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Abstract
Exoplanets can be detected with various observational techniques. Among
them, radial velocity (RV) has the key advantages of revealing the archi-
tecture of planetary systems and measuring planetary mass and orbital
eccentricities. RV observations are poised to play a key role in the detection
and characterization of Earth twins. However, the detection of such small
planets is not yet possible due to very complex, temporally correlated in-
strumental and astrophysical stochastic signals. Furthermore, exploring the
large parameter space of RV models exhaustively and efficiently presents
difficulties. In this review, we frame RV data analysis as a problem of
detection and parameter estimation in unevenly sampled, multivariate time
series. The objective of this review is two-fold: to introduce the motivation,
methodological challenges, and numerical challenges of RV data analysis
to nonspecialists, and to unify the existing advanced approaches in order to
identify areas for improvement.

623

A
nn

u.
 R

ev
. S

ta
t. 

A
pp

l. 
20

23
.1

0:
62

3-
64

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lre

vi
ew

s.o
rg

 A
cc

es
s p

ro
vi

de
d 

by
 1

31
.9

3.
20

9.
15

0 
on

 0
7/

31
/2

3.
 S

ee
 c

op
yr

ig
ht

 fo
r a

pp
ro

ve
d 

us
e.

 

mailto:nathan.hara@unige.ch
mailto:ebf11@psu.edu
https://doi.org/10.1146/annurev-statistics-033021-012225
https://doi.org/10.1146/annurev-statistics-033021-012225
https://www.annualreviews.org/doi/full/10.1146/annurev-statistics-033021-012225
https://creativecommons.org/licenses/by/4.0/


ST10CH26_Hara ARjats.cls February 14, 2023 14:24

Radial velocity (RV):
velocity of a given star
projected onto the
direction observer–star

Stellar spectrum:
number of photons
collected from a given
star per wavelength

Photometry: number
of photons collected
on a celestial body,
here a star, in a broad
spectral band as a
function of time

Spectrograph:
instrument used to
measure the light flux
as a function of its
wavelength; can be
used to measure the
radial velocity of stars

Transit: passage of a
planet between a star
and an observer;
results in a periodic
dip in the flux received

1. INTRODUCTION
Until recently, our Solar System was the only laboratory in which to study theories of planetary
formation and evolution and to search for life beyond Earth. The presence of planets outside
the Solar System, or exoplanets, was uncertain until the detection of planets orbiting a pulsar
(Wolszczan & Frail 1992). The study of exoplanets as a scientific field accelerated with the de-
tection of 51 Peg b, a planet of minimum ∼0.5 Jupiter mass orbiting a Sun-like star in 4.2 days
(Mayor & Queloz 1995).

The discovery of 51 Peg b, and hundreds of additional exoplanets,was based on the radial veloc-
ity (RV)method,which is the focus of the present work, and relies on the following principle.A star
around which a planet revolves has a periodic reflex motion, so it moves back and forth toward the
observer with a certain velocity: its RV. By acquiring spectra of a given star at different times, the
observer can measure a time series of RV through the Doppler effect. The amplitude of the varia-
tions in RV is proportional to the planetary mass, and its shape depends on the orbital eccentricity.

Mass is one of the most fundamental parameters of a planet. When the radius is measured
separately via photometry, the combination of mass and radius gives the density, essential to
characterizing the internal structure of the planet, and the surface gravity, key to interpreting
measurements of its atmosphere (Kempton et al. 2018, Batalha et al. 2019). The eccentric-
ity is important to understand the formation of planetary systems, especially in multiplanetary
systems (e.g., Jurić & Tremaine 2008).

The RV method plays a key role in understanding the demographics of planetary systems, by
allowing the detection of planets spanning a much wider range of orbital periods than other detec-
tion techniques. Moreover, it does not require a precise orientation of the orbital plane, thereby
allowing RVs to characterize planetary systems in which the planets have significant mutual incli-
nations. As such, RV measurements have a unique potential to reveal the architecture of planetary
systems with periods of up to ∼10 years (Fulton et al. 2021, Rosenthal et al. 2021).

One long-term goal of the scientific community working on exoplanets is to detect and charac-
terize the atmospheres of a population of potentially Earth-like planets and, in particular, to search
for evidence of life.Characterizing the atmosphere of Earth-like planets is beyond the reach of cur-
rent facilities, but projects of ground based instruments such as PCS (Planetary Camera and Spec-
trograph) (Kasper et al. 2021) for ELT (Extremely Large Telescope), ANDES (ArmazoNes high
Dispersion Echelle Spectrograph) for ELT, and direct imaging space mission concepts [LUVOIR
(Large Ultraviolet Optical Infrared Surveyor) (https://asd.gsfc.nasa.gov/luvoir/resources/),
HabEx (Habitable Exoplanet Observatory) (https://www.jpl.nasa.gov/habex/documents/), or
LIFE (European Space Agency Large Interferometer For Exoplanets) (Quanz et al. 2021)] hope
to achieve this by 2050.

Measuring the mass of terrestrial planets to an accuracy of 20% or better is essential to inter-
preting direct imaging and atmospheric observations (Batalha et al. 2019). Additionally, detecting
Earth-like planets with RV measurements prior to the start of a future direct imaging mission
would substantially increase its yield (Crass et al. 2021). The RV technique is poised to play a
key role in the detection and characterization of Earth-like planets around Sun-like stars, but
we do not yet know if it can achieve the required accuracy. The Earth produces a velocity vari-
ation of the Sun of RV! = 9 cm/s, which we use as a standard unit. The latest generation of
spectrographs [e.g., ESPRESSO (Echelle SPectrograph for Rocky Exoplanets and Stable Spec-
troscopic Observations), EXPRES (EXtreme PREcision Spectrometer), NEID (NN-EXPLORE
Exoplanet Investigations with Doppler spectroscopy)] have demonstrated a precision of∼27 cm/s
or 3 RV! on a few nights. If the measurement noise were independent, then 200 measurements
would suffice to measure the mass of an Earth twin with 20% precision, but intrinsic stellar vari-
ability causes complex, temporally correlated RV signal of the order of at least 5 RV! (the RV of
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the Sun as measured with the HARPS-N (High Accuracy Radial velocity Planet Searcher for the
Northern hemisphere) spectrograph has a 22 RV! standard deviation). Characterizing Earth-like
planets requires better methods for mitigating stellar variability and instrument systematics. This
can be viewed as a particular instance of a general problem: detecting and characterizing periodic
signals in multivariate, unevenly sampled time series corrupted by complex noise.

The present work overviews the efforts undertaken to make Earth twins detectable. The RV
data products are presented in Section 2. We present an overview of the different challenges in
Section 3.We then present RV analysis in a recursive manner: Given summary statistics extracted
from raw data and a statisticalmodel of these, the question of how one detects planets and estimates
their orbital elements is discussed in Section 4. Given the summary statistics, the question of how
one builds a statisticalmodel of the data is treated in Section 5.How to exploit information in lower
data products to extract accurate RVs and useful summary statistics is discussed in Section 6.

2. DATA AND MODEL
2.1. Doppler Shifts
The RV of a star, its velocity projected onto the line of sight, can be measured due to the Doppler
effect. If a source emits a photon with wavelength λ0 and has a velocity v of modulus v relative to
an observer, then the wavelength of the photon received is given by

λ = λ0
1 + 1

c k · v
√
1 − v2

c2

, 1.

where · is the scalar product and k is the unit vector from the observer to the source (Einstein
1905).The spectrumof a star contains thousands of absorption lines, short intervals of wavelengths
for which photons are absorbed in the upper parts of stellar atmospheres. As the star moves, the
Doppler effect causes the apparent wavelength of spectral lines to change (see Figure 1). An

Figure 1
(a) Small portion of a spectrum in rest frame (red, dotted) and in observer frame (blue, solid). (b) Difference in
flux between the Doppler-shifted and rest frame spectra. For illustration, we show a large Doppler shift
typical of a binary star system. Abbreviation: v, relative velocity of the stars.
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Keplerian signal: RV
signal as a function of
time resulting from
the orbit of a planet, as
given in Equation 2
and shown in Figure 2

observer who acquires the spectrum of a given star multiple times can measure changes in the
apparent wavelength of each spectral line as a function of time, t. This maps to measuring RV(t ) ≡
k · v(t ) in Equation 1. For more details on the definition of RV, readers are directed to Lindegren
& Dravins (2003) and Lovis & Fischer (2010).

Measuring the RV from a spectrum has many steps, including the correction of instrumen-
tal effects. In this review, we start with the estimate of the true stellar spectrum, debiased from
instrumental effects, and transformed to be equivalent to what an observer at the Solar System’s
center of mass would see. The earlier steps of analysis are briefly presented in the Supplemental
Appendix.

2.2. Forward Model of Planetary Effects
An orbiting planet causes a reflex motion of the star, thus creating RV variations. More precisely,
the star and the planet periodically traverse elliptical orbits. The star’s RV projected onto the line
of sight, or RV, at time t depends on the planet’s mass and orbital parameters and is given by the
so-called Keplerian signal,

f (t;K ,P, e,ω,M0)=K [cos (ω + ν(t; e,P,M0)) + e cosω], 2.

where K, P, e, ω, and M0 are the velocity amplitude, the orbital period, the orbital eccentricity,
the argument of periastron, and the mean anomaly describing the motion of the star. The true
anomaly, ν, is an angle that parameterizes the position of the star on its orbit (see Murray &
Correia 2010).

The eccentricity of the ellipse is confined to [0, 1) for a bound system undergoing periodic
motion. Orbits with e ≃ 0 are nearly circular and can be well approximated by the leading terms
of a series expansion in themean anomaly.Orbits with e≥ 0.3 become obviously elongated and the
motion becomes noticeably uneven in time, typically leading to a sharp rise and slow fall (or vice
versa), as shown in Figure 2. Very high eccentricities (0.9 < e < 1 − R"/a, where R" is the stellar
radius and a is the mean star-planet separation) are very rare but can create numerical difficulties.
The signal amplitude depends on the mass of the star and the planet, as well as on the orbital

Figure 2
Radial velocity (RV) signature of a single planet. Each panel shows the RV signature over one orbital period for a planet with a given
orbital eccentricity e. All curves are computed with the same RV semiamplitude K, and all panels have the same y-axis scale.
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eccentricity, according to the formula

K =
(
2πG
P

) 1
3 m sin i

(m+M ) 23
1√

1 − e2
, 3.

where M is the stellar mass, m is the planet mass, G the gravitational constant, and i is the angle
between the plane in which the planet orbits and the plane perpendicular to the line of sight
(Perryman 2011). Equation 3 shows that the RV semiamplitude is proportional to m/P1/3: The
more massive the star, and the smaller and farther from its star a planet is, the more difficult the
planet is to detect.

Each observed star has a proper motion due to the motion of the star (and the Sun) around
the galactic center. On the timescale of RV observations, ∼1 to 20 years, this usually appears as
constant, in some cases as a linear trend that must be added to Equation 2. Furthermore,most Sun-
like stars host multiple planets (He et al. 2021). In principle, the planet-planet interactions cause
deviations from the Keplerian model, but for the vast majority of planetary systems, the motion
of the star can be well approximated over the timescale of RV surveys as the linear superposition
of the Keplerian orbit due to each planet. Hence, our nominal physical model for a time series of
RV measurements of a star hosting n planets with parameters (Kj, Pj, ej, ωj,M0 j)j = 1, . . . , n is

RV(t )= c0 + c1t +
n∑

j=1

f (t;Kj ,Pj , e j ,ω j ,M0 j ). 4.

The RV amplitude of planet j, Kj, is proportional to m sin i (see Equation 3). In the absence of
information on i, the planetary massm cannot be determined unambiguously. Constraints on i can
be obtained if the planet transits or, in the case of systems with multiple high-mass short-period
planets, due to detecting planet-planet interactions (e.g., Laughlin & Chambers 2001, Correia
et al. 2010, Nelson et al. 2016, Rosenthal et al. 2019).

When the data are acquired with different instruments, it is important to account for the fact
that theymight have different zero velocity references.Hence, if there arem different instruments,
c0 in Equation 4 should be replaced by

∑m
j=1 c

j
0χ j (t ), where χ j(t) = 1 if the measurement at t is

taken by instrument j and 0 otherwise.

2.3. Basic Model of Observed Data
To detect the variations due to planets, astronomers measure the RV of a given star at several
irregularly spaced epochs, usually from 20 to 1,000. Each star is only observable when the star is
high above the horizon, typically for only a few hours per night, and weather can prevent stars from
being observed. Furthermore, a star is typically observable for ∼4–8 months, as it must not be too
close to the Sun. Finally, most observatories support multiple science programs, so observations
on a given star might be interrupted for a period from hours to weeks.

Each RV measurement has a nominal uncertainty depending on the number of photons re-
ceived, as well as the properties of the star, spectrograph, and data reduction technique (Bouchy
et al. 2001). Astronomers typically assume independent Gaussian measurement noise at each time
ti, but in order to reduce the risk of underestimating uncertainties (e.g., unmodeled planets, in-
strumental noise, or stellar variability), an extra Gaussian noise term, often called jitter, is added
to the model (e.g., Ford 2006), leading to

y(t )=RV(t ) + ϵ(t ), and 5.

ϵ(ti )∼N (0, σ 2
ti + σ 2

J ), 6.
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Figure 3
(a) Radial velocity (RV) measurements of the star HD 114783. The gray curve shows the maximum
likelihood 2-planet model. (b) RV residuals relative to the 2-planet model above. Error bars reflect reported
measurement uncertainties (σti ) and do not reflect the 3 m/s of jitter (σ J). Points are color-coded to indicate
whether they are before or after an instrument upgrade that resulted in an unknown RV offset. Data are
from Rosenthal et al. (2021).

where RV(t ) is defined in Equation 4 and the value of the assumed noise for the measurement
made at ti, ϵ(ti), follows a Gaussian distribution of variance σ 2

ti + σ 2
J . Figure 3 shows an example

of a two-planet fit on the RV data of HD114783.

2.4. Other Processes Affecting Radial Velocities
The model in Equations 4–6 has been extensively used to estimate the masses and orbital param-
eters of exoplanets (e.g., Wright & Howard 2009, Bonomo et al. 2017). For favorable stars, it is
useful for analyzing RV signals with amplitudes greater than 3–10 m/s = 33–110 RV!, enough to
characterize short-period planets with masses greater thanNeptune.However, detecting less mas-
sive planets requires very precise observations and/or many observations. Accurately interpreting
their RV signatures requires greater sophistication because multiple potential noise sources (listed
below) become relevant and require more sophisticated models for ϵt.

2.4.1. Stellar effects. The principle of Doppler spectroscopy is to measure the velocity of a
light source with respect to an observer, so if the hot gas in different parts of the stellar surface has
different brightness and velocities, it has different impacts on the data. Several physical processes
on the surface of stars have an RV signature.

Convection near the surface of the star creates outward and inward motion of the gas. This
creates a pattern of evolving convection cells. This process, referred to as granulation, has
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CCF Mask: function
of the wavelength
equal to unity except
on wavelength ranges
corresponding to
spectral lines (see Pepe
et al. 2002)

Ancillary indicator:
time series of N scalars
extracted from time
series of N spectra,
summarizing a shape
variation of the
spectrum

an effect on RV measurements that can be described as a stationary noise with a Lorentzian or
super-Lorentzian power spectrum (Harvey 1985, Dumusque et al. 2011b, Cegla et al. 2019, Guo
et al. 2022). Granulation effects on the RV have been simulated in detail (Meunier et al. 2015,
Cegla et al. 2019, Dravins et al. 2021).

Local enhancement of the magnetic field at the surfaces of stars might result in regions
darker or brighter than their surroundings, called spots and faculae, respectively (Schrijver 2002,
Strassmeier 2009). This creates an imbalance in flux from the approaching and receding sides of
the rotating star, and reduces upward convection,which has an additional net RV effect.The effect
of magnetic activity on RV has been studied by Saar & Donahue (1997), Dumusque et al. (2011a),
andHaywood et al. (2016) and simulated by Lagrange et al. (2010), Boisse et al. (2012),Dumusque
et al. (2014), and Gilbertson et al. (2020). Active regions grow in size rapidly and disappear more
gradually. The visible stellar surface is similar but not identical to itself after one stellar rotation,
which results in quasiperiodic RV variations.

The rate of appearance, size and location of spots and faculae varies over a ∼10 year timescale.
This affects the amplitude of short-term RV variations due to magnetic activity [up to 25 m/s
(Lovis et al. 2011)] and changes the net RV effect over these timescales. Cegla (2019) andMeunier
(2021) provide reviews of additional stellar processes that affect the RV (see also the Supplemental
Appendix).

2.4.2. Other effects. Residual instrumental systematics and absorption of certain wavelengths
by Earth’s atmosphere can result in spurious RV signatures of the order of a few RV! (e.g., Artigau
et al. 2014, Bertaux et al. 2014, Cunha et al. 2014, Smette et al. 2015). As these effects are not
amenable to a concise statistical description, we refer the reader to Halverson et al. (2016) and
Cretignier et al. (2021) as well as the Supplemental Appendix.

3. STATISTICAL FRAMEWORK
3.1. Model of Radial Velocity
The planets only affect the Doppler shift, which must be estimated and converted to RVmeasure-
ments. We can express the RV extracted from the spectra, R̂V(t ), as the sum of RV(t ), the RV at
time t due to a motion of the center of mass of the star (in particular due to planets); RVcontam(t ),
the RV caused by stellar variability and instrument systematics; and ϵ(t), the inevitable photon
noise. Then, we have

R̂V(ti )=RV(ti ) + RVcontam(ti ) + ϵ(ti ), and 7.

RV(ti )=RVplanets(ti ) + RVg(ti ), i = 1, . . . ,N , 8.

where RVplanets(ti ) and RVg(ti ) are, respectively, induced by planets and by other gravitational
effects, such as companion stars or proper motion in the galaxy. In Equation 4, RVg(t) is defined
as RVg(t) = c0 + c1t.

In order to interpret RVmeasurements properly,wemust adequatelymodel RVcontam(t ).Unlike
planetary RV signals, RV variations induced by the star and instrument do not have a constant
frequency, phase, and amplitude (see Section 4.4), and stellar processes and systematics not only
cause a Doppler shift in the spectrum but also cause the shape of the spectrum to vary with time
(see Figure 4) and do not affect all lines identically (Wise et al. 2018). The shape variations of the
spectra can be used to predict the associated RVcontam signal, either in a machine learning approach
with a training set of spectra, or in a statistical framework. In the following section, we show how
these ideas can be expressed in a general statistical formalism.
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Figure 4
Schematic cross-correlation function (CCF). The scalar product of a mask and the spectrum as a function of the wavelength offset
between the two, which can be visualized as an average spectral line. (a) The blue curve shows the CCF of the quiet stellar surface, and
the red curve shows the CCF when a dark spot is present on the surface. (b) The CCF when the spot is present has a different full width
at half maximum (FWHM) than the CCF of the quiet stellar surface and is asymmetric. The difference between the average position of
the lower and upper parts of the CCF, known as bisector inverse slope (BIS) (Queloz et al. 2001), is nonzero. As the star rotates, the spot
CCF will have a different Doppler shift: The bump in the red CCF moves from left to right, which also causes the shape of the spectra
to change with time, in particular the BIS and FWHM. The spot in this figure covers 20% of the surface, whereas spots on the sun
cover ∼0.01–0.1% of the surface.

3.2. Challenges of Radial Velocity Data Analysis
Our understanding of exoplanets can be thought of as a language where each planet is a word,
and each planetary system is a sentence. As in information theory (Shannon 1948), our knowledge
of this language comes through a noisy and biased communication channel. In the long term, we
want to understand the full language, but first we must learn to interpret each sentence: What
planets orbit a given star? The Bayesian formalism is well suited to describe such situations, and
indeed, it offers a compact way to present the different problems of RV data analysis (see also
Sandford et al. 2019).

In our analogy, the message received is the raw data. The most fundamental data product is
the number of electrons counted on each CCD detector of the spectrograph.1 The sentence to
be decoded is represented by vectors θθθ and ηηη. The vector θθθ = (θθθ1, . . . ,θθθn) represents the planetary
system, where n is the number of planets (which is also a variable) and θθθ j the orbital elements
of planet indexed by j (see Equation 2). The vector ηηη includes all other relevant nonplanetary
parameters, such as an offset, a drift, the stellar rotation period, noise amplitude, and timescale.

Let us denote the lowest-level data by D. Our goal is to obtain a meaningful joint posterior
distribution for ηηη and θθθ knowing D, but the latter is corrupted by hundreds of instrumental ef-
fects, and computing the posterior directly is currently unmanageable. To be usable, D needs
to be reduced to an estimate of the RV time series R̂V = (R̂V(ti ))i=1,..,N and ancillary indicators
I = (I j (ti )) j=1..p,i=1..N , also time series of length N, summarizing the variations of the shape of the

1We could go even further and consider data from an entire survey of spectral time series of different stars as a
population using a hierarchical model to better constrain instrumental effects and potentially stellar variability.
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Reduced data: vector
y concatenating the
RV time series and
ancillary indicators,
extracted from the raw
data D

Likelihood:
probability
distribution of the
reduced data y
knowing the model
parameters θθθ and ηηη;
denoted by p(y | θθθ,ηηη)

spectrum (see Figure 4b):

p(θθθ,ηηη | D) ≈ p(θθθ,ηηη | I, R̂V) = p(I, R̂V | θθθ,ηηη)p(θθθ,ηηη)
p(I, R̂V)

= p(I,RVcontam + ϵ | θθθ,ηηη)p(θθθ,ηηη)
p(I, R̂V)

. 9.

The last equality comes from the fact that RV(t ) depends deterministically on θθθ and ηηη. Below, we
denote the reduced data as y = (R̂V, I), potentially with I = ∅. We refer to p(θθθ,ηηη) as the prior
distribution and p(y | θθθ,ηηη) as the likelihood. In some cases, to emphasize that the likelihood is
restricted to models with exactly n planets, we denote the likelihood by p(y | θθθ,ηηη, n).

Based on Equation 9, we can identify several choices to be made: (a) We must choose a re-
duction method transforming the observational raw data into summary statistics R̂V and I that
estimate the RV and provide useful indicators of spectral variability. (b) We must choose a model,
that is, a likelihood p(y | θθθ,ηηη) and prior distribution p(θθθ,ηηη). The key difference with step a is that
the effect of potential planets is now explicitly included in the likelihood definition. (c) We must
choose a decision method for confidently claiming the detection of planetary signals and estimat-
ing their masses and orbital elements for a given model or a collection of models. In the Bayesian
formalism above, the decision is based on the posterior distribution p(θθθ,ηηη | y) and must include a
discussion of its sensitivity of the result to the choices made in a and b. The Bayesian formalism
only serves here to compactly present points a–c and is not always used in practice. Points a, b, and
c are, respectively, the topics of Sections 4, 5, and 6 and must be completed by (d) a set of practical
and reliable numerical methods for performing the necessary calculations. Numerical aspects are
highlighted when relevant.

4. DETECTING PLANETS AND ESTIMATING THEIR
ORBITAL ELEMENTS
4.1. Likelihood
Suppose that we have at our disposal an RV time series, a few ancillary indicators, and a statistical
model of them. We want to determine how many planets can be confidently detected and what
their orbital elements are.

In Section 3, we presented the different steps of exoplanet detection, particularly a likelihood
function describing the distribution of data y as a function of the model parameters θθθ and ηηη,
describing, respectively, the planets and all other effects. The likelihood is commonly assumed to
be Gaussian:

L ≡ p(y | θθθ,ηηη) = e− 1
2 [y−g(t;θθθ,ηηη)]TV(ηηη)−1[y−g(t;θθθ,ηηη)]

√
(2π )N |V(ηηη)|

, 10.

where |V(ηηη)| is the determinant of the covariance matrix V(ηηη). We treat the case where y is a
concatenation of RV and ancillary indicator time series in Section 5. Using the model in Equa-
tions 4–6, θθθ = (Kj ,Pj , e j ,ω j ,M0 j ) j=1,..,n, g is the sum of Keplerians and an affine function (see
Equation 4), and η = σ J, c0, c1; V is diagonal with ith element σ 2

ti + σ 2
J . If RVcontam is nonzero, it

might be modeled by a nondiagonal matrixV(ηηη) and/or a linear model of stellar activity indicators
in g. We return to how to specify further g(t;θθθ) and V(ηηη) in Section 5.

Assessing the statistical significance of a putative RV signal is remarkably challenging. We
review three broad approaches: periodogram-based methods (Section 4.2), Bayesian model com-
parison (Section 4.3), and approaches that do not aim to specify an explicit model for nuisance
signals but aim to obtain robust detections (Section 4.4).
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4.2. Planet Detection via Periodograms
The decision on the planets detected and their orbital elements should make use of the full pos-
terior of orbital elements or, in a frequentist setting, the full likelihood. However, computing the
posterior distribution of elements given in Equation 9 or exploring exhaustively the parameter
space to evaluate the likelihood is only possible with the latest numerical tools, and it is computa-
tionally intensive. Realistic data sets often have millions of local likelihood maxima. Historically,
the exploration of likelihood modes was done with periodogram methods, which are still exten-
sively used due to their speed, numerical stability, and ability to unveil the dominating frequencies
in the data.

4.2.1. Definition. Given a time series, periodograms consist in comparing the log-likelihoods
of two models: a base model H0 and a model Kω including H0 plus a periodic component at fre-
quency ω, for a grid of frequencies. In periodograms, the Keplerian model is often replaced with
an approximation that yields a convex model once conditioned on a small number of parameters.

The first and simplest case is the Lomb–Scargle periodogram (Lomb 1976, Scargle 1982),
where the base model H0 is Gaussian white noise, and Kω is the same white noise plus a sine
function. Both H0 and Kω are described with likelihoods such as that in Equation 10, with

H0 : g = 0, 11.

Kω :g(A,B,ω) = A cosωt + B sinωt, 12.

andV = diag((σ 2
i )i=1,...,N ) in bothmodels. InKω,g is the exact RV signature of a planet on a circular

orbit (e = 0) with orbital period P = 2π/ω and is a good approximation when eK ≤ σRV,ideal. For a
given ω, maximizing the likelihood with respect to A and B is equivalent to minimizing the sum
of squares, and it is a linear problem. The Lomb–Scargle periodogram is, then, the difference of
the log-likelihoods of models H0 and Kω as a function of ω.

The principle of the periodogram can be extended with more complex definitions of H0 and
Kω and/or by interpreting the periodogram in a Bayesian context; the null hypothesis can be com-
plexified (e.g., Baluev 2008), the periodic signals might be chosen as nonsinusoidal (e.g., Baluev
2013b, 2015), and the assumption that the noise is uncorrelated can be dropped (e.g., Delisle
et al. 2020a). Figure 5 shows an example of the application of different types of periodograms. A
comprehensive list of existing periodograms is given in the Supplemental Appendix.

4.2.2. Periodogram-based model comparison. The usual way to determine whether a pe-
riodogram supports the detection of a periodic signal is to compute p(maxω P (ω) | H0), the
probability distribution of the maximum value of the periodogram, maxω P (ω), under a null hy-
pothesis,H0. We compute the maximum of the periodogram for the data to be analyzed, Pd, on a
grid of frequencies,) = (ωi)i = 1..N, and define a false alarm probability (FAP) as p(maxω∈) P (ω) !
Pd | H0).

The FAP is most robustly estimated by generating signals under the null hypothesis, and the
FAP estimated is the fraction of simulations with a maximum peak greater than Pd. This is com-
putationally expensive, as it requires ∼n simulations for a precision of 100/n% on the FAP. Since
astronomers often aim for a FAP of <0.1% to 0.01%, n > 104 is needed.

A semianalytical approach allows one to simulate a reduced number of signals and to fit a
generalized extreme value distribution (Süveges 2014) to the empirical distribution. The an-
alytical approach approximates the FAP thanks to the theory of extreme values of stochastic
processes using the Rice formula (Baluev 2008, 2009, 2013a), even for complex periodic shapes
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Figure 5
(a) Generalized Lomb–Scargle periodograms of the time series of two ancillary indicators: bisector inverse
slope, *BIS (Queloz et al. 2001), and ancillary indicator derived from each spectrum, *logR′

HK (Noyes
1984), and radial velocity (RV) time series of the ESPRESSO (Echelle SPectrograph for Rocky Exoplanets
and Stable Spectroscopic Observations) data of the star TOI 178 (Leleu et al. 2021). The time series of BIS,
*logR′

HK, and RV are shown in Figure 7. Periodograms are expressed in reduction sum of squares (RSS),
normalized—that is, the difference between residual sum of squares after fitting the base model H0 and the
model including a periodic component Kω, divided by that of the H0 residuals (see Equations 11 and 12).
The periodogram presents peaks around a period of 1 day, due to the repetition of observations every 24 h ±
2–3 h (Dawson & Fabrycky 2010). All three time series present power at ∼40 days, due to stellar rotation.
(b) In orange, periodograms of the RV time series when the *logR′

HK and *BIS are included as linear
predictors in the H0 and Kω models. This damps the amplitude of the rotational signal, and a peak at 3.2 days
emerges. The red and light brown curves correspond to adding a correlated noise Gaussian model in the
covariance with a Gaussian kernel of amplitude 1 m/s and timescale τ of 2 or 10 days. Adding correlated
noise models always damps power at low frequencies (for details, see Delisle et al. 2020a).

(Baluev 2013b, 2015) or correlated noise (Delisle et al. 2020a). These analytical approximations
are very accurate in practice if at least a few tens of data points are available (Süveges et al. 2015).

4.2.3. Pros and cons. Periodograms are fast and numerically stable, and the advent of accurate
analytical estimates of the FAP, even in the case where signals are searched for simultaneously
(Baluev 2013a) or with Gaussian correlated noise models (Delisle et al. 2020a), further simplifies
their use. They provide a useful visual diagnostic of the frequency content of the signal. However,
they have drawbacks.

First,most periodograms scan for the orbital period of one planet at a time. Formultiple-planet
systems, periodograms can be applied iteratively,first to identify themost conspicuous planet from
the data, then to look for a ( j + 1)th planet in the residuals of the best-fit model using j planets.
However, periodograms are sensitive to aliasing or spectral leakage (Dawson & Fabrycky 2010).
Aliases of different signals can add destructively or coherently, so even if the highest peak of a
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periodogram is statistically significant, its period may not match that of any physical signal. This
can be avoided by searching for multiple signals simultaneously (Ford et al. 2011, Baluev 2013a).
A brute force search for two signals at once is expensive, and allowing for searching more rapidly
becomes prohibitive. Other approaches based on sparse recovery allow one to search for several
signals at low computational cost (Hara et al. 2017).

Stellar activity causes low-frequency signals that can be mistaken for planets. It is better not
only to search for several planets simultaneously but also to fit the parameters of stellar activity
and planetary signals jointly. As discussed in Section 4.1, stellar variability is often modeled as cor-
related RV noise using a nondiagonal covariance matrixV that requires additional parameters that
must be inferred from the data.This means that the log-likelihood is nonconvex for a given orbital
period. Marginalizing (or even optimizing) over the kernel parameters dramatically increases the
computational cost of periodograms, although it can be done (Delisle et al. 2018).

4.3. Bayesian Approach to Planet Detection
A more principled approach to comparing models with different numbers of planets is to directly
use the Bayesian formalism of Equation 9. The first method consists in computing the marginal
likelihood, or the Bayesian evidence, of the n-planet model.We let ,n denote the parameter space
of all possible combinations of n planets, and

p(y | n) =
∫∫

,n

p(y | θθθ,ηηη, n)p(θθθ,ηηη | n) dθθθ dηηη, 13.

where p(y | θθθ,ηηη, n) is given by Equation 10. If one can compute the Bayesian evidence for models
with n+ 1 and n planets, then their ratio gives the Bayes factor (Kass & Raftery 1995). If the noise
model is correct, then when one considers more planets than are justified for the given data set,
the evidence decreases as more planets are added. For instance, when the priors on the different
parameters are considered independent, the prior term decreases geometrically with the number
of planets but the model does not result in a significantly higher likelihood. Bayesian model com-
parison for exoplanet detection was suggested by Gregory (2005a, 2007), Ford & Gregory (2007),
Tuomi & Kotiranta (2009), Ford et al. (2011), and Díaz et al. (2016), and it has become one of the
primary methods for establishing the statistical significance of detections.

Astronomers compute the Bayes factors for increasing n, starting at n= 0, until they are below
a certain threshold. The literature contains various heuristics for the interpretation of Bayes fac-
tors (e.g., Jeffreys 1961). Unfortunately, following guidelines blindly can be very dangerous. For
important scientific discoveries, astrophysicists routinely demand that a frequentist test rejects a
null hypothesis test with a p-value of ∼10−3 or even ∼10−7 before publishing a result. In such
situations, a Bayesian would demand a posterior odds ratio (i.e., prior odds ratio times the Bayes
factor) exceeding 103 or even 107 before publishing a discovery.

Bayes factors compare different numbers of planets. It is insufficient to claim a confident de-
tection of a planet, which requires knowledge of the orbital elements to a certain accuracy: There
is little value in a planet detection without estimates of its size and period. Well-defined orbital
elements correspond to a sharp posterior mode,whose existence can be checked with the posterior
samples of orbital elements. This can be done with periodograms, or directly with the posterior
distribution of orbital elements if it can be estimated reliably. If so, the detection criterion can be
constructed to convey information about the planets’ location. For instance, a detection claim can
be defined as “there is a planet with orbital elements in ,,” where , is a region of the parameter
space (Brewer & Donovan 2015, Handley et al. 2015, Hara et al. 2022c). In that case, the crite-
rion minimizing the number of missed detections for a certain tolerance to false ones as well as
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maximizing a certain utility function is the false inclusion probability (FIP) ( Hara et al. 2022a),
i.e., the probability of not having a planet with orbital elements in ,.

A Bayes factor strongly favoring an (n + 1)-planet model over an n planet model does not
necessarily imply that there must be an (n + 1)th planet, if the physical or statistical models used
are inaccurate. It is important to check the dependence of the results on the adopted model.

A significant barrier to more routine adoption of Bayesianmodel comparison is the difficulty of
computing the Bayesian evidence accurately. Nelson et al. (2020) compared different methods to
compute the Bayesian evidence and found that the agreement between them goes from a factor of
∼1 for 0 planet models to∼102 for 2 planet models. Additionally, the observed dispersion of Bayes
factor estimates from multiple runs of the same method was often significantly greater than the
reported uncertainties for some methods. As a consequence, they recommend evaluating the nu-
merical uncertainty based on several independent runs.When a fast estimate is needed, a Laplace
approximation is advised over heuristics such as the Akaike information criterion or Bayesian
information criterion. Numerical details are discussed further in the Supplemental Appendix.

4.4. Qualitative Approach to Planet Detection
The methods presented in Sections 4.2 and 4.3 rely on a complete model of the signal. All the
alternative hypotheses are made explicit and are compared with one another. This gives meaning-
ful statistical significance indicators and measures of uncertainty. However, if none of the noise
models capture stochastic variation in the data, the inferences are unreliable. A second approach
consists, in the formalism of Equation 8, of extracting meaningful information about RVplanets(t )
without explicitly specifying a model for RVcontam(t ). Such approaches, which are the object of this
section, also might serve another purpose: diagnosing unanticipated effects.

On the timescale of RV observations, unless there are strong gravitational interactions be-
tween the planets, planetary signals are purely periodic, unlike stellar and instrumental signals.
To diagnose whether a signal is truly periodic, Schuster (1898) and Mortier & Collier Cameron
(2017) compute classical periodograms by adding one point at a time and checking that the ampli-
tude of the peak corresponding to the candidate planet increases steadily. Alternatively, Gregory
(2016) and Hara et al. (2022b) use the Bayesian framework described in Section 4.3 and add an
apodization factor to the Keplerians: The model of Equation 2 is multiplied by a Gaussian term
e−(t−t0 )2/(2τ2 ), where t0 and τ are free parameters. If the signal is consistent, the probability that τ

exceeds the total observation time span should be high.
Another line of work consists of searching for periodic signals in the data, without specify-

ing a parametric form. Zucker (2015) suggests using a Hoeffding test. Zucker (2018) applies the
formalism of distance correlation to evaluate the statistical dependence of a cyclic variable with
period P and the data, and this is further explored by Binnenfeld et al. (2021), who aim to find
RV variations that are statistically independent from the spectral shape variations. This work uses
spectral information through all pairwise distances between two spectra measurements and shows
promising results.

4.5. Parameter Estimation and Uncertainty Quantification
Once the dominant local modes of the likelihood or posterior have been identified by a
periodogram analysis or with an random sampler with good convergence properties, more com-
putationally intensive methods can be employed for finer parameter estimation in this region.
The posterior distribution of the elements can be evaluated with Markov chain Monte Carlo
(MCMC) algorithms (Ford 2005, Gregory 2005b). Brute-force random walk MCMC requires
carefully chosen proposal distributions for systems with up to four planets (Ford 2006). Modern
studies typically use ensemble samplers (Foreman-Mackey et al. 2013,Nelson et al. 2014), adaptive
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Metropolis sampling (Delisle et al. 2018), Hamiltonian and/or geometric MCMC samplers (e.g.,
Papamarkou et al. 2021), or premarginalization with a Laplace approximation of the evidence over
the linear parameters (Price-Whelan et al. 2017). In each of these methods, the orbital periods are
initialized at multiple values very near the dominant signals found by the periodogram analysis.
The results are generally reliable if the likelihood is dominated by a single mode and the initial
estimate of the period falls into that mode. Some nested samplers have shown good performances
in blindly locating different likelihood maxima (Brewer & Donovan 2015, Faria et al. 2018).

5. MODEL: SPECIFYING THE PRIORS AND LIKELIHOODS
Different choices of priors and likelihoods have a very strong impact on the detection of planets.
Priors have a strong influence both on the detection and orbital elements estimation of low am-
plitude signals, where the likelihood is less constraining (Hara et al. 2022c). To avoid priors that
are unrealistically diffuse, a possibility is to use well tested reference priors and to exclude orbital
configurations that are unstable (Tamayo et al. 2020, Stalport et al. 2022). A discussion of the in-
fluence of priors and a list of commonly used ones is provided in the Supplemental Appendix,
along with a more detailed presentation of the concepts used in the definition of the likelihood,
which is outlined in the current section.

We have seen in Section 2.4 that RV measurements are contaminated by several stellar and
instrumental processes (RVcontam in Equation 8).The first family of methods to deal with these sig-
nals uses the ancillary indicators to predict RV variations based on the indicators. In the formalism
of Section 3.2, this consists of building a likelihood p(RV | I,D).Historically, the first method was
to represent RV variations induced by the instrument and star as a linear combination of the ancil-
lary indicators (Queloz et al. 2001, 2009; Dumusque et al. 2017). The efficiency of this method is
also limited due to the fact that there can be phase shifts between activity-induced changes in RVs
and ancillary indicators, reducing the correlation (Santerne et al. 2015, Lanza et al. 2018, Collier
Cameron et al. 2019). To mitigate this issue, Simola et al. (2022) use a so-called change point de-
tection algorithm to diagnose changing correlation patterns between the ancillary indicators and
the RV. However, carefully selected indicators can be used as linear indicators (see Section 6.2).

Another way to represent the signals corrupting RVs is to represent them as correlated Gaus-
sian noise. One can still follow the formalism of Section 4.1, but now specifying the matrixV with
a kernel, which gives the correlation between the value of the stellar RV signal at t and t + *t.
A list of common kernels is provided in the Supplemental Appendix. The correlation of RVs
due to stellar variability can be expressed as a sum of the correlations due to each of the processes
described in Section 2.4 (see Figure 6).

Aigrain et al. (2012) showed that when nearly contemporaneous photometric and RV obser-
vations of a star are available, the effect of one stellar spot on RV can be predicted through the
photometric flux and its derivative. For most targets, continuous photometric measurements are
unavailable. One can estimate the derivative of the flux at any time using Gaussian processes
(GPs). These are stochastic processes G(t), a function of a variable t such that for any n values of
t, t1, . . . , tn, (G(t1), . . . ,G(tn )) follows a multivariate Gaussian distribution. In general, t can be a
vector, but for our purposes, we define it as the time t. This implies that the GP is defined by two
quantities: its mean,m(t), and kernel, k(t, t′), equal to the covariance of G(t) and G(t′) (Rasmussen
& Williams 2005).

Aigrain et al. (2012) use photometric data to predict the RV variation. We can go a step fur-
ther and analyze RV and ancillary indicators simultaneously by building a likelihood p(RV, I | D),
typically in the GP framework. RVs and ancillary indicators are expressed as linear combinations
of a latent GP and its derivatives (Rajpaul et al. 2015, Gilbertson et al. 2020, Gordon et al. 2020,
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Figure 6
Kernel functions: functions of the time lag *t between two observations. The covariance matrix V in Equation 10 is such that its
element i, j is a sum of kernel functions evaluated in *t = ti − tj, where ti and tj are the epochs of the ith and jth observations,
respectively. Each color corresponds to a different family of kernels: quasiperiodic (QP) (Aigrain et al. 2012, Haywood et al. 2014),
quasiperiodic cosine (QPC) (Perger et al. 2021), stochastic harmonic oscillator (SHO) (Foreman-Mackey et al. 2017), and Matérn
5/2 (Foreman-Mackey et al. 2017, Gilbertson et al. 2020). Each family has several parameters, including an amplitude, a timescale, and,
for all but Matérn 5/2, a period. They also have shape parameters, and plain, dashed, and dotted lines correspond to different values of
these shape parameters. The periods are taken as 25 days, close to the Sun’s rotational period, and all kernels are normalized so that
they are equal to 1 in *t = 0. These different kernels model different phenomena (see Section 2.4.1). The QP kernel is well suited to
represent stellar rotational effects due to convective blueshift inhibition with various stellar inclinations. QPCs model the fact that spots
appear preferentially on stellar longitudes with a 180° phase shift in Sun-like stars (Borgniet et al. 2015, Spergel et al. 2015). SHO
kernels take negative values; this type of anticorrelation arises due to the breaking of imbalance of flux of the approaching and receding
limbs, and certain parameter values correspond to a super-Lorentzian power spectral density used to model granulation (Foreman-
Mackey et al. 2017, Gilbertson et al. 2020). Matérn 5/2 kernels are efficient for modeling RV induced by spots and faculae with a
lifetime lower than the rotation period (Gilbertson et al. 2020). Explicit kernels’ expressions and values of the parameters are given in
the Supplemental Appendix.

Barragán et al. 2022, Delisle et al. 2022). Since G(t + *t ) ≈ G(t ) + Ġ(t )*t, using the derivative
can account for small phase shifts between RV and indicators. The data y in Equation 10 are
then the concatenation of the RV vector and ancillary indicators. For example, this framework
can be used to model simultaneously the RVs derived in different spectral bands (Cale et al. 2021).
Camacho et al. (2022)model the RV and ancillary indicator time series in aGP regression network.
It allows, in particular, consideration of noise with heavy tails and offers ways to account for non-
stationarity. Figure 7 shows an example of RV and ancillary indicators modeled simultaneously
with GPs.

Evaluating the likelihood in Equation 10 for certain values of the parameters requires the
log determinant of V(ηηη) and computing [y − g(t;θθθ)]TV−1(ηηη)[y − g(t;θθθ)]. With standard algo-
rithms the computational cost scales as O(N 3) with the size N of the data set y, and it becomes
prohibitive for N " 103. This prevents using many indicators on stars with hundreds of points,
or analyzing the tens of thousands of RV measurements on the Sun. Fortunately, for cer-
tain choices of the kernel, the covariance matrix has a semiseparable expression, and then the
computational cost scales asO(N) (the celerite framework of Foreman-Mackey et al. 2017). Sim-
ilarly, TemporalGPs.jl (https://github.com/JuliaGaussianProcesses/TemporalGPs.jl) allows
forO(N) computation of a broad class of 1D kernel functions in Julia. The celerite framework is
generalized by Delisle et al. (2020b) to the S+LEAF framework, which models covariances as a sum
of semiseparable and LEAF matrices (https://gitlab.unige.ch/Jean-Baptiste.Delisle/spleaf ).
Quasiseparable kernels provide even greater flexibility for modeling multivariable time series
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Figure 7
Gaussian process (GP) regression applied to the time series of radial velocity (RV), and ancillary indicators *BIS (Queloz et al. 2001)
and *logR′

HK (Noyes 1984) index of 46 measurements obtained on the star TOI 178 with the ESPRESSO (Echelle SPectrograph for
Rocky Exoplanets and Stable Spectroscopic Observations) instrument (Leleu et al. 2021). Each of the three time series yi(t), i = 1, 2, 3,
is represented by a model yi (t ) = αiG(t ) + βiĠ(t ) + ϵm(t ) + ϵJ(t ). The GP G has a stochastic harmonic oscillator kernel (Foreman-
Mackey et al. 2017) with three parameters, fitted with the S+LEAF package (Delisle et al. 2022). The processes ϵmi (t ) and ϵJ

i (t ) represent
the measurement error and jitter. We represent with a brown line the mean of the posterior predictive distribution for each time series,
and the shaded yellow areas represent ±1 standard deviation of αiG(t ) + βiĠ(t ). The purple curve represents the variations predicted
by the best-fit Keplerian model for the planet, whose presence is confirmed by transits (Leleu et al. 2021). Other abbreviations: BIS,
bisector inverse slope; *logR′

HK, ancillary indicator derived from each spectrum.

(tinygp) (https://tinygp.readthedocs.io/en/stable/index.html). Delisle et al. (2022) show that
if RV and ancillary indicators are linear combinations of a GP G(t) and its derivatives, and the
covariance of G(t) has an S+LEAF form, the computation of the likelihood of the augmented data
is still O(N) (https://gitlab.unige.ch/Jean-Baptiste.Delisle/spleaf ).

The merits of the different noise models can be evaluated through Bayesian model compar-
ison (see Section 4.3) (e.g., Ahrer et al. 2021, Suárez Mascareño et al. 2021, Faria et al. 2022);
alternatively, Bayesian model averaging can be used (Hara et al. 2022a).

6. ANALYSIS METHODS: DEEPER LEVELS
So far, we have seen different methods to detect planets and estimate their orbital elements given
priors and likelihood in Section 4. We have seen how the model can be built based on a certain
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reduction of the data in Section 5. We now present techniques to extract physical information
from the spectra.

Our goal is to identify conceptual similarities between different methods, rather than to assess
their performances. While the community has begun to compare methods (Zhao et al. 2022),
proper evaluations are challenging since one does not know the true RV for real stars due to
potential undetected planets (except for our Sun; see Collier Cameron et al. 2019, Dumusque
et al. 2021, Lin et al. 2022).

6.1. Estimating Radial Velocity
For a fixed stellar spectrum, the RV is well defined and can be extracted from the spectrum using
multiple techniques described below. However, at the sub-m/s (or a few RV!) level, the shape of
the spectrum changes, so there is no model-independent definition of RV, and each method to
estimate it relies on more or less explicit assumptions. Depending on how this shape change is
modeled, the estimate of the Doppler shift changes.

Three main families of methods for extracting the velocity in each spectrum separately are in
use. As discussed in Section 3, the historic method consists of cross-correlating the spectrum with
an idealized mask (Baranne et al. 1979, Pepe et al. 2002). Denoting by f (λ) the flux as a function
of the wavelength /, the cross-correlation function (CCF) is

CCF(*λ) = f ∗ Mask(*λ), 14.

where ∗ is the convolution operator. This method can be viewed as computing an average line
shape. Each line contributes to improving the signal-to-noise ratio (SNR) but also contributes a
bias since the true line wavelengths are unknown. Additionally, the CCF loses information about
differences in shapes of each line. Often, many lines are excluded from the CCF mask to reduce
contamination of lines likely to contribute significant bias. Alternatively, Lienhard et al. (2022)
proposes a least-square deconvolution technique to estimate a common spectral line profile.

A second approach, template matching, consists of measuring the RV based on a template
or model spectrum and a Taylor expansion for the spectrum as a function of velocity (Connes
1985, Bouchy et al. 2001, Anglada-Escudé & Tuomi 2012, Astudillo-Defru et al. 2015, Jones et al.
2020). Related work has been done by Cretignier et al. (2022). This approach is based on the
approximation

f (λ) ≃ f0(λ) +
RV
c

d f0
d log λ

(λ), 15.

where f 0(λ) is a reference spectrum and c is the speed of light. Both the CCF and template
matching approaches aim to reduce the impact of stellar variability by careful selection of
lines/wavelengths for inclusion but lack a mechanism to recognize stellar variability. Some au-
thors measure the RV of each line (or ∼2 Å chunk of the spectrum) separately (Dumusque 2018)
and compute a weighted average RV, or they do independent RV estimates in several bandwidths
(Feng et al. 2017, Zechmeister et al. 2018). The rationale is to disentangle signals that affect all
wavelengths identically (planet candidates) from other signals.

A third approach builds a forward model of the spectrum,

f (λo) =
[
f0(λbc) + RV

c
dfo

d log λ
(λbc)

]
T (λo) ∗ IP(λo), 16.

where f (λ0) is the spectrum in the observer frame; λbc(t ) = λo{1 + vbc(t )/c}/
√
1 − v2

bc(t )/c2 is the
wavelength in a frame that accounts for vbc(t), the known motion of the observatory relative to the
Solar System barycenter (the barycentric correction); T(·) is an atmospheric transmission profile;
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and IP(·) is the instrument response. Variations on forward modeling have focused on telluric
effects (Butler et al. 1996,Hirano et al. 2020) or on stellar variability (Bedell et al. 2019,Gilbertson
et al. 2020, Jones et al. 2020). Ongoing research is developing computational tractable approaches
for including both simultaneously (e.g., the StellarSpectraObservationFitting Julia package;
https://github.com/christiangil/StellarSpectraObservationFitting.jl).

Asmethods becomemore sophisticated, the estimation of the velocity and fitting of the spectral
shape tend to be done simultaneously on the time series of spectra. In principle, this mitigates the
chance that the Doppler shift is contaminated by shape changes and uses temporal structure to
further constrain activity.

6.2. Estimating Nuisance Radial Velocity Signals
To put Equation 9 into practice, one must specify a statistical model for p(I,RVcontam | θθθ,ηηη). First,
one chooses I, the method of dimensional reduction, and then a form for the likelihood that de-
scribes I and RVcontam. Several studies have explored a simple linear model where the nuisance
signal is a linear combination of indicators, RVcontam =

∑
j α jI j . For rotational-linked variability,

it can be useful to generalize to models that predict RVcontam at time t using spectra taken at times
near t (Collier Cameron et al. 2019, Zhao & Ford 2022).

Dimension reduction has been applied to real and synthetic spectra. Davis et al. (2017) applied
principal component analysis (PCA) to spectra generated with SOAP 2.0. Since real stellar spectra
are more complicated, their analysis provides a lower limit on the number of PCA components
needed to accurately reconstruct solar spectra (ranging from 1 to 4 depending on the spectral
resolution and SNR). Analysis of solar data suggests that only 6–13 basis vectors are necessary to
model solar variability at the resolution and SNR of HARPS-N observations, and at least four of
those are clearly linked to effects due to the instrument or unique to Sun-as-a-star observations
(Collier Cameron et al. 2021). Together, these suggest that reducing spectra to an RV and two to
six indicators is a fruitful direction for future research.

Dimension reduction and estimation of contaminating RV can be done simultaneously. Exist-
ing methods extract ancillary indicators either in each spectrum separately, from a time series of
CCFs (or other summaries of the spectra), or from the time series of spectra themselves. In the
following subsections we describe the associated methods.

6.2.1. Extraction spectrum by spectrum. Some methods extract activity indicators from each
spectrum separately. For example, one can measure line shapes (or deviations from their time-
average). Shape line indicators were first extracted from the CCF, in particular its asymmetry
(Queloz et al. 2001) and width (Queloz et al. 2009). Other indicators involve fitting Gaussian
distributions on each side of the CCF (Figueira et al. 2013).Holzer et al. (2021) fit a superposition
of Gauss–Hermite functions to each line to build shape indicators.

Another approach is to measure properties of specific absorption lines of interest. The util-
ity of different lines depends on the effective temperature of the host star. For Sun-like stars,
S and logR′

HK are popular magnetic activity indicators based on emission in the core of the
Calcium II H and K lines (Noyes 1984). For cooler stars, the Hα line is a more useful indica-
tor (Kürster et al. 2003, Robertson et al. 2016). The unsigned magnetic field estimated from the
spectrum can be a powerful indicator of RVcontam (Haywood et al. 2020) and might generalize
better than any individual line.

Santerne et al. (2015) and Lanza et al. (2018) find that activity indicators can have relatively
weak correlations with RV signals contaminating the data.One contributing factor is the expected
time lag between RVs and other indicators, noted in the case of RV and photometry (Queloz
et al. 2001, Santos et al. 2003, Queloz et al. 2009) and other indicators (Suárez Mascareño et al.
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2017). This time lag can be partially mitigated in models where the derivative of the latent GP
appears (Rajpaul et al. 2015, Delisle et al. 2022) or with adaptive correlation Simola et al. (2022).

6.2.2. Methods using stellar variability indicators. More generally, spectra can be reduced to
a set of summary statistics that serve as stellar variability indicators, and their time series can be an-
alyzed jointly with the RVs.By utilizing temporal information,wemay obtain less noisy indicators.

The most common reduction is to compute the CCF. However, good indicators should be
insensitive to true Doppler shifts, so Collier Cameron et al. (2021) proposed the Scalpelsmethod
to analyze the autocorrelation of the CCF. The resulting time series are analyzed with a PCA, and
the PCA scores are used as variability indicators. Since the autocorrelation function is insensitive
to shifts, trueDoppler shifts will not affect the resulting variability indicators. de Beurs et al. (2020)
explored more flexible supervised learning approaches to predicting RVcontam from a training data
set of either simulated or solar data CCFs. It is unclear whether the greater flexibility of neural
networks will outweigh their added complexity and difficulty of interpretation relative to linear
regression or Scalpels, particularly given the limited size of data sets available for stars other than
the Sun.

Cretignier et al. (2022) transform the spectra into shells instead of CCFs, in an effort to reduce
the amount of information lost when averaging lines of different depths. The PCA scores for
the shell are used as spectral indicators but are first orthonormalized with respect to the shell
corresponding to a pure Doppler shift.

More research is needed to develop effective means of comparing choices of summary statis-
tics, variability indicators, and corresponding likelihoods. Several methods were explored in the
EXPRES Stellar Signals Project, where several teams analyzed observations of four stars by
EXPRES (Zhao et al. 2022). One key finding was that while many methods could reduce the
root mean square RV of observations, the estimates of RVcontam differ significantly across meth-
ods.Without knowing the true velocity, it was impossible to determine which methods are best. In
Section 7.2, we present several ideas for a robust comparison of the different methods leveraging
the existing and upcoming RV observations of the Sun with different instruments.

Sun-as-a-star observations allow the testing and validation of methods for mitigating stellar
variability. Three methods, Scalpels (Collier Cameron et al. 2021), linear regression on CCFs,
and neural networks (de Beurs et al. 2020), have been shown to significantly reduce the level of RV
variability in solar observations.Existing and upcoming comparisons of Sun-as-a-star observations
from multiple instruments, including a new generation of more highly stabilized spectrographs,
will help disentangle solar RV variations due to solar variability and from instrument specific
signals, as well as to refine the comparisons of different analysis methods.

6.2.3. Methods using the time series of spectra. Rajpaul et al. (2020) propose an alternative
approach of measuring a *RV from each pair of spectra and reconstructing the RV time series
(modulo a constant), while giving greater weight to pairs that are more similar. In order to
reduce the computational cost, they split the spectra into many small chunks to be analyzed
separately.

In principle, one could perform inference on the entire spectroscopic time series. Jones et al.
(2020) introduced Doppler-constrained PCA to characterize stellar variability and provided a
proof of concept on simulated solar observations. Bedell et al. (2019) applied a similar method
to real observations, emphasizing modeling of telluric contamination and neglecting stellar vari-
ability. They regularized the variables using ℓ1- and ℓ2-norm constraints. More recent work has
developed computationally efficient implementations that simultaneously model both stellar and
telluric variability, while also accounting for the instrumental profile and allowing for physically
informed regularization schemes.
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7. CONCLUSION
7.1. Summary
RV is poised to play a key role in the study of exoplanets in the next decade as a primary way
to measure their masses; to detect interesting, nontransiting planets; to have a more complete
view of planetary system architectures; and to provide targets whose atmospheres will be further
characterized by spectro-imaging. Currently, characterizing an Earth twin is out of reach, and
improving data analysis techniques will play a fundamental role.

We presented the different steps of RV data analysis, separating them in three problems (see
Section 3): (a) reducing the information of the spectrum into an RV time series, (b) modeling
nuisance signals and the prior information on planetary and nuisance parameters, and (c) deciding
how many planets are present and what their orbital elements are. Each of these steps requires
numerical methods, where convergence should be carefully checked. Since there are multiple
reasonable choices for a, b, and c, researchers should perform multiple analyses with different
assumptions to determine whether key conclusions are sensitive to these choices, especially of
the likelihood and prior.

7.2. Future Work
The exoplanet community is now well equipped to analyze RV observations when planetary
signals dominate stellar and instrumental variability.When these planetary signals and corrupting
ones are of similar amplitude, the fact that different methods yield different results (Zhao et al.
2022) shows that more work remains to be done. We believe that further research in steps a and
b is crucial.

The ability of RVs to detect andmeasure the mass of potential Earth twins is critically linked to
how precisely the contaminating RV signals, the RV signal not due to the motion of the center of
mass of the star (RVcontam in Equations 7–8), can be predicted and how accurately the uncertainty
on these predictions can be quantified. Correcting these signals can be done either in a statistical
framework by building a likelihood function or with supervised learning techniques trained to
predict the RV contamination signal from spectral shapes. The new models may be data-driven or
physics-driven, especially for RV signals originating from the star, for which there is a substantial
modeling effort (see Section 2.4.1) yet to be translated to data analysis techniques.Further research
in step a is also required to ensure that all the information contained in the spectra is used and
that the RV and indicators derived are reliable summary statistics.

We believe that one of the most critical questions is how to validate choices for each processing
step as effective tools for detecting and characterizing low-mass planets in the presence of complex
noise. We propose three ways forward, the first two concerning the validation of reduction and
modeling (steps a and b) and the third the whole process (a–c).

The first approach is Bayesian model comparison, to evaluate the relative merits of different
stellar activity and instrument systematics models. For example, since we know the true solar ve-
locity, we can evaluate the signal RVcontam of each method applied to Sun-as-a-star observations.
A similar approach may be possible for some other stars hosting a massive planet on an eccentric
orbit, since one can exclude the possibility of additional planets for a wide range of orbital peri-
ods based on orbital stability considerations (Brewer et al. 2020, Stalport et al. 2022). Large and
computationally demanding computer models could provide data for training and testing mod-
els, though they must be validated beforehand. The observations of the Sun by different high
precision spectrographs can be leveraged to disentangle instrument specific noise from stellar
variability.
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Second, for stars with a sufficiently large number of observations, one could evaluate the ac-
curacy and precision of a model mitigating stellar variability via its ability to predict RVcontam

(see Equation 7) and stellar variability indicators at times not used in the training of the model.
Given multiple processes operating on a variety of timescales, one must carefully design the train-
ing, testing, and validation procedure. For example, if one obtained multiple spectra per night
and stellar variability were operating on timescales of weeks, then one could trivially predict the
RVcontam from another observation on the same night, without learning how to recognize stellar
variability in line shapes or depth ratios. Additionally, one must be careful that cross-validation is
not undermined by researchers effectively trying many strategies and reporting results from those
that appear to work best.

The two approaches above pertain to validating models for contaminating signals. The most
convincing method for validating models may be via planet injection-recovery tests. One group
of researchers would work on injecting planets in real or simulated data sets. Another group of
researchers would blindly analyze large ensembles of simulated data sets. This would allow each
proposed data reduction method and likelihood to be evaluated differentially, i.e., comparing the
inferred velocities from multiple simulated data sets generated from the same true data set. Given
the inevitably arbitrary nature of labeling some signals as confident exoplanet detections, it is not
sufficient for teams to label which signals they believe are due to exoplanets. Instead, we recom-
mend that they provide a list of all putative signals, along with quantitative measures of the signals’
statistical significances (FAP, Bayes factor, FIP; see Section 4). Then, the number of false detec-
tions can be computed as a function of the number or properties of missed planets.To generate the
data, one approach would be to remove telluric and instrumental effects, introduce a larger num-
ber of artificial Doppler shifts, reinject the telluric and instrumental effects, and generate many
new synthetic data sets (perhaps adding additional noise along the way). One must be careful in
implementing this approach, as an error in the injection process could become a feature learned
by data-driven methods that would not be available for realistic data sets.

In this review,we adopted the viewpoint that RV data analysis should be viewed as a whole from
the most basic data products to the final decisions. It will be crucial to build accurate instrument
systematics and stellar noise models, to leverage as much as possible the information contained
in the spectra, and to build reliable metrics to validate the different methods. Progress will most
likely stem from the combination of a deep knowledge of the instruments and astronomical context
combined with formal approaches, which will provide adequate tools to represent and analyze the
data.
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