Granular Matter (2024) 26:36
https://doi.org/10.1007/510035-024-01407-5

ORIGINAL REPORT q

Check for
updates

Frictional weakening of a granular sheared layer due to viscous rolling
revealed by discrete element modeling

Alexandre Sac-Morane"2® - Manolis Veveakis' - Hadrien Rattez?

Received: 5 April 2023 / Accepted: 5 February 2024 / Published online: 3 March 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract

Considering a 3D sheared granular layer through a discrete element modeling, it is well known the rolling resistance influ-
ences the macro friction coefficient. Even if the rolling resistance role has been deeply investigated previously because it is
commonly used to represent the shape and the roughness of the grains, the rolling viscous damping coefficient is still not
studied. This parameter is rarely used or only to dissipate the energy and to converge numerically. This paper revisits the
physical role of those coefficients with a parametric study of the rolling friction and the rolling damping at different shear
speeds and different confinement pressures. It has been observed the damping coefficient induces a frictional weakening.
Indeed, competition between the rolling resistance and the rolling damping occurs. Angular resistance aims to avoid grains
rolling, decreasing the difference between the angular velocities of grains. Whereas, angular damping acts in the opposite,
avoiding a change in the difference between the angular velocities of grains. In consequence, grains stay rolling and the
sample toughness decreases. This effect must be considered to not overestimate the frictional response of a granular layer.

Keywords Discrete element method - Rolling parameter - Sheared layer friction - Granular materials

1 Introduction order to accurate capture those effects and homogenize them
to the friction coefficient of a layer, higher order analytical

Accurately measuring or calculating the frictional strength ~ and numerical approaches need to be considered [7-9].

of granular sheared layers is of paramount importance across
all fields of granular media-related sciences, including earth-
quakes and fault mechanics [1, 2], landslides [3], and debris
flows [4] to name but a few. It is very well accepted nowa-
days that the calculation of a macroscopic property like the
frictional coefficient of granular media is the result of grain-
to-grain interactions at the micro-scale [5, 6]. Therefore, in
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One of the most well-accepted approaches in direct mod-
eling of granular media is the Discrete Element Method [10].
Two main types of models exist for this approach: a non-
regularized formulation [11] and a regularized one [12]. The
first one, called the Contact Dynamics Method, considers
particles do not overlap and their motion is controlled by
shocks and friction. The second one has been designed to
consider interactions between grains, computed with cali-
brated parameters and overlaps. The latter description is
used here as the applications targeted in the present paper
involve large stresses for which the deformation of the grains
cannot be ignored.

The discrete element method started with a simple linear
contact law [14, 15], but since then contact laws have been
modified [16]: (i) considering grain crushing [17, 18], (ii)
introducing the effect of pressure solution [19-21], (iii) explor-
ing the effect of contact healing [22, 23], (iv) appreciating
the influence of the cohesion in between the grains due to
cementation [24—26] or (v) the cohesion induced by capillary
bridges [27] among others. Also, it allows some to focus on
the temperature influence, identifying the pressurization of
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the pore fluid [28, 29] and grain melting [30, 31] as the main
phenomena driving the evolution of the frictional strength of
a fault zone during large crustal events.

The present work is motivated by previous numerical stud-
ies modelling fault zones [10, 23, 32] that used various con-
tact laws to capture and understand the experimental behavior
observed on sheared fault zone materials, and the main goal
is to assess the influence on global behavior of contact laws
and parameters values. Even though different relevant outputs
for dense granular flows are reviewed by the French research
group Groupement de Recherche Milieux Divisés (GDR MiDi)
[33], we are focused in this paper on the macro friction coef-
ficient at steady state. Notice that the influence on this param-
eter, among others, of the local friction, the particle shape and
the rolling resistance has already been investigated with the
Contact Dynamic formulation [34, 35]. However, in the pre-
sent study, we focus on the influence of the rolling contact
laws between grains on the macroscopic strength of a granular
sheared layer with a regularized description. Indeed, experi-
mental results [36, 37], and numerical ones [38—40] have
highlighted that grain rolling has a significant impact on the
mechanical behavior with many rolling models being formu-
lated since [41, 42]. In the literature the elastic—plastic spring
dashpot model is identified as the benchmark for this response
[43, 44] and has been extended to conclude that: (i) rolling
helps the formation of shear bands and decreases the sample
strength [45—48]; (ii) the stress-dilatancy curves are modified
[49-51] when accounting for the rolling resistance coming
from intragranular friction [52, 53] and roughness [54-56].

The computational cost of discrete element simulations is
not negligible, and especially if grains clusters [57], super-
quadric particles [58] or polyhedral shapes [59—-61] are
assumed to approximate the shape, those simulations become
quickly computationally costly. Because of that, laws relating
the grain shape and the rolling friction have been developed
[62—64]. This has enabled simulations to keep using round
particles with a rolling resistance stemming from an equiva-
lent shape, allowing to take into account the particles shape
at a lower computational cost. However, the introduced angu-
lar damping influence is not well constrained, hence being
neglected in most of the DEM simulations or only used for
stability reasons [42, 43] rather than for physical robustness
[65]. In this work we revisit the physical role of the rolling
resistance in a granular sheared layer and perform a parametric
study over the rolling friction and the rolling viscous damping
coefficients to understand better their influence on the macro-
scopic friction coefficient of a granular sheared layer.
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2 Theory and formulation

The Discrete Element Model (DEM) is an approach devel-
oped by Cundall & Strack [12] to simulate granular mate-
rials at the particles level. The foundation of this method
is to consider inside the material the individual particles
and their interactions explicitly. Newton’s laws (linear and
angular momentum) are used to compute the motion of the
grains, formulated as follows for one grain:

i _ +f; 1
m ot =mg; rJ; (D
129y @)

a

where m is the particle mass, v; the particle velocity vector,
g, the gravity acceleration vector, f; the sum of contact force
vectors applied to the particle, / the moment of inertia of
the particle, w; the angular velocity vector, M; the sum of
contact moment vectors applied to the particle (torques due
to rolling and to the tangential forces).

Considering two particles with radii R' and R?, the
interaction between particles is computed only if the dis-
tance between grains satisfies the following inequality:
)cl.l—)ci2<R1+R2 3
where x! (resp. x?) is the center of the particle 1 (resp. 2)
and u; is the norm of the vector ;. Once contact is detected
between grains 1 and 2, the normal vector of the contact
n!?is computed as n> = (x! — x7)/x! — x*. Then the normal
overlap vector A,; and the tangential overlap vector A, are
determined.

7 ) !

A, = (R‘ +R* - <le —x?)n?z)n?z )

The tangential component A is computed incrementally,
integrating the relative tangential velocity between particles
during the contact.

Ay=Ay+vi2xdt 5)

where v!? is the relative tangential velocity vector defined at
the relation 6 and dr is the time step used in the simulation.

12 _ 12 _ (.12 12,12
V. =V (vj nj )ni (6)
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where vi12 is the relative velocity vector between grains and
6= Amn}2 is the norm of the normal overlap vector. Notice
that the terms (R — §/2) represent the corrected radii at the
contact. Here, the angular velocities o, of the grains are con-
sidered to compute the tangential overlap vector A,;. As the
contact orientation can evolve with time, it is important to
update by rotation and scaling the tangential overlap vector
A = A — A%Mn?n]? and AT = A7,

A relative angular velocity vector Aw; is also needed to
compute the rolling behavior.

Aw; = a)ll - wl2 (8)

The contact models between cohesionless particles obey the
Hertz contact theory [66]. Normal, tangential and angular
models are shown at Fig. 1 and described in the following.

As contact can happen between particles with different
properties, some equivalent parameters need to be defined.
The equivalent radius R* and equivalent mass m* are defined
at equations 9 and 10 with an harmonic mean.

1_1. 1 0
R* R' R2 ©)
1 1 1

—=—+—= (10)

The equivalent Young modulus Y* and shear modulus G*
are defined at equations 11 and 12 with an harmonic mean
adjusted by Poisson’s ratio.

Tangential

—I} —®~ Dashpot

A —~Q— Spring
——  Slider
—I No-tension

joint

Angular

Fig. 1 The contact between two particles obeys to normal, tangential
and rolling elastic—plastic spring-dashpot laws
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The equivalent moment of inertia /* is defined at equation 13
with an harmonic mean of the different moments of inertia
displaced at the contact point.

1 1 1
F T mRE | PrmRe (13)

Normal model
The normal force is formulated as:

fni = knAni + YnVni (14)

The reaction is divided into a spring part and a damping part,
with the normal stiffness k, formulated as:

4
k=Y VR'S (15)

Following the Hertz contact theory, this parameter depends
mainly on the norm of the normal overlap vector 6. Thus,
the normal force is not linear with respect to the overlap.
The normal stiffness depends also on the equivalent Young
modulus Y* and the equivalent radius R* defined before. The
normal damping y,, is null in this paper because the restitu-
tion coefficient e is taken at the value 1. This choice is justi-
fied in section 3.

Tangential model

The tangential force is formulated to verify the Coulomb
friction law defined on the friction coefficient between par-
ticle u, and the normal force f,;:

Ji = —kDi = vy (16)

fi < Moo 17)

The reaction is divided into a spring part and a damping part.
The tangential stiffness k, is formulated as:

k, = 8G" VRS (18)

Following the Hertz contact theory, this parameter depends
mainly on the norm of the normal overlap vector 6. Thus,
the tangential force is not linear with respect to the overlap.
The tangential stiffness depends also on the equivalent shear
modulus G* and the equivalent radius R* defined before. The
tangential damping y, is also null in this paper because the
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restitution coefficient e is taken at the value 1. This choice
is justified in section 3.

Angular model

Many different angular models could be applied but an
elastic—plastic spring-dashpot model is used because it is
the most stable and accurate choice for simple benchmark
tests [42]. Indeed, the model allows energy dissipation dur-
ing relative rotation and provides packing support for static
system, two main functions to verify in a particulate system
[42]. The reaction moment M, is formulated as:

M; = M+ M! (19)

This reaction is divided into a spring part M;‘ and a damping
part Ml‘.i defined at equations 20 and 24:
M* M —k, A6, (20)

it+Ar T it

ME < M™ @1)

The incremental angle Af, is obtained by a time integration
of the angular velocity Aw; X dt. The angular stiffness «,
is formulated at equation 22 by considering a continuously
distributed system of normal and tangential spring at the
interface [42, 65].

k, = 2.25k,u>R** (22)

The rolling friction coefficient 4, is introduced. This variable
is a dimensionless parameter defined as [42]:

H, = tan(p) 23)

The angle f represents the maximum angle of a slope on
which the rolling resistance moment counterbalances the
moment due to gravity on the grain, see Fig. 2. The influence
of u, is investigated in this paper.

— it+At
LA T . k _ agm (24)
0 if Mi,t+Az =M

., {—C,Aa)i it ME < M

The damping part Mf is defined with a rolling viscous damp-
ing parameter C, formulated at equation 25.

C, =21k, (25)

Fig.2 Definition of the rolling resistance coefficient y, = tan(f)
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The rolling viscous damping coefficient #, is introduced.
This variable is a dimensionless parameter and its influence
is investigated in this paper. Moreover, it appears the rolling
viscous damping parameter depends on the rolling stiffness
k. and so on the rolling friction coefficient y,.

As described by equations 20 and 24, the spring and damp-
ing parts are restricted by a plastic behavior, the rolling of
particles. The rolling starts when the spring part reaches the
plastic limit M™ defined at equation 26.

M" = u,R*f,; (26)

This limit depends on the equivalent radius, the rolling fric-
tion coefficient and the normal force. Once rolling occurs,
the reaction from the angular spring takes the value of M"
and the damping element is deleted.

3 Numerical model

The simulation setup is illustrated at Fig. 3. The box is a
0.004 m x 0.006 m x 0.0024 m region. Faces x and z are
under periodic conditions. The size of the domain has been
chosen from the mean particle diameter ds, to respect a suf-
ficient number of grains in all directions. On the x-axis,
the shearing direction, there are I /ds, =4/0.26 = 15
particles. On the z-axis, the minor direction, there are
l./dsy =2.4/0.26 = 10 particles. On the y-axis, the size
allows the particles generation shown at Fig. 5. Sizes have
been minimized to reduce the number of grains and so
the computational cost, one of the main issue with DEM
simulations. The gravity is not considered because its effect
remains negligible under the vertical pressure applied.

The simulations, performed with the open-source soft-
ware LIGGGHTS [67], consist of several steps illustrated
at Fig. 5:

1. The box, bottom and top triangle plates are created. The

triangle pattern represents the roughness of the plates
with a geometry similar to experimental tests [68, 69].

Top plate applies

pressure
N\ AVA\

Lateral red faces
are periodic

Bottom plate shears

Fig. 3 The simulation box with triangle plates and periodic faces
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Fig.4 Definition of the specific
size of the triangle used for
plates

dtriangle

a|6ueu1p

Largest particle
— 5

Fig.5 The simulation is in mul-

3. Top plate applies vertical stress of 10 MPa by moving
following the y axis. This plate is free to move vertically
to verify this confining and allow volume change. The
value of the vertical stress has been chosen from previ-
ous experiments and numerical simulations [32, 71, 72].

4. The sample is sheared by moving the bottom plate at

the speed of 100 um/s until 100% strain. This step is
then repeated at the speed of 300 and 1000 um/s. Those

tiple steps: creation of the box
and particles, application of the
normal force and shearing

\AYAVAVAVAV/

Table 1 Distribution used described by discrete radius, percentage of
the mass and total number of grains

Radius Percentage (%) Number
of parti-
cles

R1=0.2 mm 14 2500

R2=0.15 mm 29

R3=0.1 mm 57

velocities have been chosen from previous numerical
simulations [32] and in-situ estimations [73] to mini-
mize the computational cost but still relevant for sheared
layers in the case of landslides or fault zones.

Then, the influence of the vertical pressure is investigated.
The same set-up is used except the vertical pressure (P=1
MPa and =100 MPa). The rolling friction coefficient is con-

Table2 DEM parameters used

during simulations

Variable Short Name Value

Simulation variables

Time step dt 1,5¢7%s

Height of the sample h 0, 005 m

Shear rate y' 2-6-20%

Contact stiffness number K 400

Inertial number 1 1076 — 1073
Mechanical variables

Density 2000000 kg /m?
Youngs modulus Y 70 GPa

Poissons ratio v 0,3

Restitution coefficient e 1

Rolling friction coefficient U, 0-0,25-0,5-0,75-1
Rolling viscous damping coefficient n, 0-0,25-0,5-0,75
Friction coefficient Hy 0,5

The specific size of the triangle is defined to be 1.5 times
the largest particle diameter as illustrated at Fig. 4.

2. 2500 particles are generated following the distribution
presented in Table 1 equivalent to the one used in [23].
This number of particles allows to get 17 particles on the
height where the size of the shear band is assumed to be
between 9 X ds, and 16 X ds, [70].

stant ¢, = 0,5 and the rolling viscous damping coefficient
changes 5, = 0,25, 0, 5 or 0, 75.

The different parameters needed for the DEM simulation
are presented in Table 2 and the values have been chosen
from previous articles to represent rock materials [21, 32,
47,74]. It is important to note that the restitution coefficient
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| i
0.2 Vshear = 100 um/si Vshear = 300 um/s i Vshear = 1000 um/s
| i

0.1 W lterations

Il Mean
0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

y(-)

Fig.6 Example of -y curves at different shear velocities. Black lines
represent the different simulations with the same (u, — #,) configura-
tion and the red one represents the mean curve associated to this con-
figuration
e is equal to 1. It means there is no damping in the normal
and tangential interactions. In most DEM simulations this
parameter is less than 1 to introduce some energy dissipa-
tion. Indeed, in real contacts between particles damage to
surface asperities and plastic yielding occur [75] but these
phenomena cannot be reproduced with rigid DEM formula-
tion. To be more realistic for the conditions considered in
the present study, this coefficient should be less than 1. Nev-
ertheless, the focus of this article is on the effect of rolling
resistance and rolling damping at several shear speeds. With
a restitution coefficient not equal to 1, the rate dependency
in the mechanical behavior would result from the angular
damping and from the restitution coefficient. Because of
that, and to isolate the effect of the rolling damping, it has
been chosen here to set e = 1. Moreover, Da Cruz et al. has
shown there is a negligible influence of this restitution coef-
ficient e on the mechanical behavior of a sheared sample for
a dense granular flow [13].

The time step df must verify the Rayleigh condition [66,
76] defined as:

\Vr/G 27

dt < dtp, =
S AR = XX 63T x v + 0.8766

The time step df must be selected considering the number of
particles, the computing power, the stability of the simula-
tion and the time scale of the test. In our case, we are look-
ing for a 10% seconds term. If we include the default value
(p = 2500kg/m?) into equation 27 the time step is around
1078 second and the running time skyrockets. To address this
issue, we can easily change the density p and the shear mod-
ulus G. Those parameters are included in two dimensionless
numbers defined at the equation 28: the contact stiffness
number x [13, 77] and the inertial number 7 [13, 33].

2/3
= (P 1 li 7 ) The contact stiffness number

I =y'dsg\/p/P

(28)
The inertial number

@ Springer
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0.6

0.5

10.4
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nr=0.5
nr=0.75

0.2

0.1

D pbrd

02 0.4 06 08 10
Hr

Vshear = 1000 ,um/s

Fig.7 Evolution of the macro friction coefficient with the rolling
friction coefficient y, and the rolling viscous damping coefficient 7, at
different shear speeds with P = 10MPa

Where y’ = v,,,,./h is the shear rate, & is the height of the
sample during the shear, P is the pressure applied.

When these two dimensionless numbers are calculated
with the values in Table 2, it appears that k (x < 10%) lies in
a range of values where the macroscopic behavior is sensi-
tive its value as grains are not rigid enough [77]. Because of
that, it is not possible to change the Young modulus Y (and
so the shear modulus G). The inertial number I represents
the behavior of the grains flow, which can be associated with
solids, liquids or gases types of behavior [78]. This dimen-
sionless parameter does not affect the constitutive law if the
flow regime is at critical state (/ < 1073) [13, 33] at the high-
est shear speed. In conclusion, the density p can be modified,
if we stay under the condition / < 1073, to increase the time
step and solve our computing problem. So, the density of
the particles is artificially increased (p = 2000000 kg/m?)
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pr=0,25—n.=0,5

Au“f':035_77'r:0

pr=1—mr, =0,5

Fig.8 Slide of sample highlighting grain rotation (rolling is in red)
for several cases

during the generation step and stays constant during the
entire simulation.

4 Results and discussion

Rolling Parameters Influence

A parametric study has been conducted on the influence
of the rolling friction coefficient y, and the rolling viscous
damping coefficient #,. As Fig. 6 shows, the macro friction
coefficient is plotted as a function the shear strain applied.
This coefficient u is computed by considering y = F,/F,,
where F\ (resp. F,) is the component following the x-axis
(resp. y-axis) of the force applied on the top plate. Because
of the granular aspect, there is a lot of oscillation. To
reduce this noise, at least 3 simulations are run by a set of
parameters (u,, #,) with a different initial packing and a
mean curve is computed. Moreover, only the steady-state
is considered and an average value is estimated.

The comparison of the macro friction coefficient with
different parameters set is highlighted at Fig. 7. It appears
there is an increase of the sheared layer friction coeffi-
cient with the rolling resistance y, until a critical point

0.6

0.5

04 —¥— P=1MPa
—#— P=10 MPa

0.3 —§— P=100 MPa

0.2

01 \l

+ —+
7

03 04 05 056 o.
nr

Ushear = 100 um/s

0.6

0.5

04 —— P=1 MPa
L N
3 . —#— P=10 MPa
03 \ —#— P=100 MPa
" \
i
0.1 bd
0.3 0.4 0.5 0.6 0.7

nNr
Vshear = 300 p’m/s

0.6/ §=
1 +—
05 \
04 L —— P=1MPa
3 —#— P=10 MPa
03 —#— P=100 MPa
02 \
'
0.1
03 0.4 0.5 0.6 07

nNr
Vshear = 1000 um/s

Fig.9 Evolution of the macro friction coefficient with the rolling vis-
cous damping coefficient #, and the vertical pressure P at different
shear speeds with y, = 0,5

depending on the rolling damping #,.. This reduction of the
macroscopic shear strength with the rolling damping is not
easy to understand at first. The larger the damping is, the
stiffer the system should be. Two main questions should be
answered: why does the friction coefficient decrease with
the rolling resistance if there is some damping? Why is the
reduction larger with the damping value?

Figure 8 helps to understand this behavior. It shows
the rotation of particles (in red) for four different sets of
parameters. We can notice that the fewer rotations there
are, the stiffer the system will be. It appears the number
of rolling particles increases with the rolling resistance as
can be seen on the three first plots of Fig. 8. The decrease
of the friction coefficient is explained by particles rolling.
Moreover, it is shown at the second and last plot of Fig. 8
that damping increases the number of rolling particles and
so the friction coefficient is reduced.
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Table 3 The mean angular velocity w, on the z-axis for different configurations #,

— P at different shear speeds

Vshear = 100“ m /S

n, = 0.25 0.50 0.75

1 MPa 0.3 22 33.7

10 MPa 20.3 455.6 1056.2
100 MPa 2384.5 7467.8 11774.1
Vshear = 200 pm /S

n, = 0.25 0.50 0.75

1 MPa 0.6 3.6 34.1

10 MPa 23.9 426.6 1034.5
100 MPa 2327.3 7564.8 11685.2
Vshear = 1000 pm / S

N, = 0.25 0.50 0.75

1 MPa 1.3 4.9 29.7

10 MPa 28.1 342.1 1023.3
100 MPa 2070.0 7483.6 11759.4

A focus on the model equations must be done at rela-
tion 29 to understand better those observations (the input
rolling parameters are emphasized in red). First, it appears
the increment of the spring AM’r‘ depends on yf while the
plastic limit y,R*f, depends only on u,. There is a square
factor between those values. Thus, this plastic limit, and so
grain rolling, is reached easier with a larger rolling resist-
ance y, for a same angular displacement 6.

M" = R, AM* = —2,25k, u?R*2A0
if |Mrt+At| < U RJy:
) /2,251 k,
n,1,0/2, 251 k,0 (29)
rt+At

if |Mkt+At| = Hy *f
0

Concerning the damping, it avoids the variation of the angu-
lar position (Aw — 0) during the elastic phase. As we have
seen before, the main part of the sample is at the plastic
phase and particles roll. So, the damping acts in opposition
to the angular spring, keeping grain into the plastic phase.
We can notice that we have decided in this paper to shut
down the damping moment when the angular plastic limit
is reached (see equation 29) following the model of [42].
In this way, we can understand better the reduction of the
friction coefficient with the rolling stiffness y, if damping
is active. We can notice no decrease but an increase of the
friction coefficient in the case of no damping. In the absence
of this one, the angular spring can act normally. The larger
the rolling parameter is, the stiffer the global sample is.
This observation can be useful to understand the mechan-
ical behavior of granular materials subjected to damage.

@ Springer

Experiments and simulations have highlighted that particles
tend to become less or more [79-81, 84] rounded under large
deformation due to damage. The work of Buscarnera and
Einav, extending the Continuum Breakage Mechanics, rec-
onciles those conflicting observations [82]. Shape descrip-
tors are converging to attractors. The evolution of the aspect
ratio a, related to the grain morphology, is plotted following
a breakage parameter B and the stress o. It is highlighted that
from different initial values the aspect ratio converges to the
same value, the attractor. Remember that rolling friction is
a technique to model particle shape in DEM to minimize
computational cost [63] and that a calibration law between
the rolling friction and the degree of true sphericity of the
grain has already been developed [64]. This index is an easy
way to measure how a particle is similar to a sphere. Notice
that the aspect ratio used by Buscarnera and Einav and the
degree of the true sphericity used by Rorato et al. are not the
same definition but represent the same idea. It appears with
this calibration that the rolling friction decreases as the grain
becomes more spherical. Softening and hardening behaviors
can be understood thanks to our work, the shape evolution
with the breakage and the relation between the shape and the
rolling friction coefficient. In this paper, we have considered
sheared samples with constant rolling friction during the
simulation. But, this opens further investigations, consider-
ing rolling friction varying during simulation as a function
of a damage parameter. For example, if the aspect ratio or
the degree of true sphericity decreases during the test, par-
ticles become less rounded, the rolling friction coefficients
increase, and the sample shear strength evolves depending
on the position of the critical point (softening or hardening).
Vertical Pressure Influence
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Fig. 10 Evolution of the sample friction coefficient with the shear
speed and the rolling friction coefficient y, at different rolling viscous
damping coefficients with P = 10 MPa

Equation 29 highlights the plastic moment depends on
normal forces f, (and so on vertical pressure P). Figure 9
illustrates the evolution of the macro friction coefficient with
different vertical pressure P and rolling viscous damping
coefficient 7,.

The critical point defined previously (point before which
the friction weakening appears) depends on the vertical pres-
sure. This behavior has already been observed [32, 83]. The
importance of the rolling increases with the vertical pres-
sure. The mean angular velocity w, on the z-axis have been
computed over configurations P — 5, — v, at Table 3. It
is highlighted that the vertical pressure P favours the grain
rolling. That is why a friction weakening occurs with this
parameter.

Speed Influence

Figure 10 highlights the shearing speed influence on the
system. It is the same results as before but plotted in another
way. No speed effect is visible in most simulations as the
friction coefficient keeps the same value. It is not surprising
that no speed effects are spotted because there are no other
parameters except the damping parameter which depends
on speed or time. A speed influence is nevertheless noticed
for cases where the friction coefficient starts to decrease
with rolling resistance (for example the case y, = 0,5 and
n, = 0,5 at Fig. 10). As shown at Fig. 8 for this set, few par-
ticles (in orange or in white) are still not rolling during this
critical step. The damping value is not large enough to can-
cel the effect of the spring and few grains are in the elastic
phase. The damping creates so in this case a speed influence.
If the damping value is larger, we have seen particles tend
to be all in the plastic phase. If it is lower, the damping is
negligible or null. In both cases, the speed effect disappears.

5 Conclusion

In this paper, we have considered granular materials into
a plane shear configuration to investigate the effect of the
rolling resistance and damping on the macroscopic friction
coefficient. Thanks to numerical DEM simulations, the rela-
tion between those parameters becomes clearer. It appears:

1. In the no damping case, the sample stiffness increases
with the rolling resistance.

2. The consideration of the rolling damping introduces a
critical point. For a constant damping value, the sample
stiffness increases the rolling parameter until this critical
point is reached. Then, the stiffness starts to decrease
until a residual value. Hence, the damping tends to act
against the spring and grains roll. The choice of the
angular damping, used in previous papers mainly for
stability reasons, should be well thought out.

3. No visible speed effects have been highlighted except at
the critical point. For the same rolling resistance value:
(i) When the damping parameter is not large enough,
the angular spring is the main element and no speed
dependency is spotted, (ii) when the damping parameter
is too large, all grains are in the plastic phase (roll) and
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the residual value is reached and (iii) when the damping
parameter is at critical value, there is no main element
in the rolling model, speed dependency occurs.
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