FastMig: Leveraging FastFreeze to Establish Robust
Service Liquidity in Cloud 2.0

Sorawit Manatura
HPCNC Lab, Department of Computer Engineering
Kasetsart University, Thailand
sorawit.man @ku.th

Chantana Chantrapornchai*
HPCNC Lab, Department of Computer Engineering
Kasetsart University, Thailand
fengenc @ku.ac.th

Abstract—Service liquidity across edge-to-cloud or multi-cloud
will serve as the cornerstone of the next generation of cloud
computing systems (Cloud 2.0). Provided that cloud-based ser-
vices are predominantly containerized, an efficient and robust
live container migration solution is required to accomplish service
liquidity. In a nod to this growing requirement, in this research,
we leverage FastFreeze, a popular platform for process check-
point/restore within a container, and promote it to be a robust
solution for end-to-end live migration of containerized services. In
particular, we develop a new platform, called FastMig that proac-
tively controls the checkpoint/restore operations of FastFreeze,
thereby, allowing for robust live migration of containerized
services via standard HTTP interfaces. The proposed platform
introduces post-checkpointing and pre-restoration operations
to enhance migration robustness. Notably, the pre-restoration
operation includes containerized service startup options, enabling
warm restoration and reducing the migration downtime. In
addition, we develop a method to make FastFreeze robust
against failures that commonly happen during the migration and
even during the normal operation of a containerized service.
Experimental results under real-world settings show that the
migration downtime of a containerized service can be reduced
by 30X compared to the situation where the original FastFreeze
was deployed for the migration. Moreover, we demonstrate that
FastMig and warm restoration method together can significantly
mitigate the container startup overhead. Importantly, these
improvements are achieved without any significant performance
reduction and only incurs a small resource usage overhead,
compared to the bare (i.e., non-FastFreeze) containerized services.

Index Terms—Containerized Services, Liquid Computing, Ro-
bust Live Migration, Fault Tolerance

I. INTRODUCTION
A. Motivation

Cloud 2.0 marks the next generation in cloud comput-
ing, integrating cutting-edge technologies like AI, machine
learning, and IoT. This phase emphasizes greater efficiency,
scalability, and the use of heterogeneous resources, setting the
stage for advanced and innovative applications. Services are
envisaged to be truly distributed, either across edge-to-cloud—
to support low-latency services [18]—or across multi-cloud—
to attain high reliability and cost efficiency [14]. The next
generation of services in Cloud 2.0 desire service liquidity
across the resource continuum. That is, the services must

Thanawat Chanikaphon
HPCC Lab, School of Computing and Informatics
University of Louisiana at Lafayette, LA, USA
thanawat.chanikaphon1 @louisiana.edu

Mohsen Amini Salehi*

HPCC Lab, Computer Science and Engineering Department

University of North Texas, TX, USA
mohsen.aminisalehi @unt.edu

be free to execute and relocate seamlessly over distributed
and heterogeneous platforms [15]. In addition to the futuristic
use cases, service liquidity offers several advantages for day-
to-day IT operations, such as facilitating maintenance tasks
(e.g., performing hardware upgrades) and improving resource
utilization via dynamically reallocating workloads across hosts
without disrupting their operations. Establishing service liquid-
ity entails a seamless live service migration solution from one
host to another without degrading the quality of experience.

model
aggregation

A central (cloud) server

..E;...¢..............¢...E.2......
3 3

model training model training

Live service
migration

edge servers

mobile user device tier
Fig. 1: Service liquidity use case to efficiently achieve fed-
erated learning for mobile users. The model training process
can seamlessly migrate from a source edge sever (El) to a
destination one (E2).

As an exemplar use case, consider the federated learning
scenario, shown in Figure 1, where the model training takes
place only on the on-premises edge servers, to preserve the
user’s data privacy. Then, the trained model is transferred
to the central (cloud) server to perform model aggregation
[27]. In this scenario, the data collection is often performed
on the device (e.g., smartphone) of a mobile user who tends
to randomly disconnect from one edge server and connect
to another. Such mobility can slow down the training if the
model has to be retrained. The ability to live migrate the
training service across edge servers, however, enables seamless
resumption of the training process at the new edge server,

thereby, saving the training time [27].

In modern cloud environments, where services are increas-
ingly containerized for the merit of portability and isolation,
various migration approaches are studied, including the native
approach that requires the container runtime checkpoint/re-
store feature [25] and the container nesting approach [6]
that nests the containerized service within another container
providing the migration ability. A distinct approach that aims
not to migrate an entire container but to migrate only the
“embedded processes of the service” is desired to minimize
the overhead, maximize portability, and cater to multi-cloud
benefits. FastFreeze [28] is a turn-key solution that exhibits
these features; however, it is purposed for containerized pro-
cesses checkpointing and restoration. FastFreeze packages up
the necessary dependencies into a single library for building
a container image, making it easy-to-use through a simple
command-line interface and unprivileged to be able to execute
inside a container securely. In this work, our hypothesis is
that FastFreeze can be an ideal candidate to implement live
migration of containerized services and realize the idea of
liquid computing.

B. Problem Statement

To realize the live containerized service migration, develop-
ers may choose to simply import an existing checkpoint/restore
solution, like FastFreeze, into the container image. Never-
theless, our preliminary analysis shows that this approach is
failure-prone due to the design of a modern container and
the uncertainties of the migration process across systems.
Figure 2a depicts the necessary steps for live migration: service
checkpointing, checkpoint files transfer, and restoration. In
the traditional container, the service processes exit after the
checkpointing step is completed. Then, the entire container
is considered down by the runtime and loses a chance to
execute graceful shutdown instructions, which can adversely
affect the source system. For instance, the exit behavior of
the services may differ from what is expected, potentially
disrupting subsequent operations at the source system. Ad-
ditionally, binding the containerized service management and
its execution—or, in other words, binding container startup
with the containerized service startup—during the migration
limits the containerized service from being warm-restored.
That is, the container startup instructions must wait unnec-
essarily for the checkpoint files transfer step to complete. As
a result, we realized that the lack of two additional steps—
post-checkpointing and pre-restoration, shown in Figure 2b—
hinders the establishment of a robust container migration
service.

In this paper, we adopt FastFreeze to be the underlying
vehicle for a sustainable containerized service migration. We
propose the FastMig container that is equipped with the service
management layer, as shown in Figure 3, that enables a
fast and robust service migration across computing systems.
Decoupling the service management layer from the service
execution layer enables the pre-restoration operations, that
reduce the service migration time, and the post-checkpointing

>
Time
Source | service @service
Container [execution checkpointing
(2)checkpoint files
transfer
\ 4
Destination @container startup
Container and service restoration
(a) Traditional container migration
>
. o Time
Source | senvice D service (®)post-checkpointing
Container |execution checkpointing (e.g., graceful shutdown)
(@checkpoint files @ fault in restoration
transferV and retrying
Destination (Dpre-restoration (®)service (B)service
Container (e.g., container startup) restoration restoration

(b) Proposed container migration with post-checkpointing and pre-restoration
steps

Fig. 2: Positioning of the post-checkpointing and pre-
restoration steps in the live container migration process. The
traditional process includes three main steps: () service check-
pointing, @) checkpoint files transfer, and 3) new container
startup and service restoration. The proposed solution incorpo-
rates the pre-restoration operations that execute simultaneously
in step (D and, similarly, post-checkpointing operations in step
(. Decoupling the container startup from the service startup
is the key to achieving fault tolerance in steps @ and (5.

operations that pave the way to execute graceful shutdown
instructions, thus enhancing the service robustness.

However, it does not fully establish robust service liquidity
as FastMig is still prone to faults that occur randomly—
both in normal operations and in the container migration
process—and cease the running service processes. Traditional
fault tolerance mechanisms that offer container recreation
are unsuitable for FastMig as the container is reusable for
multiple startups/restorations of the same service; hence, they
fail to maximize restart efficiency—by performing unneces-
sary container startup [7]—and traceability—by segregating
service execution logs to multiple containers. The proposed
FastMig service management layer includes a fault tolerance
mechanism that allows restarting the service without recreating
the container. As a result, it is capable of handling faults in
an efficient manner and satisfies service liquidity robustness.

Lastly, FastMig promotes FastFreeze to be migration-
friendly. The problem is that FastFreeze imposes an unusual
latency on the migration of a containerized service that forks
multiple child processes, particularly, at the restoration time.
FastMig, however, improves the performance of the restore
operation for multi-process services and reduces the service
migration time significantly. FastMig also offers a standard
interface to securely serve external migration requests.

C. Contributions

In sum, this paper makes the following contributions:

« Developing FastMig, a live containerized service migra-
tion solution that incorporates FastFreeze with the service
management layer to realize service liquidity '

« Developing FastFreeze Daemon that decouples the con-
tainerized service management from its execution. It
enables post-checkpointing and pre-restoration operations
and incorporates the warm restoration technique that
reduces the migration time.

o Developing a configurable fault tolerance mechanism
that enhances service liquidity robustness via allowing
restarting the service without recreating the container.

« Extending FastFreeze to improve the restoration time of
the multi-process services upon migration and develop
standard APIs to make FastMig pluggable to other solu-
tions.

o Evaluating and analyzing the impact of FastMig under
real-world scenarios and settings.

The rest of this paper is organized as follows: Section II pro-
vides background on the live containerized service migration
and FastFreeze. Section III presents the design of the robust
containerized service using FastFreeze. Section IV describes
the evaluation and the results. Section V discusses related
studies on service liquidity and live containerized service
migration. Finally, Section VI concludes our work.

II. BACKGROUND

A. Live Containerized Services Migration

Container technology is a virtualization technology that
bundles the application and all its dependencies, providing
application isolation and making the application migratable
while retaining complete functionality [9], [21]. The ability to
migrate containerized services between systems is beneficial in
service provisioning through load balancing or fault tolerance.
On a high level, for live migration, the containerized service
migration can be done by checkpointing the processes inside
the container, moving the checkpoint files to the destination,
and restoring the container to its original state [25]. There
are techniques to help reduce the downtime that comes from
the transfer process, such as pre/post-copy [23] or page-server
[25], but the overall operation remains the same. A main
tool that has been used to do the container checkpoint/restore
operations is Checkpoint/Restore In Userspace (CRIU) [1].
CRIU achieves this by using ptrace, a kernel interface to
inspect the current process execution and memories used.
CRIU also works with multi-process applications as it can
checkpoint and restore an entire process tree.

When using CRIU to restore an application, the PIDs
of the application processes have to be the same as be-
fore it was checkpointed. With enough privileges or per-

FastMig and all the experimental data are publicly available for repro-
ducibility purposes in the following addresses: https://github.com/hpcclab/
fastfreeze4service_migration

mission (e.g., root or CAP_SYS_ADMIN capabilityz), CRIU
can achieve the desired PID at restoration time. Another
solution to control the processes PID is to modify the file
/proc/sys/kernel/ns_last_pid, which indicates the last
PID allocated and determines the next fork PID in the current
PID namespace3, to match its need (e.g., desired PID-1).

B. FastFreeze

FastFreeze is a checkpoint/restore utility built specially for
containerized services. It is a wrapper around CRIU; hence,
FastFreeze delegates the main processes checkpoint/restore to
CRIU. FastFreeze provides management facilities for check-
point/restore, providing a customized init process* that makes
the containerized service processes its children.

In addition, FastFreeze is designed to be usable within
unprivileged containers. It uses a technique called fork bomb,
rapidly forking and killing child processes until it gets the
desired PID to handle the CRIU PID requirement upon restora-
tion. For single-process application restoration, the delay is
not significant; however, for multi-process applications [13],
the delay from the fork bomb procedure can be significant.
Chanikaphon et al., [6] show that the migration approach
using FastFreeze has increased the migration overhead by ~40
seconds per 1 additional child process.

Lastly, FastFreeze provided only a command-line interface
to activate all its operations; this leads to obstacles in the
migration requirements in the aspects of container access
permission, synchronization, and monitoring. Moreover, the
lack of easy-to-use/standard interfaces obstructs the integration
with web services and leads to incompatibility with service-
oriented architecture (SOA).

IITI. FASTFREEZE FOR ROBUST SERVICE LIQUIDITY
ACROSS COMPUTING SYSTEMS

A. Overview

Figure 3 illustrates the overview of FastMig, the system
that utilized the adapted FastFreeze for robust service lig-
uidity across computing systems. The system consists of 5
main modules: (A) the FastMig Interface allowing requests
from outside, (B) FastFreeze Daemon, providing container-
ized service management, (C) FastFreeze, utilizing CRIU for
checkpoint/restore operations and acting as parent process of
the containerized service, (D) the containerized service and,
(E) the Fault Handling Module, which is the configurable logic
used to handle the fault from logs. Figure 3 also shows another

2Capability is a privilege for specific functionality in Linux, e.g., the ability
to change file owner. In analogy, it is a subset of root privileges that can be
granted to unprivileged processes. To minimize the attack surface, it is a
practice to grant only the capabilities the process requires to function.

3PID namespace is a Linux kernel feature that isolates process ID number
space. A process in an isolated namespace can have an arbitrary PID
independent from existing ones in other namespaces. Processes are not visible
across namespaces except in a number of cases. PID namespace is one of the
important foundations of container technology.

4The container init process is the root of the container process tree. Its status
represents the container status; for example, the container is considered down
if its init process exits. The init process is also responsible for other duties,
such as forwarding signals to child processes and reaping zombie processes.

container Container Runtime
mgmt layer

p L oread ___—————— opext
checkpoint// | startup] startup
restore | FastFreeze |_ mode St;rt?uip OB{{on mode | Fault Tolerance
request decision
. L Daemon) _ Config L Module J

spawn/
checkpoint/
restore

checkpointirestore
request ”l

9oBB)U|
Biniseq

service
mgmt layer

e et spawn/
Checkpoint < wite FastFreeze Gheckpoint!

Files ~
restore
&

service l write T
exec. layer

FastMig Container

Fig. 3: Overview of the FastMig within a container. We
propose adding the “service management layer” (components
with the blue color) to enable fast and robust live migration
of containerized services.

component called the Start Option Config, which is the file that
indicates how the service will be started.

B. Adapting FastFreeze to Establish Robustness

To enhance robustness, we address three key aspects. Firstly,
we separate containerized service management and its execu-
tion and examine startup options, enabling finer service control
during migration. Secondly, we establish a fault tolerance
mechanism to bolster the resilience of containerized services
during both regular operation and migration. Lastly, we offer
the FastMig Interface to facilitate seamless integration with
migration systems, enhancing system security.

1) Service Management Decoupling: For modern con-
tainerized services, the container and the containerized service
execution are bound together. For instance, when the service
exits, the container also exits, and the service is started upon
the container start. This factor limits the ability to manage
the containerized service lifetime during the migration, as
discussed in Section I-B. To establish the robustness of service
liquidity, we build a solution that allows us to separate the
containerized service management (e.g., states) and its execu-
tion. FastFreeze acts as a parent process of the containerized
service, covering the service execution layer; therefore, we
developed a component for the service management layer
called FastFreeze Daemon.

FastFreeze Daemon provides a standby behavior for the
containerized services. The container can be in a running
state while the internal service is not running. As FastFreeze
Daemon is the first and always running process in the con-
tainer, in standby mode, it listens for the incoming request
to run the service up, either restore or start it from scratch.
The containerized services equipped with FastFreeze Daecmon
can start in three different ways, depicted in Figure 4: (i)
start the service from scratch disregarding the checkpoint; (ii)
restore the service from the given checkpoint; or (iii) remain
on standby—not running the service. The startup behavior
for each circumstance is configurable by providing FastFreeze
with the Startup Option Config indicating the startup mode
and relevant information. If no configuration is provided,
FastFreeze Daemon remains in the standby mode by default.

A notable use case for the standby mode is that in the
migration process, one can start the container of a service at
the destination using the standby mode. When the checkpoint
files are transferred, the service can then restore with the
container already warm-up. We named this technique warm
restoration, inspired by a serverless function warm start [4],
[8].

The separation of the service management layer and the
service execution layer, together with startup modes, en-
hances the service migration robustness by allowing post-
checkpointing/pre-restoration operations such as graceful shut-
down and warm restoration. Moreover, it enables restarting the
service when faults occur without creating a new container
via the fault tolerance mechanism. Not only does it eliminate
unnecessary startup overhead for a new container, but it
also enhances service traceability by eliminating the need to
aggregate logs across old and new containers.

3
Ll
Time
Container start running terminate
) 1
' l
H H
: :
. = . =
@
Service 2 running X
(a) Traditional container
3
Ll
Time
Container start running terminate
j j M
l : l
[9] [CRE=] [=)
s|lslls|€l=s| |||z
Service 2|12l 18]< S[E|x%
HETHEHEIEE
<4 12 2
Startup Start-from-
Standb Restore
Mode y scratch

(b) FastMig container

Fig. 4: Container and containerized service lifespan in tradi-
tional and FastMig containers. FastMig container enhances ro-
bustness by allowing the service to restart without recreating a
new container. For each restart, the fault tolerance mechanism
determines how the containerized service starts: restore from
checkpoint files, start from scratch, or standby (not starting).

2) Fault Tolerance Mechanism: Traditional FastFreeze al-
ready implemented a feature for users (i.e., service developers)
to plug in the metric recorder program, which consumes Fast-
Freeze JSON-structured logs as its argument. We developed
the Fault Handling Module that analyzes logs of how the
service exits and decides how it should restart. After that, it
outputs its decision into the Startup Option Config, and the
FastFreeze Daemon then reads it in the next service startup.
In summary, we use an analogy to a self-feedback method.

We defined a default logic that can handle simple faults

based on the service exit code as a demonstration. The pseudo-
code of the mentioned logic is shown in Listing 1. The
logic indicates that when the service exits as expected with
code 0, FastFreeze Daemon will try to restore the service
from the checkpoint files in the next startup, and if the
service exits by receiving signals, including the signal from
FastFreeze checkpoint operation, the startup option will be
standby; otherwise, FastFreeze Daemon will force the service
to start from scratch.

1 if exit_code == 0:

2 start_option = restore

3 elif exit_code >= 128 and exit_code <= 159:
4 start_option = standby

5 else:

6 start_option = from_scratch

Listing 1: Default Fault Handling Module logic written in
Python language

In other use cases, with different requirements, users can
specify their logic for how their containerized services should
restart after specific faults and situations happen.

3) The FastMig Interface: The FastMig Interface exposes
the FastFreeze operation to be usable from outside of the
container. In detail, the HTTP interface is implemented within
the FastFreeze Daemon. With provided HTTP APIs, external
entities can call the migration commands by sending requests,
and as distinct from command-line execution, the HTTP
request does not require container access permission. As a
result, this enhances FastFreeze integration with other systems
and enhances the migration operation security. We achieved
this by modifying the FastFreeze to communicate through
the Unix domain socket after each operation. FastMig keeps
listening to the socket, waits for the operation finishing sign,
and then responds to the client. The FastMig Interface mimics
FastFreeze commands for its APIs, so it has two main APIs,
namely run API and checkpoint API. Both APIs accept a
JSON request body that aligns with each FastFreeze command.
After FastMig Interface receives a request, it processes the
body and the Startup Option Config; then it spawns FastFreeze
with extracted arguments.

Another significant behavior difference between the HTTP
Interface and FastFreeze command-line interface is that the
APIs are synchronous, while the prior command-line is not.
The FastMig Interface responds to the client only after the
called operation is ended, either finished or failed (e.g., the
application started successfully). This characteristic makes the
checkpoint/restore and migration operations more traceable
and eases the evaluation of measuring their duration.

C. Adapting FastFreeze for multi-process Services

As mentioned in II-B, there can be a significant delay when
using FastFreeze to restore multi-process services in unpriv-
ileged scenarios. This is usually normal and practical cases
arising from FastFreeze using the fork bomb workaround. Our
examination reveals that the current FastFreeze solution tries
to edit the /proc/sys/kernel/ns_last_pid first to set the

desired process ID, and if it cannot, it will use fork bomb until
it gets the desired ns_last_pid, as shown in Listing 2.

1 set_next_pid(pid):

if /proc/sys/kernel/ns_last_pid is writable:
write the desired last_pid(pid-1)

else:
use fork_bomb (pid-1)

fork_bomb (pid) :
While ns_last_pid
fork_process
kill_process

1= pid:

OO 0NN AW

—

Listing 2: The pseudo-code of Fastfreeze solution to obtain
the desired PID during the service restoration

To avoid the delay, it must prevent the fork bomb by allow-
ing FastFreeze to write to /proc/sys/kernel/ns_last_pid
while still not over-giving the privilege to the container and
FastFreeze itself. To do that, two limitations prevent Fast-
Freeze from editing /proc/sys/kernel/ns_last_pid: (i)
without root privilege, FastFreeze has no permission to edit
/proc/sys/kernel/ns_last_pid, which is a system file,
(i1) in the typical container environment(e.g., Kubernetes [3],
Docker [2]), the container mount /proc directory as a read-
only directory.

Since Linux kernel version 5.9, it introduced a new capa-
bility named CAP_CHECKPOINT_RESTORE [20], which provides
the ability to control PID for corresponding PID namespace
via editing ns_last_pid and clone3 system call. With this
capability, the first limitation can be overcome. To tackle the
second limitation, we study the case of running FastFreeze
in a Docker container and adapt the Docker security options
systempath=unconfined and apparmor=unconfined to al-
low access to system directories. However, disabling AppAr-
mor allows writing access to all system files and may lead to
security issues.” Thus, it must be set together with a custom
AppArmor profile only to permit modifying ns_last_pid but
not for others in /proc file system.

An example of a Docker configuration avoiding the fork
bomb delay is shown in Listing 3 together with an AppArmor
profile entry in Listing 4. The performance improvement is
reported in Section IV-C.

1 Docker run --cap-add=cap_sys_ptrace

2 --cap-add=cap_checkpoint_restore

3 --security-opt systempaths=unconfined

4 --security-opt apparmor=
apparmor_config

5 ff_container

6 fastfreeze run app

Listing 3: Example of Docker run parameters avoiding
FastFreeze fork bomb

S AppArmor is a mandatory access control (MAC) system for Linux. It
interfaces with the Docker container as another layer of security. The Docker
container applies a default AppArmor profile, restricting actions and accesses,
e.g., avoid editing /proc file system. Instead of just disabling AppArmor, users
can provide a secure custom profile for hardening purposes.

1 deny @{PROC}/sys/kernel/{?,?2?,["s]["h]["m]**}-@{
PROC}/sys/kernel/ns_last_pid w,

Listing 4: Example of secured AppArmor profile entry

IV. EVALUATION

To evaluate that FastMig is feasible for live container migra-
tion with minimal overheads and downtime while still being
robust with the fault tolerance mechanism, we summarized
evaluation in a number of aspects in the following metrics:

1) The increased overhead on service performance caused
by incorporating the FastFreeze and FastMig into the
container

2) The improvement of the service restoration time when
granted appropriate privileges

3) The improvement of migration time when using FastMig
and warm restoration

4) The impact of the fault tolerance mechanism on migra-
tion performance and its coverage for various types of
faults

A. Experimental Setup

We created Ubuntu 22.04 LTS VMs to represent each as a
physical computing node with 4 vCPU, 16 GiB memory, and
100 GiB storage. All VMs are connected with 1 GiB Ethernet.
We used Docker version 25.0.1 as the container engine and
FastFreeze version 1.3.0.

The live migration performed in the experiments applied
the stop-and-copy method by checkpointing the container,
dumping checkpoint files to the shared filesystem (NFS), and
restoring the container at the destination using the shared
checkpoint files.

In most experiments, we deployed 2 distinct applications
with different memory footprint behaviors, as it is a critical
factor in the migration performance. First, we deployed a
popular benchmarking application called memhog [25]. We
configured memhog to write random data to the allocated
memory and print a counter number every second, representing
a static memory footprint application. Second, we configured
YOLOvV3-tiny [22], a popular object detection application,
feeding it with an input image (160KB) from their repository.
As opposed to memhog, YOLOv3-tiny has a dynamic memory
footprint.

’ Container Types H %CPU ‘ Mem(MiB) ‘

Bare (non-FastFreeze) || 0.0183 128.7
FastFreeze 0.0193 129.4
FastMig 0.0193 130.4

TABLE I: Resource Usage

B. Resource Usage and Performance Overhead (No Migra-
tion)

This experiment aims to evaluate the impact of incorporat-
ing FastFreeze and FastMig into the container by measuring

880 T
g 860 ° —‘7 4600

g 840

5 820 ’ ‘

g

£ 800 B

2

¢ 780 i

12 L

5 760

£ 740 4000
L2 ©

720 8
Bare FastFreeze

&
£
S
3

3T

FastMig Bare

&
S
S
3

Throughput (MiB/s)

FastFreeze FastMig

(a) CPU (b) Memory

220

S19

318

517 R
=

216 8
F1s

o

FastMig

Bitrate(Gbps)
=
(=)} © o N

i

Bare FastFreeze FastFreeze

(d) I/O read

Bare FastMig

(c) Network

14
£
[2a)
=
512
Qo
) o
g 11 :
£ 10
o
Bare FastFreeze FastMig

(e) /O write

Fig. 5: Performance metrics of regular, FastFreeze-enabled,
and FastMig-enabled service during the normal operation (no
migration).

service performance during normal operation (i.e., , no mi-
gration). For that, we configured three kinds of containers,
including (A) regular Ubuntu container, (B) Ubuntu container
with FastFreeze, and (C) Ubuntu container with FastMig
running, comparing with each other on the container resource
usage and performance.

First, we used the memhog benchmark, which has a static
memory footprint of 128 MiB on each container, to inspect the
CPU usage percentage and memory usage with docker stats
30 times and calculate the average. As seen in Table I, CPU
usage had no significant differences. For memory usage, the
container with FastFreeze used <1 MiB more than the regular
container since FastFreeze will spawn a process (mentioned as
customized init process in II-B) and act as the service parent.
The memory usage was increased by 1 MiB for the container
with FastMig. Since the average modern container memory
footprint is between 50 MB to 300 MB per container [13], we
conclude that the resource usage overhead is very negligible.

Secondly, we utilized the iperf3 [10] benchmark to mea-
sure network bitrates and Sysbench [16] to measure the
performance metrics, including CPU speed (in the number of

events processed per second), memory access throughput, and
I/O read/write throughput. We ran each benchmark on each
container for 30 times. The results in Figure 5 show that there
is no significant performance degradation for all test cases.

Takeaway: Enhancing service liquidity by incorporating
FastFreeze or FastMig into the container incurs little to no
additional resource and performance overheads.

[FastFreeze w/o proper config
103 4 [FastFreeze w/ proper config
XA X Checkpointing

“/ Restoration

2 7%

1024

7

Migration Time(s)

%

1014

2 4 8 16
Number of Service Processes

Fig. 6: Comparison of migration time before and after Fast-
Freeze configuration fix. Error bars show 95% confidence
intervals.

C. Multi-process Application Restoration Time

As mentioned in Section II-B, FastFreeze restoration time
is irregularly high when used with multi-process applications
and affects service downtime during migration. The cause
examination and fixing were explained in Section III-C. We
conducted experiments that compared the migration time be-
tween using FastFreeze without additional privileges and after
allowing it to modify the /proc/sys/kernel/ns_last_pid.
We deployed memhog in a similar manner to the previous
experiments in Section IV-B. The number of memhog processes
run in a single container was 2-16, with a scaling factor of 2.
Thirty rounds were performed for each case with a different
number of processes and reported in Figure 6.

When allowing FastFreeze to modify the ns_last_pid file,
the migration time was dramatically reduced compared to
using unprivileged FastFreeze with the same number of pro-
cesses. For two processes, the migration time was reduced by
~30 seconds, and for 16 processes, the reduction was greater,
i.e., =450 seconds. The differences are mainly influenced by
the restoration time differences, as the checkpointing time
is mostly identical between cases with the same number of
service processes.

Takeaway: To have FastFreeze-based live migration solu-
tion operate efficiently with multi-process services, certain
privileges must be granted to the container.

[FastFreeze
6 [FastMig %
XA X Checkpointing
7/ Restoration

Migration Time(s)

NSy

10 20 30 40 50
Number of Ports Exposed

RN

(a) memhog
[FrastfFreeze T
54 = FastMig
X X Checkpointing i
7/ Restoration 7
7 4
]
E
[l
c 3 éruz
S
=
o
227
= i
| é gé
0 T é gg

0 10 20 30 40 50
Number of Ports Exposed

(b) YOLOvV3-tiny

Fig. 7: Migration time of memhog and YOLOv3-tiny when
disabling and enabling warm-restoration. Error bars show 95%
confidence intervals.

D. Measuring the Overhead of Live Migration

This experiment aims to measure the migration time over-
head of live migration using FastFreeze and, second, with
FastMig that allows migration with a warm restoration at the
destination. Both applications were configured for this pur-
pose, memhog and YOLOv3-tiny. To emphasize the impact of
the warm restoration, which improves the container migration
time by omitting the container startup time at the destination,
we measured the migration time on the different numbers
of ports exposed on the container since the number of ports
exposed is a factor that affects the container startup time [26].
Each test was conducted 30 times, measuring the total time
from the checkpoint phase until the completion of restoration
at the destination. The average time was reported in Figure 7.

From the results, when not using FastMig and not allowing
a warm restoration at the destination, the migration time

increased linearly as the number of ports increased. Unlike
using FastMig and warm restoration, the migration time was
not increased significantly, i.e., =2 seconds. The checkpointing
duration among these cases is less affected than the restoration
time. This shows the benefit of warm restoration. The same
cases also happened when using YOLOv3-tiny as the evaluated
application. Although exposing 50 ports is an uncommon use
case, it emphasizes the impact of hiding the container startup
time. Furthermore, even with only 10 ports exposed, FastMig
demonstrated an approximate 1-second improvement which
can already be significant for live migration use cases. It is
important to note that not only does exposing ports affect
container startup time, but other factors such as the image
size and the number of image layers also contribute to the
overall startup duration [26].

Additionally, we observed that the migration time when
equipped with FastMig is inconsistent. We also observed that
the checkpointing time is even between each case, but the
restoration time is not. As the restoration operation relies
on networking between nodes (e.g., operation request across
nodes, reading checkpoint from network file system), we
surmise that the migration time inconsistency happens due to
the network consistency.

Takeaway: FastMig, which enables warm restoration, sig-
nificantly reduces migration time during live migration by
mitigating container startup time.

0.90 A

0.85

e

[}

o
|

0.75 1

0.70 4

Migration Time(s)

0.65 -

0.60

o) oln) o(n?) oln?)

Function's Time Complexity

not_use

Fig. 8: The impact of embedding the fault tolerance mecha-
nism into the container on the service migration time. Error
bars show 95% confidence intervals.

E. Impact of the Fault Tolerance Mechanism

Our proposed solution relies on the logging mechanism and
we built a configurable function (used in the Fault Handling
Module) to decide on how the container should restart. This
experiment focuses on evaluating the overhead of this mecha-
nism by using different string processing logic (function) with
different time complexity consisting of O(1), O(n), O(n?),

O(n?) and also a case that did not use the fault tolerance
mechanism. We define the input size (n) as the number of
lines from the service log that we feed in. We utilize a 2000-
line Apache Web Server log as a simulated input log [29]. The
experiments were done with 30 repetitions for each function
time complexity.

As shown in Figure 8, the fault tolerance mechanism
introduces a negligible additional migration overhead of ~0.2
seconds. The overheads are nearly constant across function
time complexity as the size of n is small; however, thousand-
of-line logs generally suffice to determine the fault cause and
the appropriate Start Option Config.

Takeaway: FastMig fault tolerance mechanism with basic
log processing introduces little to no impact on migration
time.

F. Coverage of the Fault Tolerance Mechanism

To determine how the fault tolerance mechanism reacts to
various types of faults, we set up a fault injection experiment
that intentionally causes common faults during each phase
of container migration and inspected its actions. To provide
generality over various specific use cases, we use the default
logic, shown in Listing 1, that determines FastFreeze restart
state from FastFreeze exit code in this experiment. Each fault
was injected ten times in each situation where possible.

If the application and FastFreeze are restarted and still func-
tion properly (e.g., can be checkpointed/restored or migrated
after the incident is fixed), this will be indicated as a valid
result. The setup faults are reported in Table II. Some faults
are not included in the experiment since they are impossible
to occur during that phase.

Most of the results are valid, as shown in II, but only the
network failure during application restoration is an exception.
This happened because FastFreeze waits to read the checkpoint
files from the NFS service, which cannot reach its peer due
to network disconnection. NFS blocks FastFreeze process
indefinitely and waits for reconnection without a timeout. In
this situation, users must either manually stop the container
or wait until the network reconnects, which causes the NFS
service to unblock the process and resume the restoration.

Additionally, we observed two limitations of the fault tol-
erance mechanism, though the results are valid. Firstly, if a
fault occurs during service checkpointing or restoration, the
progress of the interrupted operation is discarded. Then, the
next attempt of the same operation, e.g., a second restoration
from the same checkpoint files, is started from the beginning as
if it has never been run before. Secondly, For system/hardware
failure, the behavior may depend on how the system (i.e.,
operating system) acts on the container. For instance, when the
system is shut down gracefully and sends termination signals
to the processes in the container, the Fault Handling Module
will control FastFreeze restart mode to be a standby mode, but,
in another case, when there is no signal sent to the container
(i.e., hard shutdown), the logic does not have any chance to
evaluate the fault. As a result, the restart mode will be standby

Normal Application Application

Faults
operation checkpointing restoration
Restart in Checkpoint stop,

Memory exceed standby mode

. . Restoration succeed
service continue

Storage exceed Restart in

from-scratch mode

Checkpoint stop,

. . Not included
service continue

Restart in

Signals (e.g., SIGINT, SIGKILL) standby mode

Checkpoint stop, restart
in standby mode

Restart in
from-scratch mode

Application unexpected exit
(i.e., exit code >0)

Restart in

from-scratch mode

Not included Not included

Corrupted checkpoint files Not included

Restart in

Not included from-scratch mode

Network failure (cannot reach NFS) Not included

Restoration freeze until
network reconnects

Checkpoint stop,
service continue

Restart from
Underline system/hardware failure
standby mode

previous config or

Restart from previous
config or standby mode

Restart from previous
config or standby mode

TABLE II: Types of faults that are injected into each situation. Some faults are not included in the experiment since they are

impossible to occur during that phase.

as the default mode or will be in the state indicated in the
Startup Option Config from the previous function trigger.

Takeaway: The fault tolerance mechanism enhances the
robustness by making the failed container restart at the
desired state on the host where the container resides and
the failure happens.

V. RELATED WORKS

Several studies point out the essential of service liquidity
in modern computing architecture; that is, services should be
able to run and move freely across underlying platforms. Iorio
et al., [15] introduced the concept of Liquid Computing, a
computing paradigm that abstracts services from the underly-
ing computing continuum. Gallidabino et al., [12] proposed the
Liquid Software paradigm that offers a seamless experience
to users while migrating across devices. Galantino et al,
[11] addresses the advantages of distributing a fluid workload
across diverse computing devices, with a specific focus on the
power consumption within the computing continuum.

Live container migration has been increasingly studied as
an alternative solution to VM migration. Nadgowda et al.,
[19] presented Voyager, a CRIU-based container migration
service that utilizes post-copy filesystem replication. Voyager
lazy replication transfers the filesystem of a container in
the background when needed while allowing the container
to resume operation instantly on the target host, providing
zero-downtime data migration and reducing network overhead.
Benjaponpitak et al., [5] proposed CloudHopper, an automated
live migration solution across multi-cloud while maintaining
connectivity to the client service. CloudHopper allows live
migration efficiently through pre-copy techniques and redirects
the traffic between the cloud using HAProxy with the cloud

provider’s VPN. Among others, CloudHopper is the only live
migration solution that takes connectivity between computing
systems into account. Ma et al., [17] proposed a framework for
offloading services across the edge servers by leveraging the
pre-copy live migration technique and eliminating the transfer
of redundant container storage layers. The aforementioned
works mainly relied on checkpoint/restore features supported
by the container runtime. On the contrary, Souza et al., [24]
presented MyceDrive, a solution to migrate containers within a
Kubernetes cluster by embedding checkpoint/restore libraries
into the container. It allows only migration of the containerized
service memory. FastMig provides an analogous live migration
solution while simultaneously offering robustness enhance-
ment to the container. FastMig is also open to integration with
other migration solutions components through standardized
interfaces.

VI. CONCLUSION

In this research, we leverage FastFreeze to establish a
robust service liquidity solution, called FastMig, for the next
generation of Cloud computing systems. The main idea behind
FastMig is to separate the service management from its
execution. It allows restarting the service without recreating
the container and allows post-checkpointing operations, such
as those for graceful shutdown instructions, thereby making it
robust against failures that occur during the container migra-
tion. The decoupled pre-restoration operations spur a warm
restoration technique that significantly reduces the overall
live migration time. In addition, FastMig provides an HTTP-
based interface; thus, the migration can be requested from
the outer component without requiring the privilege to access
the container command-line interface, and the solution can
be easily integrated with existing systems. FastMig includes

a self-feedback fault tolerance mechanism that executes a
configurable function to decide how the service should be
restarted upon failure occurrence to enhance the robustness.
Last but not least, FastMig is able to efficiently perform
migration for multi-process services, commonly needed for
service migration, via enhancing the restoration process of
such services. The evaluations show that, firstly, incorporating
FastFreeze or FastMig into the container imposes little to no
additional resource and performance overheads in normal ser-
vice operations(no migration). Secondly, FastFreeze-based live
migration solution can operate efficiently with multi-process
services when certain privileges are granted to the container
through the appropriate container configuration. Thirdly, the
container startup time can be overlapped during the migration
when applying the warm restoration technique introduced by
FastMig, which significantly reduces migration time during
live migration. Lastly, we investigated the impact of the
self-feedback fault tolerance mechanism and noticed that it
introduces a negligible overhead while allowing the handling
of flexible types of faults via a simple configuration.

There are several avenues to extend this research in the
future. Firstly, machine learning techniques can be added to
enable the flexible fault tolerance mechanism for the undefined
faults. Currently, FastMig reacts to the undefined faults with
the default behavior—restart in standby mode. As such, the
second avenue for future research can be to enhance the
robustness of service liquidity at the inter-system coordination
level. For instance, if the hardware that runs the service fails
permanently, the service unavailability should be detected,
and a new instance of the service should be started/restored
at the last location it has traveled to. The third avenue for
future research can be on the security and privacy aspects of
container migration, dealing with challenges such as secure
container migration through a third-party network provider
or to an untrusted destination system, and also dealing with
the authorization and encryption challenges of the migrating
container.

REFERENCES

[1] CRIU Main Page. https://criu.org/Main_Page. Accessed on 2023-12-4.

[2] Docker. https://www.docker.com/. Accessed on 2024-3-21.

[3] Kubernetes. https://kubernetes.io/. Accessed on 2024-3-21.

[4] Operating Lambda: Performance optimization. https://aws.amazon.com/
blogs/compute/operating-lambda-performance-optimization-part-1/.
Accessed on 2024-3-30.

[5] Thad Benjaponpitak, Meatasit Karakate, and Kunwadee Sripanidkulchai.
Enabling live migration of containerized applications across clouds. In
Proceedings of the 2020-IEEE Conference on Computer Communica-
tions, pages 2529-2538. IEEE, 2020.

[6] Thanawat Chanikaphon and Mohsen Amini Salehi. Ums: Live migration
of containerized services across autonomous computing systems. In
Proceedings of the IEEE Global Communications Conference, pages
467-472. 1EEE, 2023.

[7]1 Chavit Denninnart and Mohsen Amini Salehi. Smse: A serverless
platform for multimedia cloud systems. Concurrency and Computation:
Practice and Experience, 36(4):€7922, 2024,

[8] Chavit Denninnart, Thanawat Chanikaphon, and Mohsen Amini Salehi.
Efficiency in the serverless cloud paradigm: A survey on the reusing
and approximation aspects. Software: Practice and Experience,
53(10):1853-1886, 2023.

[9] Docker. What is a container? https://www.docker.com/resources/
what-container/. Accessed on 2024-3-28.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

Daniil Ermolenko, Claudia Kilicheva, Ammar Muthanna, and Abdukodir
Khakimov. Internet of Things Services Orchestration Framework Based
on Kubernetes and Edge Computing. In Proceedings of the IEEE
Conference of Russian Young Researchers in Electrical and Electronic
Engineering (ElConRus), pages 12-17, 2021.

Stefano Galantino, Fulvio Risso, Vlad C Coroama, and Antonio Man-
zalini. Assessing the Potential Energy Savings of a Fluidified Infras-
tructure. Computer, 56(6):26-34, 2023.

Andrea Gallidabino, Cesare Pautasso, Tommi Mikkonen, Kari Systi,
Jari-Pekka Voutilainen, and Antero Taivalsaari. Architecting Liquid
Software. J. Web Eng., 16(5&6):433-470, 2017.

Davood Ghatrehsamani, Chavit Denninnart, Josef Bacik, and Mohsen
Amini Salehi. The art of cpu-pinning: Evaluating and improving
the performance of virtualization and containerization platforms. In
Proceedings of the 49th International conference on parallel processing,
pages 1-11, 2020.

Hamza Ali Imran, Usama Latif, Ataul Aziz Ikram, Maryam Ehsan,
Ahmed Jamal Ikram, Waleed Ahmad Khan, and Saad Wazir. Multi-
cloud: a comprehensive review. In Proceedings of the 23rd International
Multitopic Conference (INMIC 2020), pages 1-5. IEEE, 2020.

Marco Iorio, Fulvio Risso, Alex Palesandro, Leonardo Camiciotti, and
Antonio Manzalini. Computing Without Borders: The Way Towards Lig-
uid Computing. [EEE Transactions on Cloud Computing, 11(3):2820-
2838, 2023.

Eunsook Kim, Kyungwoon Lee, and Chuck Yoo. On the Resource Man-
agement of Kubernetes. In Proceedings of the International Conference
on Information Networking (ICOIN), pages 154—158, 2021.

Lele Ma, Shanhe Yi, Nancy Carter, and Qun Li. Efficient live migration
of edge services leveraging container layered storage. IEEE Transactions
on Mobile Computing, 18(9):2020-2033, 2018.

Vincenzo Mancuso, Leonardo Badia, Paolo Castagno, Matteo Sereno,
and Marco Ajmone Marsan. Efficiency of distributed selection of edge
or cloud servers under latency constraints. In Proceedings of the 21st
Mediterranean Communication and Computer Networking Conference
(MedComNet 2023), pages 158-166. IEEE, 2023.

Shripad Nadgowda, Sahil Suneja, Nilton Bila, and Canturk Isci. Voy-
ager: Complete container state migration. In Proceedings of the 37th
International Conference on Distributed Computing Systems (ICDCS),
pages 2137-2142. 1IEEE, 2017.

Adrian Reber. capabilities: Introduce CAP_CHECKPOINT_RESTORE.
https://patchwork.kernel.org/project/linux-security-module/patch/
20200715144954.1387760-2-areber @redhat.com/, 2020. Accessed on
2023-12-4.

Red Hat. Understanding containers. https://www.redhat.com/en/topics/
containers. Accessed on 2024-3-28.

Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement.
arXiv preprint arXiv:1804.02767, 2018.

Gursharan Singh and Parminder Singh. A taxonomy and survey
on container migration techniques in cloud computing. Sustainable
Development Through Engineering Innovations: Select Proceedings of
SDEI 2020, pages 419-429, 2021.

Paulo Souza Junior, Daniele Miorandi, and Guillaume Pierre. Good
shepherds care for their cattle: Seamless pod migration in geo-distributed
kubernetes. In Proceedings of the 6th IEEE International Conference
on Fog and Edge Computing (ICFEC), pages 26-33. IEEE, 2022.
Radostin Stoyanov and Martin J Kollingbaum. Efficient live migration
of linux containers. In Proceedings of the ISC High Performance 2018
International Workshops, Frankfurt/Main, Germany, June 28, 2018,
Revised Selected Papers 33, pages 184—193. Springer, 2018.

Martin Straesser, André Bauer, Robert Leppich, Nikolas Herbst, Kyle
Chard, Ian Foster, and Samuel Kounev. An empirical study of container
image configurations and their impact on start times. In Proceedings
of the 23rd International Symposium on Cluster, Cloud and Internet
Computing (CCGrid), pages 94—105. IEEE, 2023.

Ullah, Rehmat, Di Wu, Paul Harvey, Peter Kilpatrick, Ivor Spence, and
Blesson Varghese. FedFly: Toward migration in edge-based distributed
federated learning. IEEE Communications Magazine, 60(11):42-48,
2022.

Nicolas Viennot. FastFreeze.
Accessed on 2023-11-20.
Jieming Zhu, Shilin He, Pinjia He, Jinyang Liu, and Michael R Lyu.
Loghub: A large collection of system log datasets for ai-driven log
analytics. In Proceedings of the 34th International Symposium on
Software Reliability Engineering (ISSRE), pages 355-366. IEEE, 2023.

https://github.com/twosigma/fastfreeze.

	Introduction
	Motivation
	Problem Statement
	Contributions

	Background
	Live Containerized Services Migration
	FastFreeze

	FastFreeze for Robust Service Liquidity across Computing Systems
	Overview
	Adapting FastFreeze to Establish Robustness
	Service Management Decoupling
	Fault Tolerance Mechanism
	The FastMig Interface

	Adapting FastFreeze for multi-process Services

	Evaluation
	Experimental Setup
	Resource Usage and Performance Overhead (No Migration)
	Multi-process Application Restoration Time
	Measuring the Overhead of Live Migration
	Impact of the Fault Tolerance Mechanism
	Coverage of the Fault Tolerance Mechanism

	Related Works
	Conclusion
	References

