(across A2r,3r (z))g ccr eÀhr (z).

2. There exists a collection of ¶r × ¶r squares S1, . . . , SN ∈ S¶r (A3.1r,3.9r (z)) with the following

properties.

(a) The squares S j−1 and S j share a side for each j = 1, . . . , N , where here we set S0 = SN .

(b) The union of the squares S1, . . . , SN contains a path which disconnects the inner and outer

boundaries of A3.1r,3.9r (z).

(c) For each j = 1, . . . , N , we have Dh(around B2¶r (S j ) \ B¶r (S j ))f 1
100

ccr eÀhr (z).

3. Let hU be the harmonic part of h|U . Then, in the notation (5-4),

sup
u∈U¶r/4

|hU (u)− hr (z)| f A. (5-5)

We also define

Er (z)= Er (z; c, ¶, A) :=
⋂

U∈Ur (z;¶)
EU

r (z). (5-6)

The first two conditions in the definition of EU
r (z) do not depend on U , so the only difference between Er (z)

and EU
r (z) is that for the former event, Condition 3 is required to hold for all choices of U simultaneously.

The events Er (z) and EU
r (z) are defined in exactly the same manner as in [18, Section 3.2] except that

in [18], Condition 2 is replaced by an upper bound for the Dh-diameters of the squares in S¶r (A3r,4r (z)).

Of course, such a diameter upper bound does not hold in the supercritical case, which is the reason for

the modification.

The occurrence of EU
r (z) or Er (z) is unaffected by adding a constant to the field. By this and the

locality of Dh (Axiom II), these events are determined by h|A2r,5r (z), viewed modulo additive constant.

We think of annuli A2r,5r (z) for which Er (z) occurs as “good”. We will show in Lemma 5.8 just below

that P[Er (z)] can be made close to 1 by choosing the parameters ¶, c, A appropriately, in a manner which

is uniform over the choices of r and z, The reason for separating Er (z) and EU
r (z) is that conditioning

on EU
r (z) is easier than conditioning on Er (z) (see Lemma 5.10 just below).

We will eventually apply Condition 3 with U equal to A3r,4r (z) minus the union of the set of squares in

Sz
ε (A3r,4r (z)) which intersect a filled Dh-metric ball B•

Ä , for an appropriate stopping time Ä . Condition 3

together with the Markov property of h allows us to show that with uniformly positive conditional

probability given h|C\U and the event EU
r (z), the maximal Dh-distance between the centers of any two

squares in S
z
¶r (U ) which are contained in the same connected component of U is small (see Lemma 5.10).

This combined with Condition 2 will show that with uniformly positive conditional probability given h|C\U

and EU
r (z), there is a collection of paths in A3r,4r (z) which each have small Dh-length and whose

union disconnects the inner and outer boundaries of A3r,4r (z) in C \ B•
Ä (see Lemma 5.13). Due to

Condition 1, we can arrange that Dh-distance from each point of each of these paths to ∂B•
Ä will be

smaller than Dh(across A2r,3r (z)). This will show that no Dh-geodesic from a point outside of B4r (z)∪B•
Ä

can cross A2r,3r (z) before entering B•
Ä . See Figure 9 for an illustration of how the events EU

r (z) will

eventually be used.
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Lemma 5.8. For each p ∈ (0, 1), we can find parameters c, ¶ ∈ (0, 1) and A > 0 such that, in the

notation (5-6), we have P[Er (z)] g p for each z ∈ C and r > 0.

In order to show that Condition 2 in the definition of EU
r (z) occurs with high probability, we will use

the following lemma.

Lemma 5.9. Fix · > 0 and 0< a < b <∞. For each z ∈ C and r > 0, it holds with superpolynomially

high probability as ¶ → 0, uniformly over the choice of z and r , that there exists a collection of ¶r × ¶r
squares S1, . . . , SN ∈ S¶r (Aar,br (z)) with the following properties.

1. The squares S j−1 and S j share a side for each j = 1, . . . , N , where here we set S0 = SN .

2. The union of the squares S1, . . . , SN contains a path which disconnects the inner and outer boundaries

of Aar,br (z).

3. For each j = 1, . . . , N , we have Dh(around B2¶r (S j ) \ B¶r (S j ))f ¶ÀQ−· cr eÀhr (z).

Proof. This can be proven using level sets of the GFF (see, e.g., the arguments in [10, Section 2] or

[17, Section 5.1]), but we will give a different argument based on estimates for weak LQG metrics with

parameter À̃ , where À̃ is large.

Let À̃ > À to be chosen later, in a manner depending on · . Let D̃h be a weak À̃ -LQG metric with

respect to h (e.g., a subsequential limit of LFPP with parameter À̃ ). We denote objects associated with À̃

and D̃h with a tilde.

By Proposition 2.9 and a union bound, it holds with superpolynomially high probability as ¶ → 0,

uniformly over the choices of z and r , that for each S ∈ S¶r (Aar,br (z)),

Dh(around B2¶r (S) \ B¶r (S))f ¶−À· c¶r eÀh¶r (vS), D̃h(across B2¶r (S) \ B¶r (S))g ¶À̃ · c̃¶r eÀ̃h¶r (vS).

where vS is the center of S. Since c¶r = ¶ÀQ+o¶(1)cr and similarly for c̃¶r , we can rewrite this as

Dh(around B2¶r (S) \ B¶r (S))f ¶À(Q−· )+o¶(1)cr eÀh¶r (vS),

D̃h(across B2¶r (S) \ B¶r (S))g ¶À̃ (Q̃+· )+o¶(1)c̃r eÀ̃h¶r (vS).
(5-7)

By another application of Proposition 2.9, it holds with superpolynomially high probability as ¶ → 0

that there is a path Ã̃ in Aar,br (z) which disconnects the inner and outer boundaries of Aar,br (z) and

has D̃h-length at most ¶−À̃ · c̃r eÀ̃hr (z). Let S1, . . . , SN be the squares in S¶r (Aar,br (z)) which are hit by Ã̃ ,

listed in numerical order. Then S1, . . . , SN satisfy Properties 1 and 2 in the lemma statement.

For each j , the path Ã̃ crosses between the inner and outer boundaries of B2¶r (S j ) \ B¶r (S j ), so

by (5-7),

¶À̃ (Q̃+· )+o¶(1)c̃r eÀ̃h¶r (vS j ) f D̃h(across B2¶r (S j ) \ B¶r (S j ))f (D̃h-length of Ã̃)f ¶−À̃ · c̃r eÀ̃hr (z). (5-8)

Rearranging this inequality, then taking the 1/À̃ power of both sides, gives

eh¶r (vS j )−hr (z) f ¶−(Q̃+2· ). (5-9)
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As À̃ → ∞, we have Q̃ → 0 [8, Proposition 1.1]. Hence, if À̃ is chosen to be sufficiently large (depending

on · ) then we can arrange that Q̃ < · , so eh¶r (vS j )−hr (z) f ¶−3· . Plugging this into the first inequality

in (5-7) shows that for each j ,

Dh(around B2¶r (S j ) \ B¶r (S j ))f ¶À(Q−4· )+o¶(1)cr eÀhr (z).

Since · is arbitrary, this implies that can arrange for the S j ’s to satisfy Condition 3. □

Proof of Lemma 5.8. By translation invariance and tightness across scales (Axioms IV and V), the laws

of the reciprocals of the scaled distances c−1
r e−Àhr (z)Dh(across A2r,3r (z)) for z ∈ C and r > 0 are tight.

Therefore, we can find c = c(p) > 0 such that for each z ∈ C and r > 0, Condition 1 in the definition of

EU
r (z) occurs with probability at least 1 − (1 − p)/3. By Lemma 5.9, we can find ¶ = ¶(p, c) ∈ (0, 1)

such that Condition 2 in the definition of Er (z) occurs with probability at least 1− (1− p)/3. For a given

choice of ¶, the collection of open sets Ur (z; ¶) is finite, and is equal to rU1(0; ¶)+ z (here we use the

translation by z in (5-3)). Since hU is continuous away from ∂U , for any fixed choice of U ∈ U1(0; ¶),
a.s. supu∈U¶/4

|hU (u)|<∞. By combining this with the translation and scale invariance of the law of h,

modulo additive constant, we find that there exists A > 0 (depending on ¶) such that with probability at

least 1−(1− p)/3, Condition 3 in the definition of EU
r (z) holds simultaneously for every U ∈Ur (z; ¶). □

We now want to show that if we condition on EU
r (z), then with positive conditional probability the

Dh-distances between certain points in U are very small. For r > 0, z ∈ C, and U ∈ Ur (z), let V(U ) be

the set of connected components of U . Also let

Z(U ) := {center points of squares S ∈ S
z
¶r (U ) with S ¢ U } (5-10)

be the set of centers of squares which are entirely contained in U . We define the event

HU
r (z) :=

{
max

V ∈V(U )
sup

u,v∈V ∩Z(U )
Dh(u, v; V )f 1

2
ccr eÀhr (z)

}
, (5-11)

i.e., HU
r (z) is the event that for any V ∈V(U ), the Dh-internal distance in V between any two of the centers

of the squares which are entirely contained in V is bounded above by 1
2
ccr eÀhr (z) (this quantity is relevant

due to Condition 1 in the definition of EU
r (z)). We think of annuli A2r,5r (z) for which EU

r (z)∩ HU
r (z)

occurs (for a suitable choice of U ) as “very good”.

We note that HU
r (z) does not include an upper bound for the Dh-distance between two arbitrary points

of V . This is because there are a.s. singular points contained in V , but a.s. none of the (finitely many)

points in Z(U ) are singular points, so a.s. any two points in Z(U ) lie at finite Dh-distance from each other.

The following is the analog of [18, Lemma 3.3] in our setting. It says that an annulus has positive

conditional probability to be “very good” given that it is “good”.

Lemma 5.10. For any choice of parameters c, ¶, A, there is a constant p = p(c, ¶, A) > 0 such that for

each r > 0, each z ∈ C, and each U ∈ Ur (z),

P
[
HU

r (z)
∣∣ h|C\U , EU

r (z)
]
g p. (5-12)
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Proof. This is proven via essentially the same argument as [18, Lemma 3.3]: we subtract a large

bump function from h|U to get a lower bound for P[HU
r (z) | h|C\U ], then we use the FKG inequality

(Proposition 5.7) to add in the conditioning on EU
r (z) (we only need to use the FKG inequality for the

second condition in the definition of EU
r (z) since the other two conditions are determined by h|C\U ). The

proof is actually slightly simpler than that of [18, Lemma 3.3] since we are not trying to bound distances

between points which are arbitrarily close to ∂V , so unlike in [18] we do not need to worry about the

diameters of the squares in S
z
¶r (V ). □

5.2.2. Cutting off geodesics from a boundary arc. For c, ¶∈ (0, 1) and A>0, define Er (z)= Er (z; c, ¶, A)

as in (5-6). We will use the events Er (z) to build “shields” which prevent Dh-geodesics from hitting a

given arc of a filled metric ball. For z ∈ C and r> 0, let Ä0
r
(z) := r and for n ∈ N, inductively define

Än
r
(z) := inf

{
r g 6Än−1

r
(z) : r = 2k

r for some k ∈ Z, Er (z) occurs
}
. (5-13)

Since Er (z) is determined by h|A2r,5r (z), it follows that Än
r
(z) is a stopping time for the filtration generated

by h|B5r (z) for r g r. The following lemma allows us to produce lots of annuli for which Er (z) occurs.

Lemma 5.11. There exists a choice of parameters c, ¶ ∈ (0, 1) and A > 0 and another parameter ¸ > 0,

depending only on the choice of metric D, such that the following is true. For each compact set K ¢ C, it

holds with probability 1 − Oε(ε
2) (at a rate depending on K ) that

Ä+¸ log ε−1,
εr (z)f ε1/2

r for all z ∈
(

1
4
εrZ

2
)
∩ Bεr(rK ). (5-14)

Proof. This follows from the variant of Lemma 2.12 where our radii are increasing rather than decreasing

[18, Lemma 2.12] together with a union bound, exactly as in the proof of [18, Lemma 3.4]. □

We henceforth let c, ¶, A, and ¸ be as in Lemma 5.11. For ε > 0, r> 0, and a compact set K ¢ C, let

Rε
r
(K ) := 6 sup

{
Ä+¸ log ε−1,
εr (z) : z ∈

(
1
4
εrZ

2
)
∩ Bεr(K )

}
+ εr, (5-15)

so that each of the radii Än
εr(z) for z ∈

(
1
4
εrZ2

)
∩ Bεr(K ) and n ∈ [1, ¸ log ε−1]Z is determined by Rε

r
(K )

and h|BRε
r
(K )(K ). Lemma 5.11 shows that for each fixed choice of K , P[Rε

r
(rK ) f (6ε1/2 + ε)r] tends

to 1 as ε→ 0, at a rate which is uniform in r.

For s > 0, define

Ã εs,r := inf{s ′ > s : BRε
r
(B•

s )
(B•

s)¢ B
•
s′}, (5-16)

so that B•
Ã εs,r

contains B
6Ä

+¸ log ε−1,
εr (z)

(z) for each z ∈ Bεr(B•
s). Since each Ä

+¸ log ε−1,
εr (z) is a stopping time

for the filtration generated by h|B5r (z) for r g εr, it follows that if Ä is a stopping time for {(B•
t , h|B•

t
)}tg0,

then so is Ã εÄ,r (this would still be true if we replaced 6 by 5 in (5-16)). The following lemma, which

is analogous to [18, Lemma 3.6], will be used to “kill off” the Dh-geodesics from 0 which hit a given

boundary arc of a filled Dh-metric ball.

Lemma 5.12. There exists ³ > 0, depending only on the choice of metric, such that the following is true.

Let r > 0, let Ä be a stopping time for the filtration generated by {(B•
s, h|B•

s
)}sg0, and let x ∈ ∂B•

Ä and
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ε ∈ (0, 1) be chosen in a manner depending only on (B•
Ä , h|B•

Ä
). There is an event Gε

x ∈ Ã(B•
Ã εÄ,r
, h|B•

ÃεÄ,r
)

with the following properties.

A. If , in the notation (5-15), we have Rε
r
(B•
Ä )f diamB•

Ä (where diam denotes Euclidean diameter) and

Gε
x occurs, then no Dh-geodesic from 0 to a point in C \ BRε

r
(B•
Ä )
(B•
Ä ) can enter Bεr(x) \B•

Ä .

B. There is a deterministic constant C0 > 1 depending only on the choice of metric such that a.s.

P
[
Gε

x

∣∣B•
Ä , h|B•

Ä

]
g 1 − C0ε

³.

Proof. The proof is similar to that of the subcritical version [18, Lemma 3.6], but the geometric part of

the argument (i.e., the verification of Property A) is slightly different due to the different way in which

the events Er (z) are defined in the supercritical case. We will therefore repeat part of the proof in order

to explain the details of this geometric argument. See Figure 9 for an illustration.

A3ρ̃n,4ρ̃n(z)

A2ρ̃n,3ρ̃n(z)

z

∂BRε

r
(B•

τ
)(B

•
τ )

x

I

B•

τ

Ũ ρ̃n

Π1

Π2Π3

Π4

Figure 9. Illustration of the proof of Lemma 5.12. The point z ∈ 1
4
εrZ2 is chosen so that

Bεr(x)¢ B2εr(z). On the event Gε
x defined in (5-20), there is some n ∈ [1, ¸ log ε−1]Z for

which the event H Ũ Ä̃n

Ä̃n (z) as defined in (5-11) occurs. For this choice of n, we can use the def-

inition of H Ũ Ä̃n

Ä̃n (z) together with Condition 2 in the definition of EŨ Ä̃n

Ä̃n (z) to build paths

5k (purple) in the connected components of A3Ä̃n,4Ä̃n (z)\B•
Ä which disconnect A2Ä̃n,3Ä̃n (z)

from ∞ in C \ B•
Ä and whose Dh-lengths are each less than ccÄ̃n eÀhÄ̃n (z). That is, each

of the purple paths is Dh-shorter than the Dh-distance across A2Ä̃n,3Ä̃n (z). In order for a

path P from a point outside of BRε
r
(B•

s )
(B•

s) to 0 to enter Bεr(x)\B•
Ä , it would first have to

hit one of these purple paths, which would give us a path to 0 which is shorter than P .

Hence such a path P cannot be a Dh-geodesic. The condition that Rε
r
(B•
Ä ) f diamB•

Ä

ensures that A3Ä̃n,4Ä̃n (z) intersects B•
Ä . We can also prevent Dh-geodesics from hitting an

arc I of ∂B•
Ä by choosing x so that Bεr(x) disconnects I from ∞ in C\B•

Ä ; see Lemma 5.13.



44 JIAN DING AND EWAIN GWYNNE

Step 1: setup. We can choose z ∈
(

1
4
εrZ

2
)
∩ Bεr(B•

Ä ) such that Bεr(x)¢ B2εr(z), in a manner depending

only on (B•
Ä , h|B•

Ä
). Recalling the set of squares S

z
¶r (·) from (5-3), for r > 0 we define

Ũ r := Ũ r (z) := A3r,4r (z) \
⋃

{S ∈ S
z
¶r (A3r,4r (z)) : S ∩B

•
Ä ̸= ∅}. (5-17)

Note that Ũ r belongs to the set Ur (z) of Section 5.2.1 and Ũ r is determined by (B•
Ä , h|B•

Ä
).

Let Ä̃0 := εr and for n ∈ N, inductively define

Ä̃n = Ä̃n
εr(z) := inf

{
r g 6Ä̃n−1 : r = 2k

r for some k ∈ Z, EŨ r

r (z) occurs
}
. (5-18)

In other words, Ä̃n is defined in the same manner as Än
εr(z) from (5-13) (with εr in place of r) but with

EŨ r

r (z) instead of Er (z). This means that EU
Ä̃n (z) is only required to occur for U = Ũ Ä̃n

instead of for

every U ∈ UÄ̃n (z). By this and the definition (5-15) of Rε
r
(B•
Ä ),

Ä̃n f Än
εr(z) for all n ∈ N0 and hence Ä̃+¸ log ε−1, f 1

6
Rε

r
(B•
Ä ). (5-19)

The reason for considering Ä̃n instead of Än
εr(z) is because we can only condition on EU

r (z), not on Er (z),

in Lemma 5.10.

Recalling that V(Ũ Ä̃n
) denotes the set of connected components of Ũ Ä̃n

, we define

Gε
x :=

{
∃n ∈ [1, ¸ log ε−1]Z such that H Ũ Ä̃n

Ä̃n (z) occurs
}
, (5-20)

where H Ũ Ä̃n

Ä̃n (z) is the event of (5-11) with U = Ũ Ä̃n
.

Since z and Ũ r for r > 0 are each determined by (B•
Ä , h|B•

Ä
), it follows that each EŨ r

(z) is determined

by (B•
Ä , h|B•

Ä
) and h|A2r,5r (z). Hence Ä̃n is a stopping time for the filtration generated by h|B5r (z) for r g εr

and (B•
Ä , h|B•

Ä
). By (5-19) and the definition (5-16) of Ã εÄ,r, we have B5Ä̃n (z)¢ B•

Ã εÄ,r
. By combining these

statements with (5-20) and the locality of the metric (Axiom II), we get that Gε
x ∈ Ã(B•

Ã εÄ,r
, h|B•

ÃεÄ,r
).

We need to check Properties A and B for the event Gε
x .

Step 2: proof that Gε
x satisfies Property A. Assume that Rε

r
(B•
Ä ) f diamB•

Ä and Gε
x occurs. Choose

n ∈ [1, ¸ log ε−1]Z as in the definition (5-20) of Gε
x . Then

εr f Ä̃n f 1
6

Rε
r
(B•
Ä )f 1

6
diamB

•
Ä .

By our choice of z, this means that both the inner and outer boundaries of A3Ä̃n,4Ä̃n (z) intersect B•
Ä and

A2Ä̃n,3Ä̃n (z) disconnects Bεr(x) from ∞. We will argue that no Dh-geodesic from a point outside of

C \ BRε
r
(B•
Ä )
(B•
Ä ) to 0 can cross between the inner and outer boundaries of A2Ä̃n,3Ä̃n (z) before hitting B•

Ä ,

which implies that no such Dh-geodesic can hit Bεr(x) before entering B•
Ä . The idea of the proof is that the

definition (5-11) of H Ũ Ä̃n

Ä̃n (z) together with Condition 2 in the definition of EŨ Ä̃n

Ä̃n (z) allow us to build a col-

lection of paths in A3Ä̃n,4Ä̃n (z) which act as “shortcuts”. Let us now explain the construction of these paths.

Step 2(a): constructing paths in A3Ä̃n,4Ä̃n (z). Let S1, . . . , SN be the path of squares in S¶Ä̃n (A3.1Ä̃n,3.9Ä̃n (z))

as in Condition 2 in the definition of EŨ Ä̃n

Ä̃n (z). Let K be the number of squares in {S1, . . . , SN } which

intersect B•
Ä (equivalently, the number of such squares which are not contained in Ũ Ä̃n

). For k ∈ [1, K ]Z,

let jk be the k-th smallest value of j ∈ [1, N ]Z for which S j intersects B•
Ä . Also set S j0 = S jK .
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For each k ∈ [1, K ]Z such that S jk intersects ∂B•
Ä , we will define a path 5k associated with S jk in such

a way that the following properties are satisfied.

(i) Each 5k has Dh-length strictly less than ccÄ̃n eÀhÄ̃n (z) and intersects ∂B•
Ä .

(ii) The union of the paths 5k over all k such that Sk ∩ ∂B•
Ä ̸= ∅ disconnects A2Ä̃n,3Ä̃n (z) \ B•

Ä from

∂ B4Ä̃n (z) \B•
Ä in C \B•

Ä .

The paths 5k are shown in purple in Figure 9.

To define these paths, let k ∈ [1, K ]Z such that S jk ∩∂B•
Ä ̸=∅. We consider two cases. If jk−1 +1 = jk ,

we let 5k be a path around B2¶Ä̃n (S jk )\ B¶Ä̃n (S jk ) whose Dh-length is at most 1
100

ccÄ̃n eÀhÄ̃n (z), as afforded

by Condition 2 in the definition of EŨ Ä̃n

Ä̃n (z).

If jk−1+1< jk , then there is a connected component V of Ũ Ä̃n
whose boundary intersects the boundaries

of each of S jk−1
and S jk such that S jk−1+1, . . . , S jk−1 ¢ V . Since the event H Ũ Ä̃n

Ä̃n (z) of (5-11) occurs,

there is a path ÃV in V from the center point of S jk−1+1 to the center point of S jk−1 whose Dh-length is at

most 1
2
ccÄ̃n eÀhÄ̃n (z). By the last part of Condition 2 in the definition of EŨ Ä̃n

Ä̃n (z), there are paths Ã0 and Ã1

in the annular regions B2¶Ä̃n (S jk−1+1) \ B¶Ä̃n (S jk−1+1) and B2¶Ä̃n (S jk−1) \ B¶Ä̃n (S jk−1), respectively, which

disconnect the inner and outer boundaries of these annular regions and whose Dh-lengths are each at

most 1
100

ccÄ̃n eÀhÄ̃n (z). Note that the paths Ã0 and Ã1 necessarily intersect both ÃV and ∂B•
Ä . Let 5k be

a concatenation of Ã0, ÃV , Ã1.

It is clear from the above definitions that our desired property (i) is satisfied. To check property (ii),

consider a path P from a point of ∂ B4Ä̃n (z)\B•
Ä to a point of A2Ä̃n,3Ä̃n (z)\B•

Ä in C\B•
Ä . There is a subpath P′

of P which is contained in A3Ä̃n,4Ä̃n (z) and whose endpoints lie on the inner and outer boundaries of

A3Ä̃n,4Ä̃n (z), respectively. Since the union of the squares S1, . . . , SN contains a path which disconnects the

inner and outer boundaries of A3Ä̃n,4Ä̃n (z) (Condition 2 in the definition of EŨ Ä̃n

Ä̃n (z)), there must be some j

such that S j ̸¢B•
Ä and P′ intersects S j . If S j ∩∂B•

Ä ̸=∅, then j = jk for some k and P′ intersects the path

5k , so we are done. Otherwise, there exists k ∈ [1, K ]Z for which j ∈ [ jk−1 + 1, jk − 1]Z. Let O be the

connected component of A3Ä̃n,4Ä̃n (z) \B•
Ä which contains S jk−1+1, . . . , S jk−1. Then P′ ¢ O . Furthermore,

by construction, the path 5k disconnects ∂O ∩ ∂ B3Ä̃n (z) and ∂O ∩ ∂ B4Ä̃n (z) in O . Therefore, P′ must

intersect 5k , as required.

Step 2(b): preventing a Dh-geodesic from crossing A2Ä̃n,3Ä̃n (z). Due to Lemma 3.4, a Dh-geodesic from a

point outside of B•
Ä to 0 hits ∂B•

Ä exactly once. So, if such a geodesic hits Bεr(x) \B•
Ä , then it hits Bεr(x)

before entering B•
Ä . Therefore, to prove Property A, it suffices to consider a path P from a point outside of

C \ BRε
r
(B•

Ä )
(B•

Ä ) to 0 which enters Bεr(x) before entering B•
Ä and show that P cannot be a Dh-geodesic.

Since A2Ä̃n,3Ä̃n (z) disconnects Bεr(x) from ∞, the path P must cross from the outer boundary of

A2Ä̃n,3Ä̃n (z) to the inner boundary of A2Ä̃n,3Ä̃n (z) before hitting Bεr(x), and hence also before hitting B•
Ä . By

Condition 1 in the definition of EŨ Ä̃n

Ä̃n (z), each path between the inner and outer boundaries of A2Ä̃n,3Ä̃n (z)

has Dh-length at least ccÄ̃n eÀhÄ̃n (z). Hence, the Dh-length of the segment of P after the first time it

enters A2Ä̃n,3Ä̃n (z) must be at least ccÄ̃n eÀhÄ̃n (z) + Ä .

But, P must cross between the inner and outer boundaries of A3Ä̃n,4Ä̃n (z) before entering A2Ä̃n,3Ä̃n (z),

so P must hit one of the paths 5k above before entering A2Ä̃n,3Ä̃n (z). Since 5k intersects ∂B•
Ä and has
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Dh-length strictly less than ccÄ̃n eÀhÄ̃n (z), it follows that each point of 5k lies at Dh-distance strictly less

than ccÄ̃n eÀhÄ̃n (z) +Ä from 0. Combining this with the conclusion of the preceding paragraph shows that P

cannot be a Dh-geodesic to 0.

Step 3: proof that Gε
x satisfies Property B. Recall the definition of Gε

x from (5-20). From Lemma 5.10

and an elementary conditioning argument, exactly as in the proof of [18, Lemma 3.6, Step 3], we obtain

that for every n ∈ [1, ¸ log ε−1]Z, a.s.

P
[
H Ũ Ä̃n

Ä̃n (z) | Ũ Ä̃n
, h|

C\Ũ Ä̃n
]
g p, (5-21)

where p> 0 is as in Lemma 5.10. Note that by the definition (5-18) of Ä̃n , it is automatically the case that

the event EŨ Ä̃n

r (z) occurs. By the definition (5-11) and the locality property of Dh , the event H Ũ Ä̃n

Ä̃n (z)

is a.s. determined by Ũ Ä̃n
and the restriction of h to Ũ Ä̃n

. Since the open sets Ũ Ä̃n
for different values

of n are disjoint from each other and from B•
Ä , we can apply (5-21) iteratively to get

P[Gε
x |B•

Ä , h|B•
Ä
] g 1 − (1 − p)+¸ log ε−1,.

See [18, Lemma 3.6, Step 3] for details. This last estimate gives Property B for an appropriate choice

of C0 and ³. □

Analogously to [18, Lemma 3.7], we also have the following variant of Lemma 5.12 where we prevent

Dh-geodesics from hitting a boundary arc rather than a neighborhood of a point.

Lemma 5.13. Let ³ be as in Lemma 5.12. Let r > 0, let Ä be a stopping time for the filtration generated

by {(B•
s, h|B•

s
)}sg0. Also let ε ∈ (0, 1) and I ¢ ∂B•

Ä be an arc, each chosen in a manner depending only on

(B•
Ä , h|B•

Ä
), such that I can be disconnected from ∞ in C \B•

Ä by a set of Euclidean diameter at most εr.

There is an event G I ∈ Ã(B•
Ã ε

Ä,r
, h|B•

Ãε
Ä,r

) with the following properties.

A. If Rε
r
(B•

Ä ) f diamB•
Ä and G I occurs, then no Dh-geodesic from 0 to a point in C \ B•

Ã ε
Ä,r

can pass

through I .

B. There is a deterministic constant C0 > 1 depending only on the choice of metric such that a.s.

P
[
G I

∣∣B•
Ä , h|B•

Ä

]
g 1 − C0ε

³.

Proof. This follows from Lemma 5.12 via exactly the same argument as in the proof of [18, Lemma 3.7]. □

5.2.3. Proof of Theorem 1.7. To prove Theorem 1.7, it remains to carry out Step 3 in the outline at the

beginning of this subsection. For this step, the argument from [18] carries over almost verbatim so we

will not give details.

We first define the regularity event that we will work on. Fix r > 0 and define Är as in (3-2). Also

let ´ > 0 be the parameter from Lemma 3.10. For a ∈ (0, 1), we define Er(a) to be the event that the

following is true.

1. Bar(0) ¢ B•
Är

.

2. Ä3r − Ä2r g acreÀhr(0).
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3. For each s, t ∈ [Ä2r, Ä3r] with |s − t | f acreÀhr(0), we have

1

r

dist(∂B•
s, ∂B

•
t ) g

(
|t − s|

creÀhr(0)

)1/´

,

where dist denotes Euclidean distance.

4. In the notation (5-13), we have Ä
+¸ log ε−1,
εr (z) f ε1/2

r for each z ∈
(

1
4
εrZ

2
)
∩ B4r(0) and each

ε ∈ (0, a] ∩ {2−k}k∈N (here ¸ is as in Lemma 5.11).

Our above definition of Er(a) is identical to the analogous definition in [18, Section 3.4] except that

in [18], Condition 3 is replaced by a Hölder continuity condition for Dh with respect to the Euclidean

metric. This condition is of course not true in the supercritical case.

Lemma 5.14. For each p ∈ (0, 1), there exists a = a(p) > 0 such that P[Er(a)] g p for every r > 0.

Proof. By Lemma 3.5, if a is chosen to be sufficiently small then the probability of Condition 1 is at least

1 − (1 − p)/4. By tightness across scales (Axiom V), after possibly decreasing a we can arrange that

the probability of Condition 2 is also at least 1 − (1 − p)/4. By Lemma 3.10, after possibly shrinking a

we can arrange that the probability that Condition 1 holds is at least 1 − (1 − p)/4. By Lemma 5.11

and a union bound over dyadic values of ε with ε ∈ (0, a], the probability of Condition 4 is at least

1 − (1 − p)/4. Combining these estimates shows that P[Er(a)] g p. □

The following is a more quantitative version of Theorem 1.7, analogous to [18, Theorem 3.9].

Theorem 5.15. For each a ∈ (0, 1), there is a constant b0 > 0 depending only on a and constants b1, ³ > 0

depending only on the choice of metric D such that the following is true. For each r > 0, each N ∈ N,

and each stopping time Ä for {(B•
s, h|B•

s
)}sg0 with Ä ∈ [Är, Ä2r] a.s., the probability that Er(a) occurs and

there are more than N points of ∂B•
Ä which are hit by leftmost Dh-geodesics from 0 to ∂B•

Ä+N−³creÀhr(0) is

at most b0e−b1 N³

.

It is easy to see that Theorem 5.15 implies Theorem 1.7; see the beginning of [18, Section 3] for a proof

of this in the subcritical case. The supercritical case is identical, with the caveat that we use Lemma 3.10

to show that r 7→ Är is continuous and surjective.

The proof of Theorem 5.15 is identical to the proof of its subcritical analog, which is given in

[18, Section 3.4], with one minor exception, which we discuss just below.

For the sake of completeness, we provide a short outline of the argument; see [18, Section 3.4]

for details. We work on the event Er(a) defined at the beginning of this subsection. Start with an

arbitrary initial collection I0 of arcs of ∂B•
Ä which cover ∂B•

Ä and intersect only at their endpoints. By a

deterministic geometric lemma [18, Lemma 2.14], if #I0 is large then at least half of the arcs in I0 can

be disconnected from ∞ in C \ B•
Ä by a set of Euclidean diameter at most a constant times (#I0)

−1/2.

We apply Lemma 5.12 (with ε ≍ (#I0)
−1/2) to each of these arcs to get that with high probability, the

following is true. For at least 1/4 of the arcs I ∈ I0, there is no Dh-geodesic from 0 to a point outside of

the Euclidean rr-neighborhood of B•
Ä which passes through I ; here r > 0 is related to the number Rε

r
(B•

Ä )

from Lemma 5.12 and can be bounded above by a negative power of #I0.
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We then choose a new radius s1 > Ä so that Brr(B
•
Ä ) ¢ B•

s1
. By Condition 3 in the definition of Er(a),

we have that s1 − Ä is small if r is small, and hence if #I0 is large. We apply the same argument with

Ä replaced by s1 and with I0 replaced by the set I1 of arcs of ∂B•
s1

defined so that for each I ∈ I1, all

of the leftmost geodesics from 0 to points of I pass through the same arc in I0 (see Lemma 5.6). With

high probability we have #I1 f 3
4
#I0. We then iterate this procedure, defining radii Ä < s1 < s2 . . . . At

each step we typically reduce the number of surviving arcs by a constant factor. Moreover, since the

increase in the radius at each step is bounded above by a negative power of the number of surviving

arcs, the total increase in the radius of the metric ball needed to get down to N surviving arcs can be

bounded above independently of the choice of I0. To conclude, we apply this to a sequence of initial arc

collections {Ik
0 }k∈N such that #Ik

0 →∞ and the maximal Euclidean diameter of the arcs in Ik
0 tends to zero.

Roughly speaking, the reason why we get the quantitative estimate b0e−b1 N³

is that for each step of

the iteration, if we condition on the previous steps, there is a positive conditional probability to kill off a

positive fraction of the remaining arcs; and we only need to “succeed” for a positive fraction of the steps.

See [18, Lemma 3.10].

The one minor point where the argument in the supercritical case differs from the argument of [18,

Section 3.4] is as follows. In [18] Condition 3 in the definition of Er(a) is replaced by a Hölder continuity

condition. However, this condition is only used once in [18], in the proof of [18, Lemma 3.11], in order to

prove that a filled Dh-metric ball contains a small Euclidean neighborhood of a smaller filled Dh-metric

ball. Condition 3 can be used in place of the Hölder continuity condition from [18] for this purpose.

We note that the proof of Theorem 5.15 uses Lemmas 5.6 and 5.13 and also reuses the deterministic

estimate from [18, Lemma 2.15].

5.3. Reducing to a single geodesic. In this subsection we will explain how to deduce Theorem 1.6 from

Theorem 1.7. That is, we will explain how to go from finitely many points on the boundary of a filled

metric ball which are hit by Dh-geodesics, to just one such point. The main tool which allows us to do

this is Lemma 5.16 just below, which says that for certain appropriately chosen arcs I of the boundary

of a filled metric ball centered at 0, there is a positive chance that every Dh-geodesic from 0 to a point

sufficiently far away from the filled metric ball passes through I .

To state this result precisely, we need to introduce a particular way of measuring (Euclidean) distances

in a planar domain. Let O ¢ C be a domain bounded by a Jordan curve. Following [18, equation (2.18)],

for z, w ∈ O , we define

d O(z, w) = inf
{
diam(X) : X is a connected subset of O with z, w ∈ X

}
, (5-22)

where here diam denotes the Euclidean diameter. Then d O is a metric on O which is bounded below

by the Euclidean metric on C restricted to O and bounded above by the internal Euclidean metric on O .

Note that d O is not a length metric.

Lemma 5.16. For each A > 1, ε ∈ (0, (A − 1)/100), and p ∈ (0, 1), there exists p = p(A, ε, p) > 0

such that the following is true. Let r > 0 and let Är = Dh(0, ∂ Br(0)) be as in (3-2). Let I ¢ ∂B•
Är

be

a closed boundary arc, chosen in a manner depending only on (B•
Är

, h|B•
Är

), with the property that the
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dC\B•
Är -neighborhood of radius εr of ∂B•

Är
\ I (with dC\B•

Är defined as in (5-22)) does not disconnect I

from ∞ in C \ B•
Är

. With probability at least p, it holds with conditional probability at least p given

(B•
Är

, h|B•
Är

) that every Dh-geodesic from 0 to a point of C \ BAr(0) passes through I .

The proof of Lemma 5.16 is very similar to the proof of its subcritical analog, [18, Lemma 4.1].

However, just like in the setting of Sections 5.2.1 and 5.2.2, we need to make some nontrivial changes to

the definitions of the events involved so we will explain most of the details of the proof.

The proof of Lemma 5.16 is similar to the proof of Lemma 5.13, but simpler since we only need

something to happen with positive probability, not probability close to 1, and this probability is allowed

to depend on the parameter ε. We will define “good” events EU
r

for certain domains U , which occur

with high probability (see (5-27)). We will then argue that if EU
r

occurs, then there is a positive chance

that the distances between certain points in U are very small (Lemma 5.17). We will then choose U in a

manner which depends on B•
Är

and I . We will use Lemma 5.17 to argue that with positive conditional

probability given (B•
Är

, h|B•
Är

), there is a “shortcut” in U which prevents Dh-geodesics from 0 to points of

C \ BAr(0) from hitting ∂B•
Är

\ I .

To lighten notation, let

B
∗ :=

{
z ∈ C \B•

Är
: dC\B•

Är(z, ∂B•
Är

\ I ) < εr/4
}

(5-23)

be a slightly smaller dC\B•
Är -neighborhood of ∂B•

Är
\ I than the one appearing in Lemma 5.16.

By the Hölder continuity of the Euclidean metric with respect to Dh (Proposition 2.11), we can find

c = c(A, ε, p) > 0 such that with probability at least 1− (1− p)/3, each subset of BAr(0) with Euclidean

diameter at least εr/4 has Dh-diameter at least ccreÀhr(0). By the definition (5-23) of B∗, each path

in C \B•
Är

from ∂B•
Är

\ I to a point of C \ (B•
Är

∪B∗) has Euclidean diameter at least εr/4. Hence, with

probability at least 1 − (1 − p)/3,

Dh
(
∂B•

Är
\ I, C \ (B•

Är
∪B

∗); C \B•
Är

)
g ccreÀhr(0). (5-24)

Define the collection of ¶r × ¶r squares S¶r(BAr(0)) = S0
¶r(BAr(0)) with corners in ¶rZ

2 as in (5-3)

with z = 0. By Lemma 2.8, the random variables c−1
r

e−Àhr(0)Är and their reciprocals are tight. By

combining this with Corollary 3.7, we can find ¶ = ¶(c, A, ε) ∈ (0, ε2/100) such that with probability at

least 1 − (1 − p)/3,

Dh(around B¶1/2
r
(S) \ B¶r(S)) f 1

100
ccreÀhr(0) for all S ∈ S¶r(∂B

•
Är

). (5-25)

Let Ur be the (finite) set of subdomains U of BAr(0) such that BAr(0)\U is a finite union of sets of the

form S ∩ BAr(0) for S ∈ S¶r(BAr(0)). For U ∈ Ur , let hU be the harmonic part of h|U . Also let U¶r/4 be

the set of points in U which lie at Euclidean distance at least ¶r/4 from ∂U . Since there are only finitely

many sets in Ur and by the translation and scale invariance of the law of h, modulo additive constant, we

can find C = C(¶, A, ε) > 0 such that with probability at least 1 − (1 − p)/3, it holds simultaneously for

each U ∈ Ur that

sup
u∈U¶r/4

|hU (u) − hr(0)| f C. (5-26)
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For a given choice of U ∈ Ur, let EU
r

be the event that (5-24), (5-25), and (5-26) all hold, so that

P

[ ⋂
U∈Ur

EU
r

]
g p. (5-27)

The reason for considering EU
r

instead of
⋂

U∈Ur

EU
r

is the same as in Section 5.2.1: it is easier to

condition on EU
r

than on
⋂

U∈Ur

EU
r

(see Lemma 5.17 just below).

We note that the definition of EU
r

given just above is identical to the definition of the analogous

event in [18, Section 4.1], except that in [18] the condition (5-25) is replaced by an upper bound for the

Dh-diameters of the squares S ∈S¶r(BAr(0)). Such an upper bound does not hold in the supercritical case.

For U ∈ Ur, let

Z(U ) := {centers of squares S ∈ S¶r(U ) with S ¢ U } (5-28)

and let HU
r

to be the event that for each z ∈ Z(U ), there is a path 5 = 5z in U which disconnects 0

from ∞ and hits z and which has Dh-length at most c
2
creÀhr(0). Note that for some choices of U ∈ Ur

and z ∈ Z(U ), there is no path in U which disconnects 0 from ∞ and hits z. For such a choice of U we

have P[HU
r

] = 0. The following lemma will play an analogous role to Lemma 5.10 from Section 5.2.1.

Lemma 5.17. There is a constant p = p(A, ε, p) > 0 such that the following is true. Suppose U ∈ Ur is

connected and contains a path which disconnects 0 from ∞. On the event that U ∩ (B•
Är

∪B∗) = ∅, a.s.

P
[
HU

r

∣∣ h|C\U , EU
r

]
g p. (5-29)

Proof. This follows from the Markov property of the GFF and the FKG inequality (Proposition 5.7), via

exactly the same argument as in the proof of [18, Lemma 3.3 or Lemma 4.2]. □

Proof of Lemma 5.16. Most of the proof is exactly the same as the proof of [18, Lemma 4.1], but the

geometric part of the argument is slightly different so we will repeat part of the argument to explain the

differences. See Figure 10 for an illustration of the proof.

Step 1: choosing a random domain U. We first choose the domain U to which we will apply Lemma 5.17.

The choice will depend on B•
Är

and I , which is why we need a lower bound for the probability of the

intersection of all of the EU
r

’s in (5-27).

Since B•
Är

¢ Br(0) and ε < (A − 1)/100, we have B•
Är

∪ B∗ ¢ B(A+1)r/2(0). By hypothesis, the

dC\BÄ•
r -neighborhood of ∂B•

Är
\ I of radius εr does not disconnect I from ∞ in C \B•

Är
. Hence we can

choose, in a manner depending only on B•
Är

and I , a path P in BAr(0) \B•
Är

from a point of I to a point

of B(A+1)r/2(0) such that each point of P lies at dC\B•
ÄR -distance at least εr from ∂B•

Är
\ I . By slightly

perturbing P if necessary, we can assume that P does not hit any of the corners of any of the squares in

S¶r(BAr(0)).

Let Ũ be the interior of the union of all of the ¶r × ¶r squares S ∈ S¶r(BAr(0)) which intersect

P∪ A(A+1)r/2,Ar(0) but do not intersect B•
Är

or ∂ BAr(0). Let U be the connected component of Ũ which

intersects A(A+1)r/2,Ar(0). Then U ∈ Ur, as defined just above (5-26).
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B•
τr

B∗

U

I

π

Π

S0

S1

Figure 10. Illustration of the proof of Lemma 5.16. If EU
r

∩ HU
r

occurs for the domain

U ∈ Ur defined in the proof, then by the definition of HU
r

we can find a path 5 in U
which contains the center of the square S1, disconnects B•

Är
∪ B∗ from ∞, and whose

Dh-length is small. Furthermore, we can find a path Ã ¢ (C \B•
Är

∪B∗) — a segment

of the path around B2¶r(S0) \ B¶r(S0) given by (5-25) — which intersects both I and 5.

By (5-24), the sum of the Dh-lengths of Ã and 5 is smaller than the Dh-distance from

C \ (B•
Är

∪ B∗) to ∂B•
Är

\ I restricted to paths which do not enter B•
Är

. This prevents a

Dh-geodesic from 0 to a point outside of BAr(0) from hitting B•
Är

\ I .

By definition, U ∩B•
Är

= ∅. We claim that also U ∩B∗ = ∅. Indeed, each of the ¶r× ¶r squares S in

the union defining U is contained in C \B•
Är

and has Euclidean diameter at most
√

2¶r < εr/4. If one

of these squares intersected B∗, then by the triangle inequality and the definition (5-22) of dC\B•
Är , the

dC\B•
Är -distance from P to ∂B•

Är
\ I would be at most εr/2, contrary to the definition of P.

Hence U ∩ (B•
Är

∪ B∗) = ∅. Since B•
Är

is a local set for h (Lemma 5.1) and P is determined by

(B•
Är

, h|B•
Är

), for each deterministic U ∈ Ur, the event {U = U} is determined by h|C\U. Furthermore,

by definition the set U is connected and contains a path which disconnects 0 from ∞. Therefore, the

bound (5-29) of Lemma 5.17 holds a.s. for our (random) choice of U .

Step 2: bounding conditional probabilities. By (5-27) and Markov’s inequality

P
[
P[EU

r

∣∣B•
Är

, h|B•
Är

] g 1 − (1 − p)1/2
]
g 1 − (1 − p)1/2. (5-30)

By this together with the bound (5-29), and since p can be made arbitrarily close to 1, to conclude the

proof of the lemma we only need to show that if EU
r

∩ HU
r

occurs, then every Dh-geodesic from 0 to a

point of C \ BAr(0) passes through I . This will be accomplished via a similar argument to the proof of

Lemma 5.12, as we now explain.
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Step 3: preventing Dh-geodesics from hitting ∂B•
Är

\ I . Let S1 be the first square in S¶r(BAr(0)) hit by P

whose interior is contained in U . Since P starts from a point of I ¢ ∂B•
Är

and U ∩ ∂B•
Är

= ∅, S1 is not

the first square of S¶r(BAr(0)) hit by P. Hence, there is a square S0 which is hit by P prior to the first

time P hits S1 such that S0 and S1 share a side (here we use that P does not hit any of the four corners

of S1). By the definition of S1, we have S0 ∩ ∂B•
Är

̸= ∅.

By (5-25), there is a path Ã̃ in the annular region B¶1/2
r
(S0) \ B¶r(S0) which disconnects the inner

and outer boundaries of this annular region and has Dh-length at most 1
100

ccreÀhr(0). Since S1 ¢
B¶1/2

r
(S0) \ B¶r(S0) and S1 is disjoint from B•

Är
, there is a subpath Ã of Ã̃ which is contained in C \B•

Är

and which disconnects S1 from ∞ in C \B•
Är

. Since S0 intersects Ã ∩ I , which is disjoint from B∗, and

¶1/2 f ε/10, the definition (5-22) of dC\B•
Är shows that the path Ã cannot intersect ∂B•

Är
\ I . Hence Ã

must intersect I .

By the definition of HU
r

(just below (5-28)), there is a path 5 in U which contains a point of S1 and

which disconnects 0 from ∞ (and hence also B•
Är

from C \ BAr(0)). The union of Ã and 5 is connected,

has Dh-length strictly less than ccreÀhr(0), intersects I , and disconnects B•
Är

from C \ BAr(0).

Any path P from a point of BAr(0) to 0 which first hits ∂B•
Är

at a point not in I must hit 5 and then

must subsequently cross from a point of C \ (B∗ ∪ B•
Är

) to ∂B•
Är

\ I . By the preceding paragraph, the

Dh-distance from the first point of 5 hit by P to 0 is strictly smaller than Är + ccreÀhr(0). On the other

hand, (5-24) shows that the Dh-length of the segment of P which crosses from C \ (B∗ ∪B•
Är

) to ∂B•
Är

\ I

is at least ccreÀhr(0), so the Dh-length of the segment of P after it first hits U is at least Är + ccreÀhr(0).

Therefore, P cannot be a Dh-geodesic. □

Now that Lemma 5.16 is established, we can conclude the proof of Theorem 1.6 in exactly the same

way as in the subcritical case (see [18, Section 4.2]). The proof of [18, Lemma 4.3] requires some

containment relations between filled Dh-metric balls and Euclidean balls, but these are easily supplied by

Lemma 3.5 and Proposition 2.11.
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