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AbstractÐService liquidity across edge-to-cloud or multi-cloud
will serve as the cornerstone of the next generation of cloud
computing systems (Cloud 2.0). Provided that cloud-based ser-
vices are predominantly containerized, an efficient and robust
live container migration solution is required to accomplish service
liquidity. In a nod to this growing requirement, in this research,
we leverage FastFreeze, a popular platform for process check-
point/restore within a container, and promote it to be a robust
solution for end-to-end live migration of containerized services. In
particular, we develop a new platform, called FastMig that proac-
tively controls the checkpoint/restore operations of FastFreeze,
thereby, allowing for robust live migration of containerized
services via standard HTTP interfaces. The proposed platform
introduces post-checkpointing and pre-restoration operations
to enhance migration robustness. Notably, the pre-restoration
operation includes containerized service startup options, enabling
warm restoration and reducing the migration downtime. In
addition, we develop a method to make FastFreeze robust
against failures that commonly happen during the migration and
even during the normal operation of a containerized service.
Experimental results under real-world settings show that the
migration downtime of a containerized service can be reduced
by 30X compared to the situation where the original FastFreeze
was deployed for the migration. Moreover, we demonstrate that
FastMig and warm restoration method together can significantly
mitigate the container startup overhead. Importantly, these
improvements are achieved without any significant performance
reduction and only incurs a small resource usage overhead,
compared to the bare (i.e., non-FastFreeze) containerized services.

Index TermsÐContainerized Services, Liquid Computing, Ro-
bust Live Migration, Fault Tolerance

I. INTRODUCTION

A. Motivation

Cloud 2.0 marks the next generation in cloud comput-

ing, integrating cutting-edge technologies like AI, machine

learning, and IoT. This phase emphasizes greater efficiency,

scalability, and the use of heterogeneous resources, setting the

stage for advanced and innovative applications. Services are

envisaged to be truly distributed, either across edge-to-cloudÐ

to support low-latency services [18]Ðor across multi-cloudÐ

to attain high reliability and cost efficiency [14]. The next

generation of services in Cloud 2.0 desire service liquidity

across the resource continuum. That is, the services must

be free to execute and relocate seamlessly over distributed

and heterogeneous platforms [15]. In addition to the futuristic

use cases, service liquidity offers several advantages for day-

to-day IT operations, such as facilitating maintenance tasks

(e.g., performing hardware upgrades) and improving resource

utilization via dynamically reallocating workloads across hosts

without disrupting their operations. Establishing service liquid-

ity entails a seamless live service migration solution from one

host to another without degrading the quality of experience.
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Fig. 1: Service liquidity use case to efficiently achieve fed-

erated learning for mobile users. The model training process

can seamlessly migrate from a source edge sever (E1) to a

destination one (E2).

As an exemplar use case, consider the federated learning

scenario, shown in Figure 1, where the model training takes

place only on the on-premises edge servers, to preserve the

user’s data privacy. Then, the trained model is transferred

to the central (cloud) server to perform model aggregation

[27]. In this scenario, the data collection is often performed

on the device (e.g., smartphone) of a mobile user who tends

to randomly disconnect from one edge server and connect

to another. Such mobility can slow down the training if the

model has to be retrained. The ability to live migrate the

training service across edge servers, however, enables seamless

resumption of the training process at the new edge server,



thereby, saving the training time [27].

In modern cloud environments, where services are increas-

ingly containerized for the merit of portability and isolation,

various migration approaches are studied, including the native

approach that requires the container runtime checkpoint/re-

store feature [25] and the container nesting approach [6]

that nests the containerized service within another container

providing the migration ability. A distinct approach that aims

not to migrate an entire container but to migrate only the

ªembedded processes of the serviceº is desired to minimize

the overhead, maximize portability, and cater to multi-cloud

benefits. FastFreeze [28] is a turn-key solution that exhibits

these features; however, it is purposed for containerized pro-

cesses checkpointing and restoration. FastFreeze packages up

the necessary dependencies into a single library for building

a container image, making it easy-to-use through a simple

command-line interface and unprivileged to be able to execute

inside a container securely. In this work, our hypothesis is

that FastFreeze can be an ideal candidate to implement live

migration of containerized services and realize the idea of

liquid computing.

B. Problem Statement

To realize the live containerized service migration, develop-

ers may choose to simply import an existing checkpoint/restore

solution, like FastFreeze, into the container image. Never-

theless, our preliminary analysis shows that this approach is

failure-prone due to the design of a modern container and

the uncertainties of the migration process across systems.

Figure 2a depicts the necessary steps for live migration: service

checkpointing, checkpoint files transfer, and restoration. In

the traditional container, the service processes exit after the

checkpointing step is completed. Then, the entire container

is considered down by the runtime and loses a chance to

execute graceful shutdown instructions, which can adversely

affect the source system. For instance, the exit behavior of

the services may differ from what is expected, potentially

disrupting subsequent operations at the source system. Ad-

ditionally, binding the containerized service management and

its executionÐor, in other words, binding container startup

with the containerized service startupÐduring the migration

limits the containerized service from being warm-restored.

That is, the container startup instructions must wait unnec-

essarily for the checkpoint files transfer step to complete. As

a result, we realized that the lack of two additional stepsÐ

post-checkpointing and pre-restoration, shown in Figure 2bÐ

hinders the establishment of a robust container migration

service.

In this paper, we adopt FastFreeze to be the underlying

vehicle for a sustainable containerized service migration. We

propose the FastMig container that is equipped with the service

management layer, as shown in Figure 3, that enables a

fast and robust service migration across computing systems.

Decoupling the service management layer from the service

execution layer enables the pre-restoration operations, that

reduce the service migration time, and the post-checkpointing
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(b) Proposed container migration with post-checkpointing and pre-restoration
steps

Fig. 2: Positioning of the post-checkpointing and pre-

restoration steps in the live container migration process. The

traditional process includes three main steps: 1⃝ service check-

pointing, 2⃝ checkpoint files transfer, and 3⃝ new container

startup and service restoration. The proposed solution incorpo-

rates the pre-restoration operations that execute simultaneously

in step 1⃝ and, similarly, post-checkpointing operations in step

3⃝. Decoupling the container startup from the service startup

is the key to achieving fault tolerance in steps 4⃝ and 5⃝.

operations that pave the way to execute graceful shutdown

instructions, thus enhancing the service robustness.

However, it does not fully establish robust service liquidity

as FastMig is still prone to faults that occur randomlyÐ

both in normal operations and in the container migration

processÐand cease the running service processes. Traditional

fault tolerance mechanisms that offer container recreation

are unsuitable for FastMig as the container is reusable for

multiple startups/restorations of the same service; hence, they

fail to maximize restart efficiencyÐby performing unneces-

sary container startup [7]Ðand traceabilityÐby segregating

service execution logs to multiple containers. The proposed

FastMig service management layer includes a fault tolerance

mechanism that allows restarting the service without recreating

the container. As a result, it is capable of handling faults in

an efficient manner and satisfies service liquidity robustness.

Lastly, FastMig promotes FastFreeze to be migration-

friendly. The problem is that FastFreeze imposes an unusual

latency on the migration of a containerized service that forks

multiple child processes, particularly, at the restoration time.

FastMig, however, improves the performance of the restore

operation for multi-process services and reduces the service

migration time significantly. FastMig also offers a standard

interface to securely serve external migration requests.



C. Contributions

In sum, this paper makes the following contributions:

• Developing FastMig, a live containerized service migra-

tion solution that incorporates FastFreeze with the service

management layer to realize service liquidity 1

• Developing FastFreeze Daemon that decouples the con-

tainerized service management from its execution. It

enables post-checkpointing and pre-restoration operations

and incorporates the warm restoration technique that

reduces the migration time.

• Developing a configurable fault tolerance mechanism

that enhances service liquidity robustness via allowing

restarting the service without recreating the container.

• Extending FastFreeze to improve the restoration time of

the multi-process services upon migration and develop

standard APIs to make FastMig pluggable to other solu-

tions.

• Evaluating and analyzing the impact of FastMig under

real-world scenarios and settings.

The rest of this paper is organized as follows: Section II pro-

vides background on the live containerized service migration

and FastFreeze. Section III presents the design of the robust

containerized service using FastFreeze. Section IV describes

the evaluation and the results. Section V discusses related

studies on service liquidity and live containerized service

migration. Finally, Section VI concludes our work.

II. BACKGROUND

A. Live Containerized Services Migration

Container technology is a virtualization technology that

bundles the application and all its dependencies, providing

application isolation and making the application migratable

while retaining complete functionality [9], [21]. The ability to

migrate containerized services between systems is beneficial in

service provisioning through load balancing or fault tolerance.

On a high level, for live migration, the containerized service

migration can be done by checkpointing the processes inside

the container, moving the checkpoint files to the destination,

and restoring the container to its original state [25]. There

are techniques to help reduce the downtime that comes from

the transfer process, such as pre/post-copy [23] or page-server

[25], but the overall operation remains the same. A main

tool that has been used to do the container checkpoint/restore

operations is Checkpoint/Restore In Userspace (CRIU) [1].

CRIU achieves this by using ptrace, a kernel interface to

inspect the current process execution and memories used.

CRIU also works with multi-process applications as it can

checkpoint and restore an entire process tree.

When using CRIU to restore an application, the PIDs

of the application processes have to be the same as be-

fore it was checkpointed. With enough privileges or per-

1FastMig and all the experimental data are publicly available for repro-
ducibility purposes in the following addresses: https://github.com/hpcclab/
fastfreeze4service migration

mission (e.g., root or CAP_SYS_ADMIN capability2), CRIU

can achieve the desired PID at restoration time. Another

solution to control the processes PID is to modify the file

/proc/sys/kernel/ns_last_pid, which indicates the last

PID allocated and determines the next fork PID in the current

PID namespace3, to match its need (e.g., desired PID-1).

B. FastFreeze

FastFreeze is a checkpoint/restore utility built specially for

containerized services. It is a wrapper around CRIU; hence,

FastFreeze delegates the main processes checkpoint/restore to

CRIU. FastFreeze provides management facilities for check-

point/restore, providing a customized init process4 that makes

the containerized service processes its children.

In addition, FastFreeze is designed to be usable within

unprivileged containers. It uses a technique called fork bomb,

rapidly forking and killing child processes until it gets the

desired PID to handle the CRIU PID requirement upon restora-

tion. For single-process application restoration, the delay is

not significant; however, for multi-process applications [13],

the delay from the fork bomb procedure can be significant.

Chanikaphon et al., [6] show that the migration approach

using FastFreeze has increased the migration overhead by ≈40

seconds per 1 additional child process.

Lastly, FastFreeze provided only a command-line interface

to activate all its operations; this leads to obstacles in the

migration requirements in the aspects of container access

permission, synchronization, and monitoring. Moreover, the

lack of easy-to-use/standard interfaces obstructs the integration

with web services and leads to incompatibility with service-

oriented architecture (SOA).

III. FASTFREEZE FOR ROBUST SERVICE LIQUIDITY

ACROSS COMPUTING SYSTEMS

A. Overview

Figure 3 illustrates the overview of FastMig, the system

that utilized the adapted FastFreeze for robust service liq-

uidity across computing systems. The system consists of 5

main modules: (A) the FastMig Interface allowing requests

from outside, (B) FastFreeze Daemon, providing container-

ized service management, (C) FastFreeze, utilizing CRIU for

checkpoint/restore operations and acting as parent process of

the containerized service, (D) the containerized service and,

(E) the Fault Handling Module, which is the configurable logic

used to handle the fault from logs. Figure 3 also shows another

2Capability is a privilege for specific functionality in Linux, e.g., the ability
to change file owner. In analogy, it is a subset of root privileges that can be
granted to unprivileged processes. To minimize the attack surface, it is a
practice to grant only the capabilities the process requires to function.

3PID namespace is a Linux kernel feature that isolates process ID number
space. A process in an isolated namespace can have an arbitrary PID
independent from existing ones in other namespaces. Processes are not visible
across namespaces except in a number of cases. PID namespace is one of the
important foundations of container technology.

4The container init process is the root of the container process tree. Its status
represents the container status; for example, the container is considered down
if its init process exits. The init process is also responsible for other duties,
such as forwarding signals to child processes and reaping zombie processes.
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Fig. 3: Overview of the FastMig within a container. We

propose adding the ªservice management layerº (components

with the blue color) to enable fast and robust live migration

of containerized services.

component called the Start Option Config, which is the file that

indicates how the service will be started.

B. Adapting FastFreeze to Establish Robustness

To enhance robustness, we address three key aspects. Firstly,

we separate containerized service management and its execu-

tion and examine startup options, enabling finer service control

during migration. Secondly, we establish a fault tolerance

mechanism to bolster the resilience of containerized services

during both regular operation and migration. Lastly, we offer

the FastMig Interface to facilitate seamless integration with

migration systems, enhancing system security.

1) Service Management Decoupling: For modern con-

tainerized services, the container and the containerized service

execution are bound together. For instance, when the service

exits, the container also exits, and the service is started upon

the container start. This factor limits the ability to manage

the containerized service lifetime during the migration, as

discussed in Section I-B. To establish the robustness of service

liquidity, we build a solution that allows us to separate the

containerized service management (e.g., states) and its execu-

tion. FastFreeze acts as a parent process of the containerized

service, covering the service execution layer; therefore, we

developed a component for the service management layer

called FastFreeze Daemon.

FastFreeze Daemon provides a standby behavior for the

containerized services. The container can be in a running

state while the internal service is not running. As FastFreeze

Daemon is the first and always running process in the con-

tainer, in standby mode, it listens for the incoming request

to run the service up, either restore or start it from scratch.

The containerized services equipped with FastFreeze Daemon

can start in three different ways, depicted in Figure 4: (i)

start the service from scratch disregarding the checkpoint; (ii)

restore the service from the given checkpoint; or (iii) remain

on standbyÐnot running the service. The startup behavior

for each circumstance is configurable by providing FastFreeze

with the Startup Option Config indicating the startup mode

and relevant information. If no configuration is provided,

FastFreeze Daemon remains in the standby mode by default.

A notable use case for the standby mode is that in the

migration process, one can start the container of a service at

the destination using the standby mode. When the checkpoint

files are transferred, the service can then restore with the

container already warm-up. We named this technique warm

restoration, inspired by a serverless function warm start [4],

[8].

The separation of the service management layer and the

service execution layer, together with startup modes, en-

hances the service migration robustness by allowing post-

checkpointing/pre-restoration operations such as graceful shut-

down and warm restoration. Moreover, it enables restarting the

service when faults occur without creating a new container

via the fault tolerance mechanism. Not only does it eliminate

unnecessary startup overhead for a new container, but it

also enhances service traceability by eliminating the need to

aggregate logs across old and new containers.
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Fig. 4: Container and containerized service lifespan in tradi-

tional and FastMig containers. FastMig container enhances ro-

bustness by allowing the service to restart without recreating a

new container. For each restart, the fault tolerance mechanism

determines how the containerized service starts: restore from

checkpoint files, start from scratch, or standby (not starting).

2) Fault Tolerance Mechanism: Traditional FastFreeze al-

ready implemented a feature for users (i.e., service developers)

to plug in the metric recorder program, which consumes Fast-

Freeze JSON-structured logs as its argument. We developed

the Fault Handling Module that analyzes logs of how the

service exits and decides how it should restart. After that, it

outputs its decision into the Startup Option Config, and the

FastFreeze Daemon then reads it in the next service startup.

In summary, we use an analogy to a self-feedback method.

We defined a default logic that can handle simple faults



based on the service exit code as a demonstration. The pseudo-

code of the mentioned logic is shown in Listing 1. The

logic indicates that when the service exits as expected with

code 0, FastFreeze Daemon will try to restore the service

from the checkpoint files in the next startup, and if the

service exits by receiving signals, including the signal from

FastFreeze checkpoint operation, the startup option will be

standby; otherwise, FastFreeze Daemon will force the service

to start from scratch.

1 if exit_code == 0:

2 start_option = restore

3 elif exit_code >= 128 and exit_code <= 159:

4 start_option = standby

5 else:

6 start_option = from_scratch

Listing 1: Default Fault Handling Module logic written in

Python language

In other use cases, with different requirements, users can

specify their logic for how their containerized services should

restart after specific faults and situations happen.

3) The FastMig Interface: The FastMig Interface exposes

the FastFreeze operation to be usable from outside of the

container. In detail, the HTTP interface is implemented within

the FastFreeze Daemon. With provided HTTP APIs, external

entities can call the migration commands by sending requests,

and as distinct from command-line execution, the HTTP

request does not require container access permission. As a

result, this enhances FastFreeze integration with other systems

and enhances the migration operation security. We achieved

this by modifying the FastFreeze to communicate through

the Unix domain socket after each operation. FastMig keeps

listening to the socket, waits for the operation finishing sign,

and then responds to the client. The FastMig Interface mimics

FastFreeze commands for its APIs, so it has two main APIs,

namely run API and checkpoint API. Both APIs accept a

JSON request body that aligns with each FastFreeze command.

After FastMig Interface receives a request, it processes the

body and the Startup Option Config; then it spawns FastFreeze

with extracted arguments.

Another significant behavior difference between the HTTP

Interface and FastFreeze command-line interface is that the

APIs are synchronous, while the prior command-line is not.

The FastMig Interface responds to the client only after the

called operation is ended, either finished or failed (e.g., the

application started successfully). This characteristic makes the

checkpoint/restore and migration operations more traceable

and eases the evaluation of measuring their duration.

C. Adapting FastFreeze for multi-process Services

As mentioned in II-B, there can be a significant delay when

using FastFreeze to restore multi-process services in unpriv-

ileged scenarios. This is usually normal and practical cases

arising from FastFreeze using the fork bomb workaround. Our

examination reveals that the current FastFreeze solution tries

to edit the /proc/sys/kernel/ns_last_pid first to set the

desired process ID, and if it cannot, it will use fork bomb until

it gets the desired ns_last_pid, as shown in Listing 2.

1 set_next_pid(pid):

2 if /proc/sys/kernel/ns_last_pid is writable:

3 write the desired last_pid(pid -1)

4 else:

5 use fork_bomb(pid -1)

6
7 fork_bomb(pid):

8 While ns_last_pid != pid:

9 fork_process

10 kill_process

Listing 2: The pseudo-code of Fastfreeze solution to obtain

the desired PID during the service restoration

To avoid the delay, it must prevent the fork bomb by allow-

ing FastFreeze to write to /proc/sys/kernel/ns_last_pid

while still not over-giving the privilege to the container and

FastFreeze itself. To do that, two limitations prevent Fast-

Freeze from editing /proc/sys/kernel/ns_last_pid: (i)

without root privilege, FastFreeze has no permission to edit

/proc/sys/kernel/ns_last_pid, which is a system file,

(ii) in the typical container environment(e.g., Kubernetes [3],

Docker [2]), the container mount /proc directory as a read-

only directory.

Since Linux kernel version 5.9, it introduced a new capa-

bility named CAP_CHECKPOINT_RESTORE [20], which provides

the ability to control PID for corresponding PID namespace

via editing ns_last_pid and clone3 system call. With this

capability, the first limitation can be overcome. To tackle the

second limitation, we study the case of running FastFreeze

in a Docker container and adapt the Docker security options

systempath=unconfined and apparmor=unconfined to al-

low access to system directories. However, disabling AppAr-

mor allows writing access to all system files and may lead to

security issues.5 Thus, it must be set together with a custom

AppArmor profile only to permit modifying ns_last_pid but

not for others in /proc file system.

An example of a Docker configuration avoiding the fork

bomb delay is shown in Listing 3 together with an AppArmor

profile entry in Listing 4. The performance improvement is

reported in Section IV-C.

1 Docker run --cap-add=cap_sys_ptrace

2 --cap-add=cap_checkpoint_restore

3 --security -opt systempaths=unconfined

4 --security -opt apparmor=

apparmor_config

5 ff_container

6 fastfreeze run app

Listing 3: Example of Docker run parameters avoiding

FastFreeze fork bomb

5AppArmor is a mandatory access control (MAC) system for Linux. It
interfaces with the Docker container as another layer of security. The Docker
container applies a default AppArmor profile, restricting actions and accesses,
e.g., avoid editing /proc file system. Instead of just disabling AppArmor, users
can provide a secure custom profile for hardening purposes.



1 deny @{PROC}/sys/kernel/{?,??,[ˆs][ˆh][ˆm]**}-@{

PROC}/sys/kernel/ns_last_pid w,

Listing 4: Example of secured AppArmor profile entry

IV. EVALUATION

To evaluate that FastMig is feasible for live container migra-

tion with minimal overheads and downtime while still being

robust with the fault tolerance mechanism, we summarized

evaluation in a number of aspects in the following metrics:

1) The increased overhead on service performance caused

by incorporating the FastFreeze and FastMig into the

container

2) The improvement of the service restoration time when

granted appropriate privileges

3) The improvement of migration time when using FastMig

and warm restoration

4) The impact of the fault tolerance mechanism on migra-

tion performance and its coverage for various types of

faults

A. Experimental Setup

We created Ubuntu 22.04 LTS VMs to represent each as a

physical computing node with 4 vCPU, 16 GiB memory, and

100 GiB storage. All VMs are connected with 1 GiB Ethernet.

We used Docker version 25.0.1 as the container engine and

FastFreeze version 1.3.0.

The live migration performed in the experiments applied

the stop-and-copy method by checkpointing the container,

dumping checkpoint files to the shared filesystem (NFS), and

restoring the container at the destination using the shared

checkpoint files.

In most experiments, we deployed 2 distinct applications

with different memory footprint behaviors, as it is a critical

factor in the migration performance. First, we deployed a

popular benchmarking application called memhog [25]. We

configured memhog to write random data to the allocated

memory and print a counter number every second, representing

a static memory footprint application. Second, we configured

YOLOv3-tiny [22], a popular object detection application,

feeding it with an input image (160KB) from their repository.

As opposed to memhog, YOLOv3-tiny has a dynamic memory

footprint.

Container Types %CPU Mem(MiB)

Bare (non-FastFreeze) 0.0183 128.7

FastFreeze 0.0193 129.4

FastMig 0.0193 130.4

TABLE I: Resource Usage

B. Resource Usage and Performance Overhead (No Migra-

tion)

This experiment aims to evaluate the impact of incorporat-

ing FastFreeze and FastMig into the container by measuring

(a) CPU (b) Memory

(c) Network (d) I/O read

(e) I/O write

Fig. 5: Performance metrics of regular, FastFreeze-enabled,

and FastMig-enabled service during the normal operation (no

migration).

service performance during normal operation (i.e., , no mi-

gration). For that, we configured three kinds of containers,

including (A) regular Ubuntu container, (B) Ubuntu container

with FastFreeze, and (C) Ubuntu container with FastMig

running, comparing with each other on the container resource

usage and performance.

First, we used the memhog benchmark, which has a static

memory footprint of 128 MiB on each container, to inspect the

CPU usage percentage and memory usage with docker stats

30 times and calculate the average. As seen in Table I, CPU

usage had no significant differences. For memory usage, the

container with FastFreeze used <1 MiB more than the regular

container since FastFreeze will spawn a process (mentioned as

customized init process in II-B) and act as the service parent.

The memory usage was increased by 1 MiB for the container

with FastMig. Since the average modern container memory

footprint is between 50 MB to 300 MB per container [13], we

conclude that the resource usage overhead is very negligible.

Secondly, we utilized the iperf3 [10] benchmark to mea-

sure network bitrates and Sysbench [16] to measure the

performance metrics, including CPU speed (in the number of



events processed per second), memory access throughput, and

I/O read/write throughput. We ran each benchmark on each

container for 30 times. The results in Figure 5 show that there

is no significant performance degradation for all test cases.

Takeaway: Enhancing service liquidity by incorporating

FastFreeze or FastMig into the container incurs little to no

additional resource and performance overheads.

Fig. 6: Comparison of migration time before and after Fast-

Freeze configuration fix. Error bars show 95% confidence

intervals.

C. Multi-process Application Restoration Time

As mentioned in Section II-B, FastFreeze restoration time

is irregularly high when used with multi-process applications

and affects service downtime during migration. The cause

examination and fixing were explained in Section III-C. We

conducted experiments that compared the migration time be-

tween using FastFreeze without additional privileges and after

allowing it to modify the /proc/sys/kernel/ns_last_pid.

We deployed memhog in a similar manner to the previous

experiments in Section IV-B. The number of memhog processes

run in a single container was 2-16, with a scaling factor of 2.

Thirty rounds were performed for each case with a different

number of processes and reported in Figure 6.

When allowing FastFreeze to modify the ns_last_pid file,

the migration time was dramatically reduced compared to

using unprivileged FastFreeze with the same number of pro-

cesses. For two processes, the migration time was reduced by

≈30 seconds, and for 16 processes, the reduction was greater,

i.e., ≈450 seconds. The differences are mainly influenced by

the restoration time differences, as the checkpointing time

is mostly identical between cases with the same number of

service processes.

Takeaway: To have FastFreeze-based live migration solu-

tion operate efficiently with multi-process services, certain

privileges must be granted to the container.

(a) memhog

(b) YOLOv3-tiny

Fig. 7: Migration time of memhog and YOLOv3-tiny when

disabling and enabling warm-restoration. Error bars show 95%

confidence intervals.

D. Measuring the Overhead of Live Migration

This experiment aims to measure the migration time over-

head of live migration using FastFreeze and, second, with

FastMig that allows migration with a warm restoration at the

destination. Both applications were configured for this pur-

pose, memhog and YOLOv3-tiny. To emphasize the impact of

the warm restoration, which improves the container migration

time by omitting the container startup time at the destination,

we measured the migration time on the different numbers

of ports exposed on the container since the number of ports

exposed is a factor that affects the container startup time [26].

Each test was conducted 30 times, measuring the total time

from the checkpoint phase until the completion of restoration

at the destination. The average time was reported in Figure 7.

From the results, when not using FastMig and not allowing

a warm restoration at the destination, the migration time



increased linearly as the number of ports increased. Unlike

using FastMig and warm restoration, the migration time was

not increased significantly, i.e., ≈2 seconds. The checkpointing

duration among these cases is less affected than the restoration

time. This shows the benefit of warm restoration. The same

cases also happened when using YOLOv3-tiny as the evaluated

application. Although exposing 50 ports is an uncommon use

case, it emphasizes the impact of hiding the container startup

time. Furthermore, even with only 10 ports exposed, FastMig

demonstrated an approximate 1-second improvement which

can already be significant for live migration use cases. It is

important to note that not only does exposing ports affect

container startup time, but other factors such as the image

size and the number of image layers also contribute to the

overall startup duration [26].

Additionally, we observed that the migration time when

equipped with FastMig is inconsistent. We also observed that

the checkpointing time is even between each case, but the

restoration time is not. As the restoration operation relies

on networking between nodes (e.g., operation request across

nodes, reading checkpoint from network file system), we

surmise that the migration time inconsistency happens due to

the network consistency.

Takeaway: FastMig, which enables warm restoration, sig-

nificantly reduces migration time during live migration by

mitigating container startup time.

Fig. 8: The impact of embedding the fault tolerance mecha-

nism into the container on the service migration time. Error

bars show 95% confidence intervals.

E. Impact of the Fault Tolerance Mechanism

Our proposed solution relies on the logging mechanism and

we built a configurable function (used in the Fault Handling

Module) to decide on how the container should restart. This

experiment focuses on evaluating the overhead of this mecha-

nism by using different string processing logic (function) with

different time complexity consisting of O(1), O(n), O(n2),

O(n3) and also a case that did not use the fault tolerance

mechanism. We define the input size (n) as the number of

lines from the service log that we feed in. We utilize a 2000-

line Apache Web Server log as a simulated input log [29]. The

experiments were done with 30 repetitions for each function

time complexity.

As shown in Figure 8, the fault tolerance mechanism

introduces a negligible additional migration overhead of ≈0.2

seconds. The overheads are nearly constant across function

time complexity as the size of n is small; however, thousand-

of-line logs generally suffice to determine the fault cause and

the appropriate Start Option Config.

Takeaway: FastMig fault tolerance mechanism with basic

log processing introduces little to no impact on migration

time.

F. Coverage of the Fault Tolerance Mechanism

To determine how the fault tolerance mechanism reacts to

various types of faults, we set up a fault injection experiment

that intentionally causes common faults during each phase

of container migration and inspected its actions. To provide

generality over various specific use cases, we use the default

logic, shown in Listing 1, that determines FastFreeze restart

state from FastFreeze exit code in this experiment. Each fault

was injected ten times in each situation where possible.

If the application and FastFreeze are restarted and still func-

tion properly (e.g., can be checkpointed/restored or migrated

after the incident is fixed), this will be indicated as a valid

result. The setup faults are reported in Table II. Some faults

are not included in the experiment since they are impossible

to occur during that phase.

Most of the results are valid, as shown in II, but only the

network failure during application restoration is an exception.

This happened because FastFreeze waits to read the checkpoint

files from the NFS service, which cannot reach its peer due

to network disconnection. NFS blocks FastFreeze process

indefinitely and waits for reconnection without a timeout. In

this situation, users must either manually stop the container

or wait until the network reconnects, which causes the NFS

service to unblock the process and resume the restoration.

Additionally, we observed two limitations of the fault tol-

erance mechanism, though the results are valid. Firstly, if a

fault occurs during service checkpointing or restoration, the

progress of the interrupted operation is discarded. Then, the

next attempt of the same operation, e.g., a second restoration

from the same checkpoint files, is started from the beginning as

if it has never been run before. Secondly, For system/hardware

failure, the behavior may depend on how the system (i.e.,

operating system) acts on the container. For instance, when the

system is shut down gracefully and sends termination signals

to the processes in the container, the Fault Handling Module

will control FastFreeze restart mode to be a standby mode, but,

in another case, when there is no signal sent to the container

(i.e., hard shutdown), the logic does not have any chance to

evaluate the fault. As a result, the restart mode will be standby



Faults
Normal

operation

Application

checkpointing
Application

restoration

Memory exceed
Restart in

standby mode
Checkpoint stop,

service continue
Restoration succeed

Storage exceed
Restart in

from-scratch mode

Checkpoint stop,

service continue
Not included

Signals (e.g., SIGINT, SIGKILL)
Restart in

standby mode

Checkpoint stop, restart

in standby mode
Restart in

from-scratch mode

Application unexpected exit

(i.e., exit code >0)
Restart in

from-scratch mode
Not included Not included

Corrupted checkpoint files Not included Not included
Restart in

from-scratch mode

Network failure (cannot reach NFS) Not included
Checkpoint stop,

service continue

Restoration freeze until

network reconnects

Underline system/hardware failure

Restart from

previous config or

standby mode

Restart from previous

config or standby mode

Restart from previous

config or standby mode

TABLE II: Types of faults that are injected into each situation. Some faults are not included in the experiment since they are

impossible to occur during that phase.

as the default mode or will be in the state indicated in the

Startup Option Config from the previous function trigger.

Takeaway: The fault tolerance mechanism enhances the

robustness by making the failed container restart at the

desired state on the host where the container resides and

the failure happens.

V. RELATED WORKS

Several studies point out the essential of service liquidity

in modern computing architecture; that is, services should be

able to run and move freely across underlying platforms. Iorio

et al., [15] introduced the concept of Liquid Computing, a

computing paradigm that abstracts services from the underly-

ing computing continuum. Gallidabino et al., [12] proposed the

Liquid Software paradigm that offers a seamless experience

to users while migrating across devices. Galantino et al.,

[11] addresses the advantages of distributing a fluid workload

across diverse computing devices, with a specific focus on the

power consumption within the computing continuum.

Live container migration has been increasingly studied as

an alternative solution to VM migration. Nadgowda et al.,

[19] presented Voyager, a CRIU-based container migration

service that utilizes post-copy filesystem replication. Voyager

lazy replication transfers the filesystem of a container in

the background when needed while allowing the container

to resume operation instantly on the target host, providing

zero-downtime data migration and reducing network overhead.

Benjaponpitak et al., [5] proposed CloudHopper, an automated

live migration solution across multi-cloud while maintaining

connectivity to the client service. CloudHopper allows live

migration efficiently through pre-copy techniques and redirects

the traffic between the cloud using HAProxy with the cloud

provider’s VPN. Among others, CloudHopper is the only live

migration solution that takes connectivity between computing

systems into account. Ma et al., [17] proposed a framework for

offloading services across the edge servers by leveraging the

pre-copy live migration technique and eliminating the transfer

of redundant container storage layers. The aforementioned

works mainly relied on checkpoint/restore features supported

by the container runtime. On the contrary, Souza et al., [24]

presented MyceDrive, a solution to migrate containers within a

Kubernetes cluster by embedding checkpoint/restore libraries

into the container. It allows only migration of the containerized

service memory. FastMig provides an analogous live migration

solution while simultaneously offering robustness enhance-

ment to the container. FastMig is also open to integration with

other migration solutions components through standardized

interfaces.

VI. CONCLUSION

In this research, we leverage FastFreeze to establish a

robust service liquidity solution, called FastMig, for the next

generation of Cloud computing systems. The main idea behind

FastMig is to separate the service management from its

execution. It allows restarting the service without recreating

the container and allows post-checkpointing operations, such

as those for graceful shutdown instructions, thereby making it

robust against failures that occur during the container migra-

tion. The decoupled pre-restoration operations spur a warm

restoration technique that significantly reduces the overall

live migration time. In addition, FastMig provides an HTTP-

based interface; thus, the migration can be requested from

the outer component without requiring the privilege to access

the container command-line interface, and the solution can

be easily integrated with existing systems. FastMig includes



a self-feedback fault tolerance mechanism that executes a

configurable function to decide how the service should be

restarted upon failure occurrence to enhance the robustness.

Last but not least, FastMig is able to efficiently perform

migration for multi-process services, commonly needed for

service migration, via enhancing the restoration process of

such services. The evaluations show that, firstly, incorporating

FastFreeze or FastMig into the container imposes little to no

additional resource and performance overheads in normal ser-

vice operations(no migration). Secondly, FastFreeze-based live

migration solution can operate efficiently with multi-process

services when certain privileges are granted to the container

through the appropriate container configuration. Thirdly, the

container startup time can be overlapped during the migration

when applying the warm restoration technique introduced by

FastMig, which significantly reduces migration time during

live migration. Lastly, we investigated the impact of the

self-feedback fault tolerance mechanism and noticed that it

introduces a negligible overhead while allowing the handling

of flexible types of faults via a simple configuration.

There are several avenues to extend this research in the

future. Firstly, machine learning techniques can be added to

enable the flexible fault tolerance mechanism for the undefined

faults. Currently, FastMig reacts to the undefined faults with

the default behaviorÐrestart in standby mode. As such, the

second avenue for future research can be to enhance the

robustness of service liquidity at the inter-system coordination

level. For instance, if the hardware that runs the service fails

permanently, the service unavailability should be detected,

and a new instance of the service should be started/restored

at the last location it has traveled to. The third avenue for

future research can be on the security and privacy aspects of

container migration, dealing with challenges such as secure

container migration through a third-party network provider

or to an untrusted destination system, and also dealing with

the authorization and encryption challenges of the migrating

container.
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