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SUMMARY

Progress in biology has generated numerous lists of genes that share some property. But,
advancing from the initial implication of a set of genes in a process to understanding their roles in
the process is slow and unsystematic. Here we use RNA silencing in C. elegans to illustrate a
general approach for comparing lists of data accumulated by a field to prioritize genes for detailed
study given limited resources. The partially subjective relationships between genes forged by both
functional relatedness of the genes and biased progress in the field was captured as historical
mutual information (HMI) and used as a quantitative measure for clustering genes. These clusters
suggest regulatory links connecting RNA silencing with other processes like the cell cycle and
identify understudied regulated genes that could be used to sense perturbation or mediate

feedback inhibition.
MAIN TEXT
Introduction

Genes and gene products are often collected as lists based on unifying characteristics or based
on experiments. For example, genes that show enrichment of a chromatin modification, mMRNAs
that change in response to a mutation, proteins that interact with another protein, etc. After the
initial identification of a set of genes as belonging to a list, multiple approaches [1] are needed to
generate an explanatory model. Since single papers often analyze only one or a few genes, a
wider view of genes with roles in a process could be gained by comparing lists generated by a
group of studies or even all studies in a relatively young field. Such exploration could identify
genes that are present in multiple lists but have not yet been selected for detailed study.
Identifying these understudied genes is especially useful during the early stages of a field, when
coherent models that provide explanations for most observed phenomena have not yet emerged.

While this approach is also extensible to lists of anything that is used to characterize living



systems (changes in lipids, metabolites, localizations, etc.), here we focus on lists of mMRNAs,

proteins, and small RNAs generated by the field of RNA silencing in the nematode C. elegans.

A gene present in many lists could be regulated in multiple separable ways and/or be
regulated in one or a few ways by connected sets of regulators (Fig. 1A). For example, mRNA
levels could be regulated through changes in transcription, turnover, localization, small RNA
production, etc. or all changes could occur because of turnover regulation by a connected set of
regulators. Changes in such genes could alter specific regulatory outputs, making them
integrators of inputs from many other regulators. Alternatively, they could have no measurable
consequence, making them experimentally useful as general sensors of perturbation. Here we
present an approach to identify these regulated but understudied genes in the field of RNA

silencing in C. elegans.

Results

To determine if there are any understudied regulated genes that are relevant for RNA
silencing in C. elegans, we examined data from past studies in the field. While complete
replication of each study might be needed for direct comparisons, this ideal is impractical. Even
beginning with the ‘raw’ data deposited to public resources (e.g., fastq files after RNA-seq) and
repeating the analyses reported in a paper is not always feasible. Summary tables from previous
analyses presented in papers provide a practical intermediate level of data to use for comparisons
across studies. Therefore, we collated a total of 432 tables from 112 papers for comparison (see
methods and Table S1 for list of studies) and joined the tables together after standardizing gene
names to yield genes that can be compared for presence or absence across 432 lists (Fig. 1B).
To identify a set of genes (g) that receive extensive regulatory input and/or that encode proteins
that interact with many other proteins and are yet selectively regulated, we propose a metric rg

(Fig. 1B). Since the likelihood of including a gene from the lists increases with g, the metric is



specified with a subscript for each analysis (e.g., r,5 refers to a regulation score when the top 25

genes that are most commonly present in lists are considered) and defined to be:

S

T, =
g
T;

n
i=1
where g = size of gene set chosen for analysis, n = total number of lists with altered genes, S; =
number of genes from the i*" list that is also present in the gene set g, and T; = total number of
genes in the ™" list. The larger the set of genes (g) selected, the greater the chance of a dataset
(with Ti genes) having at least one overlapping gene within the selected gene set (probability
given by P(S; > 0) in Fig. 1C). The metric 7, is a decision aid that helps with choosing genes for
experimental analysis and is not to be taken as an objective measure of the importance of the
gene for the biological process under study.

The top 25 genes with the highest r,5 values included the germline Argonaute proteins
CSR-1 [2] and HRDE-1 [3], which have each been the subject of numerous studies (Fig. 1D).
While most other genes are understudied (fewer than 10 publications on WormBase), among
them is W0O9B7.2/sdg-1, which was recently reported to be regulated by the double-stranded RNA
importer SID-1 and encodes a protein with a suggested role in feedback regulation of heritable
RNA silencing by colocalizing with perinuclear germ granules [4]. This discovery suggests that
the analysis of the additional genes with high r,; values could also be fruitful. Of the 16
understudied genes that encode proteins, 7 had high-confidence AlphaFold structures [5], which
were then used to identify related protein domains using Foldseek [6] (Fig. 1E). Three more
proteins have been proposed to be nucleocapsids encoded from genes within retrotransposons
([4, 77; Fig. 1E). These candidates can be experimentally analyzed in the future for roles in RNA
silencing, if any.

To explore the relationships between these genes with the highest r,5 values (Fig. 1F and

1G), we clustered the genes and generated a dendrogram where genes present together in



different lists are closer together (see supplementary methods). The dendrogram revealed the
gene hil-4, which encodes a Histone H1-like protein [8], as the understudied gene clustering
closest to hrde-1 and csr-1, making it a strong candidate for a role potentially downstream of RNA-
mediated gene regulation. Another cluster (brown in Fig. 1G) included all four pseudogenes,
suggesting that this method could capture functional relatedness despite the limitations and
biases introduced by the available data.

To examine if the observations using r,; hold when analyzing a larger set of genes, we
examined the top 100 genes with the highest 1, values. To quantify the correlated presence or
absence of genes in different lists we used a measure of mutual information [9] named here as
historical mutual information (HMI) to emphasize the subjective nature of this measure because
it depends on both functional relatedness of the genes and biased availability of data (see
supplementary methods). Using HMI to cluster these genes revealed three major clusters (43, 42,
and 11 genes), another cluster with two genes and two other unconnected genes (Fig. 2A). Only
one cluster (cluster 1 in Fig. 2A) had significant numbers of genes associated with gene ontology
terms. Many of these genes encode proteins that bind and/or hydrolyze RNA (Fig. 2B, top),
localize to cytoplasmic ribonucleoprotein granules (Fig. 2B, middle), and/or play roles in other
processes such as cell division (Fig. 2B, boftom). Consistently, this cluster also had the greatest
number of genes that have been described in multiple publications (Fig. 2C), including all the
genes that have been featured in abstracts on RNA silencing (Fig. 2D). Therefore, the analysis of
additional genes in this cluster could be relevant for RNA silencing and connect such regulation
to other processes (e.g., the cell cycle). Since four of the five pseudogenes are in a small cluster
(Fig. 2E, 4 of 11 genes in cluster 2), the other genes in this cluster could potentially be targets of
regulation without specific downstream regulation or be co-regulated sensors of pseudogene RNA
levels. Intriguingly, there is a large overlap between a set of genes that require HRDE-1 for
downregulation (67 genes in both replicates from worms grown at 15°C [10]) and genes in a single

cluster (Fig. 2F, 17 of 42 genes in cluster 3). One possible explanation for this abundance and



clustering could be that hrde-7-dependent gene lists are among the most numerous generated
by the field and/or included in our analysis (44 of 298 lists with fewer than 2000 genes).
Alternatively, genes that are subject to HRDE-1-dependent silencing could be extensively
regulated by many other regulators and require this additional downregulation for fitness — i.e.,
overexpression of these genes is detrimental. Consistent with this possibility, loss of HRDE-1
results in progressive sterility that can be reversed by restoring HRDE-1 activity [10]. Also, as
expected for the use of HRDE-1 downstream of SID-1, genes upregulated using sid-7 (18 genes
in animals with a deletion in sid-1 [4]) overlap with genes in the same cluster (Fig. 2F, 4 of 42 in
cluster 3). Future studies by labs working on RNA silencing in C. elegans have the potential to
test and enrich the classification of regulated yet understudied genes revealed here.
Discussion

Our analysis has identified selectively regulated yet understudied genes in the field of RNA
silencing in C. elegans. Clustering these genes reveal that better studied genes are together in
one cluster. Many of these genes have known roles, providing regulatory links between RNA
silencing and other processes. The other two larger clusters include genes and pseudogenes that
have been described as targets of RNA regulation. These regulated genes, which are presentin
many lists, could be under the independent control of multiple regulators and/or be jointly
regulated by a connected set of regulators, making them experimentally useful general sensors
of perturbation in RNA silencing and/or regulators that mediate feedback inhibition of RNA
silencing.

While future extensions of this work could automate the process of aggregating and
comparing data, flexible inclusion of different lists in the analysis would be needed to enable
customization based on the expertise, interests, and risk tolerance of individual labs. Furthermore,
earlier studies that had to use older technologies with limitations could have led to conclusions
that need revision. For example, when analyzed using multi-copy transgenes, the dsRNA-binding

protein RDE-4 showed a cell non-autonomous effect [11, 12], but when analyzed using single-



copy transgenes, RDE-4 showed a cell autonomous effect [13]. Since different researchers could
interpret such conflicting data differently (e.g., differences in levels of tissue-restricted expression
versus differences in extent of misexpression in other tissues), it is useful to preserve
customization for the lists included.

Different properties of a single protein or RNA could be important for different biological
roles [14, 15], or the same properties could be important for different processes. Despite such
plurality, a gene found in many lists could become associated with a single label because of the
historical sequence of discovery (e.g., HRDE-1-dependent genes; many in cluster 3, Fig. 2F),
thereby obscuring additional roles of that gene. With the expanding number of lists generated
through large-scale experimental approaches in different fields, identifying selectively regulated
yet understudied genes could aid the prioritization of genes for detailed mechanistic studies using

the limited resources and time available for any lab.

Methods

Data tables from 112 studies on RNA silencing in C. elegans that were published between
2007 and 2023 were downloaded (Table S1), reformatted manually and/or using custom scripts,
and filtered to generate lists that only include entries with reported p-values or adjusted p-values
< 0.05, when such values were available. The top ‘g’ genes that occur in the greatest numbers of
tables were culled as the most frequently identified genes. A measure for the extent of regulation
of each gene (rg) was used to aid prioritization for detailed study. Co-occurrence patterns of genes
in different tables were captured using the Jaccard distance (dJ) [16] or as a symmetric measure
of normalized mutual information [9], defined here as Historical Mutual Information (HMI). The d.
values were used to generate a dendrogram using the average linkage method (Fig. 1G). HMI
was used to group genes into clusters according to the Girvan-Newman algorithm [17] and

different sets of genes were highlighted (Fig. 2). Gene ontology (GO) analyses were performed



using Gene Ontology Resource (https://geneontology.org/; [18, 19]) and significant GO terms
were collected for visualization using REVIGO [20]. All programs used in this study are available

at GitHub (AntonyJose-Lab/Lalit_Jose_2024).
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Figure 1. Some genes are selectively regulated, reported as part of many lists, and yet are

understudied. (A) Schematics of possible regulatory architectures for genes found on multiple

lists. (fop) Gene receiving one input form a large network. (botfom) Gene receiving multiple inputs

from separable networks. (B) Strategy for the identification of regulated genes. See Methods for

details. (C) Relationship between S;, Ti, and g obtained using simulated data from an organism

with 20,000 genes. Distributions of 100 runs for each parameter combination are presented as

box and whisker plots. (D) Numbers of publications listed on WormBase for the top 25 regulated

genes as measured using rzs in the field of RNA silencing in C. elegans. Red line marks 10



publications. (E) Domains present in proteins encoded by understudied genes among the top 25

genes that are suggestive of function. Proteins with high-confidence AlphaFold structures [5] were

used to identify related proteins using Foldseek [6] or based on the literature ([4, 7]; C38D9.2,

F15D4.5, and W09B7.2). (F) Heat map showing the top 25 regulated genes. Presence (black) or

absence (white) of each gene in each dataset is indicated. Relatively understudied (<10

references on WormBase) genes (red) or pseudogenes (grey) identified in (D) are indicated. (G)

Hierarchical clustering of the top 25 genes based on co-occurrence in studies, where gene names

colored as in (D) and ‘distance (dJ)’ indicates Jaccard distance.
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Figure 2. Clusters formed by regulated genes suggest priorities for detailed study. (A and
B) Properties of the top 100 regulated genes as measured using rio0 in the field of RNA silencing
in C. elegans. (A) Clusters of genes based on their historical mutual information. Threshold for
link: HMI > 0.9. Also see Table S2. (B) Molecular functions (top), cell components (middle), and
biological processes (boffom) of genes in cluster 1 as in (A). Length of boxes near each term in
(B) indicates logio(annotations for GO term in C. elegans), with largest and smallest bars
indicating ~285 and ~8 annotations, and shading indicates -logio(Bonferroni-corrected p-value),
with black and white indicating a p-value of ~10 and ~10, respectively. (C-F) Network in (A)
with nodes colored to show number of publications per gene (white, 0; black, =100) (C), genes
that have been the main subject of abstracts on RNA silencing in C. elegans (D), pseudogenes
(red) (E), and genes changed in hrde-1 mutants [10] (red), a sid-7 mutant [4] (blue), or both

(orange) (F).
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Supplementary Methods

To identify studies on RNA silencing in C. elegans that have data tables that can be
compared across all studies, we used the term ‘C. elegans RNA silencing’ to search PubMed.
After examining the more than 2000 studies that resulted from the search, the available data
tables from 112 studies that were published between 2007 and 2023 were downloaded (Table
S1), reformatted into 432 distinct tables manually and/or using custom scripts. Metadata if
supplied by the authors for each table were retained as comments above each table. Gene names

were unified using the Gene Name Sanitizer (https://wormbase.org/tools/mine/gene sanitizer.cgi)

as on 26 April 2022. It is unclear how an exhaustive list of papers that is nevertheless field-
restricted could ever be defined for any field. Accordingly, our list of RNA silencing studies in C.
elegans is not exhaustive and we apologize to colleagues whose work is not included in our
analysis. Nevertheless, this effort captured additional datasets compared with those available in
other more unrestricted collections that attempt to collect tables from all studies on an organism
(e.g. WormExp 2.0 [1]). Only 29 studies included in this study overlapped with the 461 included
in WormExp 2.0 as on 27 Jan 2023, which was determined by comparing the paper IDs after

downloading all datasets from https://wormexp.zoologie.uni-kiel.de/wormexp/ using a tool on

WormBase ( http://tazendra.caltech.edu/~azurebrd/cgi-

bin/forms/generic.cgi?action=PapldToWBPaper). Data tables that reported p-values or adjusted

p-values were filtered to only include entries with p < 0.05. Since fold-changes were not always
available, for every dataset, genes were scored as present or absent to generate a heatmap
featuring the most frequently changed genes (highest values of r¢), where the number of genes
considered (g) can be arbitrary (e.g., 25 in Fig. 1F and 100 in Fig. 2). The relationships between
the parameters S;, Ti, and g (Fig. 1C) were obtained using simulated data by sampling 100
random sets of genes as the top g genes from a total of 20,000 genes and similarly sampling the

genes in datasets of various sizes (7i). For each gene, the number of references listed on


https://wormbase.org/tools/mine/gene_sanitizer.cgi
https://wormexp.zoologie.uni-kiel.de/wormexp/
http://tazendra.caltech.edu/~azurebrd/cgi-bin/forms/generic.cgi?action=PapIdToWBPaper
http://tazendra.caltech.edu/~azurebrd/cgi-bin/forms/generic.cgi?action=PapIdToWBPaper

Wormbase (https://wormbase.org/) was used as a measure of the extent to which the gene has

been studied. Genes with fewer than 10 references were defined as understudied (Fig. 1D). To

generate the heatmap, genes were ordered in decreasing values of r,; (top to bottom in Fig. 1F)
and datasets were ordered in decreasing values of % (left to right in Fig. 1F). To determine the

co-occurrence patterns of all pairs of genes, Jaccard distances (d; = 1 — % where X and Y

are sets of lists containing genes x and y, respectively) were calculated for each pair and all genes
were hierarchically clustered using the ‘average’ linkage method. Relationships between genes
based on occurrence in datasets were also captured as normalized mutual information and
defined as historical mutual information (HMI) to emphasize the dependence on the biased
availability of data based on historical progress in addition to the functional relatedness of the
genes. Specifically, it was defined to be a symmetric and normalized mutual information score [2]
and was calculated using the function normalized_mutual_info_score from scikit-learn [3] for

genes X andY:

0 2.MIXGY)
HMIQGY) = pom s TH)

p )
where MI(X;¥) = By B Pry(x,7) loga (F22720), H(X) = =% P(0)logs(P(x)), and H(Y) =

-2y P()log; (P(»)). Mutual information (MI) determines how different the joint distribution of the
gene pair (X, Y) is from the product of the marginal distributions of each gene, H(X) and H(Y) are
the entropies of the two genes, and P(...) indicates probabilities. Clusters of genes based on HMI
values were identified using the Girvan-Newman algorithm [4]. Gene Ontology (GO) analysis was

performed on all clusters using the Gene Ontology Resource ([5, 6]; https://geneontology.org/)

and the significant terms (selected as having P < 0.05 after Bonferroni correction for multiple
testing, associated with > 3 genes, and with a > 3-fold enrichment), if any, for each cluster were

reduced for visualization using REVIGO ([7]; http://revigo.irb.hr/) with the organism set to

Caenorhabditis elegans, the resulting list size set to ‘small’, and displaying only terms with


https://wormbase.org/tools/mine/gene_sanitizer.cgi
https://geneontology.org/
http://revigo.irb.hr/

frequency < 3% (selects for more specific terms). The interactive graphical user interface (GUI)

for visualizing clusters and genes of interest was created using Dash (Python).

Table S1. Published papers from which tables were used for this study

Paper

2007 Welker et al RNA

2007 Zhang et al Mol Cell
2008 Batista et al Mol Cell
2008 Spike et al Development
2008 Wang et al Curr Biol
2009 Claycomb et al Cell
2009 Gent et al Genetics
2009 Gu et al Mol Cell

2009 Han et al PNAS

2009 vanWolfswinkel et al Cell
2010 Conine et al PNAS

2010 Correa et al PLoS Genet
2010 Vasale et al PNAS

2010 Welker et al RNA

2011 Fischer et al PLoS Genet
2011 Maniar et al Curr Biol
2011 Thivierge et al NSMB
2011 Wu et al NSMB

2011 Zhang et al PNAS

2012 Bagijn et al Science
2012 Buckley et al Nature
2012 Gu et al Cell

2012 Lee et al Cell

2012 Warf et al Genome Res
2012 Zhang et al Curr Biol
2013 Conine et al Cell

2013 Hall et al RNA

2013 Sarkies et al Genome Res
2014 Cecere et al NSMB
2014 Kasper et al Dev Cell
2014 Ni et al BMC Genomics
2014 Phillips et al Curr Biol
2014 Rechavi et al Cell

Pubmed

https://pubmed.ncbi.nim.nih.gov/17526642/
https://pubmed.ncbi.nim.nih.gov/18042455/
https://pubmed.ncbi.nim.nih.gov/18571452/
https://pubmed.ncbi.nim.nih.gov/18234720/
https://pubmed.ncbi.nim.nih.gov/18501605/
https://pubmed.ncbi.nim.nih.gov/19804758/
https://pubmed.ncbi.nim.nih.gov/19805814/
https://pubmed.ncbi.nim.nih.gov/19800275/
https://pubmed.ncbi.nim.nih.gov/19846761/
https://pubmed.ncbi.nim.nih.gov/19804759/
https://pubmed.ncbi.nim.nih.gov/20133686/
https://pubmed.ncbi.nim.nih.gov/20386745/
https://pubmed.ncbi.nim.nih.gov/20133583/
https://pubmed.ncbi.nim.nih.gov/20354150/
https://pubmed.ncbi.nim.nih.gov/22102828/
https://pubmed.ncbi.nim.nih.gov/21396820/
https://pubmed.ncbi.nim.nih.gov/22179787/
https://pubmed.ncbi.nim.nih.gov/21909095/
https://pubmed.ncbi.nim.nih.gov/21245313/
https://pubmed.ncbi.nim.nih.gov/22700655/
https://pubmed.ncbi.nim.nih.gov/22810588/
https://pubmed.ncbi.nim.nih.gov/23260138/
https://pubmed.ncbi.nim.nih.gov/22738724/
https://pubmed.ncbi.nim.nih.gov/22673872/
https://pubmed.ncbi.nim.nih.gov/22542102/
https://pubmed.ncbi.nim.nih.gov/24360276/
https://pubmed.ncbi.nim.nih.gov/23329696/
https://pubmed.ncbi.nim.nih.gov/23811144/
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Table S2. Clusters formed by ri00 genes with HMI > 0.9
Cluster 1 Cluster 2 Cluster 3 Cluster4 Unclustered
wago-4 Y37E11B.2 R03D7.2 C09G5.7 sea-2

par-5 H09G03.1 T02G5.4 C55C3.3 Y47H10A.5
eel-1 WO04B5.2 fbxb-97
egg-6 F39E9.7 pan-1
mcm-7 ZK402.3 T20F7.1
gfat-2 F39F10.4  fkb-8
F34D104 Y17D7B.4 Iin-15B
pod-1 WO05H12.2  bath-45
ani-1 WO04B5.1 W06A11.4
spd-5 E01G4.5 timm-17B.2
wago-1 KO2E2.6 glit-1
ima-3 elf-1

ani-2 sdg-1
mex-5 saeg-2
mrp-4 ceh-20
cdc-48.1 WO09B7.1
top-2 F40D4.13
csr-1 F41G4.7
hmg-12 C38C3.3
thb-2 rmh-1.3
simr-1 C38D9.2
idh-1 Y48G1BM.6
hsp-90 F15D4.5
pyk-1 citk-1
cpg-1 Y20F4 .4
rme-2 F58H7.5
puf-3 C04G6.6
kip-15 R06C1.4
hsp-4 saeg-1
hrde-1 RO3H10.6
rpn-9 spe-41
hsp-1 his-24
tha-2 T16G12.4
pgl-3 gly-13
daf-18 clp-6
mut-16 qdpr-1
set-2 fbxa-192

cey-2 C18D4.6



vig-1 KO9H9.7

hil-4 CO8F11.7
kip-7 pdfr-1
cdk-1 scrm-4

deps-1
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