
Computer Networks 241 (2024) 110194

Available online 19 January 2024
1389-1286/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

SDR-LoRa, an open-source, full-fledged implementation of LoRa on
Software-Defined-Radios: Design and potential exploitationI

Fabio Busacca b,<, Stefano Mangione a, Sergio Palazzo b, Francesco Restuccia c, Ilenia Tinnirello a,b
a Department of Engineering, University of Palermo, Italy
b Department of Electrical, Electronics and Computer Engineering (DIEEI), University of Catania, Italy
c Institute for the Wireless Internet of Things, Northeastern University, Boston, USA

A R T I C L E I N F O

Keywords:
Software Defined Radio
LoRa
Long range
Flexibility
IoT
LPWAN
Localization
MAC
PHY
Software
Open source
GitHub
Interference cancellation
Protocols
Physical layer

A B S T R A C T

In this paper, we present SDR-LoRa, an open-source, full-fledged Software Defined Radio (SDR) imple-
mentation of a LoRa transceiver. First, we conduct a thorough analysis of the LoRa physical layer (PHY)
functionalities, encompassing processes such as packet modulation, demodulation, and preamble detection.
Then, we leverage on this analysis to create a pioneering SDR-based LoRa PHY implementation. Accordingly,
we thoroughly describe all the implementation details. Moreover, we illustrate how SDR-LoRa can help
boost research on the LoRa protocol by presenting three exemplary key applications that can be built on
top of our implementation, namely fine-grained localization, interference cancellation, and enhanced link
reliability. To validate SDR-LoRa and its applications, we test it on two different platforms: (i) a physical setup
involving USRP radios and off-the-shelf commercial devices, and (ii) the Colosseum wireless channel emulator.
Our experimental findings reveal that (i) SDR-LoRa performs comparably to conventional commercial LoRa
systems, and (ii) all the aforementioned applications can be successfully implemented on top of SDR-LoRa
with remarkable results. The complete details of the SDR-LoRa implementation code have been publicly
shared online, together with a plug-and-play Colosseum container.

1. Introduction

It is expected that the number of Internet of Things (IoT) devices
will surpass 24.1B by 2030, generating up to $1.5T in annual rev-
enue. As the number of IoT devices grows rapidly, both industry and
academia are devoting considerable efforts in the design, develop-
ment, and performance evaluation of IoT-based technologies, with a
particular focus on low-power wide-area network (LPWAN) technolo-
gies [1–3]. The key differentiator of LPWAN communication protocols
is that they trade off high transmission data rates with low-power
and long-range communications, thus becoming more suitable than
other wireless protocols (e.g., Wi-Fi/LTE) for energy-constrained IoT
scenarios, e.g. city-wide pollution and air quality monitoring, among
other applications.

LoRa stands out as one of the most promising LPWAN protocols,
and has inspired several works in the existing literature [4,5]. The

I The work of Fabio Busacca, Stefano Mangione, Sergio Palazzo and Ilenia Tinnirello was partially supported by the European Union under the Italian National
Recovery and Resilience Plan (NRRP) of NextGenerationEU, partnership on ‘‘Telecommunications of the Future’’ (PE0000001 - program ‘‘RESTART’’). The work
of Francesco Restuccia was partially supported by the National Science Foundation (NSF) grant CNS-2134973, CNS-2120447 and ECCS-2229472, by the Air Force
Office of Scientific Research under contract number FA9550-23-1-0261, and by the Office of Naval Research under award number N00014-23-1-2221.
< Corresponding author.
E-mail address: fabio.busacca@unict.it (F. Busacca).

key challenge is that LoRa is a proprietary protocol, and thus many
implementation details are hidden and/or unclear to researchers [6,7].
Therefore, researchers could benefit from an open-source, full-fledged
reverse-engineering of the protocol, as it would allow to explore its full
potential, and even improve its efficiency and performance.

Many existing SDR-tailored LoRa implementations [8–13] do not
provide a full-fledged transceiver code, because of either lack of recon-
figuration capabilities [9], lack of critical functionalities such as fre-
quency shift tracking [10], or lack of transmitter implementation [11].

To this purpose, we here conduct an in-depth examination of the
underlying mechanisms of the LoRa PHY and present a completely
reconfigurable SDR implementation of the LoRa PHY for both trans-
mission and reception aspects. As previously mentioned, SDRs have
the capability to entirely supplant physical hardware transceivers with
software-driven functionalities, so opening up pathways for various

https://doi.org/10.1016/j.comnet.2024.110194
Received 15 August 2023; Received in revised form 10 January 2024; Accepted 15 January 2024

https://www.elsevier.com/locate/comnet
https://www.elsevier.com/locate/comnet
mailto:fabio.busacca@unict.it
https://doi.org/10.1016/j.comnet.2024.110194
https://doi.org/10.1016/j.comnet.2024.110194
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2024.110194&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Computer Networks 241 (2024) 110194

2

F. Busacca et al.

innovative research contributions, ranging from the study of the limita-
tions and potentialities of the protocol, to the extension, modification,
and improvement of the LoRa physical layer. Indeed, an SDR im-
plementation allows access to waveform-level information (i.e., I/Q
samples) that cannot be obtained through commercial-level gateways,
thus enabling advanced research on topics such as radio fingerprinting,
interference cancellation, and adaptive parameter optimization.

Actually, a few open-source implementations of LoRa on SDR have
been recently developed and presented in the literature. As outlined in
Section 2 about Related Works, our implementation differs from other
existing ones in several featuring aspects.

We hereby summarize the main contributions of our work:
÷ We have entirely reverse-engineered the LoRa PHY layer function-

alities, including the procedures of packet modulation, demodulation,
and preamble detection;

÷ Starting from our previous work in [14], we have further improved
the first fully functional software implementation of the LoRa PHY layer
for SDR, and made it publicly available on GitHub1;

÷ We have leveraged on our implementation to access low-level
information from the LoRa synchronization block and exploited that
information for fine-grained node localization;

÷ We have extended the receiver architecture to support multi-user
detection based on successive interference cancellation;

÷ We have added an extra reliability layer by integrating LoRa with
ARQ error-control protocols and rate-less packet-level coding;

÷ We have evaluated our implementation in two different settings:
(i) a real testbed with off-the-shelf USRP radios and commercial de-
vices, and (ii) the Colosseum wireless channel emulator. In the first case
we successfully tested the interoperability of our implementation with
LoRa commercial devices. The second setting, instead, demonstrated
the effectiveness of our implementation and of its applications.

The rest of the paper is organized as follows. Section 2 reviews
the existing work on LoRa SDR implementation. Section 3 provides
some background notions on the LoRa protocol, useful to understand
underlying mechanisms and advantages of the protocol. Section 4
thoroughly describes the design and implementation of SDR-LoRa.
Section 5 describes three exemplary applications of SDR-LoRa, namely
localization, interference cancellation, and improvement of the network
reliability. Section 6 presents several experimental results on the basic
SDR-LoRa functionalities, as well on the three addressed applications
of SDR-LoRa. Finally, Section 7 summarizes the insights obtained from
our experiments, draws some conclusions on our work, and offers some
useful hints about future developments stemming from SDR-LoRa.

2. Related work

In this section, we summarize existing work on LoRa SDR imple-
mentations. From a theoretical point of view, Bernier et al. [8] offered
a complete study of the preamble and start-of-frame synchronization
procedure of LoRa, and also focused on the implementation of low-
complexity frame synchronization algorithms. The authors provided
some performance insights of such algorithms in terms of phase es-
timation error and synchronization failure probability. However, the
implementation of the other components of the LoRa transceiver chain
was neglected. Knight and Seeber attempt to implement a full LoRa
PHY stack for SDRs in [9]. However, this implementation lacks some
functionalities, e.g. the possibility to tune the SF – the only allowed
value is 8 – and the Coding Rate (CR), and does not properly implement
the whitening functionalities.

Marquet et al. [10] provided a thorough description of the LoRa
modulation and demodulation architecture. The implementation is ex-
ploited to offer some performance insight on the LoRa technology,
such as an evaluation of the Bit Error Rate (BER) as a function of

1 https://github.com/fabio-busacca/sdr-lora

SF and CR. However, the implementation in [10] does not include
time and frequency shift tracking for chirp spread spectrum (CSS)
modulation, and is therefore unable to decode LoRa signals. Robyns
et al. [11] provided an implementation called gr-lora, where the
authors have reverse-engineered the functionalities of a LoRa receiver.
This implementation is therefore successful at decoding LoRa signals
generated by commercial devices. However, the transmitter has not
been included in the implementation.

Tapparel et al. [12] provide an implementation that includes a Car-
rier Frequency Offset (CFO) estimation functionality, and is therefore
able to communicate with LoRa commercial devices. Moreover, the
authors validate their implementation through experiments on USRP
SDR hardware. However, such experiments are run on dedicated cables
connecting the transmitter to the receiver. Hence, the provided BER
values do not include any possible performance degradation resulting
from external interference. Finally, the performance analysis results
from a fixed configuration, with SF = 7, a bandwidth of 250 kHz, and
a payload of 64 bytes.

Finally, an alternative full-fledged and open-source implementation
of LoRa on SDR is presented in [13]. However, their work is based
on the Matlab language, and does not feature real-time reception and
transmission of LoRa signals.

All in all, our implementation solves all the shortcomings of the
above mentioned works, as it offers a full-fledged implementation of
the LoRa stack. Moreover, SDR-LoRa is written in the more versa-
tile Python language with the support of the C-based numpy library,
and is therefore extremely efficient. As specifically compared to [13],
SDR-LoRa also includes a native interface with SDR radio, to support
plug-and-play experiments with real life hardware.

3. Background notions

In this section, we provide some important background notions on
the LoRa protocol, useful to understand the underlying mechanisms and
the main features of the protocol, as well as the applications discussed
in Section 5; for instance, the mathematical background of LoRa is
useful to understand the issues caused by a timing drift. The latter is
of crucial importance to achieve the goal of interference cancellation
addressed in Section 5.2.

3.1. LoRa in a nutshell

LoRa (short for Long Range) is a LPWAN proprietary protocol owned
by Semtech [15]. LoRa is based on the CSS modulation technology,
and supports reliable low data-rate transmissions over long distances,
ranging from 1–2 to 10 (and possibly more) kilometers. The actual
transmission range and data-rate strongly depend on the SF setting. The
SF is an important spectral parameter , proportional to the energy spent
for each transmitted bit.

Higher SFs yield a longer transmission range, at the expense of a
lower bit-rate, and vice-versa. LoRa specifies the PHY only. As such,
it lacks link-layer and networking functionalities, which are instead
defined by the LoRaWAN protocol from Semtech. Typical LoRa net-
works are arranged in a star-of-stars topology, where few LoRa gateways
collect data transmitted by the LoRa nodes. The received data can
eventually be forwarded to the Internet thanks to the networking
functionalities implemented by LoRaWAN.

LoRa Regional Parameters. LoRa operates in the sub-GHz bands
of the Industrial, Scientific, and Medical (ISM) spectrum, according
to specific regional frequency plans: the EU433 and the EU863-870
bands for Europe, the US902-928 band for US, and the AS923 band
for Asia. Another region-specific parameter is the supported bandwidth:
European countries usually support a single bandwidth of 125 kHz,
while US allow the usage of both 125 and 500 kHz. The maximum
supported data-rate is influenced accordingly, as a bigger bandwidth
guarantees higher transmission rates.

https://github.com/fabio-busacca/sdr-lora

Computer Networks 241 (2024) 110194

3

F. Busacca et al.

Fig. 1. Instantaneous frequency of three upchirp signals for SF = 7. The basic upchirp
can be shifted to represent up to 2

SF symbols, each encoding SF bits. The blue line (a)
is the basic upchirp and encodes symbol M = 0; the orange line (b) encodes the symbol
M = 64, while the green line (c) encodes the symbol M = 96. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

LoRa Transmission Parameters. LoRa supports six different SFs
ranging from 7 to 12. However, a SF equal to six is also allowed
in some implementations. LoRa also supports up to three different
bandwidth configurations of 125, 250, and 500 kHz, respectively. Both
parameters can be set to reach the desired trade-off between data rate
and reliability. Indeed, higher SFs and smaller bandwidths increase the
sensitivity and robustness of the receiver, while lower SFs and bigger
bandwidths maximize the transmission data-rate.

Finally, the robustness of LoRa communications is further boosted
by the usage of Forward Error Correction (FEC) techniques. LoRa
supports four different CR values, according to the formula 4_(4 +

n), n À {1, 2, 3, 4}, where n is the number of redundant information bits.
A bigger n increases the data protection, but negatively impacts the
effective transmission rate.

3.2. Chirp spread spectrum (CSS) modulation

LoRa implements a CSS modulation [16], which has been demon-
strated to be very robust against in-band or out-band interference,
which can be very critical when operating in ISM bands. In particular,
LoRa employs an M-ary modulation scheme based on chirps [17,18].
Basic chirps are constant envelope signals whose frequency is linearly
modulated sweeping from fmin to fmax (up-chirp), or from fmax to
fmin (down-chirp). Chirps are cyclically-shifted to produce different
symbols, and this cyclical shift carries the information. A symbol,
whose length is divided in K equal time intervals called chips, can
be cyclically shifted from 0 to K * 1 positions. The reference position
is given by the un-shifted (base) symbol at the beginning of the LoRa
frame, which is also used for building the frame preamble.

For a given bandwidth B = fmax * fmin, the symbol time depends
on the SF parameter, which defines two modulation features: (i) the
time duration of each chirp (or, equivalently, the slope of the linear
frequency sweep), which is given by 2

SF chip intervals; and (ii) the
number of raw bits encoded by that symbol, equal to SF. The Data Rate
(DR) thus depends on the bandwidth B in Hz, the SF and the Coding
Rate (CR) as:

DR = (SF * 2 � (SF > 10)) � B
2SF

� CR (1)

where the boolean condition evaluates to 1 if true and 0 if false,
1_B is the chip interval, the factor B_2SF provides the symbol rate
and the coding rate CR = 4_(4 + RDD) depends on the number of
redundancy bits (RDD, from 1 to 4) used for Hamming code forward
error correction. The bandwidth can be configured as 125 kHz, 250 kHz
and 500 kHz (typically 125 kHz is used in the 868MHz ISM band).

Table 1
SNR thresholds for several SF values.
SF 7 8 9 10 11 12

SNR [dB] *7.5 *10 *12.5 *15 *17.5 *20

Fig. 1 shows the modulating signal used for (i.e. the instantaneous
frequency of) a basic upchirp and two examples of circular shifts
obtained for SF = 7: the symbol time is T = 128Tc , while the
two exemplary shifts encode the symbols 64 and 96, respectively. The
instantaneous frequency of an unmodulated (base) LoRa chirp can be
written as:

f (0)

i (t) = *�B
2
+ �B

T
t, (2)

where � = +1 gives an up chirp and � = *1 a down chirp, T = 2
SF Tc is

the symbol time and Tc = 1_B the chip duration, 0 f t < T . There are
K = 2

SF possible symbols, each representing a cyclic shifted version
of the base upchirp. The instantaneous frequency of symbol k is thus
given by:

f (k)
i (t) =

T
+� B

2
+ � B

T (t * kTc) 0 f t < kTc
*� B

2
+ � B

T (t * kTc) kTc f t < T .
(3)

The LoRa preamble starts with several repetitions of a base upchirp:

fpr(t) = *
B
2
+ B

⇠ t
T

*

 t
T

!⇡
. (4)

After several consecutive base upchirps, the preamble features two
modulated symbols, called sync words, for network identification, and
2.25 downchirps which are useful for accurate synchronization. Over-
all, the preamble of a LoRa frame is constituted by a sequence of
at least eight upchirps (including the two modulation sync words),
followed by two and a quarter downchirps. Following the preamble,
the payload header, the payload and an optional frame check sequence
are transmitted by using the cyclically-shifted M-ary modulation.

3.3. Receiver sensitivity

Another fundamental parameter in LoRa modulation is the receiver
sensitivity, i.e. the minimum detectable signal strength. According
to [19], the sensitivity for a LoRa receiver is:

S = *174 + 10 log
10
BW +NF + SNR, [dBm] (5)

where the first term is the thermal noise power in 1 Hz of bandwidth at
a room temperature of 300K; BW is the transmission bandwidth; NF
is the receiver noise figure, and is typically equal to 6 dB for popular
transceivers models, such as Semtech SX1272 or Semtech SX1276 [16].
The last term is the SNR value required at the receiver input for a
successful demodulation, and depends, once again, on the receiver
architecture, and on the SF, too. Typical values for SNR are reported in
Table 1 [20].

According to (5), the sensitivity is influenced by both the bandwidth
and the SF settings. Hence, high SF values and small bandwidths
achieve a high receiver sensitivity, at the expense of low data-rates.
Conversely, faster LoRa communications are associated to low SFs, and
larger bandwidths, but usually suffer of a low sensitivity. In other
words, SF and BW can be properly tuned to achieve the desired
trade-off between reliability and data rate.

4. SDR LoRa transceiver

In this section, we outline the design and implementation of our
LoRa transceiver tailored for SDR platforms, along with preliminary
simulation results showcasing the transceiver’s performance. All sim-
ulations were conducted using MathWorks Matlab.

Computer Networks 241 (2024) 110194

4

F. Busacca et al.

Fig. 2. PER vs SIR in case of sinusoidal interference.

The receiver architecture consists of three key modules: (i) the
symbol detection module, responsible for identifying symbols encoded
in the received signal once a new packet is correctly identified and
synchronized; (ii) the synchronization module, which detects the start
of a new packet and estimates the carrier and timing references utilized
by the transmitter; and (iii) an optional drift tracking module to com-
pensate for clock drifts between the transmitter and receiver, ensuring
accurate demodulation of long frames.

For the transmitter architecture, besides constructing LoRa symbols,
we developed a processing pipeline which includes operations such
as parity check coding, whitening, shuffling, interleaving, and Gray
coding.

4.1. Symbol detection

LoRa demodulation can be implemented with very simple opera-
tions by mapping in each symbol the time interval at which the chirp
jumps from fmax to fmin in a easily detectable frequency. In particular,
our implementation works as follows.

First, the received symbol is multiplied with the synchronized base
down-chirp (matching the same SF as the received signal). This results
in a signal containing only two frequencies, namely *k_T and *B*k_T ,
where T is the symbol time and k represents the transmitted symbol.
Second, by down-sampling the signal at the rate B, both frequencies
can be aliased to the same frequency *k_T . Finally, an FFT is applied
to transform the signal into the frequency domain. The symbol index k
can be estimated by analyzing the position of the peak in the output of
the FFT.

An interesting feature of LoRa is the quasi-orthogonality of signals
transmitted at different SFs, which contributes to its robustness against
external interference sources. When the signal is multiplied with the
synchronized down-chirp, an interfering signal is transformed into
noise across the entire frequency band of the signal. This prevents the
correct identification of the symbol peak only for very low SIR values.
However, if the interfering signal is another LoRa signal with the same
SF, the receiver will observe multiple peaks in the FFT output: one
maximum peak corresponding to the reference symbol, and two smaller
peaks corresponding to two partially overlapping interference symbols.
In such a scenario, if the reference signal is a few dB stronger than the
interfering one, the symbol can be successfully detected.

Fig. 2 illustrates the receiver’s performance in terms of Packet Error
Rate (PER) in the presence of interference with an in-band sinusoidal
(or narrow-band) signal. The reference signal consists of the same
packet with a payload of 20 bytes, modulated at different SFs as
indicated in the labels. The figure shows that there is approximately
a 3 dB increase in co-channel rejection for a unit increase in the
SF used for modulation. On the other hand, Fig. 3 quantifies the
receiver’s robustness against interference sources generated by other
LoRa signals. It depicts the PER versus the SIR values for a reference

Fig. 3. PER vs SNR values in case of interference with other LoRa modulated signals.

LoRa signal modulated at SF 7, with B = 125 kHz and a payload of
20 bytes, in the presence of interference from LoRa signals modulated
under different SFs (as indicated in the labels). As expected, the effect
of interference is critical for an interfering LoRa signal modulated at
SF 7, i.e., the same SF of the reference one. In fact, in this specific case,
even a SIR value of 1 dB (often called capture threshold) can result in a
PER equal to 0.1. For the other signals modulated at different SFs the
effects of interference are mitigated by the quasi-orthogonality of LoRa
SFs: more specifically, the PER results higher than 0.1 only when the
interfering signal is about 10 dB stronger than the reference one. This
SF-dependent threshold is often called interference rejection threshold.
Obviously, the receiver has to correctly identify the SF used by the
transmitter and the boundary of each symbol, as detailed in the next
section.

4.2. Carrier and time synchronization

In order to recognize the symbol boundary, the receiver has to first
identify the exact beginning of a preamble in time and in frequency, as
well as the symbol duration corresponding to the correct SF.

Our synchronization mechanism exploits the preamble structure,
which includes both upchirp and downchirp transmissions. The ap-
proach involves mixing (i.e., multiplying) the received signal frx(t) with
the complex conjugate of a reference preamble upchirp fpr(t). Since the
downchirp has the same absolute slope as the unsynchronized upchirp
of the preamble, the frequency of the mixed signal fmix,1(t) = frx(t) *
fpr(t) changes over time as ‚(t* ⌧)_T „* ‚t_T „, creating a square wave
with values 0 and ±1 and a duty cycle of ⌧_T . As a result, the output of
the mixed signal features tones at only two frequencies ⌫1 = CFO*B⌧_T
(when t g ⌧) and ⌫1 ± B (when t < ⌧). The same mixing mechanism
is applied to the last part of the preamble (composed of downchirps)
by multiplying the signal with base upchirps, leading to a signal with
similar structure but frequencies ⌫2 = CFO+B⌧_T and ⌫2 ±B. If ⌫1 and
⌫2 are available, the estimated carrier offset CFOest can be computed as
the average between ⌫1 and ⌫2, while the estimated timing offsets ⌧est
can be calculated as T _B � (⌫2 * ⌫1)_2.

To identify a new preamble, the receiver follows this procedure:

(1) Samples the received signal r(t) with a sampling frequency fs =
B �OSF, where OSF represents the Over Sampling Factor, and it
is a multiple of the nominal bandwidth of the signal, obtaining
rn = r(n_fs).

(2) Multiplies (mixes) a window of N = K �OSF samples with a base
downchirp, resulting in:

zn = rn exp(|⇡(n_OSF * n2_(N � OSF))) (6)

(3) Computes the absolute value of the FFT of signal zn:

�k =

ÛÛÛÛÛÛ

N*1…
n=0

zn exp(*|2⇡nk_N)

ÛÛÛÛÛÛ
(7)

Computer Networks 241 (2024) 110194

5

F. Busacca et al.

Fig. 4. Probability of failing to detect a preamble.

(4) Estimates Çk as the position of the maximum in �k.

If the estimated position Çk is continuously detected for a certain number
of times (e.g., three consecutive windows), the receiver decides that an
incoming preamble is being received.

This procedure is executed continuously for each possible SF, even
when the demodulation of a frame is already in progress. Remark-
ably, this algorithm can detect a preamble even several dBs below
the sensitivity threshold. The probability of failing to detect a pream-
ble is depicted in Fig. 4, where the power margin is computed as
the difference between the received signal power and the receiver
sensitivity.

Once the preamble is detected by checking that the sequence of
estimated positions matches with the sync words, coarse estimates are
obtained as previously outlined, and fine estimates of ⌫1 and ⌫2 can be
obtained using the following equation:

Ç⌫ =
B
K

0
Çk +

1

2

�Çk*1 * �Çk+1
�Çk*1 * 2�Çk + �Çk+1

1
(8)

where Çk and �k can be derived from the multiplication of the base
downchirp in the first part of the preamble with its conjugate for
the last 2.25 preamble symbols (for the last portion of the preamble,
made of downchirps). This equation relies on a parabolic interpolation
around the maximum and yields great results even for very low Signal-
to-Noise Ratio (SNR) values. For a reference signal transmitted at SF 7
and a power margin of *10 dB, the standard deviation of the carrier
frequency offset (CFO) estimation error �Cfo over a bandwidth of
125 kHz is about 9 � 10*4, while for a power margin of *5 dB, the ratio
�Cfo_BW is reduced to 6.8 � 10*4 � BW .

4.3. Impact of clock drifts

After detecting a preamble and obtaining initial estimates of CFO
and ⌧, the LoRa receiver needs to periodically update these estimates
to compensate for clock drifts between the transmitter and receiver.
Most SDR implementations do not address this issue, as they typically
rely on clocks with errors in the order of 1 part per million (PPM).
However, commercial devices may experience inaccuracies as high as
17 PPM due to low-cost crystal oscillators, leading to synchronization
problems especially for long frames.

Fig. 5 is meant to highlight the need for a clock tracking mechanism.
It quantifies the SNR threshold that ensures a Packet Error Rate (PER)
lower than 0.5 for a receiver without any tracking scheme, considering
different packet transmission times.

The figure illustrates the case of SNR values as a function of the
frame length for a reference signal modulated at SF 7 and B = 125

kHz, for different clock stability values. Note that we merely choose
this specific configuration as an illustrative case. Irrespective that the

Fig. 5. SNR values guaranteeing PER f 0.5.

reference signal is transmitted at SF 7 (and therefore the transmission
times are accordingly minimized), packet reception is completely pre-
vented for a clock frequency error higher than 10 PPM and a frame
length higher than 60 bytes (PPM 50) or 100 bytes (PPM 20). In other
cases, packet reception is possible, but with relevant errors. Obviously,
in the case of higher SFs, the effects of clock frequency errors are even
worse, given the longer symbol times as compared to the case of SF 7.

A potential solution is to extend the receiver architecture with a
clock tracking module, such as the one designed in [21]. This mod-
ule operates as follows. After demodulating a window of consecutive
symbols, the signal regenerated at the receiver is correlated with three
different versions of the originally received signal: one with a time
offset equal to the initial estimate ⌧est, and two others with offsets
equal to ⌧est±1_fs (where fs is the sampling frequency), i.e., shifted by
plus or minus one sample. The correlation operations yield three dif-
ferent maximum values, which are then interpolated using a quadratic
function. Finally, the maximum of this parabolic interpolation provides
the time offset used in the current window to compensate for the
clock drift. In this specific work, a time window of four symbols is
chosen as a trade-off between accuracy and complexity. Note that
the previous operations may be carried out approximately with the
FFT-based method described in [7,8]

4.4. Transmitter implementation

To enhance robustness against synchronization errors or narrow-
band interference, several operations were implemented at the trans-
mitter side, including parity check coding, whitening, shuffling, inter-
leaving, and gray coding. These additions are particularly important for
CSS-based modulations.

While most of the transmitter side operations were based on the
description in the LoRa patent and application notes [6,19], certain
implementation details, related to interleaving and checksum compu-
tation, required a low-level analysis of real signals transmitted by LoRa
commercial devices.

To complete the transmitter design, we therefore used a commer-
cial transmitter (namely, a Libelium device equipped with a Semtech
SX1272) working with arbitrary known payloads and, at the receiver
side, we searched the parameters needed to map the received symbols
to the known payloads. We first identified the blocks used by the inter-
leaver, by configuring the transmitter at the lowest 4/5 coding rate and
by observing the order of the bits demodulated by our receiver. Then,
we found how to compute the header checksum by transmitting frames
whose length was given by a power of two, and by solving a linear
system mapping the header fields into the observed checksum bits.
Finally, we performed several tests regarding the CRC computation.
After several trials, we found that a match between our computation
and the bits transmitted by a commercial device was reached by
changing the initial seed of the CRC shift register as a function of the
payload length. We found these values by exhaustive search for every
possible packet size.

Computer Networks 241 (2024) 110194

6

F. Busacca et al.

Fig. 6. Main functions of the lora_transceiver module of SDR-LoRa.

Fig. 7. Main functions of the lora_utils module of SDR-LoRa.

4.5. SDR LoRa: Implementation and main modules

In this section, we present a high-level description of SDR-LoRa
implementation to support researchers interested in using and/or ex-
tending our open-source code. SDR-LoRa provides all the functional-
ities and features described in the previous sections through three main
Python 3 numpy modules, namely lora_transceiver,
lora_utils, and lora. Each module will be thoroughly described
in the following.

4.5.1. Lora_transceiver
The lora_transceiver module directly interacts with the SDR

device, manages the transmitting and receiving operations, and lever-
ages on the lora module to encode and decode the complex samples
of the LoRa packets. The main functions of the module are illustrated
in Fig. 6, and are hereby described:

• lora_transceiver (Class): This class allows the encapsulation of
all the low-level communication aspects with the USRP SDR de-
vice. It is used to tune several configuration parameters, including
receiver and transmitting frequencies for full-duplex operations,
bandwidth, sample rate, and normalized signal amplitude. It also
allows the set-up of the TX and RX gain of the USRP device.
Among the most relevant methods of this class, there are the
methods for starting and stopping the reception and transmission
threads:

– rx_start: This method prompts the USRP device to start
the receiving operations. It also starts a receiving thread
through the rx function, to handle the incoming samples and
look for LoRa packets. It returns a queue object per selected
Spreading Factor. The queues can be exploited by the end
user to read the incoming LoRa packets.

– rx_stop: This method sends a stop command to the USRP
device. The latter accordingly stops recording PHY level
samples from the channel.

– tx_start: This method prompts the USRP device to start the
transmitting operations. It also starts a transmitting thread
through the tx function. Returns a queue object. Each time
users puts a LoRa packet object in the queue, it is handled
by the tx thread and accordingly transmitted by the USRP
device.

– tx_stop: If a transmitting thread is running, this method
stops the thread, thus halting the transmitter operations.

• tx: This function handles the transmitting functionalities and
directly interfaces with the USRP device. It listens for incoming
packets on a queue object. Once the end users puts one or more
packets in the queue, it leverages on the lora.encode function

from the lora module to encode the packets into physical layer
samples. Then, it fragments and sends the samples to the USRP
devices.

• rx: This function handles the receiving functionalities and directly
interfaces with the USRP device. Before starting the receiving
operations, it synchronizes with an external reference clock (if the
external synchronization is enabled). Then, it prompts the USRP
to start recording the signal samples, and puts those samples in
a buffer. The samples are then ready to be decoded. It mainly
leverages on two processes:

– threshold_trigger_process: This function is run as a sepa-
rated process. Once a sufficient number of samples is gath-
ered (i.e., it surpasses a SF-dependent threshold), it accord-
ingly notifies the decoder_process to start decoding the
samples.

– decoder_process: This function is run as a separated pro-
cess as well. Once the process is triggered by the thresh-
old_trigger_process, it reads the signal samples available in
the receiving buffer. It then leverages on the lora.decode
function from the lora module to read the incoming lora
packets. Note that the available samples are read through
overlapping sample windows: this prevents the receiver
from losing packets present on the windows overlapping
zone.

4.5.2. Lora_utils
The lora_utils module implements several useful features, such

as the encapsulation of a given data in one or more LoRa packets, the
de-encapsulation of information from a sequence of packets, and also
offers support for ACK/NACK functionalities. Fig. 7 shows the main
functions of the module. More specifically:

• pack_lora_data: Given a numpy array of bytes (uint8), returns
one or more LoRa packets. According to the maximum allowed
packet size, the array is distributed among the packets payload.
Supports the extended sequence number option, where the first
payload byte is used to extend the sequence number beyond 255.

• unpack_lora_data: Reverses the operations performed by
pack_lora_data. Given a numbered sequence of LoRa packets,
reconstructs the original numpy array of bytes.

• pack_lora_nack: Given a sequence of missing LoRa packets (ARQ
setting), return one or more LoRa packets whose payload is the
sequence of lost packets. The output packets can be distinguished
from regular data packets thank to the usage of special ID codes
(ACK_CODE and NACK_CODE).

• unpack_lora_nack: Reverses the operations performed by
pack_lora_nack. Given a sequence of LoRa NACK packets, recon-
structs the original sequence of lost packets.

4.5.3. Lora
The lora module implements all the main low-level functionalities

of the LoRa physical layer, including complex samples encoding and
decoding, preamble detection, chirp and preamble generation, whiten-
ing, and so on. The main functionalities and features of the module (as
shown in Fig. 8) are:

• decode: This function exposes the LoRa decoding features of the
module. Its functionalities are implemented through a chain of
support functions. Starting from the top:

1. samples_decoding: This function returns a numpy array
containing the LoRa packets decoded by the rf_decode
function.

Computer Networks 241 (2024) 110194

7

F. Busacca et al.

Fig. 8. Main functions of the lora module of SDR-LoRa.

2. rf_decode: This function analyzes the signal samples and
finds the LoRa preamble(s), if present. It also calculates
physical level parameters, such as the RSSI, the CFO er-
ror, and the preamble offset within the provided sig-
nal samples. If a preamble is present, it relies on the
lora_packet_rx function for further analysis of the packet.

3. lora_packet_rx: This support function decodes (i) the
packet header and (ii) the packet payload. The header
and payload are decoded thanks to the auxiliary functions
lora_header_decode and lora_payload_decode, respec-
tively.

• encode: This function exposes the LoRa encoding features of the
module. Similarly to decode, it leverages on a chain of support
functions. Starting, once again, from the top:

1. complex_lora_packet: This is a support function to encode
a LoRa packet. Upconverts the baseband samples returned
by lora_packet.

2. lora_packet: This function builds the LoRa packet samples
by leveraging on several support functions, including bit
to symbol mapping, and header/payload encoding through
CSS modulation. It exploits the support of several auxiliary
functions, such as lora_header_init to initialize the header
samples, lora_payload_init to initialize the payload sam-
ples, lora_preamble to generate the samples of a typical
LoRa preamble, and lora_chirp to generate the samples of
a base LoRa chirp.

• LoRaPacket (Class): This class is employed to conveniently en-
capsulate a LoRa packet. Includes useful information, e.g., the
node SF, the packet payload, the Time of Arrival, source and
destination ID, and more.

5. Applications of SDR-LoRa

We now describe three exemplary applications of SDR-LoRa which
exploit some important aspects of our software-defined receiver: (i) the
possibility to access useful low-level information about the physical
layer; this information can be conveniently exploited to implement
specific use cases, e.g., fine-grained localization; (ii) the possibility
to enhance the receiver functionalities to improve the performance
of standard receivers; (iii) the possibility to implement customized
MAC-layer solutions on top of the SDR-LoRa physical interface.

5.1. Exploiting physical layer information for localization

Low-level access to the receiver synchronization block allows the
retrieval of timing information about the packet reception times at the
gateway, with a microseconds-level resolution (approximately half of
the inverse of the bandwidth).

In order to maximize coverage, LoRaWAN gateways (GWs) are
assumed to be mounted on rooftops. This allows a gateway to feature
a GPS/GNSS receiver for network synchronization. The time-of-arrival
(ToA) of every received frame can be fed to a time-difference of arrival
(TDoA) -based localization algorithm to accurately localize the end
devices. We implemented a simple localization scheme based on the
reception times provided by SDR-LoRa.

We assumed that multiple GWs are able to receive the same frame,
thus making available several independent measurements. We then ag-
gregated the measurements collected by the independent GWs through
a Least Square Localization scheme based on TDoA.

The position of the transmitter node can be estimated following an
approach similar to the one described in [22]. Let us assume that a
packet sent by a specific target node is received by N different GWs
(with N g 4) placed at known locations, and that the strongest RSSI
is measured by the rth GW at the unknown distance dr. Accordingly,
we can derive the time differences ⌧i,r between the time-of-arrival at
the ith GW and the one at the rth GW, taken as reference. Indeed, the
distance di between the target node and the ith GW can be written as
dr + c⌧i,r, where c is the speed of the light. Let xi and yi denote the
coordinates of a generic GW i, and xT and yT the coordinates of the
target. The difference between the squares of the distance di and of the
reference distance dr can be written as:

(xi * xT)2 + (yi * yT)2 * (xr * xT)2 * (yr * yT)2 = 2drc⌧i,r + c2⌧2i,r
Since the quadratic terms in xT and yT cancel out, the equation can
be rewritten as a linear equation dependent on the unknown column
vector x = [xT , yT , dr]T . Given N gateways, it is possible to build a
matrix A withN*1 rows, where the ith row is given by *2[(xi*xr), (yi*
yr), c⌧i,r], and a vector b with N * 1 components, each one equal to
[c2⌧2i,r*x2i *y2i +x2r +y2r]. The unknown column vector x is a solution of
Ax = b, and a Least Square Error solution can be found as (ATA)*1AT b.

5.2. Supporting interference cancellation

Another perspective application of a software-defined LoRa receiver
is the extension of the receiver architecture with more advanced func-
tionalities. In particular, we implemented a support for multi-user
detection based on successive interference cancellation. The idea is
(i) to generate a synthetic software version of the entire demodulated
signal and (ii) to subtract this signal from the received one. In such a
way, it is possible to decode other overlapping signals received at lower
RSSIs. Since signal regeneration is based on the local oscillator of the
receiver node, it is necessary to estimate the time and frequency jitters
due to the transmitter oscillator before performing signal cancellation.

We implemented a simple solution, based on the correlation of
the locally regenerated signal and the received signal in consecutive
temporal windows. For each time window, we regenerate the signal
with three timing offsets given by the current timing offset ⌧est and
⌧est ± 1_fs. An estimate of the timing drift is obtained by looking for
the maximum in the cross-correlation modulus between the incoming
signal and these reconstructed signals. An even finer estimate can be
obtained as the maximum of the quadratic interpolating polynomial
around the aforementioned cross-correlation maximum. The sequence
of estimated timing drifts is then interpolated to derive an estimation
of the timing drift process, while the reconstructed signal is obtained
by further interpolation of the temporary reconstructed signals. Finally,
the signal cancellation can be performed by calculation the projection
error of the received signal over the reconstructed one. Note that,
from a complexity point of view, the implementation of this receiver

Computer Networks 241 (2024) 110194

8

F. Busacca et al.

is dominated by the computational complexity of FFTs used for time
correlations and of the required linear interpolations. While a sophisti-
cated approach is certainly possible, it is worth remarking that our goal
is not the design of an optimal interference-cancellation scheme, but,
instead, to demonstrate that other receiver blocks and functionalities
can be easily integrated into the SDR-LoRa design.

5.3. Improving link reliability

LoRaWAN networks utilize an Aloha-like random access method,
which can significantly falter under heavy load situations. To enhance
the dependability of connections, two strategies can be contemplated:
(i) implementing an Automatic Repeat Request (ARQ) protocol to se-
lectively retransmit corrupted frames when needed, and (ii) proactively
sending supplementary frames generated using frame-level rate-less
coding techniques. Both of these solutions have been integrated into
the SDR-LoRa framework.

ARQ Mechanism. We integrated an optional Automatic Repeat Re-
quest (ARQ) reliability mechanism into the LoRa protocol, enhancing
and complementing the inherent FEC Hamming techniques it already
employs. Our ARQ protocol encompasses several sequential steps: (i)
Transmitting the actual data, (ii) Receiving a response from the receiver
in the form of a NACK message, (iii) Re-transmitting any missing pack-
ets as required, (iv) Sending a conclusive ACK from the receiver, and
(v) Closing the communication phase. To prevent potential deadlock, if
no response is received from the transmitter within a specified timeout
during step (ii), the receiver takes the initiative to re-transmit the NACK
packet.

Rateless Coding. Rateless codes, as described in RFC6330, operate
by harnessing the potential to generate a variable number of encoded
frames from a burst of k frames on the transmitting source. This coding
scheme enables the receiver to decode an exact replica of the complete
k-frame burst from any subset of k + ⌫ successfully received (i.e., non-
erased) encoded frames. The resulting reception overhead, denoted as
✏ and calculated as ⌫_k, typically remains within a few percentage
points. An intriguing aspect of this solution is its independence from
a downlink channel for transmitter feedback. Given the constrained
downlink bandwidth prevalent in LoRaWAN networks, this approach
holds practical significance in various scenarios. We introduced a sig-
naling mechanism from the network server to devices, enabling the
notification of device-specific Packet Delivery Rate (PDR). Based on
this value and a desired success probability � for delivering a k-frame
burst, each participating device in the data transmission computes the
quantity k® of coded frames to be generated from each group of k
frames, expressed as:

k® :
k®…

l=k+⌫

0
k®
l

1
PDRl � (1 * PDR)k®*l g � (9)

6. Experimental results

We verified the functionality of our LoRa transceiver implementa-
tion by conducting compatibility tests between SDR LoRa and com-
mercial LoRa devices. We set one SDR platform running the LoRa
transceiver in the lab at the University of Catania, and deployed the
devices in outdoor locations characterized by partially obstructed links,
as depicted in Fig. 9. In position 1, where nodes were perfectly visible,
we got a Packet Delivery Rate (PDR) equal to 1 for each available SF;
in position 2, some errors were found at SF 7, while in position 3, the
PDR was lower than 0.1 at SF 7 and about 0.5 at SF 10.

To thoroughly assess our prototype’s performance, we also inte-
grated the LoRa transceiver into the Colosseum testbed, which boasts
an array of coordinated SDR platforms and channel emulators. A no-
table feature of this testbed is its ability to manipulate network scenar-
ios, encompassing channel models between nodes as well as transmis-
sion patterns of concurrent devices. This includes the synchronization

Fig. 9. Map of the testbed locations.

or the shifting of transmission attempts among independent SDR nodes,
in order to explore specific interference effects stemming from multiple
sources of interference. Additionally, the testbed facilitates the analysis
of low-level signals captured by autonomous receivers, enabling a wide
range of experimental studies on receiver architectures. For all these
reasons, we chose to carry out all the experiments illustrated in the
remainder of the paper over the Colosseum platform.

6.1. Testbed description

SDR-LoRa was assessed using Colosseum, which is recognized
as the world’s largest network emulator [23]. Colosseum operates
with 128 dedicated hardware nodes, referred to as Standard Radio
Nodes (SRNs), each equipped with NI/Ettus USRP X310 SDRs. These
nodes can host and execute user-defined Linux Containers (LXCs),
offering considerable flexibility in customizing and utilizing the under-
lying hardware. The connectivity among the SRN nodes is established
through the Massive Channel Emulator (MCHEM), composed of sev-
eral FPGA modules capable of processing radio signals using Finite
Impulse Response (FIR) filters. Through this setup, the MCHEM can
emulate real-world wireless RF channel effects, including attenuation,
propagation delay, fading, and multipath.

Another essential component of Colosseum’s architecture is the
RF scenario server. A Colosseum scenario comprises wireless links
between multiple SRNs, with each link defined by digital channel taps.
When a scenario is activated on the emulator, these channel taps are
dynamically provided to the MCHEM.

The evaluation of SDR-LoRa was conducted using a custom LXC
image containing the developed SDR implementation along with the
necessary libraries and system tools required for executing the code.
The full LXC container has been published online, to allow reproducibil-
ity of results and experimentation with our code.2

6.2. SDR-LoRa Performance over Colosseum

We conducted our initial set of experiments using a single LoRa link,
involving two SDR nodes fulfilling roles as transmitter and receiver.
These nodes were interconnected through the SDR channel emulator.
The chosen RF scenario is characterized by a noise power featuring
�n = 3.5 ù 10

*8 and a tunable Path Loss.
Table 2 shows the PDR at the receiver, as a function of different

channel attenuation values,3 when the transmitter sends packets at SF
7, with a bandwidth of 125 kHz, a payload size of 50 bytes, and a fixed
normalized amplitude of the signal equal to 1.

2 To access the container, visit the URL: https://zenodo.org/record/
7520494 The container password is ‘‘sdr-lora’’.

3 This choice is useful to emulate several transmission distances. In fact,
in free-space communications, a larger path-loss corresponds to a longer
communication distance.

https://zenodo.org/record/7520494
https://zenodo.org/record/7520494

Computer Networks 241 (2024) 110194

9

F. Busacca et al.

Fig. 10. PDR vs the packet Payload Size.

Table 2
PDR vs Channel Loss.
Channel attenuation 45 dB 50 dB 55 dB 60 dB

PDR 1 0.99 0.74 0.20

Additionally, the link experiences supplementary power losses at-
tributed to the connectors between SDR nodes and the wired channel
emulator. Due to the complexity in quantifying these losses, we em-
pirically determined the channel attenuation leading to an SNR below
the reception threshold. In fact, the PDR results lower than 1 (approxi-
mately 75%) at a channel attenuation of 55 dB, and descends to under
15% upon increasing the attenuation to 60 dB.

For a channel attenuation setting of 56 dB (resulting in an SNR
below the reception threshold for SF 7), we proceeded with additional
experiments encompassing varying SFs and distinct payload sizes. Our
focus was on measuring the PER while transmitting a fixed amount of
data (specifically, 10000 bytes), which corresponds to a different total
number of frames as a function of the employed SF. The outcomes are
summarized in Fig. 10. We repeated the experiment ten times, and
accordingly reported the results with a confidence interval of 99%.
From the figure, it is evident that the SNR value at the receiver is higher
than the minimum reception thresholds for SFs 10, 11 and 12. For the
other SFs, for which the correct demodulation of the symbols cannot
be guaranteed, the PDR is affected by the payload size, with a general
degradation as the payload size increases (although there are a few
exceptions due to the confidence interval of the results). However, the
PDR does not decrease as an exponential function (with a base lower
than 1) of the number of symbols in the frame, which are roughly
proportional to the payload size. This suggests that synchronization
problems can be the main cause of packet losses for the SNR values
considered in the experiments.

We executed a second set of experiments aimed at investigating the
effects of interference among multiple concurrent LoRa links. Initially,
we examined the inherent non-ideal orthogonality of diverse SFs. To
this purpose, we established a baseline LoRa link that operated at
SF 7, transmitting frames with a 50-byte payload. Concurrently, we
introduced an interfering node working at a SF distinct from SF 7. This
interfering node was configured for continuous transmission, without
applying any duty cycle, thus ensuring that all frames transmitted by
the reference link overlap with the transmissions from the interfering
node.

As illustrated in Fig. 11, our experiments measured the PDR when
the transmitted frames collided with interfering signals at various SFs,
as a function of the SIR. We repeated the experiment ten times, and
sent a total of 100 packets within each experiment. Once again, the
results are reported with a confidence interval of 99%. The limits of
imperfect orthogonality are quite evident: for SF 8, it is enough a SIR

Fig. 11. PDR vs SIR for a reference link at SF 7, in presence of collisions with different
SFs.

Fig. 12. PDR of a reference link at SF 7 as a function of the number of interfering
nodes at SF 8.

value of *4 dB for damaging the frames and reducing the PDR to about
75%. Although the interference generated at SF 8 is the one reducing
the PDR the most, we also notice that the SIR threshold which prevents
a PDR equal to 1 is about the same for all the SFs used by interfering
node.

The large rejection thresholds of the interfering signals is due to
the receiver operation. When multiplying the received signal with the
downchirp at SF 7 and computing the FFT, such an interfering power
is spread on the whole bandwidth of 125 kHz, while the power of the
reference signal is seen as a narrow peaks whose position within the
band corresponds to the coded symbols.

Obviously, a possible cause of symbol detection error due to a
low SIR value is the presence of multiple interfering signals. Fig. 12
quantifies the PDR achieved by the reference link at SF 7, when mul-
tiple interfering nodes are active at SF 8 and for different normalized
amplitude values of the reference signals. We let this amplitude value
vary in the range 0.4–0.8, while the normalized amplitude of the
interfering signals is fixed and equal to 0.5. Similarly to the previous
cases, we repeated the experiment ten times, and sent a total of 100
packets within each experiment, with a reported confidence interval of
99%.

We also investigated the effects of collisions occurring at SF 7.
In theory, signals transmitted at the same SF lack orthogonality and
should hinder the accurate reception of colliding frames. However,
the LoRa system exhibits an exceptionally low capture threshold: it
is enough a SIR of a few decibels (typically around 3 dB) in the
reference link to enable proper frame demodulation. To explore this
phenomenon, we replicated the experiment using multiple interfering
nodes, configuring their signals at SF 7. Fig. 13 quantifies the observed

Computer Networks 241 (2024) 110194

10

F. Busacca et al.

Fig. 13. PDR of a reference link at SF 7 as a function of the number of interfering
nodes on the same SF.

Fig. 14. Localization for NGW g 4.

PDR as the number of interfering nodes increases, when the transmis-
sion power of the reference link is 6 dB stronger than the interfering
ones. Once again, we repeated the experiment ten times, and sent
100 packets within each experiment. The results report a confidence
interval of 99%.

From the figure we observe an interesting phenomenon: the PDR is
almost one even in presence of 4 nodes, when the SIR is 0 dB, and
slightly lower than 1 in case of 5 interfering nodes (for a negative
SIR). This is due to the receiver operation, according to which the
interference generated by multiple transmitters at SF 7 is not additive.

6.3. Using SDR-LoRa for Localization

In order to demonstrate the possibility of localizing end-devices by
using physical information provided by SDR-LoRa, we built a scenario
in the Colosseum testbed with 25 nodes placed in a grid, whose regular
distance is set to 200 m. To ease the evaluation of this proof-of-
concept, we employed a single-path channel with a free space path
loss. Eight edge nodes and the node in the center act as GWs, while
the other sixteen act as end-devices. End devices are configured for
sending sporadic packets at a rate of one packet every 10 s. A total
number of 400 packets per end-device are tracked by the central server,
by collecting the reception times measured by all the GWs in radio
visibility (i.e. able to correctly demodulate the packets).

A complete trace with all the reception times and relevant packet
identifiers measured by each GW is then processed by the positioning

Fig. 15. Localization for NGW = 4.

Table 3
Positioning errors in meters: mean errors along x and y, with standard deviations, and
mean positioning error distance.
NGW E[ex] �x E[ey] �y E[d]

4 1.13 31.8 0.47 20.7 19.6
5 0.94 22.1 0.50 17.4 16.9
6 1.77 22.9 0.84 19.1 18.0
7 2.44 24.5 0.96 20.8 19.9
8 3.25 25.4 1.22 21.9 21.0
9 4.40 29.0 1.17 23.9 22.5

scheme. For each packet in the trace, an estimate of the transmitter
position can be evaluated, and different estimates can be obtained by
changing the subset of ToA measurements used for the calculations.

Fig. 14 and Fig. 15 respectively show the estimates provided by the
chosen positioning scheme using all the available measurements or only
the best four ones. Four measurements are the minimum required for
TDoA-based positioning in 2-D with the chosen strategy. Each estimate
is represented by a different colored point. The figures depict the net-
work topology in terms of node positions (in a grid of 800 m ù 800 m),
distinguishing between gateways (white dots) and end nodes (crosses),
as well as the average values of the estimates of the transmitter position
(big circles). By comparing the two figures, it is evident that using
the best GWs generally provides better results, as the measurements
of the propagation delays are more reliable. Moreover, we can also
observe that the positioning errors differ as a function of the end-
device placement in the grid, with some evident border effects. Some
statistics about the positioning errors are reported in Table 3. A close
inspection of the table reveals that the localization algorithm yields the
best performance for NGW = 5. It is necessary to note that the high
performance of the localization strategy can be explained by means of
the considered propagation model. In this scenario, the received signal
strength results several tens of dBs above the sensitivity threshold and
the time of arrival estimates feature a very low standard deviation,
on the order of 0.1 �s. A more realistic evaluation would involve
employing, for example, an Urban Macro channel model with NLOS
propagation, and the localization performance is expected to decrease
accordingly, both for lower reliability estimates and for propagation
delay effects.

6.4. Using SDR-LoRa for Interference Cancellation

We assessed the performance of innovative LoRa receivers built on
top of SDR-LoRa by analyzing the effect of cancellation in the simplest

Computer Networks 241 (2024) 110194

11

F. Busacca et al.

Fig. 16. Synchronization and Interference Cancellation example.

possible collision case, i.e., between two partially overlapping frames.
We measured the residual signal (that is, the difference between the
received signal and the regenerated reference frame) in two different
type of experiments, where the signal is regenerated, with and without
the clock drifting tracking.

Fig. 16 from [21] compares the results obtained on a sample colli-
sion in the two types of experiments. In particular, the figures refer to a
collision between two frames modulated at SF 12 and demodulated by
our SDR receiver before (received signal, in red) and after cancellation
of the first received frame (residual signal, in blue). SF12 represents a
worst-case scenario, as the effects of clock drift are more severe with
longer frames (and, as remarked in Section 3.2, larger SFs yield longer
frames).

Note that in both the experiments channel noise and clock drift
affect the demodulation operations. In particular, Fig. 16(a) shows the
results of the interference cancellation scheme without applying the
tracking algorithm, while Fig. 16(b) shows the same when applying
also the clock tracking scheme. From the two figures, it is evident that
the residual noise is more pronounced in the former case. In fact, it
turns out that the variance of the squared absolute value of the residual
signal with no clock tracking is about 0.0109, while in the other case
the variance drops to 8.5267 �10*5. Moreover, note that USRP clocks are
more precise than those found in commercial devices (datasheets report
±2.0ppm for a USRP with TCXO versus ±17ppm found in commercial
LoRa modules datasheets with a simple XO, i.e., almost an order of
magnitude higher). Accordingly, the impact of clock drifting is more
relevant when implementing a cancellation algorithm with commercial
end devices, reinforcing the need of the proposed tracking mechanisms.

6.5. Using SDR-LoRa at Data Link

Finally, we also tested the link layer schemes implemented on top of
SDR-LoRa to improve the link reliability. Fig. 17 quantifies the total
amount of time needed to successfully transfer 10000 bytes of data
to the receiver, for a channel attenuation of 56 dB. The calculation
of the transmission time takes into account the total interval required
for transmitting all the frames, including selective retransmissions of
corrupted ones. No duty cycle has been considered. Note how higher

Fig. 17. Transmission vs the packet Payload Size.

Table 4
Overheads of Raptor-Q coding.
SF 100 bytes 250 bytes

PDR k’ Time PDR k’ Time

7 0.58 220 41.6 s 0.48 129 46.3 s
8 0.84 142 48.0 s 0.78 72 46.5 s
9 0.92 125 76.9 s 0.92 57 65.4 s

SFs exhibit a bigger transmission time despite the fact that the links are
more robust: indeed, the higher is the SF, the higher is the number of
chips in a single LoRa symbol, and thus, the bigger is the transmission
time of each frame.

An alternative approach for improving the link reliability, espe-
cially in presence of data bursts, is exploiting rate-less coding. Table 4
summarizes the number of coded frames required for guaranteeing a
delivery probability � f 1 * 10

4, as well as the relevant transmission
time, for the same scenario of a data transfer of 10000 bytes, a channel
attenuation of 56 dB, and a payload size equal to 100 or 250 bytes.
The table refers to the usage of Raptor-Q codes, assuming to use ⌫ = 5

(which, according to RFC6330, guarantees a probability lower than
10*10 that the frame decoding will fail). For a given PDR, the number
of additional packets generated by the usage of rate-less coding is
obviously greater than the one resulting from selective retransmissions,
but the difference gets lower as the total number of packets to be sent
increases (for example, for 100 bytes and SF = 9 we transmit 125
packets, with a total number of expected transmissions equal to 108
packets).

This idea is better quantified in Fig. 18, where we plot the overhead
with respect to the minimum number of encoded frames as derived by
the erasure channel capacity, i.e. k_PDR. The figure shows how the
required overhead becomes negligible as the number of frames in a
burst increases.

7. Conclusions and future works

In this paper we described SDR-LoRa, an open-source, full-fledged
implementation of a LoRa transceiver for SDR platforms. Moreover,
in order to demonstrate the flexibility of our implementation, we
built some innovative applications built on top of SDR-LoRa, namely
fine-grained localization, interference cancellation, and enhanced link
reliability. The SDR-LoRa prototype has been fully integrated into the
Colosseum testbed and has been publicly released to enable access to
low-level LoRa signals, thus fostering advanced research on the topic.

We extensively evaluated our prototype in both real life, and
Colosseum-based experiments. Differently from previous studies, where
several virtual end devices were usually emulated by means of a
single SDR platform, the usage of the Colosseum testbed allows the
configuration and control of multiple and independent end devices
and gateways. First, we demonstrated the compatibility of SDR-LoRa

Computer Networks 241 (2024) 110194

12

F. Busacca et al.

Fig. 18. Overhead of RFC6330 rateless coding with respect to the erasure channel
capacity limit, for a burst of k frames and several PDR values.

with real-world commercial devices. Then, we described and evaluated
the three aforementioned applications of SDR-LoRa. Among the main
insights of the experiments: (i) SDR-LoRa offers a great performance
in the localization of the end devices. In fact, as shown in Section 6.3,
SDR-LoRa is able to estimate the position of a LoRa node with a
mean error as low as about 17 m, over a grid of 800 m ù 800 m; (ii)
SDR-LoRa is able to significantly improve the decoding of overlapping
frames through successive interference cancellation. This feature un-
locks several new possibilities, such as the usage of multiple gateways
to decode interfering signals in densely populated LoRa networks; (iii)
SDR-LoRa allows to improve and extend the built-in link reliability
schemes implemented in LoRaWAN. In particular, the experiments
carried on in Section 6.5 demonstrated how ARQ schemes offer a
good performance, thereby enabling lossless applications over the LoRa
protocol.

Future works may involve, but not be limited to:

• improvement of the tracking of time and frequency drifts. This
improvement is fundamental in the case of low quality local os-
cillators and/or high mobility of end nodes or gateways (e.g. the
satellite LoRa scenario), where the decoding of long LoRa frames
(i.e., with a large payload and/or a high SF) would be otherwise
impossible;

• improved time-of-arrival estimates to aid localization, possibly
powered by the above mentioned improved synchronization strate-
gies. Improving the estimates is crucial to perform fine-grained
localization, e.g., for indoor environments;

• improved interference cancellation strategy, where unsupervised
machine learning techniques may be involved in order to cope
with hard-to-model variations in the amplitude of the envelope of
the received signals. In such a way, it would be to decode multiple
signals even in the case of massive interference, e.g., for com-
pletely overlapping signals or for signals way below the Capture
threshold.

CRediT authorship contribution statement

Fabio Busacca: Conceptualization, Data curation, Formal analysis,
Funding acquisition, Investigation, Methodology, Project administra-
tion, Resources, Software, Supervision, Validation, Visualization, Writ-
ing – original draft, Writing – review & editing. Stefano Mangione:
Conceptualization, Data curation, Formal analysis, Funding acquisition,
Investigation, Methodology, Project administration, Resources, Soft-
ware, Supervision, Validation, Visualization, Writing – original draft,
Writing – review & editing. Sergio Palazzo: Conceptualization, Data
curation, Formal analysis, Funding acquisition, Investigation, Method-
ology, Project administration, Resources, Software, Supervision, Val-
idation, Visualization, Writing – original draft, Writing – review &

editing. Francesco Restuccia: Conceptualization, Data curation, For-
mal analysis, Funding acquisition, Investigation, Methodology, Project
administration, Resources, Software, Supervision, Validation, Visual-
ization, Writing – original draft, Writing – review & editing. Ilenia
Tinnirello: Conceptualization, Data curation, Formal analysis, Fund-
ing acquisition, Investigation, Methodology, Project administration,
Resources, Software, Supervision, Validation, Visualization, Writing –
original draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Source code available on GitHub.

References

[1] J.P.S. Sundaram, et al., A survey on LoRa networking: Research problems, current
solutions, and open issues, IEEE Commun. Surv. Tutor. 22 (1) (2019) 371–388.

[2] A. Ikpehai, et al., Low-power wide area network technologies for internet-
of-things: A comparative review, IEEE Internet Things J. 6 (2) (2018)
2225–2240.

[3] U. Raza, et al., Low Power Wide Area networks: An overview, IEEE Commun.
Surv. Tutor. 19 (2) (2017) 855–873.

[4] A. Al-Shawabka, et al., DeepLoRa: Fingerprinting LoRa devices at scale through
deep learning and data augmentation, in: Proceedings of ACM Mobihoc 2021,
2021, pp. 251–260.

[5] D. Garlisi, et al., Interference cancellation for LoRa gateways and impact on
network capacity, IEEE Access 9 (2021) 128133–128146.

[6] O.B.A. Seller, N. Sornin, Low power long range transmitter, 2014, European
Patent EP2763321A1.

[7] O.B.A. Seller, N. Sornin, Low complexity, low power and long range radio
receiver, 2018, European Patent EP3264622B1.

[8] C. Bernier, et al., Low complexity LoRa frame synchronization for ultra-low
power software-defined radios, IEEE Trans. Commun. 68 (5) (2020) 3140–3152.

[9] M. Knight, et al., Decoding LoRa: Realizing a modern LPWAN with SDR, in:
Proceedings of the GNU Radio Conference, vol. 1, (no. 1) 2016.

[10] A. Marquet, et al., Towards an SDR implementation of LoRa: Reverse-
engineering, demodulation strategies and assessment over Rayleigh channel,
Comput. Commun. 153 (2020) 595–605.

[11] P. Robyns, et al., gr-lora: An efficient LoRa decoder for GNU Radio, 2017,
https://github.com/rpp0/gr-lora.

[12] J. Tapparel, et al., An open-source LoRa physical layer prototype on GNU radio,
in: 2020 IEEE SPAWC, 2020, pp. 1–5.

[13] Z. Xu, S. Tong, P. Xie, J. Wang, From demodulation to decoding: Toward
complete LoRa PHY understanding and implementation, ACM Trans. Sensor
Netw. 18 (4) (2023) 1–27.

[14] F. Busacca, S. Mangione, I. Tinnirello, S. Palazzo, F. Restuccia, SDR-LoRa: Dissect-
ing and implementing LoRa on software-defined radios to advance experimental
IoT research, in: Proceedings of the 16th ACM Workshop on Wireless Network
Testbeds, Experimental Evaluation & CHaracterization, 2022, pp. 24–31.

[15] Semtech Corporation, LoRa® and LoRaWAN®: A technical overview, 2020.
[16] Semtech Corporation, LoRa™ Modulation Basics, 2015.
[17] L. Vangelista, Frequency shift chirp modulation: The LoRa modulation, IEEE

Signal Process. Lett. 24 (12) (2017) 1818–1821.
[18] M. Chiani, A. Elzanaty, On the LoRa modulation for IoT: Waveform properties

and spectral analysis, IEEE Internet Things J. 6 (5) (2019) 8463–8470.
[19] Semtech, SX1272/3/6/7/8: LoRa modem - designer’s guide, 2013.
[20] Semtech Corporation, SX1272/73 - 860 MHz to 1020 MHz low power long range

transceiver datasheet. Available online: https://www.semtech.com/products/
wireless-rf/lora-connect/sx1272.

[21] D. Garlisi, et al., Interference cancellation for LoRa gateways and impact on
network capacity, IEEE Access 9 (2021) 128133–128146.

[22] S.M. Sheikh, H.M. Asif, K. Raahemifar, F. Al-Turjman, Time difference of arrival
based indoor positioning system using visible light communication, IEEE Access
9 (2021) 52113–52124.

[23] L. Bonati, et al., Colosseum: Large-scale wireless experimentation through
hardware-in-the-loop network emulation, in: 2021 IEEE DySPAN, pp. 105–113.

http://refhub.elsevier.com/S1389-1286(24)00026-4/sb1
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb1
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb1
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb2
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb2
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb2
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb2
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb2
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb3
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb3
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb3
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb4
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb4
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb4
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb4
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb4
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb5
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb5
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb5
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb6
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb6
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb6
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb7
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb7
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb7
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb8
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb8
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb8
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb9
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb9
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb9
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb10
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb10
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb10
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb10
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb10
https://github.com/rpp0/gr-lora
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb12
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb12
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb12
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb13
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb13
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb13
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb13
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb13
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb14
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb14
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb14
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb14
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb14
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb14
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb14
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb15
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb16
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb17
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb17
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb17
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb18
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb18
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb18
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb19
https://www.semtech.com/products/wireless-rf/lora-connect/sx1272
https://www.semtech.com/products/wireless-rf/lora-connect/sx1272
https://www.semtech.com/products/wireless-rf/lora-connect/sx1272
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb21
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb21
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb21
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb22
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb22
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb22
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb22
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb22
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb23
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb23
http://refhub.elsevier.com/S1389-1286(24)00026-4/sb23

Computer Networks 241 (2024) 110194

13

F. Busacca et al.

Fabio Busacca received the Ph.D. degree in Informa-
tion and Communication Technologies from the University
of Palermo, Italy, in 2022. He is currently an assis-
tant professor at the University of Catania, Italy. His
main research interests are LPWAN protocols for the
IoT, artificial intelligence and game theory applied to
next-generation communication networks, and underwater
acoustic communications.

Stefano Mangione received the degree (cum laude) in
electronics engineering, telecommunications curriculum, in
2000. He is currently an Assistant Professor of telecom-
munications engineering with the University of Palermo.
His research activities have been focused on physical layer
aspects of communication systems, from forward error cor-
rection coding to equalization strategies for spread spectrum
systems. Recently his activity includes automatic meth-
ods for registration of nuclear magnetic resonance images,
multiuser receiver strategies for LoRa, and the study of
underwater communication systems.

Sergio Palazzo received the degree in electrical engineering
from the University of Catania, Catania, Italy, in 1977.
Since 1987, he has been with the University of Catania,
where he is currently a Professor of Telecommunications
Networks. In 1994, he spent the summer with the Inter-
national Computer Science Institute, Berkeley, as a Senior
Visitor. In 2003, he was with the University of Canterbury,
Christchurch, New Zealand, as a recipient of the Visiting
Erskine Fellowship. His current research interests include
wireless networks, mobile systems, intelligent techniques in
network control, multimedia traffic modeling, and protocols
for the next generation of the Internet. Prof. Palazzo has
been serving on the Technical Program Committee of INFO-
COM, the IEEE Conference on Computer Communications,
since 1992. He has been the General Chair of some top-
level conferences, including ACM MobiHoc 2006, ACM
MobiOpp 2010, ACM MobiHoc 2019, and IFIP Networking
2022, and currently is a member of the MobiHoc Steering
Committee. He has also been the TPC Co-Chair of some

other conferences, including IFIP Networking 2011, IWCMC
2013, and European Wireless 2014. He also served on the
Editorial Board of several journals, including IEEE/ACM
TRANSACTIONS ON NETWORKING, IEEE TRANSACTIONS
ON MOBILE COMPUTING, IEEE Wireless Communications
Magazine, Computer Networks, Ad Hoc Networks, and
Wireless Communications and Mobile Computing.

Francesco Restuccia received the Ph.D. degree in com-
puter science from the Missouri University of Science and
Technology, Rolla, MO, USA, in 2016. He is currently an
Assistant Professor with the Department of Electrical and
Computer Engineering, and a Member of the Institute for
the Wireless Internet of Things and the Roux Institute,
Northeastern University, Boston, MA, USA. He has authored
or coauthored more than 60 papers in top-tier venues
in computer networking, as well as coauthored 16 U.S.
patents and three book chapters. His research focuses on
the design and experimental evaluation of next-generation
edge-assisted data-driven wireless systems. Dr. Restuccia’s
research is funded by several grants from the U.S. National
Science Foundation and the Department of Defense. He was
the recipient of the Office of Naval Research Young Inves-
tigator Award, the Air Force Office of Scientific Research
Young Investigator Award, and the Mario Gerla Award in
Computer Science, as well as Best Paper Awards at IEEE
INFOCOM and IEEE WOWMOM. He regularly serves as
a TPC Member and Reviewer for several ACM and IEEE
conferences and journals.

Ilenia Tinnirello is a Full Professor at the University of
Palermo, Italy. She has been Visiting Researcher at the Seoul
National University, Korea, and the Nanyang Technological
University of Singapore. Her research activities focus on
wireless networks, and in particular on the design and
prototyping of protocols and architectures for emerging
reconfigurable wireless networks. She has been involved in
several European research projects.

	SDR-LoRa, an open-source, full-fledged implementation of LoRa on Software-Defined-Radios: Design and potential exploitation
	Introduction
	Related Work
	Background Notions
	LoRa in a nutshell
	Chirp Spread Spectrum (CSS) Modulation
	Receiver Sensitivity

	SDR LoRa Transceiver
	Symbol Detection
	Carrier and Time Synchronization
	Impact of Clock Drifts
	Transmitter Implementation
	SDR LoRa: Implementation and Main Modules
	Lora_transceiver
	Lora_utils
	Lora

	Applications of SDR-LoRa
	Exploiting physical layer information for localization
	Supporting interference cancellation
	Improving link reliability

	Experimental results
	Testbed Description
	SDR-LoRa Performance over Colosseum
	Using SDR-LoRa for Localization
	Using SDR-LoRa for Interference Cancellation
	Using SDR-LoRa at Data Link

	Conclusions and Future Works
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

