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ABSTRACT2

Many deep generative models, such as variational autoencoders (VAEs) and generative3
adversarial networks (GANs), learn an immersion mapping from a standard normal distribution in4
a low-dimensional latent space into a higher-dimensional data space. As such, these mappings5
are only capable of producing simple data topologies, i.e., those equivalent to an immersion of6
Euclidean space. In this work, we demonstrate the limitations of such latent space generative7
models when trained on data distributions with non-trivial topologies. We do this by training these8
models on synthetic image datasets with known topologies (spheres, torii, etc.). We then show9
how this results in failures of both data generation as well as data interpolation. Next, we compare10
this behavior to two classes of deep generative models that in principle allow for more complex11
data topologies. First, we look at chart autoencoders (CAEs), which construct a smooth data12
manifold from multiple latent space chart mappings. Second, we explore score-based models,13
e.g., denoising diffusion probabilistic models, which estimate gradients of the data distribution14
without resorting to an explicit mapping to a latent space. Our results show that these models15
do demonstrate improved ability over latent space models in modeling data distributions with16
complex topologies, however, challenges still remain.17

Keywords: deep generative models, topological data analysis18

1 INTRODUCTION

Recent advances in deep generative models (DGMs) have resulted in the unprecedented ability of these19
models to produce realistic data, including imagery, text, and audio. While qualitative evaluation of20
generated data makes it clear that DGMs are improving at a rapid pace, quantifying how well a model21
produces samples similar to the original data distribution on which it was trained is a challenging task22
and an area of active research. Inherent to this problem is that generative models are fundamentally23
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meant to produce data that would be judged to be realistic to a human observer, and quantifying human24
perception—of images, language, or audio—is a difficult task.25

A common approach to evaluating a generative model is to compute an empirical distributional distance26
between a sample from the data distribution and a sample generated by the model. For example, in computer27
vision, the Fréchet inception distance (FID) (Heusel et al., 2017) is a popular choice for such a distance28
metric. The FID approximates both the data distribution and the generated image distribution as multivariate29
normal distributions on the outputs of an Inception v3 model trained on ImageNet. The Fréchet distance30
between the resulting multivariate normal distributions is then computable in closed-form. More recently,31
precision and recall (Sajjadi et al., 2018) were proposed to separately evaluate how close generated samples32
are to the data distribution (precision) and how well they cover the data distribution (recall).33

The manifold hypothesis of machine learning informally states that data distributions naturally lie near34
lower-dimensional manifolds embedded in the higher-dimensional Euclidean space formed by their raw35
representations. One class of DGMs, including variational autoencoders (VAEs) (Kingma and Welling,36
2014) and generative adversarial networks (GANs) (Goodfellow et al., 2014), attempt to model the data37
manifold explicitly. They do this by generating data by mapping points from a prior distribution in a38
lower-dimensional latent space into the data representation space. This has led researchers to investigate the39
manifold properties of such DGMs and use manifold methods to evaluate their quality. Shao et al. (2018)40
develop algorithms for computing geodesic curves and parallel translation of VAEs. They observed that41
while VAEs were able to capture the curvature of synthetic data manifolds when trained on real image42
data, the manifolds generated by VAEs were nearly flat. Arvanitidis et al. (2018) propose that deterministic43
generators lead to a distortion of the data manifold in the latent space that fails to capture the intrinsic44
curvature of the data. They propose a stochastic Riemannian metric to correct for this and show that this45
results in improved variance estimates. Chen et al. (2018) demonstrate that Riemannian geodesics in the46
latent space of a DGM give better interpolations and visual inspection of generated data. Shukla et al.47
(2018) show that disentangled dimensions of the latent space of a VAE demonstrate higher curvature.48

While these works have investigated the differential and metric geometry of DGMs, less is known about49
the topological properties of DGMs. Theoretically, models that generate data from a continuous mapping50
of a Gaussian prior distribution into Euclidean space, such as VAEs and GANs, are not able to faithfully51
reproduce data with non-trivial topology (e.g., spheres, tori, or other spaces with “holes”). In practice, these52
models may be able to perform fairly well in approximating non-trivial data topologies by shifting density53
away from holes. The chart autoencoder (CAE) model by Schonsheck et al. (2019) extends the topological54
abilities of VAEs/GANs by modeling a manifold topology with multiple overlapping charts. On the other55
hand, DDPMs and their relatives have no topological constraints in theory. However, the topological56
abilities of these various DGMs have not been empirically tested or compared. This paper empirically tests57
the ability of generative models to handle data arising from distributions with underlying topology, and58
is, to the best of our knowledge, the first systematic study in this direction. There have been papers that59
use topological techniques, such as Manifold Topology Divergence (Barannikov et al., 2021) or Geometry60
Score (Khrulkov and Oseledets, 2018), to quantify the quality of data produced by generative models. More61
broadly, there has been extensive recent work (Hensel et al., 2021) at the interface of TDA and DL/ML.62
These range from methods (e.g., Chen et al. (2019); Solomon et al. (2021); Nigmetov and Morozov (2022))63
that integrate TDA-based loss functions into DL algorithms, to bespoke DNN architectures (Carrière64
et al., 2020) that incorporate layers that process persistence diagrams, to works (e.g., Naitzat et al. (2020);65
Wheeler et al. (2021)) that use TDA to analyze the structure of data as it moves through DNN layers.66
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This paper is organized as follows. In Section 2 we review the methods used in this paper, namely, the67
DGMs and metrics for evaluating their quality, including persistent homology. In Section 3 we present68
our experiments comparing the ability of three DGMs—VAE, CAE, and DDPM—to learn to generate69
data with known non-trivial topologies. To do this, we use two synthetic image datasets with a torus and70
sphere topology, respectively, and a real dataset of conformations of cyclooctane, which is known to have71
topology equivalent to a Klein bottle intersecting with a 2-sphere (Martin et al., 2010). Note that this test72
is even more difficult from a topological perspective, as the cyclooctane conformations form a topology73
that is non-manifold, but rather a more complicated stratified space (in this case, the intersection of two74
manifolds). Finally, in Section 4 we discuss conclusions from these experiments and future directions.75

2 BACKGROUND AND METHODS

In this section, we first review the three deep generative models (VAEs, CAEs, and DDPM) that we76
evaluated for their ability to learn data distributions with non-trivial topology. Next, we describe the77
evaluation metrics used for our study, both related and unrelated to the topological structure.78

2.1 Deep Generative Models79

Various structures for deep generative models have been proposed over time. Some of the popular models80
are normalizing flows (Rezende and Mohamed, 2015), variational autoencoders (Kingma and Welling,81
2014), generative adversarial networks (Goodfellow et al., 2014), deep energy-based model (Du and82
Mordatch, 2019), and the recent denoising diffusion models (Ho et al., 2020). Each type of generator83
has different variations. Yet, topology is rarely considered in the design. Here we choose three models to84
discuss.85

2.1.1 Variational Autoencoders86

A variational autoencoder (VAE) is a type of encoder-decoder generative model proposed by Kingma and87
Welling (2014). Unlike the traditional autoencoder (Hinton and Salakhutdinov, 2006), a VAE models the88
probability distribution of the latent representation, z, of each data point instead of a deterministic latent89
representation. A VAE models the marginal log-likelihood of the ith data point, x(i), as:90

log pθ

(︂
x(i)
)︂
= DKL

(︂
qϕ

(︂
z
⃓⃓⃓
x(i)
)︂ ⃦⃦⃦

pθ

(︂
z
⃓⃓⃓
x(i)
)︂)︂

+ L
(︂
θ, ϕ;x(i)

)︂
, (1)

where θ is a vector of the parameters for the generative model, and ϕ is a vector of the parameters for91
the variational approximation. The objective is to maximize the evidence lower bound (ELBO), which is92
derived to be:93
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, (2)

Usually the prior pθ(z) is set to be an isotropic Gaussian, N (0, I). The encoder also models the qϕ(z | x(i))94
as a Gaussian distribution N (µ(i), (σ(i))2I). Therefore, the first term is easy to compute with predicted95
mean and variance of qϕ(z | x(i)). On the other hand, the equation for the second term of the lower bound96
depends on what probability distribution we assume in the data space. For example, using an isotropic97
Gaussian distribution leads to the mean squared error loss, and using a Bernoulli distribution corresponds98
to minimizing the binary cross entropy loss.99
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As discussed above, VAEs usually assume a Gaussian distribution in the latent space. Although this might100
be a reasonable assumption for many data with trivial topology, it might cause problems when this is not101
the case. Even in a simple case where the data has an S1 topology which is a loop, the neural network could102
struggle to learn a mapping from two different topological spaces. Although one might argue the Gaussian103
can be deformed enough so that it resembles a loop in practice, we still need experiments to investigate104
this issue. Similarly, generative adversarial networks (Goodfellow et al., 2014) also use a Gaussian prior105
distribution in the latent space, and therefore might as well have problems learning data with non-trivial106
topology.107

2.1.2 Chart Autoencoders108

In many applications of the VAE, its learned latent space is often treated as a linear space. For instance,109
generating interpolations between two points of a given dataset is often performed by generating the linear110
path between the embeddings of these points in latent space. This operation implicitly assumes that the111
geodesics between points correspond to linear paths in latent space. Yet, we know there exist manifolds,112
such as the sphere S2, which are not homeomorphic to a single linear space. It follows that the latent113
space learned by a VAE trained on such a manifold is not geometrically faithful. That is the latent space114
either contains a point that decodes to a point off the manifold, or the space cannot capture all geodesic115
paths. To this end, recent architectures have been introduced to rectify this problem. We consider one such116
architecture, the chart autoencoder (CAE) (Schonsheck et al., 2019).117

Chart autoencoders are a generative model architecture motivated by the concept of an atlas in differential118
geometry. In comparison to the VAE, we learn a set of k encoders and decoders parameterized by {ϕi}ki=1119
and {θi}ki=1 respectively. Each corresponding encoder and decoder is affiliated with a latent chart, Zi. Thus,120
the latent space of the CAE is composed of a set of linear latent spaces. The CAE output is determined121
by a chart prediction network, P . In the original work, P maps x from the input space X to p ∈ Rk,122
where p represents the vector of log probabilities of the chart membership of x. In training, the output123
of the CAE is taken to be the sum of the outputs from the k decoders weighted by the chart prediction124
vector, p. During evaluation, the output is taken to be that of the decoder corresponding to the likeliest125
chart via p. In this work, we update the chart prediction network to map from the direct sum of the latent126
embeddings, zi, instead of x. This change was made to allow generations from the latent space without127
reference to any network input. Intuitively, this chart prediction network is analogous to the chart transition128
function affiliated with a geometric atlas. Indeed, the CAE is capable of transitioning between the outputs129
of different latent charts when a linear interpolation is performed in latent space.130

2.1.3 Denoising Diffusion Probabilistic Models131

In contrast to the previous two models, the denoising diffusion probabilistic model (DDPM) proposed by132
Ho et al. (2020) does not have a low-dimensional latent space. It is based on the diffusion probabilistic133
model by Sohl-Dickstein et al. (2015), which learns to reverse a diffusion process in which Gaussian noise134
is gradually added to the original image, x0, for T timesteps until we get a sampled image xT that is nearly135
pure noise. We call the diffusion process that adds noise the forward process, which is a Markov chain. The136
reverse process is also defined to be a Markov chain as follows:137

pθ(x0:T ) := p(xT )
T∏︂
t=1

pθ(xt−1 | xt), pθ(xt−1 | xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)), (3)
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where βt’s define the variance schedule and θ is the parameter vector of the model that learns the reverse138
process. During training, we can optimize the lower bound of the log-likelihood.139

In the DDPM, βt is fixed and therefore the first term of the loss can be ignored. Σθ(xt, t) is also fixed140
for each time step t. Then DDPM reparameterizes xt with the added noise ϵ ∼ N (0, I), and µθ(xt, t) with141
ϵθ(xt), which means the model is now trained to predict the noise ϵ. Their experiments also show that142
omitting the different weights dependent on t does not compromise the final performance, which results in143
the final loss:144

Lsimple(θ) := Et,x0,ϵ

[︂⃦⃦
ϵ− ϵθ(

√
ᾱt x0 +

√
1− ᾱt ϵ, t)

⃦⃦2]︂
, (4)

with ᾱt’s being expressions of βt’s. It is also worth noting that Song et al. (2021) derived the same model145
from the view of a score based model, which learns the gradient of the log probability density in the data146
space.147

We can see that the DDPM does not assume any topology on the original data distribution. The sampling148
only depends on the fact that the diffused data distribution is Gaussian, which is achieved by using a prefixed149
time variance schedule. Therefore, theoretically, it should be able to learn the data of any topological150
structure. Yet, this needs to be examined through experiments. Similarly, energy based models (Du and151
Mordatch, 2019) also do not assume any topology on the data distribution, and during sampling start from152
Gaussian distribution and then travel to high probability regions of the data space. Thus, we could expect a153
similar ability in learning distributions of non-trivial topology.154

2.2 Quantitative Metrics for Evaluating DGMs155

Given the purpose of DGMs is to generate samples that are as realistic as possible for a human, the156
straightforward evaluation method would be the judgments by human eyes. However, there have been157
attempts to quantitatively measure their performances.158

2.2.1 Wasserstein Distance159

We propose to evaluate how well a generative model learns a data probability distribution using a sample160
approximation to the L2 Wasserstein 2-distance. By definition this should be:161

W2(µ, ν) = inf
γ∈Γ(µ,ν)

(︁
E(x,y)∼γ∥x− y∥2

)︁1/2
, (5)

where µ and ν are probability measures of the ground truth data and the generative model, respectively,162
Γ(µ, ν) is the set of any joint distribution of x and y such that

∫︁
γ(x, y)dy = µ(x) and

∫︁
γ(x, y)dx = ν(y).163

We implement the empirical version as:164

W2(µ, ν) = inf
π

(︄
1

n

n∑︂
i=1

∥Xi − Yπ(i)∥2
)︄1/2

, (6)

where X1, X2, ..., Xn are random samples from µ, and Y1, Y2, ..., Yn from ν, and π is any permutation of165
1, 2, ..., n. Since the datasets are simulated, we can easily sample from the ground truth data distribution µ.166
The best π is obtained using the Jonker–Volgenant algorithm (Jonker and Volgenant, 1988) implemented167
by SciPy (Virtanen et al., 2020).168

There are some existing works, e.g., (Genevay et al., 2018), that train generative models from the169
viewpoint of optimal transport, and therefore include the Wasserstein distance in the training loss. However,170
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to the best of our knowledge, we are the first to employ Wasserstein distance to evaluate how well generators171
learn the overall data distribution. The high time complexity (O(n3)) of the Jonker–Volgenant algorithm172
forbids us from using too large sample sizes to represent ground truth and learned distributions. Therefore,173
one concern is whether the set of samples can adequately cover the whole distribution. However, in our174
experiments, we use data from known low-dimensional distributions that can be reasonably covered with175
relatively fewer samples.176

2.2.2 Fréchet Inception Distance177

Fréchet Inception Distance (FID) is computed by computing the Wasserstein distance on two probability178
distributions obtained by feeding a set of ground truth examples and a set of fake examples to an embedding179
function. The embedding function generally used is Inception v3 trained on ImageNet with the final layer180
truncated, yielding a 2048-dimensional vector for each sample. A normal distribution is fit in this space181
for each of the ground truth and fake sets, which are then the direct inputs for the Wasserstein distance.182
While FID has been shown to usually align with human judgement Heusel et al. (2017), it has a number183
of shortcomings Chong and Forsyth (2020); Parmar et al. (2022). Despite its shortcomings, FID has184
established itself as the de facto standard metric for judging the quality of generative images Borji (2022).185

2.2.3 Density, Coverage186

A line of work has defined metrics that separate failure modes by using multi-valued metrics. For example,187
a metric might focus on fidelity which captures the degree to which a generated image resembles those in a188
dataset, whereas another might focus on diversity which captures the degree to which a sample reflects the189
variation in generative factors that gives rise to a dataset.190

The earliest work, Precision and Recall Sajjadi et al. (2018), introduces two metrics that successfully191
separate dropping and adding modes (recall) from image quality (precision), but have some shortcomings192
including not being robust to outliers and requiring more significant tuning to be accurate.193

Density and Coverage Naeem et al. (2020) address these limitations by, still in an embedding space,194
defining a manifold for a set of ground truth examples and measuring how often generated points land in it.195
For their reported results, they use the 4096-dimensional layer of a truncated VGG16 trained on ImageNet196
as the embedding space. They then form the real manifold as k-nearest neighbor balls for each real point.197
Density is then a cumulative measure of how many real neighborhood balls the generated points land in,198
normalized for the number of points. Intuitively, this value is greater than 1 when many generated samples199
occur in a few real modes and less than 1 when the generated samples are too diverse or don’t fall in real200
modes. The other half of the metric, Coverage, is then the percentage of real neighborhood balls that have201
a generated point within them. Intuitively, this is 1 when all modes of the original data are covered, and202
less than 1 otherwise.203

2.2.4 Topological Data Analysis: Persistent Homology204

Here we give some brief intuition about the information carried by the persistent homology of a point205
cloud. Readers interested in a fuller and more rigorous discussion are pointed to textbooks such as206
Edelsbrunner and Harer (2010) or Oudot (2017).207

Suppose that X = {x1, . . . , xn} is a point cloud in some Euclidean space. For example, let X be the208
collection of points on the left of Figure 1. The persistence diagram Dk(X) is a compact summary of some209
of the k-dimensional multi-scale shape information carried by X . We now give some more details about210
what this means.211
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Figure 1. Illustration of persistence diagrams (right) for the Rips homology filtration on a point cloud
(left). Persistence is shown in dimensions zero (red) and one (blue).

For each threshold value r ≥ 0, let Xr =
⋃︁n

i=1Br(xi). Note that whenever r < s, we have Xr ⊂ Xs,212
and as r moves from 0 to ∞, the union of balls around the points in X grows from the points themselves to213
the entire Euclidean space. During this process, various shape changes occur. In our working example, as r214
increases, the number of connected components, which began as |X|, rapidly becomes 3 as clusters form215
and then subsequently decreases as those clusters merge. The r values at which these mergers happen are216
recorded as death values and stored in the zero-dimensional persistence diagram D0(X); see the red dots217
on the right side of Figure 1. The higher-level connectivity of the union of balls also changes as r increases.218
In our working example, an annulus forms in the upper right of X at a very small value of r, and a ring219
appears connecting the three clusters at a larger value of r. In technical terms, these features are called220
one-dimensional homology classes Edelsbrunner and Harer (2010) and have rigorous algebraic definitions.221
The r values at which they first appear are called birth value. Each homology class eventually fills in as r222
increases; for example, the annulus at the upper right fills in at the apparent radius of the feature. These223
death values of the one-dimensional features are paired with the birth values that created the feature, and224
they are plotted in the one-dimensional persistence diagram D1(X); see the blue dots on the right side of225
Figure 1.226

Thus, each persistence diagram Dk(X) consists of a (multi-)set of dots in the plane, with each dot227
recording the birth and death value of a k-dimensional homological feature. Intuitively 0 and 1 dimensional228
features represent connected components and loops/holes, respectively. Not shown in this example are229
two-dimensional features, which represent voids, and still higher-dimensional features. The persistence230
of a feature is the vertical distance of its dot to the major diagonal y = x in the persistence diagram.231
Higher-persistence features are generally thought of as genuine representatives of the underlying space,232
while lower-dimensional features are more likely to be caused by sampling noise. This intuition can be233
formalized in inference theorems (e.g. Cohen-Steiner et al. (2007), Fasy et al. (2014)).234

Persistence diagrams of point clouds are computed by transforming the growing union of balls into235
combinatorial objects called filtered simplicial complexes. Without going into the technical details here,236
we note that many software packages for doing this exist (Otter et al. (2017) gives a nice overview), and237
that the experiments in this paper use giotto-tda (Tauzin et al., 2021).238

3 EXPERIMENTS

3.1 Datasets239

We conduct experiments on two synthetic image datasets and one real dataset. Samples of each dataset240
are shown in Figure 2.241
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Figure 2a. “Torus” ellipse image dataset

Figure 2b. Rotating jar image dataset

Figure 2. Samples from each dataset.

The “torus” ellipse image dataset contains 10, 000 grayscale images of white ellipses on black242
backgrounds. Each image is of size 32 × 32 and contains one ellipse. The images are downsampled243
from 64× 64 images so the edges of ellipses are blurred. The ellipse can rotate around itself 0 to π. And244
because the ellipse is 180−degree rotation symmetric, it renders the topology of S1. The center point245
position of the ellipse rotates 0 to 2π around the center of the image with a radius of 7 pixels, which246
independently renders another S1 topology. In combination this results in S1 × S1 topology, i.e. a torus247
topology.248

The rotating jar image dataset is generated using POV-Ray by Persistence of Vision Pty. Ltd. (2004).249
There are 10, 000 RGB colored samples of size 64× 64. Each image contains one rotating jar in the fixed250
center position. The object has random three dimensional orientations and it has rotational symmetry with251
respect to the axis that connects the lid knob and the center point of the bottom. Therefore, the image is252
defined given the orientation of the lid knob. This indicates that the data has a S2 topology.253

The cyclooctane dataset consists of 6, 040 points in R24, corresponding to conformations of the254
cyclooctane molecule (C8H16) Martin et al. (2010). A conformation is a configuration of atoms255
in a molecule up to rotation and translation of the molecule. Physical chemistry constraints for256
cyclooctane imply the positions of the 16 hydrogen atoms are determined by the positions of the257
8 carbon atoms in each conformation Hendrickson (1967); Martin et al. (2010). Each point in the258
dataset consists of the 8 spatial coordinates of the carbon atoms flattened into a single vector, as in259
((x1, y1, z1), (x2, y2, z2), . . . , (x8, y8, z8)) becomes (x1, y1, z1, x2, y2, z2, . . . , x8, y8, z8) ∈ R24.260
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Figure 3a. Variational autoencoder

Figure 3b. Denoising diffusion probabilistic model

Figure 3. Random samples from different generators on “torus” ellipse image dataset.

3.2 Training setups261

Here we introduce our training setups of different generative models. We adopted relatively simple262
architectures that are capable of generating reasonably good quality samples. VAE and DDPM used for263
the same dataset are designed to have a similar number of parameters, so that we know the performance264
difference is not because of different parameter numbers. Training hyper-parameters, including learning265
rates, epochs, weight values for VAE loss terms, and total time steps for DDPM, are determined using266
Bayesian search (Falkner et al., 2018) over a set of different options. Therefore, the hyper-parameters for267
each model are different but they are chosen to maximize the performance. Every model is trained using268
Adam optimizer (Kingma and Ba, 2015). For more details, see the supplementary materials.269

3.3 Qualitative evaluation270

First, we evaluate each generative model qualitatively by observing randomly generated samples and271
interpolations between two data points.272

Samples from generators trained on the “torus” dataset are shown in Figure 3. We can see that DDPM273
produces high quality samples that are almost indistinguishable from ground truth images by human eyes.274
The ellipses have clear edges and are always in the same correct shape. In contrast, VAE sometimes275
generates clearly invalid images. The ellipse shapes are completely lost in some cases. Figure 5 shows276
samples from DGM trained on the rotating jar. Both VAE and DDPM generally produce credible images.277
However, we can see that VAE occasionally fails and generates misshapen jars. These results could be due278
to VAE not learning the correct topology of the dataset and possibly sampling on the “holes” of the torus or279
the sphere. We will explore this further in the following subsections.280
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Figure 5a. Variational autoencoder

Figure 5b. Denoising diffusion probabilistic model

Figure 5. Random samples from different generators on rotating jar image dataset.

Figure 6a. Variational autoencoder

Figure 6b. Denoising diffusion probabilistic model

Figure 6. Interpolations from different generators on “torus” ellipse image dataset.

Figure 7a. Variational autoencoder

Figure 7b. Denoising diffusion probabilistic model

Figure 7. Interpolations from different generators on rotating jar image dataset.
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Figure 8. A comparison of the cyclooctane conformations generated by sampling the various diffusion
models. On the left, we display the Isomap embedding of the original cyclooctane data. For the CAE
embeddings, the different colors denote the corresponding chart. Notice that the vanilla VAE struggles to
generate the inner Klein bottle of the Isomap embedding. Counterintuitively, the DDPM generations most
resemble the original data manifold even though its latent space is high dimensional.

We also performed interpolation between two data points using different generators, visualized in Figure281
6 and 7. For the VAE, we linearly interpolate the latent space, which results in invalid images in the middle282
(5−th image for the “torus” and 3−rd image for the jar). We assume this happens because when we linearly283
interpolate between two points, we travel across the void of the latent distribution, where the VAE decoder284
cannot map to valid data points. For the DDPM, two end images are diffused for several time steps (t = 250285
for the “torus” and t = 350 for the jar) and then linearly interpolated. Next, we apply the usual denoising286
steps until reversing back to t = 0 to get clean images. Due to the stochasticity in both the forward and287
reverse processes, the endpoints will be different from the original images to a certain degree, depending on288
the diffusing time steps. We can also see that although the generated images look valid but do not provide a289
reasonably continuous interpolation. This can be considered as a shortcoming of DDPM not having a latent290
space.291

In Figure 8, we see generated samples of cyclooctane under our different architectures. To visualize the292
conformations of cyclooctane, we embed the R24 representations in R3 using Isomap. This embedding is293
locally isometric and has been used in literature such as Martin et al. (2010). The original embedding of294
the dataset is visible on the left. Notice the geometry of this manifold involves a Klein bottle enveloped295
by a sphere. We find that the vanilla VAE struggles to generate conformations associated with the Klein296
bottle. This is not ideal as these conformations are associated with specific conformational states that do297
not correspond to any points on the outer sphere. Matching our intuition, the CAE is able to better cover298
the manifold of cyclooctane, where the embedded color represents chart membership. Still, we find the299
outer shell of the sphere is sparsely covered. Perhaps counterintuitively, the DDPM model visually best300
samples the data manifold. It is clear that the samples cover both the Klein bottle and the outer sphere with301
reasonable density.302

3.4 Quantitative performance metrics303

For each of the three datasets and each DGM, we computed the L2 Wasserstein metric between a sample304
set from the ground truth data distribution and a sample set generated by the DGM models. Because of305
the computational complexity of the Jonker-Volgenant algorithm, we were limited to computing with306
sample sizes of 3,000 data in both ground truth and DGM. To ensure that the metric values were stable307
at the given sample size, we repeated the metric calculation 10 times, each time with an independently308
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“Torus” ellipse Rotating jar Cyclooctane

Ground truth 2.01 (±0.15) 2.05 (±0.06) 0.215 (±0.009)
VAE 2.26 (±0.05) 2.17 (±0.05) 0.860 (±0.004)
DDPM 2.65 (±0.19) 3.20 (±0.10) 0.389 (±0.011)
CAE - - 0.860 (±0.010)

Table 1. L2 Wasserstein distance. Reporting mean and standard deviation over 10 independent runs, each
time sampling n = 3,000 images from both the ground truth data distribution and generators.

“Torus” ellipse Rotating jar Cyclooctane
Ground truth & VAE 9.28e− 5 1.26e− 4 7.47e− 32
Ground truth & DDPM 1.30e− 7 4.04e− 17 8.70e− 19
Ground truth & CAE - - 2.04e− 29
VAE & DDPM 6.41e− 6 1.35e− 16 4.76e− 28
VAE & CAE - - 1
DDPM & CAE - - 3.50e− 26

Table 2. p-value of Wasserstein distance observations.

drawn sample from both the ground truth and the DGM. For the cyclooctane dataset, since we only have309
6,040 samples in the ground truth data, we randomly draw 3,000 samples each time without replacement.310
Results are shown in Table 1. Since the sample size used to approximate the Wasserstein distance is311
limited, to rule out the effects of random sampling, we also performed t-tests on Wasserstein distance312
observations and the resulting p-values are listed in Table 2. It is clear that the Wasserstein distances for313
different models are significantly different, except for between the VAE and CAE trained on cyclooctane,314
which have very similar results. We can see that on the image datasets, VAE has a consistently smaller315
distance to the ground truth data distribution than DDPM, despite what appears to be worse image quality316
to human eyes. The result is different for the cyclooctane dataset, with DDPM having a significantly smaller317
distance while CAE has a similar result to VAE. This should indicate in some datasets VAE is learning the318
overall distribution better than DDPM. It could be the case that in terms of L2 distance, although DDPM319
samples are more precise, or more close to the ground truth distribution, VAE samples cover the whole320
data distribution better. And we can also see that the probability based metric alone does not sufficiently321
represent the real world performance of models.322

For the cyclooctane dataset, we calculated the bond lengths of generated samples and compared them323
to the bond lengths of the true cyclooctane data. Bond lengths for the true data are tightly distributed324
about the mean value of 1.52 Å with a standard deviation of 4.09e−5 Å. Figure 9 shows the distribution of325
each sample set’s bond lengths. We can see that although the sample bond lengths of all the generative326
models are much more dispersed than the ground truth values, DDPM has a relatively better distribution.327
The expected errors of each distribution to the mean ground truth value are also calculated. This error is328
0.165 Å for VAE, 0.155 Å for CAE and 0.04 Å for DDPM.329

“Torus” ellipse Rotating jar
VAE 16.77 77.72
DDPM 15.00 74.90

Table 3. Torchmetrics implementation of FID using 50,000 samples. Lower is better.
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Figure 9. Density histogram of bond lengths of samples generated by different models, compared to the
ground truth bond lengths.

“Torus” ellipse Rotating jar
VAE 0.895 / 0.878 0.403 / 0.605
DDPM 0.903 / 0.951 0.943 / 0.903

Table 4. Density / Coverage. Reference implementation from Naeem et al. (2020) with k = 5 and
torchvision pretrained VGG16 “IMAGENET1K V1” as the embedding. 50, 000 samples. Density is
positively valued, with a value of 1 being ideal; values greater than 1 represent generated data occurring
near common modes in the real data more often, and values less than 1 represent generated data occurring
less often near real data. Coverage is in the range [0, 1] with 1 being optimal; it represents the percentage
of real points that are covered by a generated point.

We also computed deep-learning-based metrics - FID, density, and coverage, for our two image datasets.330
The sample sizes of 50,000 are used for both ground-truth data distribution and the DGM learned331
distribution. The deep learning model used for embedding is VGG16 “IMAGENET1K V1”. The FID332
results are shown in Table 3, and density and coverage results are shown in Table 4. Unlike in the case of333
Wasserstein distance, DDPM constantly has better metrics values than VAE. This could indicate that the334
deep learning model used to embed images does capture image features in a way that matches better with335
human visual experiences. The much larger sample size might also influence the results.336

3.5 Topological Properties337

We also report the persistent homology of ground truth data and samples from generators. Giotto-338
tda (Tauzin et al., 2021) is used to obtain the results. As introduced in Section 2.2.4, the results show339
when a topological feature was born and died. Zero-dimensional features are connected components,340
one-dimensional features are loops, and two-dimensional features are voids (e.g., spheres). The further a341
point on the persistence diagram is from the diagonal line of “birth = death”, the longer they persist across342
a range of scales, that is, distance thresholds determining when points are connected. These points that343
stand out beyond the diagonal are more likely to indicate a topological structure.344

As we can see in Figure 10a, the “torus” dataset has two significant one-dimensional loops (approximately345
(2.5, 8) and (2.5, 13)) and one two-dimensional sphere (approximately (6, 8)) because of its torus topology.346
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Figure 10a. Ground truth data Figure 10b. Samples from VAE

Figure 10c. Samples from DDPM

Figure 10. Persistent homology of ground truth data and generator samples on the “torus” dataset.

The VAE captures this topological structure poorly (Figure 10b), and only significantly captures one347
one-dimensional loop structure. Although there are many other points relatively far above the diagonal348
line, there are no points that stand out from the others clearly. On the other hand, DDPM preserves this349
structure very well (Figure 10c), and we can clearly identify two one-dimensional loops (the points located350
at approximately (3, 8) and (3.5, 13)) and one two-dimensional sphere (located at approximately (7, 8)).351

This result gives insight into the fact that the VAE sometimes generates invalid samples despite its smaller352
Wasserstein distance. More intuitively, we show the PCA visualization of the data and the generator samples353
in Figure 11. We can clearly see that VAE wrongly generates samples in the middle of the torus and violates354
the original data topology, but DDPM does not. The results for the jar dataset are displayed in Figure 12.355
As we discussed above, the data has a spherical topology, which is indicated by a significant dimension356
2 point in the persistence diagram in Figure 12a (located at approximately (5.5, 7.5)). This structure is357
clearly better preserved by DDPM (approximately (5.5, 7.5)). Whereas in the persistence diagram of the358
VAE model, the two-dimensional structure is much less significant, and also an incorrect one-dimensional359
loop appears (located at approximately (3, 5.5)).360
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Figure 11a. Ground truth data Figure 11b. Samples from VAE

Figure 11c. Samples from DDPM

Figure 11. PCA visualizations of ground truth data and generator samples on the “torus” dataset.

4 DISCUSSION AND CONCLUSION

In this paper, we investigated the ability of DGMs to model data distributions with non-trivial topologies.361
We hypothesized that VAEs would struggle to faithfully model non-Euclidean topologies because they362
generate data by continuously transforming a Gaussian random vector from a lower-dimensional, Euclidean363
latent space. This hypothesis was supported by our experiments on datasets with known topology. Our364
results comparing persistence diagrams of generated VAE samples versus the ground truth persistence365
diagram show that a VAE does not faithfully recover the correct topology in the case of the torus (T2) or366
the sphere (S2). We further hypothesize that a similar failure to capture topology would hold for other367
models based on a Euclidean latent space, e.g., GANs, although this would need to be verified with further368
experiments.369
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Figure 12a. Ground truth data Figure 12b. Samples from VAE

Figure 12c. Samples from DDPM

Figure 12. Persistent homology of the ground truth data and generator samples on jar dataset.

Conversely, we hypothesized that DDPM and related score-based models, which theoretically have370
no constraint on their topology and learn the distribution in the original data dimension, would more371
effectively capture non-trivial data topologies. This turned out to be the case in our image experiments,372
where the DDPM persistence diagrams showed that they generated samples with much better matches to373
the ground-truth data topology. Furthermore, the ability of DDPMs to adapt to the topology of the data374
may explain their improved performance in generating realistic data samples, as they can avoid sampling375
in “holes” of the data distribution. However, one downside to DDPMs is that they do not parameterize the376
data distribution with a low-dimensional latent space. This makes moving along the data manifold, such as377
in the case of interpolation, more difficult with DDPMs. The CAE model tries in a sense to bridge this378
gap by providing a low-dimensional latent space, while at the same time also providing more topological379
flexibility. Our cyclooctane results show qualitatively and quantitatively that the CAE performs well on a380
complex data topology.381

One unexpected result is the disagreement between the L2 Wasserstein metric and the other quantitative382
metrics (FID, density, and coverage). It may be the case the restriction on the sample size for the Wasserstein383
metric limits its approximation accuracy. Or it may be the case that the exact matching of points between384
the two samples is prone to outliers or other artifacts in the samples. Or it may simply be that “perceptual385
distances” mimicked by the VGG16 network are substantially different enough from L2 distances to cause386
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reverse conclusions in the two classes of metrics. This discrepancy, and the more general question of how387
to best measure the distribution quality of a DGM, are directions ripe for future research.388

In conclusion, our main novel contribution is the first test of the abilities of generative models to handle389
different data topologies. Our empirical findings highlight the limitations of a simplistic data topology390
assumption. The main takeaways are as follows:391

• Generative models that assume data can be continuously mapped from a Euclidean latent space, e.g.,392
VAEs, have limited ability to capture more complex topologies present in data.393

• Conversely, DDPMs operate in the full-dimensional data space and without assumptions about the394
data topology. This results in DDPMs being better able to capture non-trivial topologies in data.395

• However, the absence of straightforward Euclidean latent spaces in DDPM presents obstacles,396
particularly in tasks such as interpolations.397

• Finally, our research underscores that distribution-based evaluation metrics sometimes fail to provide a398
comprehensive assessment of a generative model’s ability to accurately capture the underlying data399
topology.400
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