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ABSTRACT

Many deep generative models, such as variational autoencoders (VAEs) and generative
adversarial networks (GANSs), learn an immersion mapping from a standard normal distribution in
a low-dimensional latent space into a higher-dimensional data space. As such, these mappings
are only capable of producing simple data topologies, i.e., those equivalent to an immersion of
Euclidean space. In this work, we demonstrate the limitations of such latent space generative
models when trained on data distributions with non-trivial topologies. We do this by training these
models on synthetic image datasets with known topologies (spheres, torii, etc.). We then show
how this results in failures of both data generation as well as data interpolation. Next, we compare
this behavior to two classes of deep generative models that in principle allow for more complex
data topologies. First, we look at chart autoencoders (CAEs), which construct a smooth data
manifold from multiple latent space chart mappings. Second, we explore score-based models,
e.g., denoising diffusion probabilistic models, which estimate gradients of the data distribution
without resorting to an explicit mapping to a latent space. Our results show that these models
do demonstrate improved ability over latent space models in modeling data distributions with
complex topologies, however, challenges still remain.

Keywords: deep generative models, topological data analysis

1 INTRODUCTION

Recent advances in deep generative models (DGMs) have resulted in the unprecedented ability of these
models to produce realistic data, including imagery, text, and audio. While qualitative evaluation of
generated data makes it clear that DGMs are improving at a rapid pace, quantifying how well a model
produces samples similar to the original data distribution on which it was trained is a challenging task
and an area of active research. Inherent to this problem is that generative models are fundamentally
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meant to produce data that would be judged to be realistic to a human observer, and quantifying human
perception—of images, language, or audio—is a difficult task.

A common approach to evaluating a generative model is to compute an empirical distributional distance
between a sample from the data distribution and a sample generated by the model. For example, in computer
vision, the Fréchet inception distance (FID) (Heusel et al., 2017)) is a popular choice for such a distance
metric. The FID approximates both the data distribution and the generated image distribution as multivariate
normal distributions on the outputs of an Inception v3 model trained on ImageNet. The Fréchet distance
between the resulting multivariate normal distributions is then computable in closed-form. More recently,
precision and recall (Sajjadi et al., 2018) were proposed to separately evaluate how close generated samples
are to the data distribution (precision) and how well they cover the data distribution (recall).

The manifold hypothesis of machine learning informally states that data distributions naturally lie near
lower-dimensional manifolds embedded in the higher-dimensional Euclidean space formed by their raw
representations. One class of DGMs, including variational autoencoders (VAEs) (Kingma and Welling,
2014) and generative adversarial networks (GANs) (Goodfellow et al., 2014), attempt to model the data
manifold explicitly. They do this by generating data by mapping points from a prior distribution in a
lower-dimensional latent space into the data representation space. This has led researchers to investigate the
manifold properties of such DGMs and use manifold methods to evaluate their quality. Shao et al.| (2018)
develop algorithms for computing geodesic curves and parallel translation of VAEs. They observed that
while VAEs were able to capture the curvature of synthetic data manifolds when trained on real image
data, the manifolds generated by VAEs were nearly flat. |Arvanitidis et al.| (2018)) propose that deterministic
generators lead to a distortion of the data manifold in the latent space that fails to capture the intrinsic
curvature of the data. They propose a stochastic Riemannian metric to correct for this and show that this
results in improved variance estimates. |(Chen et al.| (2018) demonstrate that Riemannian geodesics in the
latent space of a DGM give better interpolations and visual inspection of generated data. Shukla et al.
(2018) show that disentangled dimensions of the latent space of a VAE demonstrate higher curvature.

While these works have investigated the differential and metric geometry of DGMs, less is known about
the topological properties of DGMs. Theoretically, models that generate data from a continuous mapping
of a Gaussian prior distribution into Euclidean space, such as VAEs and GANSs, are not able to faithfully
reproduce data with non-trivial topology (e.g., spheres, tori, or other spaces with “holes”). In practice, these
models may be able to perform fairly well in approximating non-trivial data topologies by shifting density
away from holes. The chart autoencoder (CAE) model by [Schonsheck et al.| (2019) extends the topological
abilities of VAEs/GANs by modeling a manifold topology with multiple overlapping charts. On the other
hand, DDPMs and their relatives have no topological constraints in theory. However, the topological
abilities of these various DGMs have not been empirically tested or compared. This paper empirically tests
the ability of generative models to handle data arising from distributions with underlying topology, and
is, to the best of our knowledge, the first systematic study in this direction. There have been papers that
use topological techniques, such as Manifold Topology Divergence (Barannikov et al., 2021) or Geometry
Score (Khrulkov and Oseledets, 2018)), to quantify the quality of data produced by generative models. More
broadly, there has been extensive recent work (Hensel et al., 2021) at the interface of TDA and DL/ML.
These range from methods (e.g., Chen et al.[|(2019);|[Solomon et al.|(2021); |[Nigmetov and Morozov| (2022)))
that integrate TDA-based loss functions into DL algorithms, to bespoke DNN architectures (Carriere
et al.,|2020) that incorporate layers that process persistence diagrams, to works (e.g., Naitzat et al. (2020);
Wheeler et al. (2021)) that use TDA to analyze the structure of data as it moves through DNN layers.
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This paper is organized as follows. In Section [2] we review the methods used in this paper, namely, the
DGMs and metrics for evaluating their quality, including persistent homology. In Section [3| we present
our experiments comparing the ability of three DGMs—VAE, CAE, and DDPM—to learn to generate
data with known non-trivial topologies. To do this, we use two synthetic image datasets with a torus and
sphere topology, respectively, and a real dataset of conformations of cyclooctane, which is known to have
topology equivalent to a Klein bottle intersecting with a 2-sphere (Martin et al.,|2010). Note that this test
is even more difficult from a topological perspective, as the cyclooctane conformations form a topology
that is non-manifold, but rather a more complicated stratified space (in this case, the intersection of two
manifolds). Finally, in Section we discuss conclusions from these experiments and future directions.

2 BACKGROUND AND METHODS

In this section, we first review the three deep generative models (VAEs, CAEs, and DDPM) that we
evaluated for their ability to learn data distributions with non-trivial topology. Next, we describe the
evaluation metrics used for our study, both related and unrelated to the topological structure.

2.1 Deep Generative Models

Various structures for deep generative models have been proposed over time. Some of the popular models
are normalizing flows (Rezende and Mohamed, 2015)), variational autoencoders (Kingma and Welling,
2014), generative adversarial networks (Goodfellow et al., 2014), deep energy-based model (Du and
Mordatch, 2019), and the recent denoising diffusion models (Ho et al., 2020). Each type of generator
has different variations. Yet, topology is rarely considered in the design. Here we choose three models to
discuss.

2.1.1 Variational Autoencoders

A variational autoencoder (VAE) is a type of encoder-decoder generative model proposed by |[Kingma and
Welling| (2014). Unlike the traditional autoencoder (Hinton and Salakhutdinov, [2006), a VAE models the
probability distribution of the latent representation, z, of each data point instead of a deterministic latent
representation. A VAE models the marginal log-likelihood of the ith data point, (™) as:

)G seen). a

where 6 is a vector of the parameters for the generative model, and ¢ is a vector of the parameters for
the variational approximation. The objective is to maximize the evidence lower bound (ELBO), which is
derived to be:

2| @

L (9, d);w(i)) = —Dkr, (% <Z ‘ ﬂﬁ(i)> H p0(2)> +Eqy, [10gpe (fﬁ(i)
Usually the prior py(z) is set to be an isotropic Gaussian, A/(0,I). The encoder also models the g4(z | ()
as a Gaussian distribution A (1(?), (¢(9)21). Therefore, the first term is easy to compute with predicted
mean and variance of g, ( | (). On the other hand, the equation for the second term of the lower bound
depends on what probability distribution we assume in the data space. For example, using an isotropic
Gaussian distribution leads to the mean squared error loss, and using a Bernoulli distribution corresponds
to minimizing the binary cross entropy loss.

log py (l’(i)) = Dkl (% (Z
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As discussed above, VAEs usually assume a Gaussian distribution in the latent space. Although this might
be a reasonable assumption for many data with trivial topology, it might cause problems when this is not
the case. Even in a simple case where the data has an S' topology which is a loop, the neural network could
struggle to learn a mapping from two different topological spaces. Although one might argue the Gaussian
can be deformed enough so that it resembles a loop in practice, we still need experiments to investigate
this issue. Similarly, generative adversarial networks (Goodfellow et al., 2014)) also use a Gaussian prior
distribution in the latent space, and therefore might as well have problems learning data with non-trivial
topology.

2.1.2 Chart Autoencoders

In many applications of the VAE, its learned latent space is often treated as a linear space. For instance,
generating interpolations between two points of a given dataset is often performed by generating the linear
path between the embeddings of these points in latent space. This operation implicitly assumes that the
geodesics between points correspond to linear paths in latent space. Yet, we know there exist manifolds,
such as the sphere S2, which are not homeomorphic to a single linear space. It follows that the latent
space learned by a VAE trained on such a manifold is not geometrically faithful. That is the latent space
either contains a point that decodes to a point off the manifold, or the space cannot capture all geodesic
paths. To this end, recent architectures have been introduced to rectify this problem. We consider one such
architecture, the chart autoencoder (CAE) (Schonsheck et al.,[2019).

Chart autoencoders are a generative model architecture motivated by the concept of an atlas in differential
geometry. In comparison to the VAE, we learn a set of £ encoders and decoders parameterized by {gbi}f:l
and {Gi}le respectively. Each corresponding encoder and decoder is affiliated with a latent chart, Z;. Thus,
the latent space of the CAE is composed of a set of linear latent spaces. The CAE output is determined
by a chart prediction network, P. In the original work, P maps z from the input space X to p € RF,
where p represents the vector of log probabilities of the chart membership of x. In training, the output
of the CAE is taken to be the sum of the outputs from the k£ decoders weighted by the chart prediction
vector, p. During evaluation, the output is taken to be that of the decoder corresponding to the likeliest
chart via p. In this work, we update the chart prediction network to map from the direct sum of the latent
embeddings, z;, instead of x. This change was made to allow generations from the latent space without
reference to any network input. Intuitively, this chart prediction network is analogous to the chart transition
function affiliated with a geometric atlas. Indeed, the CAE is capable of transitioning between the outputs
of different latent charts when a linear interpolation is performed in latent space.

2.1.3 Denoising Diffusion Probabilistic Models

In contrast to the previous two models, the denoising diffusion probabilistic model (DDPM) proposed by
Ho et al.| (2020) does not have a low-dimensional latent space. It is based on the diffusion probabilistic
model by Sohl-Dickstein et al.|(2015), which learns to reverse a diffusion process in which Gaussian noise
is gradually added to the original image, zq, for 7' timesteps until we get a sampled image x7 that is nearly
pure noise. We call the diffusion process that adds noise the forward process, which is a Markov chain. The
reverse process is also defined to be a Markov chain as follows:

T

po(wor) = plar) [ [ poleir [ 20),  polwir | 2e) = N(wi1; po (s, 1), So(, 1)), 3)
=1
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where (;’s define the variance schedule and 6 is the parameter vector of the model that learns the reverse
process. During training, we can optimize the lower bound of the log-likelihood.

In the DDPM, f; is fixed and therefore the first term of the loss can be ignored. ¥g(x¢, t) is also fixed
for each time step ¢. Then DDPM reparameterizes x; with the added noise ¢ ~ N(0,1), and g (¢, t) with
eg(x¢), which means the model is now trained to predict the noise €. Their experiments also show that
omitting the different weights dependent on ¢ does not compromise the final performance, which results in

the final loss: )
‘Csimple(e) = ]Et,mme [He - 69(\/6725 To+V1—age, t)H } ) €]

with &;’s being expressions of 3;’s. It is also worth noting that|Song et al.| (2021) derived the same model
from the view of a score based model, which learns the gradient of the log probability density in the data
space.

We can see that the DDPM does not assume any topology on the original data distribution. The sampling
only depends on the fact that the diffused data distribution is Gaussian, which is achieved by using a prefixed
time variance schedule. Therefore, theoretically, it should be able to learn the data of any topological
structure. Yet, this needs to be examined through experiments. Similarly, energy based models (Du and
Mordatch, 2019) also do not assume any topology on the data distribution, and during sampling start from
Gaussian distribution and then travel to high probability regions of the data space. Thus, we could expect a
similar ability in learning distributions of non-trivial topology.

2.2 Quantitative Metrics for Evaluating DGMs

Given the purpose of DGMs is to generate samples that are as realistic as possible for a human, the
straightforward evaluation method would be the judgments by human eyes. However, there have been
attempts to quantitatively measure their performances.

2.2.1 Wasserstein Distance

We propose to evaluate how well a generative model learns a data probability distribution using a sample
approximation to the Lo Wasserstein 2-distance. By definition this should be:

) 1/2
Wap,v) = inf (B llz — yl? , 5
Q(M ) e () ( (z,y) ’y” y” ) )
where ;1 and v are probability measures of the ground truth data and the generative model, respectively,
['(u, v) is the set of any joint distribution of = and y such that [ y(z, y)dy = p(z) and [ (z,y)dz = v(y).
We implement the empirical version as:

1/2
Wa(u,v) mf( ZHX Ya( H2> : (6)

where X1, Xo, ..., X, are random samples from p, and Y7, Ys, ..., Y}, from v, and 7 is any permutation of
1,2, ...,n. Since the datasets are simulated, we can easily sample from the ground truth data distribution .
The best 7 is obtained using the Jonker—Volgenant algorithm (Jonker and Volgenant, [1988)) implemented
by SciPy (Virtanen et al., [2020).

There are some existing works, e.g., (Genevay et al., [2018), that train generative models from the
viewpoint of optimal transport, and therefore include the Wasserstein distance in the training loss. However,
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to the best of our knowledge, we are the first to employ Wasserstein distance to evaluate how well generators
learn the overall data distribution. The high time complexity (O(n?3)) of the Jonker—Volgenant algorithm
forbids us from using too large sample sizes to represent ground truth and learned distributions. Therefore,
one concern is whether the set of samples can adequately cover the whole distribution. However, in our
experiments, we use data from known low-dimensional distributions that can be reasonably covered with
relatively fewer samples.

2.2.2 Fréchet Inception Distance

Fréchet Inception Distance (FID) is computed by computing the Wasserstein distance on two probability
distributions obtained by feeding a set of ground truth examples and a set of fake examples to an embedding
function. The embedding function generally used is Inception v3 trained on ImageNet with the final layer
truncated, yielding a 2048-dimensional vector for each sample. A normal distribution is fit in this space
for each of the ground truth and fake sets, which are then the direct inputs for the Wasserstein distance.
While FID has been shown to usually align with human judgement Heusel et al. (2017), it has a number
of shortcomings (Chong and Forsythl (2020); Parmar et al.| (2022). Despite its shortcomings, FID has
established itself as the de facto standard metric for judging the quality of generative images |Borj1 (2022).

2.2.3 Density, Coverage

A line of work has defined metrics that separate failure modes by using multi-valued metrics. For example,
a metric might focus on fidelity which captures the degree to which a generated image resembles those in a
dataset, whereas another might focus on diversity which captures the degree to which a sample reflects the
variation in generative factors that gives rise to a dataset.

The earliest work, Precision and Recall Sajjadi et al. (2018)), introduces two metrics that successfully
separate dropping and adding modes (recall) from image quality (precision), but have some shortcomings
including not being robust to outliers and requiring more significant tuning to be accurate.

Density and Coverage Naeem et al. (2020) address these limitations by, still in an embedding space,
defining a manifold for a set of ground truth examples and measuring how often generated points land in it.
For their reported results, they use the 4096-dimensional layer of a truncated VGG16 trained on ImageNet
as the embedding space. They then form the real manifold as k-nearest neighbor balls for each real point.
Density is then a cumulative measure of how many real neighborhood balls the generated points land in,
normalized for the number of points. Intuitively, this value is greater than 1 when many generated samples
occur in a few real modes and less than 1 when the generated samples are too diverse or don’t fall in real
modes. The other half of the metric, Coverage, is then the percentage of real neighborhood balls that have
a generated point within them. Intuitively, this is 1 when all modes of the original data are covered, and
less than 1 otherwise.

2.2.4 Topological Data Analysis: Persistent Homology

Here we give some brief intuition about the information carried by the persistent homology of a point
cloud. Readers interested in a fuller and more rigorous discussion are pointed to textbooks such as
Edelsbrunner and Harer| (2010) or|Oudot (2017).

Suppose that X = {z1,...,z,} is a point cloud in some Euclidean space. For example, let X be the
collection of points on the left of Figure The persistence diagram Dy (X ) is a compact summary of some
of the k-dimensional multi-scale shape information carried by X. We now give some more details about
what this means.

Frontiers 6
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Figure 1. Illustration of persistence diagrams (right) for the Rips homology filtration on a point cloud
(left). Persistence is shown in dimensions zero (red) and one (blue).

For each threshold value » > 0, let X,. = U?:l By (z;). Note that whenever r < s, we have X, C Xj,
and as  moves from 0 to oo, the union of balls around the points in X grows from the points themselves to
the entire Euclidean space. During this process, various shape changes occur. In our working example, as r
increases, the number of connected components, which began as | X |, rapidly becomes 3 as clusters form
and then subsequently decreases as those clusters merge. The r values at which these mergers happen are
recorded as death values and stored in the zero-dimensional persistence diagram Dy (X ); see the red dots
on the right side of Figure[I] The higher-level connectivity of the union of balls also changes as r increases.
In our working example, an annulus forms in the upper right of X at a very small value of r, and a ring
appears connecting the three clusters at a larger value of 7. In technical terms, these features are called
one-dimensional homology classes |[Edelsbrunner and Harer (2010) and have rigorous algebraic definitions.
The r values at which they first appear are called birth value. Each homology class eventually fills in as
increases; for example, the annulus at the upper right fills in at the apparent radius of the feature. These
death values of the one-dimensional features are paired with the birth values that created the feature, and
they are plotted in the one-dimensional persistence diagram D1 (X ); see the blue dots on the right side of

Figure[]

Thus, each persistence diagram Dy (X ) consists of a (multi-)set of dots in the plane, with each dot
recording the birth and death value of a k-dimensional homological feature. Intuitively O and 1 dimensional
features represent connected components and loops/holes, respectively. Not shown in this example are
two-dimensional features, which represent voids, and still higher-dimensional features. The persistence
of a feature is the vertical distance of its dot to the major diagonal y = x in the persistence diagram.
Higher-persistence features are generally thought of as genuine representatives of the underlying space,
while lower-dimensional features are more likely to be caused by sampling noise. This intuition can be
formalized in inference theorems (e.g. (Cohen-Steiner et al. (2007), Fasy et al.[(2014)).

Persistence diagrams of point clouds are computed by transforming the growing union of balls into
combinatorial objects called filtered simplicial complexes. Without going into the technical details here,
we note that many software packages for doing this exist (Otter et al. (2017) gives a nice overview), and
that the experiments in this paper use giotto-tda (Tauzin et al., 2021).

3 EXPERIMENTS
3.1 Datasets

We conduct experiments on two synthetic image datasets and one real dataset. Samples of each dataset
are shown in Figure

Frontiers 7
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Figure 2a. “Torus” ellipse image dataset

Figure 2b. Rotating jar image dataset

Figure 2. Samples from each dataset.

The “torus” ellipse image dataset contains 10,000 grayscale images of white ellipses on black
backgrounds. Each image is of size 32 x 32 and contains one ellipse. The images are downsampled
from 64 x 64 images so the edges of ellipses are blurred. The ellipse can rotate around itself O to 7. And
because the ellipse is 180—degree rotation symmetric, it renders the topology of S'. The center point
position of the ellipse rotates 0 to 27 around the center of the image with a radius of 7 pixels, which
independently renders another S' topology. In combination this results in S' x S! topology, i.e. a torus
topology.

The rotating jar image dataset is generated using POV-Ray by |Persistence of Vision Pty. Ltd. (2004).
There are 10,000 RGB colored samples of size 64 x 64. Each image contains one rotating jar in the fixed
center position. The object has random three dimensional orientations and it has rotational symmetry with
respect to the axis that connects the lid knob and the center point of the bottom. Therefore, the image is
defined given the orientation of the lid knob. This indicates that the data has a S? topology.

The cyclooctane dataset consists of 6,040 points in R?4, corresponding to conformations of the
cyclooctane molecule (CgHig) Martin et al.| (2010). A conformation is a configuration of atoms
in a molecule up to rotation and translation of the molecule. Physical chemistry constraints for
cyclooctane imply the positions of the 16 hydrogen atoms are determined by the positions of the
8 carbon atoms in each conformation Hendrickson (1967); Martin et al. (2010). Each point in the
dataset consists of the 8 spatial coordinates of the carbon atoms flattened into a single vector, as in

(1,91, 21), (22,92, 22), - - -, (T8, ys, 28)) becomes (71, Y1, 21, T2, Y2, 22, - - - , Ts, Ys, 28) € R?4,

Frontiers 8



261

262
263
264
265
266
267
268
269

270

271
272

273
274
275
276
277
278
279
280

Jin et al.

Figure 3a. Variational autoencoder

Figure 3b. Denoising diffusion probabilistic model

Figure 3. Random samples from different generators on “torus” ellipse image dataset.

3.2 Training setups

Here we introduce our training setups of different generative models. We adopted relatively simple
architectures that are capable of generating reasonably good quality samples. VAE and DDPM used for
the same dataset are designed to have a similar number of parameters, so that we know the performance
difference is not because of different parameter numbers. Training hyper-parameters, including learning
rates, epochs, weight values for VAE loss terms, and total time steps for DDPM, are determined using
Bayesian search (Falkner et al., 2018) over a set of different options. Therefore, the hyper-parameters for
each model are different but they are chosen to maximize the performance. Every model is trained using
Adam optimizer (Kingma and Ba, 2015). For more details, see the supplementary materials.

3.3 Qualitative evaluation

First, we evaluate each generative model qualitatively by observing randomly generated samples and
interpolations between two data points.

Samples from generators trained on the “torus” dataset are shown in Figure 3] We can see that DDPM
produces high quality samples that are almost indistinguishable from ground truth images by human eyes.
The ellipses have clear edges and are always in the same correct shape. In contrast, VAE sometimes
generates clearly invalid images. The ellipse shapes are completely lost in some cases. Figure [5| shows
samples from DGM trained on the rotating jar. Both VAE and DDPM generally produce credible images.
However, we can see that VAE occasionally fails and generates misshapen jars. These results could be due
to VAE not learning the correct topology of the dataset and possibly sampling on the “holes” of the torus or
the sphere. We will explore this further in the following subsections.

Frontiers 9
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Figure 5a. Variational autoencoder

Figure 5b. Denoising diffusion probabilistic model

Figure 5. Random samples from different generators on rotating jar image dataset.

Figure 6a. Variational autoencoder

Figure 6b. Denoising diffusion probabilistic model

Figure 6. Interpolations from different generators on “torus” ellipse image dataset.

Figure 7a. Variational autoencoder

Figure 7b. Denoising diffusion probabilistic model

Figure 7. Interpolations from different generators on rotating jar image dataset.
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Original stratification Sampled Sampled Sampled

VAE DDPM

Figure 8. A comparison of the cyclooctane conformations generated by sampling the various diffusion
models. On the left, we display the Isomap embedding of the original cyclooctane data. For the CAE
embeddings, the different colors denote the corresponding chart. Notice that the vanilla VAE struggles to
generate the inner Klein bottle of the Isomap embedding. Counterintuitively, the DDPM generations most
resemble the original data manifold even though its latent space is high dimensional.

We also performed interpolation between two data points using different generators, visualized in Figure
6] and[7] For the VAE, we linearly interpolate the latent space, which results in invalid images in the middle
(b—th image for the “torus” and 3—rd image for the jar). We assume this happens because when we linearly
interpolate between two points, we travel across the void of the latent distribution, where the VAE decoder
cannot map to valid data points. For the DDPM, two end images are diffused for several time steps (t = 250
for the “torus” and ¢ = 350 for the jar) and then linearly interpolated. Next, we apply the usual denoising
steps until reversing back to ¢ = 0 to get clean images. Due to the stochasticity in both the forward and
reverse processes, the endpoints will be different from the original images to a certain degree, depending on
the diffusing time steps. We can also see that although the generated images look valid but do not provide a
reasonably continuous interpolation. This can be considered as a shortcoming of DDPM not having a latent
space.

In Figure |8 we see generated samples of cyclooctane under our different architectures. To visualize the
conformations of cyclooctane, we embed the R?* representations in R? using Isomap. This embedding is
locally isometric and has been used in literature such as Martin et al. (2010). The original embedding of
the dataset is visible on the left. Notice the geometry of this manifold involves a Klein bottle enveloped
by a sphere. We find that the vanilla VAE struggles to generate conformations associated with the Klein
bottle. This is not ideal as these conformations are associated with specific conformational states that do
not correspond to any points on the outer sphere. Matching our intuition, the CAE is able to better cover
the manifold of cyclooctane, where the embedded color represents chart membership. Still, we find the
outer shell of the sphere is sparsely covered. Perhaps counterintuitively, the DDPM model visually best
samples the data manifold. It is clear that the samples cover both the Klein bottle and the outer sphere with
reasonable density.

3.4 Quantitative performance metrics

For each of the three datasets and each DGM, we computed the Lo Wasserstein metric between a sample
set from the ground truth data distribution and a sample set generated by the DGM models. Because of
the computational complexity of the Jonker-Volgenant algorithm, we were limited to computing with
sample sizes of 3,000 data in both ground truth and DGM. To ensure that the metric values were stable
at the given sample size, we repeated the metric calculation 10 times, each time with an independently
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“Torus” ellipse  Rotating jar Cyclooctane

Ground truth 2.01 (£0.15)  2.05 (£0.06) 0.215 (£0.009)
VAE 9.26 (£0.05)  2.17 (£0.05) 0.860 (£0.004)
DDPM 2.65 (£0.19)  3.20 (£0.10) 0.389 (£0.011)
CAE ] ] 0.860 (£0.010)

Table 1. Lo Wasserstein distance. Reporting mean and standard deviation over 10 independent runs, each
time sampling n = 3,000 images from both the ground truth data distribution and generators.

“Torus” ellipse Rotating jar Cyclooctane

Ground truth & VAE 9.28¢ — 5 1.26e — 4 7.47e — 32
Ground truth & DDPM 1.30e — 7 4.04e — 17 8.70e — 19
Ground truth & CAE - - 2.04e — 29
VAE & DDPM 6.41e — 6 1.35e — 16 4.76e — 28
VAE & CAE - - 1

DDPM & CAE - - 3.50e — 26

Table 2. p-value of Wasserstein distance observations.

drawn sample from both the ground truth and the DGM. For the cyclooctane dataset, since we only have
6,040 samples in the ground truth data, we randomly draw 3,000 samples each time without replacement.
Results are shown in Table |1} Since the sample size used to approximate the Wasserstein distance is
limited, to rule out the effects of random sampling, we also performed ¢-tests on Wasserstein distance
observations and the resulting p-values are listed in Table[2] It is clear that the Wasserstein distances for
different models are significantly different, except for between the VAE and CAE trained on cyclooctane,
which have very similar results. We can see that on the image datasets, VAE has a consistently smaller
distance to the ground truth data distribution than DDPM, despite what appears to be worse image quality
to human eyes. The result is different for the cyclooctane dataset, with DDPM having a significantly smaller
distance while CAE has a similar result to VAE. This should indicate in some datasets VAE is learning the
overall distribution better than DDPM. It could be the case that in terms of L9 distance, although DDPM
samples are more precise, or more close to the ground truth distribution, VAE samples cover the whole
data distribution better. And we can also see that the probability based metric alone does not sufficiently
represent the real world performance of models.

For the cyclooctane dataset, we calculated the bond lengths of generated samples and compared them
to the bond lengths of the true cyclooctane data. Bond lengths for the true data are tightly distributed
about the mean value of 1.52 A with a standard deviation of 4.09e—5 A. Figure @ shows the distribution of
each sample set’s bond lengths. We can see that although the sample bond lengths of all the generative
models are much more dispersed than the ground truth values, DDPM has a relatively better distribution.
The expected errors of each distribution to the mean ground truth value are also calculated. This error is
0.165 A for VAE, 0.155 A for CAE and 0.04 A for DDPM.

“Torus” ellipse Rotating jar

VAE 16.77 77.72
DDPM 15.00 74.90

Table 3. Torchmetrics implementation of FID using 50,000 samples. Lower is better.
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VAE

81 CAE

DDPM

74 Il Ground truth

Density
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1.0 1.2 14 16 18 2.0 2.2 2.4 2.6
Bond length, A

Figure 9. Density histogram of bond lengths of samples generated by different models, compared to the
ground truth bond lengths.

“Torus” ellipse  Rotating jar

VAE 0.895/0.878 0.403/0.605
DDPM 0.903/0.951 0.943/0.903

Table 4. Density / Coverage. Reference implementation from Naeem et al.| (2020) with £ = 5 and
torchvision pretrained VGG16 “IMAGENETIK_V1” as the embedding. 50,000 samples. Density is
positively valued, with a value of 1 being ideal; values greater than 1 represent generated data occurring
near common modes in the real data more often, and values less than 1 represent generated data occurring
less often near real data. Coverage is in the range [0, 1] with 1 being optimal; it represents the percentage
of real points that are covered by a generated point.

We also computed deep-learning-based metrics - FID, density, and coverage, for our two image datasets.
The sample sizes of 50,000 are used for both ground-truth data distribution and the DGM learned
distribution. The deep learning model used for embedding is VGG16 “IMAGENETI1K _V1”. The FID
results are shown in Table 3] and density and coverage results are shown in Table 4] Unlike in the case of
Wasserstein distance, DDPM constantly has better metrics values than VAE. This could indicate that the
deep learning model used to embed images does capture image features in a way that matches better with
human visual experiences. The much larger sample size might also influence the results.

3.5 Topological Properties

We also report the persistent homology of ground truth data and samples from generators. Giotto-
tda (Tauzin et al., 2021) is used to obtain the results. As introduced in Section the results show
when a topological feature was born and died. Zero-dimensional features are connected components,
one-dimensional features are loops, and two-dimensional features are voids (e.g., spheres). The further a
point on the persistence diagram is from the diagonal line of “birth = death”, the longer they persist across
a range of scales, that is, distance thresholds determining when points are connected. These points that
stand out beyond the diagonal are more likely to indicate a topological structure.

As we can see in Figure the “torus” dataset has two significant one-dimensional loops (approximately
(2.5,8) and (2.5, 13)) and one two-dimensional sphere (approximately (6, 8)) because of its torus topology.
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Dim 1 and Dim 2 Persistent Homalogy of "Torus" Data Dim 1 and Dim 2 Persistent Homology of "Torus" VAE Samples
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Figure 10a. Ground truth data Figure 10b. Samples from VAE
Dim 1 and Dim 2 Persistent Homology of "Torus" DDPM Samples
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Figure 10c. Samples from DDPM

Figure 10. Persistent homology of ground truth data and generator samples on the “torus” dataset.

The VAE captures this topological structure poorly (Figure [TOb), and only significantly captures one
one-dimensional loop structure. Although there are many other points relatively far above the diagonal
line, there are no points that stand out from the others clearly. On the other hand, DDPM preserves this
structure very well (Figure [I0c]), and we can clearly identify two one-dimensional loops (the points located
at approximately (3, 8) and (3.5, 13)) and one two-dimensional sphere (located at approximately (7, 8)).

This result gives insight into the fact that the VAE sometimes generates invalid samples despite its smaller
Wasserstein distance. More intuitively, we show the PCA visualization of the data and the generator samples
in Figure[TT] We can clearly see that VAE wrongly generates samples in the middle of the torus and violates
the original data topology, but DDPM does not. The results for the jar dataset are displayed in Figure[12]
As we discussed above, the data has a spherical topology, which is indicated by a significant dimension
2 point in the persistence diagram in Figure (located at approximately (5.5, 7.5)). This structure is
clearly better preserved by DDPM (approximately (5.5, 7.5)). Whereas in the persistence diagram of the
VAE model, the two-dimensional structure is much less significant, and also an incorrect one-dimensional
loop appears (located at approximately (3, 5.5)).
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Figure 11a. Ground truth data Figure 11b. Samples from VAE

PCA - "Torus" DDPM samples

Figure 11c. Samples from DDPM

Figure 11. PCA visualizations of ground truth data and generator samples on the “torus” dataset.

4 DISCUSSION AND CONCLUSION

In this paper, we investigated the ability of DGMs to model data distributions with non-trivial topologies.
We hypothesized that VAEs would struggle to faithfully model non-Euclidean topologies because they
generate data by continuously transforming a Gaussian random vector from a lower-dimensional, Euclidean
latent space. This hypothesis was supported by our experiments on datasets with known topology. Our
results comparing persistence diagrams of generated VAE samples versus the ground truth persistence
diagram show that a VAE does not faithfully recover the correct topology in the case of the torus (T?) or
the sphere (S?). We further hypothesize that a similar failure to capture topology would hold for other
models based on a Euclidean latent space, e.g., GANS, although this would need to be verified with further
experiments.
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Dim 1 and Dim 2 Persistent Homology of Jar VAE Samples
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Figure 12a. Ground truth data Figure 12b. Samples from VAE

Dim 1 and Dim 2 Persistent Homology of Jar DDPM Samples

Figure 12¢. Samples from DDPM

Figure 12. Persistent homology of the ground truth data and generator samples on jar dataset.

Conversely, we hypothesized that DDPM and related score-based models, which theoretically have
no constraint on their topology and learn the distribution in the original data dimension, would more
effectively capture non-trivial data topologies. This turned out to be the case in our image experiments,
where the DDPM persistence diagrams showed that they generated samples with much better matches to
the ground-truth data topology. Furthermore, the ability of DDPMs to adapt to the topology of the data
may explain their improved performance in generating realistic data samples, as they can avoid sampling
in “holes” of the data distribution. However, one downside to DDPMs is that they do not parameterize the
data distribution with a low-dimensional latent space. This makes moving along the data manifold, such as
in the case of interpolation, more difficult with DDPMs. The CAE model tries in a sense to bridge this
gap by providing a low-dimensional latent space, while at the same time also providing more topological
flexibility. Our cyclooctane results show qualitatively and quantitatively that the CAE performs well on a
complex data topology.

One unexpected result is the disagreement between the Lo Wasserstein metric and the other quantitative
metrics (FID, density, and coverage). It may be the case the restriction on the sample size for the Wasserstein
metric limits its approximation accuracy. Or it may be the case that the exact matching of points between
the two samples is prone to outliers or other artifacts in the samples. Or it may simply be that “perceptual
distances” mimicked by the VGG16 network are substantially different enough from Lo distances to cause
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reverse conclusions in the two classes of metrics. This discrepancy, and the more general question of how
to best measure the distribution quality of a DGM, are directions ripe for future research.

In conclusion, our main novel contribution is the first test of the abilities of generative models to handle
different data topologies. Our empirical findings highlight the limitations of a simplistic data topology
assumption. The main takeaways are as follows:

¢ Generative models that assume data can be continuously mapped from a Euclidean latent space, e.g.,
VAEs, have limited ability to capture more complex topologies present in data.

e Conversely, DDPMs operate in the full-dimensional data space and without assumptions about the
data topology. This results in DDPMs being better able to capture non-trivial topologies in data.

e However, the absence of straightforward Euclidean latent spaces in DDPM presents obstacles,
particularly in tasks such as interpolations.

¢ Finally, our research underscores that distribution-based evaluation metrics sometimes fail to provide a
comprehensive assessment of a generative model’s ability to accurately capture the underlying data
topology.
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