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Abstract

The Cluster expansion (CE) is a powerful method for representing the energetics of alloys from a fit to first principles
energies. However, many common fitting methods are computationally demanding and do not provide the guarantee
that the system’s ground states are preserved. This paper demonstrates the use of an efficient implementation of a
Bayesian algorithm for cluster expansion construction that ensures all the input structural energies are fitted perfectly
while reducing computational cost. The method incorporates an active learning scheme that searches for new optimal
structures to include in the fit. As performance tests, we calculate the phase diagram of the Fe-Ir system and study the
short range order in an equimolar MoNbTaVW system. The new method has been integrated into the Alloy Theoretic
Automated Toolkit (ATAT).
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1. Introduction

Cluster expansion (CE) is a powerful method enabling
thermodynamic modeling of alloys from first principles.
To achieve a good CE fit, researchers have consistently
employing new algorithms in clusters expansion. These
algorithms include compressive sensing [1, 2], group lasso
[3], ridge regression [4], quadratic programming [5] and
linear programming [6]. As the idea of applying Bayesian
methods in computational material science becomes in-
creasingly popular, multiple groups have proposed using
such methods [7–9] for CE construction. The main dif-
ference is that Bayesian methods explicitly formalize how
a priori information (known before the input data is ob-
served) is used in the fitting procedure. Here, we build
upon the method proposed in [9], which offers major ad-
vantages over other fitting methods. First, our method
ensures that the energies of all ground state structures in
the training set are fitted perfectly, as ground state struc-
tures are important in applications such as phase diagram
calculations. While methods based on quadratic or linear
programming [5, 6] share this property, we seek improve-
ments along other dimensions. For instance, a second ad-
vantage of our method is that it enjoys favorable conver-
gence properties as it allows users to incorporate physics-
based priors on the magnitude of the effective cluster in-
teraction (ECI). Third, the output ECI is guaranteed to
depend smoothly on the input data, which is important for
uncertainty quantification purposes. Fourth, the method
is computationally efficient, because enumerative searches
for the “best” model (or, more generally, non-smooth opti-
mization problems) are replaced by a smooth optimization
problem. In this paper, we propose a number of improve-

ments over this approach. First, we propose a procedure
based on the multivariate optimization of the hyperpa-
rameters of the prior to improve the predictive power of
the CE, as measured by the cross-validation (CV) score.
Second, we devise an efficient algorithm to calculate the
CV score in linear time. Third, we use an active machine
learning scheme that autonomously searches for new data
points to incorporate in the CE training set. Finally, all
mechanisms described above are integrated into the lat-
est version of ATAT [10–18], which is an atomistic sim-
ulation toolbox containing multiple functions performing
thermodynamic calculations including cluster expansion.
The new algorithm is built as an extension of the MIT
Multicomponent Ab initio Phase Stability code (mmaps)
through the plug-in functionality [19]. This, by construc-
tion, ensures that the input and output files are maintained
in their original format, thus allowing users to seamlessly
adopt the new method.

2. Method

2.1. Cluster expansion method in general

In the cluster expansion method, the energy E(σ) (per
atom) of an atomic configuration σ is expressed as

E(σ) =
∑
α

mαJα〈σα〉 (1)

In equation (1), the summation is over clusters α and, for
each of them, Jα is the ECIs while mα is cluster mul-
tiplicity, which indicates the number of clusters that are
equivalent by symmetry to α (divided by the number of
lattice sites). The expectation 〈σα〉 depends solely on the
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atomic configuration σ and encodes the correlations be-
tween atomic occupations of the sites on all clusters sym-
metrically equivalent to α. Its specific expression for arbi-
trary multi-component multisublattice alloys can be found
in [18]. Currently, mmaps can perform cluster expansion us-
ing that specific expression with a least square fit method,
which is also the method we use in the paper as a compar-
ison.

Equation (1) is a convergent expansion of the energy
E(σ) of any structure σ in the limit where all clusters are
included. However, in practice, the cluster expansion func-
tion is typically truncated to a finite number of terms. Our
new method avoids an excessive dependence on the chosen
truncation point by including many more terms than in a
traditional least square method and instead forcing ECIs
to converge to zero gradually as the size of the cluster
increases through a Bayesian prior. This form of regular-
ization is the key mechanism allowing a perfect fit to the
data without sacrificing predictive power.

2.2. Bayesian method

2.2.1. Basic formulas

Our method relies on Bayes’s theorem:

P [J |E] =
P [E|J ]P [J ]

P [E]
(2)

where the prior probability density of the ECIs is denoted
as P [J ], which embodies our prior knowledge regarding
the possible magnitude of the ECIs. Here, J is an nJ × 1
matrix containing the ECI Jα for all nJ clusters. Also,
E is the nE×1 energy vector containing nE energies ob-
tained from ab initio calculations. In this equation, P[E]
is a normalization constant and P [E|J ] is a delta func-
tion requiring the CE to predict energies exactly. Thus, to
find best ECI values, we maximize the posterior probabil-
ity P [J |E] given the constraint of P [E|J ]. Note that this
expression assumes that the number of ECIs nJ is larger
than the number of reference structures nE , thus enabling
the known structural energies to be fitted exactly. This
approach can be seen as Bayesian inference in the limit
where the likelihood function P [E|J ] is degenerate.
For simplicity, we consider a Gaussian prior

P [J ] =
∏
α

(2π)−1/2w−1
α exp(−w−2

α J2
α)

∝
∏
α

exp(−w−2
α J2

α)
(3)

where the widths wα are proportional to how large we
expect each ECI Jα to be. A more specific physics-based
choice of widths parameter wα will be motivated later.
Note that the ECI can take both positive and negative
values, and the fact that the prior centered at Jα = 0
helps ensure that the fit won’t include an unnecessarily
large number of ECIs. Using a normal distribution prior
will also simplify the structure selection algorithm, since

with this specific choice of prior, our method can be seen
as a form of Gaussian Process Regression [20]. We need to
maximize the posterior probability under the constraints
of the known energies, and the question becomes finding
Jα that maximize∏
α

exp(−w−2
α J2

α) (4)

subject to the constraint∑
ρiαmiαJα = Ei (5)

for i = 1, ..., nE and where ρiα are the correlations 〈σα〉
associated with cluster α for structure i, and miα are the
cluster multiplicities. Observing that maximizing the loga-
rithm of the probability is equivalent, dropping irrelevant
constants and introducing Lagrange multipliers, the La-
grangian for this constrained maximization problem is

L = −
∑
α

w−2
α J2

α − 2
∑
i

λi

(∑
α

ρiαmαJα − Ei

)
(6)

And the solution for Jα and λi is found by solving a system
of linear equations which can be cast in matrix form as:

W−1J +RTλ = 0 (7)

RJ = E (8)

where the matrix W contains w2
α on the diagonal, λ is

the nE × 1 vector of Lagrange’s multipliers and R is the
nE×nJ correlation matrix containing all

∏
σα. Note that

this system has as many unknowns as there are equations
and the solution can thus be expressed in closed form:

J = WRT
(
RWRT

)−1
E (9)

Defining J̃ = W−1/2J and R̃ = RW 1/2, this can be re-
written as

J̃ = R̃
T
(
R̃R̃

T
)−1

E (10)

In equations (9) and (10), the inversion exists only when
the rows in the correlation matrix R are linearly indepen-
dent, and in our code we have constructed a whole proce-
dure to ensure that this inversion is valid all the time.

2.2.2. ECI Optimization

Based on equation (9), we see that with each choice of
weighting matrix W , there is a different ECI vector that
maximize the probability P [J ], which brings the question
of how to choose the “best” W . To address this, we rely
on (i) a physics-based parametrization of W and (ii) sta-
tistical measures of out-of-sample predictive power.

We expect interaction strength to decay with a cluster’s
spatial extent and number of sites and, accordingly, we
propose the following prior widths:

wα = b|α|
∏

rij∈α

f(rij) (11)

f(rij) = min{ak(rij + c)−k, 1} (12)
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where |α| denotes the number of sites in cluster α and
rij ∈ α denotes all pairwise distances between sites of clus-
ter α. The adjustable hyperparameters are (i) b ∈ [0, 1],
controlling the decay as a cluster has more sites, (ii) a and
c, controlling the slowly-varying short-range behavior and
(iii) k, controlling the long-range decay. In addition, the
function f(rij) is set to have a maximum of 1 to ensure
that larger clusters will always have a smaller prior. For
the empty and point clusters we set wα to 1.

To optimize the hyperparameters, the leave one out
cross validation (LOOCV) score [18] is used:

(CV )2 = n−1
∑

(Ei − Ê(i))
2, (13)

where Ê(i) is the energy predicted using the fit that in-
cludes all the structures except structure i. While evalu-
ating the CV score apparently requires re-fitting n times, it
is possible to compute the CV score in order n operations.
Such an algorithm is well-known for standard least-squares
(see, e.g. [18]) but takes a rather different expression in
the context of the specific Bayesian scheme we propose:

(CV )2 = n−1
n∑

i=1

(
(BE)i
Bii

)2

, (14)

where B = (R̃R̃
T
)−1 only needs to be calculated once

and (BE)i denotes the i element of the vector BE. In
Appendix Appendix A.1, we derive this expression, which
demands a completely different method of proof than for
standard least-squares.

For any given values of the adjustable hyperparameters,
the CV score can be computed for a given set of structures.
These parameters can be optimized to improve the quality
of the CV score. In our implementation, the 3 adjustable
parameters are optimized using the Nelder-Mead [21] al-
gorithm, as the gradient is difficult to compute. Boundary
constraints (b ∈ [0, 1], c ≥ 0) are imposed by simply forcing
the vertices of the simplex to move back into the allowed
region if they ever violate the constraints.

Even though, in our approach, the number of ECIs could
theoretically be infinite, this number must be truncated to
a finite number for the purpose of numerical tractability.
Note, however, that this truncation excludes ECIs that
would already have had a very small value by construction
due to the prior, thus having little effect on the statistical
properties of the method. Here we provide heuristics to
automatically determine the truncation point (which can
change as more structures are added to the fit — the code
generate new clusters on-the-fly if needed). First, the min-
imum number of ECIs to include increases as the number
of atomic species types in the system increases. Second, all
clusters with the same number of sites and same diameter
will be jointly included or excluded in the optimization,
and larger cluster will be included only after all smaller
sub-clusters are included. Third, if an m-body cluster is
included, any other m-body cluster with smaller diameter
must be included as well. Finally, we found that keeping

Figure 1: This figure exemplifies how the energy constraint RJ = E
works on the multivariate normal distribution P [J ]. The energy con-
straint acts as a cross-section of the distribution and the remaining
distribution is still a normal distribution

the number of ECIs at least twice the number of struc-
tures is typically sufficient to prevent the correlations of
multiple structures from being linearly dependent.

2.2.3. Structure selection based on variance reduction

Our new structure selection algorithm is in the same
spirit as ATAT’s original approach, but significant mod-
ifications were needed in the implementation due to the
different statistical properties on the Bayesian approach.

As a starting point, the code includes the energies of all
elemental end members in the system, as these are used
in the calculation of formation energies. After obtaining
the energies of all pure element structures, the code starts
adding the smallest structures to the optimization until
the number of structures reaches the minimum needed to
fit a first-nearest-neighbor cluster expansion.

Then, the code performs active learning by selecting
new structures based on a variance reduction criterion.
The joint prior probability of the ECIs, P [J ], is a multi-
variate normal distribution. As the ECI are independent
under the prior, their covariance matrix Σ is just a di-
agonal matrix containing all wα

2 on its diagonal. When
the energy constraint is applied, the ECIs have to sat-
isfy RJ = E. The new distribution will remain a multi-
variate normal distribution, but only defined a particular
subspace of Rn. This is exemplified in Figure 1. There
thus exists a n × n projection matrix P, which projects
the unconstrained ECI matrix to the constrained matrix.
Therefore, we can express the posterior covariance matrix
Σpost = PΣPT , where

P = I −RT (RRT )−1R. (15)

Since we wish to minimize the variance of any struc-
ture picked at random in correlation space and since
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∫
‖v‖=1

v′Σpostvdv ∝ trΣpost, we use the trace of the co-
variance matrix as a criterion to optimize.

When considering the addition of a new structure to
the fit, the code computes the reduction ΔV in trΣpost

and estimate the computational cost C for obtaining the
energy of the structure (the code uses a simple order of
magnitude estimate C = N3, where N is the number of
atoms in the unit cell). The structure that maximizes the
ratio ΔV/C is chosen for addition. It can be shown that,
if the structures are generated in increasing order of size
N , it is possible to identify the best structure among the
infinite set of structures while only iterating over a finite
number of them. The maximum possible ΔV , denoted
ΔVmax, is bounded by the largest eigenvalue of Σpost. If
one has already found a structure of size N0 with certain
ΔV0, it follows that any structure of size

N >

(
ΔVmax

ΔV0

)1/3

N0 (16)

cannot lead to a better ΔV/C ratio.

In addition to this variance reduction criterion, the code
prioritizes the validation of new predicted ground states,
since ground state structures are key determinant of phase
diagram topology. When the code searches for possible
structures to add, it first constructs a convex hull of the
energies for all known structures at the current stage of
the algorithm. Then, it generates a large number of new
structures (up to a user-specified size), and test whether
these new structures break the convex hull, thus indicating
that they are candidate ground state structures. If new
ground states are predicted, one with the largest ΔV/C
ratio is added to the training set, otherwise, the search
over all structures, described above, is performed.

2.3. Code usage

The new Bayesian algorithm is integrated into mmaps

as a “plug-in” feature inside ATAT. The new algorithm is
written in the format documented in mrefine skel.c++

file in the ATAT source file folder, which exemplifies how
new fitting algorithms should be written and merged into
mmaps. The usage of the new algorithm is identical with
the original version of mmaps and more details on how to
use the code can be found in the original mmaps paper
[10]. To use the Bayesian cluster expansion method, the
user just need to add -fa=bayesian to select the Bayesian
method. The input files required are the lat.in file and
xxxx.wrap file, and the format requirement remains ex-
actly the same as with the original method. Further help
is available by typing mmaps -h. A considerable advantage
of this integration is that the new algorithm automatically
inherits other mmaps functionalities, such as the availability
of plug-ins for analytic long-range interaction that incor-
porate constituent strain [22] or electrostatic effects [23].

Figure 2: Normalized ECI value vs prior parameter for Mo-Ta bcc
system

3. Test cases

To test the reliability of our method, we consider 8 al-
loy systems and compare our results with those obtained
with least squares using cross-validation model selection.
All ab initio calculations are performed using the Vienna
Ab initio Simulation Package(VASP) [24–27], implement-
ing the projector augmented wave (PAW) method [28, 29]
with PBE functional [30] with an energy cutoff of 300eV.
Suitable k-point meshes are automatically generated [18]
to guarantee a density of at least 1000 k-points per recip-
rocal atoms. For our tests, we deliberately favor using real
input energies over artificial energy generated from known
ECIs, because, in the latter case, it would be too easy to
select favorable generating models that closely agree with
the prior by construction.

Nevertheless, it is instructive to show that the prior is
indeed effective as a regularization scheme and that our
specific form of prior does not clash with actual energy
data. This can be done by plotting the absolute value of
the fitted ECIs overlaid with the prior’s width value wα.
Figure 2 shows the result of this exercise for the Mo-Ta
bcc system and indicates that our method has no problem
finding ECI values that are consistent with our form of
postulated prior, resulting in a well-behaved decay of the
fitted interactions.

3.1. Comparing Bayesian method with least squares

In this section, we test the Bayesian ECI fitting algo-
rithm and compare it with mmaps’ default least-squares
(LS) algorithm with default parameters (see Table 1). To
facilitate the comparison, the pool of possible input struc-
tural energies is the same for both methods. These input
structures are generated with ATAT’s default algorithm
[18]. For the Bayesian method, we gradually add these
structures in increasing order of cell size until we reach the
same LOOCV score as the default least-squares method.
(The Bayesian structure selection algorithm is not used in
this section.)
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The results of this exercise, reported in Table 1 for a
number of alloy systems, show that the Bayesian method
can achieve the same predictive power with far fewer in-
put structures. As the target accuracy for binary and
ternary systems are different, it’s not very meaningful to
directly compare the number of structures used for differ-
ent systems. To further validate these findings, we also
compute the least-squares prediction error for the struc-
tures included in the least-squares fit but not included
in the Bayesian fit. These results support the fact that
LOOCV provides an estimator of the out-of-sample predic-
tive power and further confirm that the Bayesian consid-
erably lowers the computational cost of obtaining a given
accuracy. In addition, we have also compared the ECIs we
have obtained using LS method and Bayesian method for
the binary Mo-Ta system in Figure 3. The results show
that the scale of the ECI values we have obtained using
Bayesian method is close to the ECI values obtained from
LS method. The main difference is that the smallest clus-
ter of each size is replaced by a large number of clusters in
the Bayesian method which enables the perfect fit.

3.2. Active learning test

To demonstrate the effectiveness of the active learning
structure selection algorithm, we construct a cluster ex-
pansion from scratch for the Fe-Ir system. In this section,
spin-polarization is turned on to ensure the accuracy of
the calculation. Although the Fe-Ir system contains mul-
tiple lattices, we focus on the metastable phase diagram
arising from fcc superstructures. This system is interest-
ing because high-throughput ab initio calculations [31, 32]
predict an fcc superstructure ground state at composition
FeIr3 that has not yet been observed experimentally.

At each step of the iteration towards convergence, the
code performs a Bayesian fit and automatically determines
the most informative structure to add to the fit for the
next iteration. We have plotted the energy composition
graph in Figure 3.2 to illustrate how our structure selection
algorithm operates.

Our code will first add a few smallest structures, and
then start ground state search based on variation reduc-
tion. If there is no possible new ground states, the code
will simply look for the structure that reduce the variance
the most. As shown in figure 3.2, when we add the small-
est structure in 4(b), this structure is a new ground state
so we construct the new convex hull with it and continue
the loop. Finally, a CV score of 0.010eV is reached with
only 40 structures and the associated cluster expansion
comprises a total number of 165 clusters, including up to
4-body clusters.

Then, using the phb (PHase Boundary code) and memc2
(Multicomponent Eazy Monte Carlo Code) in ATAT [11,
17], we perform Monte Carlo (MC) simulations over a wide
composition and temperature range and generate the Ir-
rich portion of the metastable phase diagram (see Figure
4).

First, in the Ir-rich half of the phase diagram, we confirm
the existence of two possible ordered ground states at 0K.
The ground state at 50% is masked by an hcp solid solu-
tion [33] that is stable up to ∼900K. This leaves the FeIr3
compound as a candidate new phase, which we find disor-
ders at relatively low temperature (∼400K), thus explain-
ing why it may not have been experimentally observed yet,
given the slow kinetics as such low temperature.

This example demonstrates how, thanks to our new clus-
ter expansion construction algorithm, a relatively small
number of ab initio calculations can be used to effec-
tively assess the relevance of high-throughput predictions
of novel phases.

3.3. Short range order determination
The high-entropy alloys community is becoming increas-

ingly aware that simple entropy estimates based on com-
position alone can be considerably misleading, given the
likely presence of short range order (SRO) [34, 35]. The
ECI obtained from our method can provide useful input
to quantify SRO in these alloys. Here we have performed
MC simulations on the equimolar BCC MoNbTaVW sys-
tem using memc2 [16] with the ECI obtained from Section
3.1 to obtain the pair correlations functions. The temper-
ature range we use is from 600K to 2500K as this system
undergoes ordering below 600K. The correlations 〈σα〉 en-
tering the cluster expansion can be readily converted into
occupation probability of different configurations on a clus-
ter, by multiplication by the so-called V-matrix [36]. The
V-matrix was generated using the cvmclus (Cluster Varia-
tion Method CLUSter generator code) in ATAT [37]. The
resulting occupation probabilities can then be directly con-
verged into the Warren-Cowley short range order param-
eter αij for all the nearest neighboring pairs i, j:

α
(r)
ij = 1− P

(r)
ij

2cicj
(17)

where Pij is the probability of pair containing atoms i and
j, while ci is the concentration of element i. The resulting
SRO parameters for all 15 nearest neighbor pairs are shown
below in Figures 5 and 6.

As shown in Figure 5 and 6, the resulting graph agrees
well with earlier high-accuracy cluster expansion results
[38] obtained with ATAT’s least-squares algorithm. In
particular, below 1000K the Mo-Ta pair has the most neg-
ative SRO value, followed by the V-W pair and Mo-Nb
pair, which all have large negative values. Also, the Nb-
V and Ta-V pair have the largest positive values close to
each other above 600K, which all agrees with previous re-
sults. While this earlier study achieved a LOOCV error of
about 8 meV using over 400 structures, the present study
achieves a comparable accuracy (11 meV) using only 76
structures, which is a huge improvement in efficiency. Con-
sidering the fact that the structure selection algorithm in
both methods tend to favor smaller systems, the computa-
tional cost of the first principles calculations can be greatly
reduced.
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Table 1: CV score(in eV) comparison between least-squares (LS) and Bayesian fitting

Alloy number of struc-
tures (LS)

number of struc-
tures (Bayesian)

LOOCV score
(LS)

LOOCV score
(Bayesian)

out-of-sample er-
ror (Bayesian)

IrRu fcc 163 36 0.0030 0.0043 0.0023
MoNb bcc 93 34 0.0050 0.0045 0.0031
MoNbTa bcc 86 39 0.0093 0.0091 0.012
MoNbV bcc 451 36 0.0088 0.0093 0.0066
MoNbW bcc 148 33 0.0057 0.0070 0.0098
MoTa bcc 141 28 0.0096 0.0085 0.0047
MoTaW bcc 251 36 0.0082 0.012 0.0078
MoVWNbTa bcc 1154 121 0.011 0.0104 0.0110

Figure 3: Comparison of ECI values obtained using LS method and Bayesian method for Mo-Ta system
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
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Figure 4: Ir-rich portion of Fe-Ir phase diagram

Figure 5: SRO parameter for the nearest-neighbor pairs of different
elements in the MoNbTaVW system

Figure 6: SRO parameter for the nearest-neighbor pairs of the same
element in the MoNbTaVW system
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4. Conclusion

In this paper we have described an improved implemen-
tation of a new Bayesian algorithm for cluster expansion
construction. The new method exhibits major advantages
over existing methods. First, the new method ensures, by
construction, that the energies of predicted ground states
are exactly reproduced, which considerably streamlines the
thermodynamic model construction process. This is a fea-
ture that is absent from most cluster expansion construc-
tion algorithms, including the most advanced machine-
learning-based [1] and Bayesian [7] schemes. As ground
state structures are key determinants of a phase diagram’s
topology, this feature consistently improves the accuracy
of calculated phase diagram. The new method also inher-
its the algorithms built into ATAT that prioritize ground
states search, discovery and ab initio confirmation.

Second, we find that the new Bayesian method tends
to require fewer structures compared to standard least-
squares. In our test cases, we observe that we consistently
achieve a LOOCV score comparable to least-squares while
using only between 20% and 40% of the number of training
structures. We also confirm by direct monitoring of the fit-
ting ECIs, that they exhibit a physically highly plausible
decay with distance and cluster size. These findings con-
firm that our proposed Bayesian prior acts as a very effec-
tive regularizing scheme that imposes physical plausibility
requirements on the interactions. This Bayesian approach
also ensures that the output model depends smoothly on
the input data, since there is no discontinuous model selec-
tion step, which is important for uncertainty quantification
purposes. The smoothness of the optimization problem
also leads to improvement in the speed of the algorithm.

Finally, the implementation described herein fully inte-
grates with the existing functionalities of ATAT [14, 15],
thus flattening the user’s learning curve. Therefore, we
believe our new method provides a powerful new tool for
atomistic thermodynamic modeling.
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Appendix A. Appendix

Appendix A.1. Efficient calculation of the CV score

Throughout this section, we let subscript ı̄ denote quan-
tities obtained after removing observation i.

The energy of structure i predicted from all other struc-
tures can be expressed as:

Ê ı̄ = r̃Ti J̃ ı̄ = r̃Ti R̃
T

ı̄

(
R̃ı̄R̃

T

ı̄

)−1

Eı̄ (A.1)

where r̃Ti is the ith row of R̃. To find an efficient expres-
sion for Ê ı̄, we need to relate the inverse of a subblock,(
R̃ı̄R̃

T

ı̄

)−1

, to the inverse of the full matrix
(
R̃R̃

T
)−1

.

To this effect, we re-order and partition the matrices

A = R̃R̃
T
and B =

(
R̃R̃

T
)−1

as

A =

[
Aı̄ı̄ aı̄i
aTı̄i aii

]
=

[
R̃ı̄R̃

T

ı̄ R̃ı̄r̃i
r̃Ti R

T
ı̄ r̃Ti r̃i

]

B =

[
Bı̄ı̄ bı̄i
bTı̄i bii

]
.

Using the Partitioned Inverse formula [39], we have:

Aı̄ı̄ =
(
Bı̄ı̄ − bı̄ib

−1
ii bTı̄i

)−1

aı̄i = − (Bı̄ı̄ − bı̄ib
−1
ii bTı̄i

)−1
bı̄ib

−1
ii

Substituting these expressions into Equation (A.1) using

the facts that
(
R̃ı̄R̃

T

ı̄

)−1

= (Aı̄ı̄)
−1

and r̃Ti R̃
T

ı̄ = aTı̄i, we

have:

Ê ı̄ = −b−1
ii bTı̄i

(
Bı̄ı̄ − bı̄ib

−1
ii bTı̄i

)−1 (
Bı̄ı̄ − bı̄ib

−1
ii bTı̄i

)
Eı̄

= −b−1
ii bTı̄iEı̄

= −b−1
ii ((BE)i − biiEi)

= −b−1
ii (BE)i + Ei.

Rearranging and noting that Bii = bii, we have

Ei − Ê ı̄ =
(BE)i
Bii

. (A.2)

Appendix A.2. Command used for phase diagram gener-
ation

To generate the phase diagram, we have calculated the
phase boundary of multiple phases using different starting
ground states. One example input command is
phb -keV -gs1=0 -gs2=3 -dT=5 -er=20

-ltep=1.0e-3-dx=1.0e-3.
Depending on the phases we are interested in the ground
states -gs should be changed. Detailed documentation on
the phb code can be found in reference [10].
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Appendix A.3. Command used for SRO detection

Firstly, Monte Carlo simulation is performed using the
ECI obtained from Bayesian method with command
memc2 -er=15 -n=100 -eq=500 -gs=-1 -keV.
Secondly, use command cvmclus -d to generate the V-
matrix. Detailed input file requirement can be found using
command cvmclus -h.
Finally, perform a matrix multiplication of the V-matrix
and the correlation to obtain the occupation of the clus-
ters. Then do a dot product of the occupation of the clus-
ters with the multiplicity of the clusters, which can be
found in file clusmult.out generated by cvmclus. These
operations can be done using a script.
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