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Research in both ecology and Al strives for predictive
understanding of complex systems, where nonlinearities
arise from multidimensional interactions and feedbacks
across multiple scales. After a century of independent,
asynchronous advances in computational and ecological
research, we foresee a critical need for intentional synergy
to meet current societal challenges against the backdrop
of global change. These challenges include understanding
the unpredictability of systems-level phenomena and
resilience dynamics on a rapidly changing planet. Here,
we spotlight both the promise and the urgency of a
convergence research paradigm between ecology and Al.
Ecological systems are a challenge to fully and holistically
model, even using the most prominent Al technique today:
deep neural networks. Moreover, ecological systems have
emergent and resilient behaviors that may inspire new,
robust Al architectures and methodologies. We share
examples of how challenges in ecological systems modeling
would benefit from advances in Al techniques that are
themselves inspired by the systems they seek to model.
Both fields have inspired each other, albeit indirectly, in
an evolution toward this convergence. We emphasize
the need for more purposeful synergy to accelerate the
understanding of ecological resilience whilst building
the resilience currently lacking in modern Al systems,
which have been shown to fail at times because of poor
generalization in different contexts. Persistent epistemic
barriers would benefit from attention in both disciplines.
The implications of a successful convergence go beyond
advancing ecological disciplines or achieving an artificial
general intelligence—they are critical for both persisting
and thriving in an uncertain future.

complex systems | ecosystems | interpretable Al |
deep learning | prediction

Ecological understanding is paramount for confronting mul-
tiple linked phenomena including the increased frequency
of disease outbreaks, exponential losses of global biodiver-
sity, and profound impacts of climate change. These crises
share a commonality: they emerge from perturbations of
complex systems whose high dimensionality underpins non-
linear dynamics that are difficult to predict. Advances in Al
have the potential to transform our understanding of eco-
logical systems (1). At the same time, ecological systems are
themselves an impetus for the advancement of Al. Challenges
that are commonplace in multiscale, context-dependent, and
imperfectly observed ecological systems offer a panoply of
problems through which Al moves closer to realizing its full
potential. Predicting and purposefully managing the out-
comes of perturbations to natural complex systems is a great
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challenge of our time, one that demands bold synergistic
convergence of Al and ecological science to achieve a more
holistic understanding that informs action—creating system
wisdom toward a resilient future (Fig. 1).

Just as humans learn patterns from data to build intelli-
gent thinking about a system, ML underpins modern Al, the
proximate goal of which is to execute tasks or make decisions
in a particular domain. Applying Al tools to ecological
domains has vastly expanded our abilities to quantify phe-
nomena that were previously unquantifiable or difficult to
observe (2), and offers the possibility of faster and more
accurate predictions about ecological systems. Recent exam-
ples include studying the interactions between organisms
and their environments through camera and acoustic data
(3-5); distilling earth systems satellite data into meaningful
ecological functions (e.g., productivity) (6); analyzing animal
behavior through deep learning and pose estimation (7);
bioinformatics for prediction and validation of whether new
viruses are capable of human infection (8); and which animal
species are most likely to harbor them (9).

These are examples of "Al for ecology"—the application
of existing Al tools to ecological problems. The other direc-
tion, however, of ecological science inspiring new paradigms
in Al is just as important. An ultimate goal in Al research is
to achieve artificial general intelligence (AGI) that can extrap-
olate and reason about other domains and systems similar
to human intelligence. It is likely that AGI will need a combi-
nation of data-driven ML and new ways of representing and
reasoning from diverse knowledge types to meet the chal-
lenge of trustworthy predictions about no-analog futures,
such as those we anticipate on a rapidly changing planet.
Meeting these challenges may be helped by a fundamental
shift in how Al and ecological research propel each other.

Here, we identify a convergence on the horizon between
ecological research, which has traditionally lagged behind
advances in Al and computational science and Al research
(Fig. 2). This convergence seeks new thought paradigms to
support intelligent extrapolation to unobserved (or
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Fig. 1. A diagram illustrating interconnections between data, information,
knowledge, and wisdom. Data reflect raw observations or measurements
(e.g., satellite data such as sea surface temperature (SST) at a specific
location), while synthesizing these measurements into a meaningful form
constitutes information (e.g., providing spatial or temporal context to SST
measurements in the form of time series maps). Knowledge adds context,
providing similar examples or comparisons to other knowledge systems (e.g.,
some marine organisms will experience heat stress). Finally, wisdom considers
all of these elements as well as societal or cultural values to assess potential
actions (e.g., carbon emission limits to mitigate detrimental climate warming
effects). Arrows represent how machine learning (ML, blue) and ecological
systems research (yellow) achieve connections within this framework. ML can
transform data into information but can also bypass the information step to
directinference conveyed as knowledge. In contrast, the bidirectional arrows
for ecology represent iterative feedback to the process of data collection in
order to achieve knowledge through statistical modeling and hypothesis
refinement. Intentional and synergistic advances in ML-Al and ecological
systems science may spur greater understanding, prediction, and protection
of complex systems function if we can align strengths from each discipline
to explicitly identify biases and manage uncertainty and different ways of
knowing, especially at information and knowledge levels.

unobservable) systems and futures. Our argument extends
well beyond the "Al for X" paradigm of simply applying Al to
myriad domains (represented by "X"). A shift toward copro-
duced, convergent research has the potential to fuel the next
generation of Al advances and ecological understanding.
This convergence would be helped by the amalgamation
of two cultures of scientific understanding (22). In ecology, a
main objective is to understand complex systems spanning
the physical and the biological. This understanding is often
captured in mathematical models, which reflect our hypoth-
eses about the mechanisms that act in concert to produce
observable outcomes. But ecology neither succumbs to the
"unreasonable effectiveness of mathematics" (like purely
physical phenomena) (23) nor to the "unreasonable effective-
ness of data" (like certain biological phenomena) (24). Simple
mathematical equations cannot fully capture the essence of
an ecological system. Likewise, complicated ML models do
not generalize well enough to capture nonlinearities from
unexpected perturbations—ML models derive algorithmic
understanding from data that are often about one particular
system. Furthermore, because the goal of ecological research
is not just prediction but phenomenological and mechanistic
understanding of complex systems, ecologists use a variety
of modeling techniques at different scales that together
coherently capture emergent properties in a holistic system-
level way that is conducive to further study (25). This approach
contrasts with Al research and development, where conflicts
among multiple models are not undesired because the
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models are only being used for prediction (which one per-
forms best), not for explanation (why does one perform better
than another) (26). For example, large language models in Al
show emergent behaviors that are not presentin smaller lan-
guage models (27), but current techniques in Al do not explain
them. The modus operandi of ecological systems research,
which prioritizes understanding the mechanisms generating
the data we observe, can push Al researchers to focus on
methods permitting deeper understanding of the causes
underlying such observed phenomena—what quantitative
changes in a system lead to qualitative changes in system
behavior (27).

A critical emergent behavior of ecological systems—an
intelligence if you will—is their spectacular resilience to per-
turbation. This quality further points to ecology as an inspi-
ration for Al, which has only experienced mixed success with
imbuing resilience into the existing brittle intelligence of
neuroinspired Al (28). Thus, it is not only the different and
combined ways of modeling ecological systems that can help
push Al research, but the ecological systems themselves that
can inspire robust multiscale architectures for Al. [This ech-
oes the synergistic relationship between quantum chemistry
and quantum computing (29).]

By coproducing an interwoven research path, Al and eco-
logical understanding are well positioned to mutually
advance beyond where each discipline could arrive inde-
pendently. A future where Al research development is syn-
ergistic with ecological research could advance the quest to
understand complex ecological systems at temporal and
spatial scales relevant to societal needs. Below, we provide
an account of the current state of the art in Al research
(Section 1). We briefly trace the history of ecological systems
modeling up to the present use of deep neural networks
(Section 2) and expand upon the opportunity for convergent
research in Al and ecology. We then conjecture examples of
this convergent research paradigm, exploring how the study
of ecology can advance Al (Section 3), how Al is advancing
ecology (Section 4), and opportunities for synergistic research
to accelerate mutual discovery and advancement (Section 5).
We conclude by identifying some distinct and common biases
that should be addressed by Al and ecology disciplines and
highlight some shared opportunities for more responsible
development and deployment of Al (Section 6).

1. Al: The Current State of the Art

In the last 10 y, deep neural networks (also known as deep
learning) have become synonymous with Al due to their pow-
erful modeling abilities. Familiar successes include more accu-
rate clinical diagnoses from radiological imaging and
increasingly rapid analysis and decision-making used for self-
driving car technology. In December 2022, ChatGPT, a lan-
guage model based on deep learning, showed the rapidly
expanding potential of deep learning models. Deep neural
networks are a subfield of ML. ML derives its intelligence from
the patterns in data, whether tabular data, time series, images,
or text. The goal is to generalize the patterns from these data
to new unseen data points. ML models have many forms;
some are simpler, like decision trees and linear models, and
others are more complex. For example, artificial neural net-
works are inspired by the wiring of neurons in brains and
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Fig.2. The arc of computational methods in ecological modeling (yellow) has lagged behind the development of the computational methods themselves (blue)
but is close to converging. The figure is meant to be evocative, not comprehensive. It is biased toward Western scientific traditions and data points may be
contested. Figure citations (10-21), with Lederberg (20) as a reference for Feigenbaum 1965, and Krizhevsky et al. (10) to accompany Hinton et al. (19).

utilize a structure of layers that compute weighted dot-
products fed through nonlinear functions. Deep neural net-
works have many layers and are trained on large datasets.

Despite the recent prominence of ML and particularly deep
learning within Al, several other approaches to Al have devel-
oped in parallel and may overcome the limitations of deep
learning to model complex systems and enable more resilient
intelligence. One example is symbolic Al, which involves logical
reasoning over knowledge graphs. A knowledge graph is dif-
ferent from statistical data in that it explicitly captures con-
cepts and their semantic relationships. A graph might have
"animals", "cows", "plants", and "grasses" as vertices with
edges between them indicating that cows "are" animals,
grasses "are" plants, and cows "eat" grasses. An Al system can
then reason broader generalizations, such as that some ani-
mals eat some plants. Knowledge graphs are one type of rep-
resentation used in symbolic Al. Other representations are
ontologies, logical rule sets, probabilistic dependency graphs,
differential equations, and analytic equations; each has rea-
soning algorithms built on top of them (30). This kind of knowl-
edge and reasoning constitutes expert systems.

The present state of the art in Al is based on "foundation
models" trained on unimaginably large datasets used as base
models for many different tasks (31). A process of fine-tuning
on a small domain-specific dataset specializes the foundation
model for the task. Moreover, foundation models are being
used within generative models, which are able to create new
data (32), for example, to generate the sequences and molec-
ular structures of new viral variants through which to inves-
tigate hypotheses about infection risk to humans and other
animals.

In another vein, neurosymbolic Al is combining the best
qualities of deep neural networks and knowledge-based sym-
bolic methods to push beyond each method's unique limita-
tions (33). Neurosymbolic Al systems are considered to be
broader than more narrowly abled deep learning methods
and are a step farther on the path toward AGI. They can help
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enable challenging knowledge discovery tasks (generating
new hypotheses) and deal with heterogeneous and complex
data of different modalities, scales, qualities, and quantities—
all of which are common in ecological inquiry of complex
systems. Like Bayesian statistical approaches, neurosymbolic
Al can incorporate diverse modes of expert knowledge in its
reasoning that are not always presented as data. It may also
be more adaptable and robust than other Al approaches and
may give explainable outputs that lend mechanistic insight,
which is a guiding principle of ecological research (34).

2. Ecological Systems Modeling

Prediction in ecological systems epitomizes the difficulty in
modeling complex systems more generally, which are defined
by nonlinear dynamics that arise from feedbacks and depend-
encies that span multiple scales of time, space, and social
dimensions. Because the science of ecological systems sits at
the intersection of multiple mature subdisciplines, many phys-
ical and biological principles can guide our understanding
about these systems—for example, the physics of hydrology,
biogeochemistry, and landscape ecology (35), or the principles
of fitness in population dynamics. Extracting information from
observations about ecological systems ideally would consider
the stochasticity and context dependence that are inherent
in ecological systems. Ecologists have met this challenge with
a plethora of modeling approaches, some focusing on system
components (e.g., questions such as, What are the biophysical
controls on the distribution and abundance of a limited
resource?) and others focusing on modeling the bigger picture
(e.g., How will ecological communities function differently in
a rapidly changing landscape?). Improving systems-level pre-
diction in ecology may also be fruitful for the development of
novel Al, and these innovations may happen more quickly
than they have in the past.

Adoption of new computational methods has generally
exhibited a multiyear lag in ecological modeling (Fig. 2).
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Examples include graph theory (e.g., for modeling food webs),
linear regression (e.g., for modeling heredity), partial differ-
ential equations (e.g., for modeling population growth),
expert systems (e.g., for managing environmental decisions),
hierarchical Bayesian methods (e.g., for estimating tree fecun-
dity), and deep learning (e.g., for assessing biodiversity). The
historical lag between the invention of a computational
method and its integration into ecological modeling appears
to be closing (36) (Fig. 2), and the use of Al in ecological mod-
eling has greatly increased (Fig. 3). ML-based prediction has
started supplementing theory-driven prediction in areas such
as hydrology (37), zoonotic disease ecology (38), and forest
ecology (39). However, the scope of application is still largely
limited to pattern-recognition and prediction, and Al remains
underutilized as a tool, for example, for synthesizing big data
in ecology or for identifying and prioritizing novel hypotheses
about ecological function for further investigations.
Analogous to brain-inspired breakthroughs in deep learn-
ing (41), the self-organizing properties and processes of biol-
ogy are likely to hold hidden inspirations for Al system design
that will be revealed by a closer coupling of Al research and
ecological problems. Extending such biological inspiration
offers a new lens highlighting opportunities for Al innova-
tions that borrow from empirically observed intelligent
decision-making from simple organisms, like slime molds,
that defy our current notions of "intelligence" (42). Similarly,
evolutionary principles that are fundamental to biology and
ecology have inspired Al research. Evolutionary computing
is an ecology-inspired branch of Al that applies genetic algo-
rithms to direct the evolution of systems for applied goals,
whose advances stem from in silico studies, such as directed
evolution in microbes (43). Symbolic regression is another
form of evolutionary computing that is currently being
advanced through applications in ecology (44, 45), leading to
human-interpretable functional equation models of complex
ecological systems that are compositions of more primitive
equations. Biodiversity measurements in ecology, which
often serve as a surrogate for ecosystem complexity, are
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inspiring Al researchers to develop new ways to measure
unwanted bias in training data (46).

We are bullish about the synergistic advances that can be
made between Al and ecological research—where ecological
theory has potential to advance Al research frontiers; where
existing Al methods are infused into the ecological modeling
of complex systems; and where coproduced Al and ecological
research hold promise for critical mutual advances.

3. Ecology for Al: Resilience Theory

In ecology, resilience is the capacity of a system to resist or
recover from perturbation. Ecological systems are resilient
because the ecological function, or the roles that are played
by members of the system, are both redundant and context-
dependent. Understanding the resilience of our ecological
systems is one of the most critical questions facing modern
science. Progress in our ability to measure and make predic-
tions about system resilience will determine the degree to
which we are able to prepare for and respond to the rever-
berating impacts of global climate change and land use affect-
ing the biological processes and higher-order interactions
that underpin ecosystem resilience (47). Resilience theory in
ecology (48) may offer clues to Al researchers for building
more robust and adaptable systems involving feedback loops,
redundant pathways, and satisficing behaviors that identify
which fundamental principles of a system would ideally be
quantified and captured in order to reproduce resilience (49).
These Al systems could themselves be used to model and
investigate ecological resilience. Out-of-distribution general-
ization and resilience to distribution shift is an active area of
Al research (50). Future Al technologies that could model such
context-dependent behavior may benefit from complex and
nonlinear interactions with robustness built-in. Purposeful
joint advances between Al research and ecology have the
potential to extend general systems theory, where novel Al
that is inspired and constrained by the complexities of an
ecological system serve as a throughway to other domains,
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such as psychology or economics where prediction is similarly
difficult because of complexity spanning multiple interacting
scales.

4. Al for Ecology: Knowledge-Guided ML

Extant deep learning algorithms are data hungry and can pro-
duce predictions that are inconsistent with reality due to their
architectures not including prior knowledge of the phenom-
ena they are modeling. The growing field of knowledge-guided
ML (KGML) is one way to advance both Al and ecology, espe-
cially under data-sparse conditions, which are still common
in many areas of ecology (51-54). KGML seeks to inject scien-
tific knowledge into the underpinning architecture of ML algo-
rithms to assist resulting models in making more physically
consistent predictions (55). This idea is consistent with the
incorporation of prior knowledge in Bayesian statistical
approaches, which have been leveraged for similar purposes
in ecological studies but are often limited by both demands
for data and computational costs (e.g., refs. 56 and 57).
Examples of injecting knowledge guidance into ML models
include customizing loss functions to obey physical laws (53,
58), using existing ML architectures [e.g., long short-term
memory (LSTM) (59) or developing new ones to better repre-
sent reality [e.g., mass conserving-LSTM (60), recurrent graph
networks (61), using process-based model outputs as inputs
to ML models or as pretraining datasets (62), using partial dif-
ferential equations representing systems in ML models (63),
or embedding neural networks into hierarchical models (64).
Going forward, ecological modeling may inspire more advanced
architectures that include prior ontological knowledge in com-
bination with hierarchies, physical and biological laws, and
differential equations, along with decentralized and emergent
training paradigmes.

5. Accelerated Discovery through Synergies
between Al and Ecology

Al systems are beginning to expand beyond pattern recog-
nition to hypothesis generation and discovery, in part by
revealing missing links among variables in high-dimensional
networks that represent complex systems. These missing
links represent unanticipated interactions or dependencies
in system components spanning multiple scales. The diver-
sity and breadth of the states and processes in ecological
systems offer exciting potential for advancing Al capacity to
identify such missing links and generate novel hypotheses.

One opportunity for synergy between Al and ecology is in
a problem known as mode collapse in Al research, where algo-
rithms are unable to capture the full diversity of a multimodal
distribution because modeling is necessarily focused on a
small number of observed modes. Ecology and Al have alter-
nately approached this long-standing problem—diffusion
models were a starting point in ecology (65) that are now
showing some success in addressing this problem in gener-
ative Al (66); but ecological modeling has advanced greatly
since then, with telegraph models, reaction-diffusion models,
and population cycling models making continued advances
to dealing with mode collapse in ecological systems. Here,
coproduced research holds mutual benefits for both Al and
ecology—a relevant example is the potential for Al-generated
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hypotheses about multimodal distributions to elucidate what
is driving the bimodal peaks in the spillover transmission of
Ebola virus from wildlife hosts (67). Such generative Al would
benefit from the inclusion of advanced ecological modeling
techniques.

Unlike many Al systems, ecological systems are understood
through theory-based rules. For example, our understanding
of biogeochemistry is founded on rules in physics and chem-
istry, geology, hydrology, and biology. Our understanding of
how populations change over time is founded on evolutionary
rules underpinning the concept of fitness, which is fundamen-
tal for predator-prey interactions, competition among organ-
isms, and the structure of food webs. However, although the
theory-based approach provides understanding of mecha-
nisms (68), it may not be adequate to meet the ecological
crises we face. In Al research, foundation modeling adopts a
similar philosophy—that there are rules underpinning pat-
terns and prediction—but in contrast to ecology, foundation
models learn rules algorithmically by leveraging vast amounts
of available data rather than through decades of applying the
scientific method. Reinforcement learning is another active
frontier of Al research where such rules are explicitly incor-
porated to generate hypotheses about how systems will
evolve and stabilize over time. Thus, despite the complexity
and seemingly chaotic unpredictability of ecological systems,
governing rules, whether they are theory-derived or data-
derived, offer anchor points from which we may observe,
explain, and predict emergent properties of complex ecolog-
ical systems. This approach holds particular promise for incor-
porating the social dimensions of complex systems, whose
effects on ecological systems have historically been under-
recognized and remains a transdisciplinary frontier.

6. Responsible Al and Ecology

The increasing dominance of industry in Al research is leading
to continued improvements of products and platforms that
may provide useful methods, whereas research on ethical Al
and other societal considerations is comparatively neglected
(69, 70). Nevertheless, calls for safe, ethical and responsible
Al as well as research into methods for mitigating biases are
increasing (71-73). Indigenous, feminist, decolonial, and other
critical perspectives provide a grounding for such Al research
(74-76), but those perspectives remain on the fringe of Al and
face epistemic barriers that would need to be overcome to
be incorporated into mainstream Al research (77).

Similarly, the history of ecology is rooted in colonialism; eco-
logical protectionism was often used to justify control of the
environment; and exclusionary practices continue to generate
inference that is beneficial for only a privileged subset of society
(78). Ecologists are more recently working to develop practices
for linking diverse knowledge to better understand socioeco-
logical systems. For example, indigenous knowledge (a.k.a.
traditional ecological knowledge), obtained with informed con-
sent and with an understanding of clear reciprocal benefits to
the community, has strengthened research directions in ecol-
ogy, extending to conservation, responsible management,
stewardship, and the relational ethics between people and
nature (79). As an example, the nuanced understanding of
Arctic snow and sea-ice conditions imparted by indigenous
knowledge was used to guide unmanned aerial vehicles and

https://doi.org/10.1073/pnas.2220283120 5 of 7



Downloaded from https://www.pnas.org by 68.199.191.44 on September 12, 2023 from IP address 68.199.191.44.

satellite data collection. This information was used to better
understand and manage ringed seals, a culturally important
species in a changing climate (80).

Nuances of social and cultural structures and their inte-
gration are essential for gaining knowledge and wisdom
about complex systems, as well as for responsibly affecting
their future. For example, systemic racism has profoundly
affected the social, ecological, and evolutionary characteris-
tics of urban environments and is important to consider for
ensuring social justice and strengthening the resilience of
these systems to climate change (81). It is critical that both
Al and ecology continue to expand epistemic boundaries,
recognizing different ways of knowing as scientifically valid
and respecting indigenous data sovereignty. In order to do
this successfully, both could learn from qualitative research
methodologies from social science (82) and specifically to
capture “the context inextricably tied to the Indigenous epis-
temology, while maintaining standardized temporal and
representational parameters that will make it consistent with
other datasets for integration and analysis” (the hierarchical
picture of Fig. 1 is contested under various epistemologies)
(83). Additionally, following the CARE principles [Collective
Benefit, Authority to Control, Responsibility, and Ethics, (84)]
for indigenous data can help ensure that these data are use-
ful for indigenous peoples and remain under their control,
while also advancing knowledge within Al and ecology.

7. Looking toward Convergence

The research enterprise has been moving along disciplinary
trajectories, fast approaching an important convergence
between Al and the science of ecological systems. Convergent
research in biomedicine underscores the unrealized potential

SoeNo o e wN

Eds. (Curran Associates Inc., 2012).

of Al for achieving what were previously characterized as
"moonshots"—cures for infectious diseases that have yet to
emerge (85) and for noninfectious diseases stemming from
multiple sets of interacting factors (86).

Accelerating such convergent breakthroughs would be helped
by investment on multiple fronts: confronting and ameliorating
biases and limitations in the data—and ways of knowing—that
currently exist, considering transdisciplinary thinking and prac-
tices to bridge philosophical and ethical differences in what con-
stitutes knowledge (87), and building trust while exploring new
disciplinary languages and perspectives. Investing in such inten-
tional convergence has the potential to yield transformative
perspectives and solutions that are as unimaginable and disrup-
tive as recent breakthroughs in chatbots and generative deep
learning. In an age where rapid environmental changes pose
existential risks, strategic synergies between ecological system
science and Al can help propel us to better understand and
potentially restore the resilience of the ecological systems upon
which we depend.

Data, Materials, and Software Availability. Literature search outputs
for Fig. 3 data have been deposited in Figshare (https://doi.org/10.25390/
caryinstitute.22312177) (40).
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