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SUMMARY 

Progress in biology has generated numerous lists of genes that share some property. But, 

advancing from the initial implication of a set of genes in a process to understanding their roles in 

the process is slow and unsystematic. Here we use RNA silencing in C. elegans to illustrate a 

general approach for comparing lists of data accumulated by a field to prioritize genes for detailed 

study given limited resources. The partially subjective relationships between genes forged by both 

functional relatedness of the genes and biased progress in the field was captured as historical 

mutual information (HMI) and used as a quantitative measure for clustering genes. These clusters 

suggest regulatory links connecting RNA silencing with other processes like the cell cycle and 

identify understudied regulated genes that could be used to sense perturbation or mediate 

feedback inhibition.  

MAIN TEXT 

Introduction 

Genes and gene products are often collected as lists based on unifying characteristics or based 

on experiments. For example, genes that show enrichment of a chromatin modification, mRNAs 

that change in response to a mutation, proteins that interact with another protein, etc. After the 

initial identification of a set of genes as belonging to a list, multiple approaches [1] are needed to 

generate an explanatory model. Since single papers often analyze only one or a few genes, a 

wider view of genes with roles in a process could be gained by comparing lists generated by a 

group of studies or even all studies in a relatively young field. Such exploration could identify 

genes that are present in multiple lists but have not yet been selected for detailed study. 

Identifying these understudied genes is especially useful during the early stages of a field, when 

coherent models that provide explanations for most observed phenomena have not yet emerged. 

While this approach is also extensible to lists of anything that is used to characterize living 



systems (changes in lipids, metabolites, localizations, etc.), here we focus on lists of mRNAs, 

proteins, and small RNAs generated by the field of RNA silencing in the nematode C. elegans. 

A gene present in many lists could be regulated in multiple separable ways and/or be 

regulated in one or a few ways by connected sets of regulators (Fig. 1A). For example, mRNA 

levels could be regulated through changes in transcription, turnover, localization, small RNA 

production, etc. or all changes could occur because of turnover regulation by a connected set of 

regulators. Changes in such genes could alter specific regulatory outputs, making them 

integrators of inputs from many other regulators. Alternatively, they could have no measurable 

consequence, making them experimentally useful as general sensors of perturbation. Here we 

present an approach to identify these regulated but understudied genes in the field of RNA 

silencing in C. elegans. 

Results 

 To determine if there are any understudied regulated genes that are relevant for RNA 

silencing in C. elegans, we examined data from past studies in the field. While complete 

replication of each study might be needed for direct comparisons, this ideal is impractical. Even 

beginning with the ‘raw’ data deposited to public resources (e.g., fastq files after RNA-seq) and 

repeating the analyses reported in a paper is not always feasible. Summary tables from previous 

analyses presented in papers provide a practical intermediate level of data to use for comparisons 

across studies. Therefore, we collated a total of 432 tables from 112 papers for comparison (see 

methods and Table S1 for list of studies) and joined the tables together after standardizing gene 

names to yield genes that can be compared for presence or absence across 432 lists (Fig. 1B). 

To identify a set of genes (𝑔) that receive extensive regulatory input and/or that encode proteins 

that interact with many other proteins and are yet selectively regulated, we propose a metric rg 

(Fig. 1B). Since the likelihood of including a gene from the lists increases with 𝑔, the metric is 



specified with a subscript for each analysis (e.g., 𝑟25 refers to a regulation score when the top 25 

genes that are most commonly present in lists are considered) and defined to be: 

𝑟𝑔 ≔  ∑
𝑆𝑖

𝑇𝑖

𝑛

𝑖=1

  

where 𝑔 = size of gene set chosen for analysis, 𝑛 = total number of lists with altered genes, 𝑆𝑖 = 

number of genes from the 𝑖th list that is also present in the gene set 𝑔, and 𝑇𝑖  = total number of 

genes in the 𝑖th list. The larger the set of genes (𝑔) selected, the greater the chance of a dataset 

(with Ti genes) having at least one overlapping gene within the selected gene set (probability 

given by P(Si > 0) in Fig. 1C). The metric 𝑟𝑔 is a decision aid that helps with choosing genes for 

experimental analysis and is not to be taken as an objective measure of the importance of the 

gene for the biological process under study. 

The top 25 genes with the highest 𝑟25 values included the germline Argonaute proteins 

CSR-1 [2] and HRDE-1 [3], which have each been the subject of numerous studies (Fig. 1D). 

While most other genes are understudied (fewer than 10 publications on WormBase), among 

them is W09B7.2/sdg-1, which was recently reported to be regulated by the double-stranded RNA 

importer SID-1 and encodes a protein with a suggested role in feedback regulation of heritable 

RNA silencing by colocalizing with perinuclear germ granules [4]. This discovery suggests that 

the analysis of the additional genes with high 𝑟25 values could also be fruitful. Of the 16 

understudied genes that encode proteins, 7 had high-confidence AlphaFold structures [5], which 

were then used to identify related protein domains using Foldseek [6] (Fig. 1E). Three more 

proteins have been proposed to be nucleocapsids encoded from genes within retrotransposons 

([4, 7]; Fig. 1E). These candidates can be experimentally analyzed in the future for roles in RNA 

silencing, if any. 

To explore the relationships between these genes with the highest 𝑟25 values (Fig. 1F and 

1G), we clustered the genes and generated a dendrogram where genes present together in 



different lists are closer together (see supplementary methods). The dendrogram revealed the 

gene hil-4, which encodes a Histone H1-like protein [8], as the understudied gene clustering 

closest to hrde-1 and csr-1, making it a strong candidate for a role potentially downstream of RNA-

mediated gene regulation. Another cluster (brown in Fig. 1G) included all four pseudogenes, 

suggesting that this method could capture functional relatedness despite the limitations and 

biases introduced by the available data.  

To examine if the observations using 𝑟25 hold when analyzing a larger set of genes, we 

examined the top 100 genes with the highest 𝑟100 values. To quantify the correlated presence or 

absence of genes in different lists we used a measure of mutual information [9] named here as 

historical mutual information (HMI) to emphasize the subjective nature of this measure because 

it depends on both functional relatedness of the genes and biased availability of data (see 

supplementary methods). Using HMI to cluster these genes revealed three major clusters (43, 42, 

and 11 genes), another cluster with two genes and two other unconnected genes (Fig. 2A). Only 

one cluster (cluster 1 in Fig. 2A) had significant numbers of genes associated with gene ontology 

terms. Many of these genes encode proteins that bind and/or hydrolyze RNA (Fig. 2B, top), 

localize to cytoplasmic ribonucleoprotein granules (Fig. 2B, middle), and/or play roles in other 

processes such as cell division (Fig. 2B, bottom). Consistently, this cluster also had the greatest 

number of genes that have been described in multiple publications (Fig. 2C), including all the 

genes that have been featured in abstracts on RNA silencing (Fig. 2D). Therefore, the analysis of 

additional genes in this cluster could be relevant for RNA silencing and connect such regulation 

to other processes (e.g., the cell cycle). Since four of the five pseudogenes are in a small cluster 

(Fig. 2E, 4 of 11 genes in cluster 2), the other genes in this cluster could potentially be targets of 

regulation without specific downstream regulation or be co-regulated sensors of pseudogene RNA 

levels. Intriguingly, there is a large overlap between a set of genes that require HRDE-1 for 

downregulation (67 genes in both replicates from worms grown at 15ºC [10]) and genes in a single 

cluster (Fig. 2F, 17 of 42 genes in cluster 3). One possible explanation for this abundance and 



clustering could be that hrde-1-dependent gene lists are among the most numerous generated 

by the field and/or included in our analysis (44 of 298 lists with fewer than 2000 genes). 

Alternatively, genes that are subject to HRDE-1-dependent silencing could be extensively 

regulated by many other regulators and require this additional downregulation for fitness – i.e., 

overexpression of these genes is detrimental. Consistent with this possibility, loss of HRDE-1 

results in progressive sterility that can be reversed by restoring HRDE-1 activity [10]. Also, as 

expected for the use of HRDE-1 downstream of SID-1, genes upregulated using sid-1 (18 genes 

in animals with a deletion in sid-1 [4]) overlap with genes in the same cluster (Fig. 2F, 4 of 42 in 

cluster 3). Future studies by labs working on RNA silencing in C. elegans have the potential to 

test and enrich the classification of regulated yet understudied genes revealed here. 

Discussion 

Our analysis has identified selectively regulated yet understudied genes in the field of RNA 

silencing in C. elegans. Clustering these genes reveal that better studied genes are together in 

one cluster. Many of these genes have known roles, providing regulatory links between RNA 

silencing and other processes. The other two larger clusters include genes and pseudogenes that 

have been described as targets of RNA regulation. These regulated genes, which are present in 

many lists, could be under the independent control of multiple regulators and/or be jointly 

regulated by a connected set of regulators, making them experimentally useful general sensors 

of perturbation in RNA silencing and/or regulators that mediate feedback inhibition of RNA 

silencing.  

While future extensions of this work could automate the process of aggregating and 

comparing data, flexible inclusion of different lists in the analysis would be needed to enable 

customization based on the expertise, interests, and risk tolerance of individual labs. Furthermore, 

earlier studies that had to use older technologies with limitations could have led to conclusions 

that need revision. For example, when analyzed using multi-copy transgenes, the dsRNA-binding 

protein RDE-4 showed a cell non-autonomous effect [11, 12], but when analyzed using single-



copy transgenes, RDE-4 showed a cell autonomous effect [13]. Since different researchers could 

interpret such conflicting data differently (e.g., differences in levels of tissue-restricted expression 

versus differences in extent of misexpression in other tissues), it is useful to preserve 

customization for the lists included.  

Different properties of a single protein or RNA could be important for different biological 

roles [14, 15], or the same properties could be important for different processes. Despite such 

plurality, a gene found in many lists could become associated with a single label because of the 

historical sequence of discovery (e.g., HRDE-1-dependent genes; many in cluster 3, Fig. 2F), 

thereby obscuring additional roles of that gene. With the expanding number of lists generated 

through large-scale experimental approaches in different fields, identifying selectively regulated 

yet understudied genes could aid the prioritization of genes for detailed mechanistic studies using 

the limited resources and time available for any lab. 

 

Methods 

Data tables from 112 studies on RNA silencing in C. elegans that were published between 

2007 and 2023 were downloaded (Table S1), reformatted manually and/or using custom scripts, 

and filtered to generate lists that only include entries with reported p-values or adjusted p-values 

< 0.05, when such values were available. The top ‘g’ genes that occur in the greatest numbers of 

tables were culled as the most frequently identified genes. A measure for the extent of regulation 

of each gene (rg) was used to aid prioritization for detailed study. Co-occurrence patterns of genes 

in different tables were captured using the Jaccard distance (dJ) [16] or as a symmetric measure 

of normalized mutual information [9], defined here as Historical Mutual Information (HMI). The dJ 

values were used to generate a dendrogram using the average linkage method (Fig. 1G). HMI 

was used to group genes into clusters according to the Girvan-Newman algorithm [17] and 

different sets of genes were highlighted (Fig. 2). Gene ontology (GO) analyses were performed 



using Gene Ontology Resource (https://geneontology.org/; [18, 19]) and significant GO terms 

were collected for visualization using REVIGO [20]. All programs used in this study are available 

at GitHub (AntonyJose-Lab/Lalit_Jose_2024). 
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Figures and Figure Legends 

 

Figure 1. Some genes are selectively regulated, reported as part of many lists, and yet are 

understudied. (A) Schematics of possible regulatory architectures for genes found on multiple 

lists. (top) Gene receiving one input form a large network. (bottom) Gene receiving multiple inputs 

from separable networks. (B) Strategy for the identification of regulated genes. See Methods for 

details. (C) Relationship between Si, Ti, and 𝑔 obtained using simulated data from an organism 

with 20,000 genes. Distributions of 100 runs for each parameter combination are presented as 

box and whisker plots. (D) Numbers of publications listed on WormBase for the top 25 regulated 

genes as measured using r25 in the field of RNA silencing in C. elegans. Red line marks 10 



publications. (E) Domains present in proteins encoded by understudied genes among the top 25 

genes that are suggestive of function. Proteins with high-confidence AlphaFold structures [5] were 

used to identify related proteins using Foldseek [6] or based on the literature ([4, 7]; C38D9.2, 

F15D4.5, and W09B7.2). (F) Heat map showing the top 25 regulated genes. Presence (black) or 

absence (white) of each gene in each dataset is indicated. Relatively understudied (<10 

references on WormBase) genes (red) or pseudogenes (grey) identified in (D) are indicated. (G) 

Hierarchical clustering of the top 25 genes based on co-occurrence in studies, where gene names 

colored as in (D) and ‘distance (dJ)’ indicates Jaccard distance. 

 



Figure 2. Clusters formed by regulated genes suggest priorities for detailed study. (A and 

B) Properties of the top 100 regulated genes as measured using r100 in the field of RNA silencing 

in C. elegans. (A) Clusters of genes based on their historical mutual information. Threshold for 

link: HMI > 0.9. Also see Table S2. (B) Molecular functions (top), cell components (middle), and 

biological processes (bottom) of genes in cluster 1 as in (A). Length of boxes near each term in 

(B) indicates log10(annotations for GO term in C. elegans), with largest and smallest bars 

indicating ~285 and ~8 annotations, and shading indicates -log10(Bonferroni-corrected p-value), 

with black and white indicating a p-value of ~10-6 and ~10-1, respectively. (C-F) Network in (A) 

with nodes colored to show number of publications per gene (white, 0; black, ≥100) (C), genes 

that have been the main subject of abstracts on RNA silencing in C. elegans (D), pseudogenes 

(red) (E), and genes changed in hrde-1 mutants [10] (red), a sid-1 mutant [4] (blue), or both 

(orange) (F). 
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Supplementary Methods 

To identify studies on RNA silencing in C. elegans that have data tables that can be 

compared across all studies, we used the term ‘C. elegans RNA silencing’ to search PubMed.  

After examining the more than 2000 studies that resulted from the search, the available data 

tables from 112 studies that were published between 2007 and 2023 were downloaded (Table 

S1), reformatted into 432 distinct tables manually and/or using custom scripts. Metadata if 

supplied by the authors for each table were retained as comments above each table. Gene names 

were unified using the Gene Name Sanitizer (https://wormbase.org/tools/mine/gene_sanitizer.cgi) 

as on 26 April 2022. It is unclear how an exhaustive list of papers that is nevertheless field-

restricted could ever be defined for any field. Accordingly, our list of RNA silencing studies in C. 

elegans is not exhaustive and we apologize to colleagues whose work is not included in our 

analysis. Nevertheless, this effort captured additional datasets compared with those available in 

other more unrestricted collections that attempt to collect tables from all studies on an organism 

(e.g. WormExp 2.0 [1]). Only 29 studies included in this study overlapped with the 461 included 

in WormExp 2.0 as on 27 Jan 2023, which was determined by comparing the paper IDs after 

downloading all datasets from https://wormexp.zoologie.uni-kiel.de/wormexp/ using a tool on 

WormBase ( http://tazendra.caltech.edu/~azurebrd/cgi-

bin/forms/generic.cgi?action=PapIdToWBPaper). Data tables that reported p-values or adjusted 

p-values were filtered to only include entries with p < 0.05. Since fold-changes were not always 

available, for every dataset, genes were scored as present or absent to generate a heatmap 

featuring the most frequently changed genes (highest values of rg), where the number of genes 

considered (g) can be arbitrary (e.g., 25 in Fig. 1F and 100 in Fig. 2). The relationships between 

the parameters Si, Ti, and 𝑔 (Fig. 1C) were obtained using simulated data by sampling 100 

random sets of genes as the top 𝑔 genes from a total of 20,000 genes and similarly sampling the 

genes in datasets of various sizes (Ti). For each gene, the number of references listed on 

https://wormbase.org/tools/mine/gene_sanitizer.cgi
https://wormexp.zoologie.uni-kiel.de/wormexp/
http://tazendra.caltech.edu/~azurebrd/cgi-bin/forms/generic.cgi?action=PapIdToWBPaper
http://tazendra.caltech.edu/~azurebrd/cgi-bin/forms/generic.cgi?action=PapIdToWBPaper


Wormbase (https://wormbase.org/) was used as a measure of the extent to which the gene has 

been studied. Genes with fewer than 10 references were defined as understudied (Fig. 1D). To 

generate the heatmap, genes were ordered in decreasing values of 𝑟25 (top to bottom in Fig. 1F) 

and datasets were ordered in decreasing values of 𝑆𝑖

𝑇𝑖
. (left to right in Fig. 1F). To determine the 

co-occurrence patterns of all pairs of genes, Jaccard distances (𝑑𝐽 = 1 −  
|𝑋∩𝑌|

|𝑋∪𝑌|
, where X and Y 

are sets of lists containing genes x and y, respectively) were calculated for each pair and all genes 

were hierarchically clustered using the ‘average’ linkage method. Relationships between genes 

based on occurrence in datasets were also captured as normalized mutual information and 

defined as historical mutual information (HMI) to emphasize the dependence on the biased 

availability of data based on historical progress in addition to the functional relatedness of the 

genes. Specifically, it was defined to be a symmetric and normalized mutual information score [2] 

and was calculated using the function normalized_mutual_info_score from scikit-learn [3] for 

genes 𝑋 and 𝑌: 

𝐻𝑀𝐼(𝑋; 𝑌) ∶=
2. 𝑀𝐼(𝑋; 𝑌)

𝐻(𝑋) + 𝐻(𝑌)
 , 

where 𝑀𝐼(𝑋; 𝑌) =  ∑ ∑ 𝑃(𝑋,𝑌)(𝑥, 𝑦)𝑥𝑦 𝑙𝑜𝑔2 (
𝑃(𝑋,𝑌)(𝑥,𝑦)

𝑃𝑋(𝑥)𝑃𝑌(𝑦)
), 𝐻(𝑋) =  − ∑ 𝑃(𝑥)𝑙𝑜𝑔2(𝑃(𝑥))𝑥 , and 𝐻(𝑌) =

 − ∑ 𝑃(𝑦)𝑙𝑜𝑔2(𝑃(𝑦))𝑦 . Mutual information (MI) determines how different the joint distribution of the 

gene pair (X, Y) is from the product of the marginal distributions of each gene, H(X) and H(Y) are 

the entropies of the two genes, and 𝑃(… ) indicates probabilities. Clusters of genes based on HMI 

values were identified using the Girvan-Newman algorithm [4]. Gene Ontology (GO) analysis was 

performed on all clusters using the Gene Ontology Resource ([5, 6]; https://geneontology.org/) 

and the significant terms (selected as having P < 0.05 after Bonferroni correction for multiple 

testing, associated with > 3 genes, and with a > 3-fold enrichment), if any, for each cluster were 

reduced for visualization using REVIGO ([7]; http://revigo.irb.hr/) with the organism set to 

Caenorhabditis elegans, the resulting list size set to ‘small’, and displaying only terms with 

https://wormbase.org/tools/mine/gene_sanitizer.cgi
https://geneontology.org/
http://revigo.irb.hr/


frequency < 3% (selects for more specific terms). The interactive graphical user interface (GUI) 

for visualizing clusters and genes of interest was created using Dash (Python). 

 
 
Table S1. Published papers from which tables were used for this study   
Paper Pubmed   
2007 Welker et al RNA https://pubmed.ncbi.nlm.nih.gov/17526642/ 
2007 Zhang et al Mol Cell https://pubmed.ncbi.nlm.nih.gov/18042455/ 
2008 Batista et al Mol Cell https://pubmed.ncbi.nlm.nih.gov/18571452/ 
2008 Spike et al Development https://pubmed.ncbi.nlm.nih.gov/18234720/ 
2008 Wang et al Curr Biol https://pubmed.ncbi.nlm.nih.gov/18501605/ 
2009 Claycomb et al Cell https://pubmed.ncbi.nlm.nih.gov/19804758/ 
2009 Gent et al Genetics https://pubmed.ncbi.nlm.nih.gov/19805814/ 
2009 Gu et al Mol Cell https://pubmed.ncbi.nlm.nih.gov/19800275/ 
2009 Han et al PNAS https://pubmed.ncbi.nlm.nih.gov/19846761/ 
2009 vanWolfswinkel et al Cell https://pubmed.ncbi.nlm.nih.gov/19804759/ 
2010 Conine et al PNAS https://pubmed.ncbi.nlm.nih.gov/20133686/ 
2010 Correa et al PLoS Genet https://pubmed.ncbi.nlm.nih.gov/20386745/ 
2010 Vasale et al PNAS https://pubmed.ncbi.nlm.nih.gov/20133583/ 
2010 Welker et al RNA https://pubmed.ncbi.nlm.nih.gov/20354150/ 
2011 Fischer et al PLoS Genet https://pubmed.ncbi.nlm.nih.gov/22102828/ 
2011 Maniar et al Curr Biol https://pubmed.ncbi.nlm.nih.gov/21396820/ 
2011 Thivierge et al NSMB https://pubmed.ncbi.nlm.nih.gov/22179787/ 
2011 Wu et al NSMB https://pubmed.ncbi.nlm.nih.gov/21909095/ 
2011 Zhang et al PNAS https://pubmed.ncbi.nlm.nih.gov/21245313/ 
2012 Bagijn et al Science https://pubmed.ncbi.nlm.nih.gov/22700655/ 
2012 Buckley et al Nature https://pubmed.ncbi.nlm.nih.gov/22810588/ 
2012 Gu et al Cell https://pubmed.ncbi.nlm.nih.gov/23260138/ 
2012 Lee et al Cell https://pubmed.ncbi.nlm.nih.gov/22738724/ 
2012 Warf et al Genome Res https://pubmed.ncbi.nlm.nih.gov/22673872/ 
2012 Zhang et al Curr Biol https://pubmed.ncbi.nlm.nih.gov/22542102/ 
2013 Conine et al Cell https://pubmed.ncbi.nlm.nih.gov/24360276/ 
2013 Hall et al RNA https://pubmed.ncbi.nlm.nih.gov/23329696/ 
2013 Sarkies et al Genome Res https://pubmed.ncbi.nlm.nih.gov/23811144/ 
2014 Cecere et al NSMB https://pubmed.ncbi.nlm.nih.gov/24681887/ 
2014 Kasper et al Dev Cell https://pubmed.ncbi.nlm.nih.gov/25373775/ 
2014 Ni et al BMC Genomics https://pubmed.ncbi.nlm.nih.gov/25534009/ 
2014 Phillips et al Curr Biol https://pubmed.ncbi.nlm.nih.gov/24684932/ 
2014 Rechavi et al Cell https://pubmed.ncbi.nlm.nih.gov/25018105/ 



2014 Sakaguchi et al PNAS https://pubmed.ncbi.nlm.nih.gov/25258416/ 
2014 Stoeckius et al EMBO J https://pubmed.ncbi.nlm.nih.gov/24957527/ 
2014 Weick et al Genes n Dev https://pubmed.ncbi.nlm.nih.gov/24696457/ 
2014 Yang et al Curr Biol https://pubmed.ncbi.nlm.nih.gov/24684930/ 
2014 Zhou et al Genetics https://pubmed.ncbi.nlm.nih.gov/24532782/ 
2015 Albuquerque et al Dev Cell https://pubmed.ncbi.nlm.nih.gov/26279485/ 
2015 Phillips et al Dev Cell https://pubmed.ncbi.nlm.nih.gov/26279487/ 
2015 Tsai et al Cell https://pubmed.ncbi.nlm.nih.gov/25635455/ 
2015 Tu et al Nucl Acids Res https://pubmed.ncbi.nlm.nih.gov/25510497/ 
2015 Zinovyeva et al PNAS https://pubmed.ncbi.nlm.nih.gov/26351692/ 
2016 Gerson-Gurwitz et al Cell https://pubmed.ncbi.nlm.nih.gov/27020753/ 
2016 Houri-Zeevi et al Cell https://pubmed.ncbi.nlm.nih.gov/27015309/ 
2016 Ni et al Epigenetics Chromatin https://pubmed.ncbi.nlm.nih.gov/26779286/ 
2016 Tang et al Cell https://pubmed.ncbi.nlm.nih.gov/26919432/ 
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Table S2. Clusters formed by r100 genes with HMI > 0.9 
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Unclustered 
wago-4 Y37E11B.2 R03D7.2 C09G5.7 sea-2 
par-5 H09G03.1 T02G5.4 C55C3.3 Y47H10A.5 
eel-1 W04B5.2 fbxb-97   
egg-6 F39E9.7 pan-1   
mcm-7 ZK402.3 T20F7.1   
gfat-2 F39F10.4 fkb-8   
F34D10.4 Y17D7B.4 lin-15B   
pod-1 W05H12.2 bath-45   
ani-1 W04B5.1 W06A11.4   
spd-5 E01G4.5 timm-17B.2   
wago-1 K02E2.6 glit-1   
ima-3  elf-1   
ani-2  sdg-1   
mex-5  saeg-2   
mrp-4  ceh-20   
cdc-48.1  W09B7.1   
top-2  F40D4.13   
csr-1  F41G4.7   
hmg-12  C38C3.3   
tbb-2  rnh-1.3   
simr-1  C38D9.2   
idh-1  Y48G1BM.6   
hsp-90  F15D4.5   
pyk-1  citk-1   
cpg-1  Y20F4.4   
rme-2  F58H7.5   
puf-3  C04G6.6   
klp-15  R06C1.4   
hsp-4  saeg-1   
hrde-1  R03H10.6   
rpn-9  spe-41   
hsp-1  his-24   
tba-2  T16G12.4   
pgl-3  gly-13   
daf-18  clp-6   
mut-16  qdpr-1   
set-2  fbxa-192   
cey-2  C18D4.6   



vig-1  K09H9.7   
hil-4  C08F11.7   
klp-7  pdfr-1   
cdk-1  scrm-4   
deps-1     
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