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Research in both ecology and AI strives for predictive 
understanding of complex systems, where nonlinearities 
arise from multidimensional interactions and feedbacks 
across multiple scales. After a century of independent, 
asynchronous advances in computational and ecological 
research, we foresee a critical need for intentional synergy 
to meet current societal challenges against the backdrop 
of global change. These challenges include understanding 
the unpredictability of systems-level phenomena and 
resilience dynamics on a rapidly changing planet. Here, 
we spotlight both the promise and the urgency of a 
convergence research paradigm between ecology and AI. 
Ecological systems are a challenge to fully and holistically 
model, even using the most prominent AI technique today: 
deep neural networks. Moreover, ecological systems have 
emergent and resilient behaviors that may inspire new, 
robust AI architectures and methodologies. We share 
examples of how challenges in ecological systems modeling 
would benefit from advances in AI techniques that are 
themselves inspired by the systems they seek to model. 
Both fields have inspired each other, albeit indirectly, in 
an evolution toward this convergence. We emphasize 
the need for more purposeful synergy to accelerate the 
understanding of ecological resilience whilst building 
the resilience currently lacking in modern AI systems, 
which have been shown to fail at times because of poor 
generalization in different contexts. Persistent epistemic 
barriers would benefit from attention in both disciplines. 
The implications of a successful convergence go beyond 
advancing ecological disciplines or achieving an artificial 
general intelligence—they are critical for both persisting 
and thriving in an uncertain future.

complex systems | ecosystems | interpretable AI |  
deep learning | prediction

Ecological understanding is paramount for confronting mul-
tiple linked phenomena including the increased frequency 
of disease outbreaks, exponential losses of global biodiver-
sity, and profound impacts of climate change. These crises 
share a commonality: they emerge from perturbations of 
complex systems whose high dimensionality underpins non-
linear dynamics that are difficult to predict. Advances in AI 
have the potential to transform our understanding of eco-
logical systems (1). At the same time, ecological systems are 
themselves an impetus for the advancement of AI. Challenges 
that are commonplace in multiscale, context-dependent, and 
imperfectly observed ecological systems offer a panoply of 
problems through which AI moves closer to realizing its full 
potential. Predicting and purposefully managing the out-
comes of perturbations to natural complex systems is a great 

challenge of our time, one that demands bold synergistic 
convergence of AI and ecological science to achieve a more 
holistic understanding that informs action—creating system 
wisdom toward a resilient future (Fig. 1).

Just as humans learn patterns from data to build intelli-
gent thinking about a system, ML underpins modern AI, the 
proximate goal of which is to execute tasks or make decisions 
in a particular domain. Applying AI tools to ecological 
domains has vastly expanded our abilities to quantify phe-
nomena that were previously unquantifiable or difficult to 
observe (2), and offers the possibility of faster and more 
accurate predictions about ecological systems. Recent exam-
ples include studying the interactions between organisms 
and their environments through camera and acoustic data 
(3–5); distilling earth systems satellite data into meaningful 
ecological functions (e.g., productivity) (6); analyzing animal 
behavior through deep learning and pose estimation (7); 
bioinformatics for prediction and validation of whether new 
viruses are capable of human infection (8); and which animal 
species are most likely to harbor them (9).

These are examples of "AI for ecology"—the application 
of existing AI tools to ecological problems. The other direc-
tion, however, of ecological science inspiring new paradigms 
in AI is just as important. An ultimate goal in AI research is 
to achieve artificial general intelligence (AGI) that can extrap-
olate and reason about other domains and systems similar 
to human intelligence. It is likely that AGI will need a combi-
nation of data-driven ML and new ways of representing and 
reasoning from diverse knowledge types to meet the chal-
lenge of trustworthy predictions about no-analog futures, 
such as those we anticipate on a rapidly changing planet. 
Meeting these challenges may be helped by a fundamental 
shift in how AI and ecological research propel each other.

Here, we identify a convergence on the horizon between 
ecological research, which has traditionally lagged behind 
advances in AI and computational science and AI research 
(Fig. 2). This convergence seeks new thought paradigms to 
support intelligent extrapolation to unobserved (or 
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unobservable) systems and futures. Our argument extends 
well beyond the "AI for X" paradigm of simply applying AI to 
myriad domains (represented by "X"). A shift toward copro-
duced, convergent research has the potential to fuel the next 
generation of AI advances and ecological understanding.

This convergence would be helped by the amalgamation 
of two cultures of scientific understanding (22). In ecology, a 
main objective is to understand complex systems spanning 
the physical and the biological. This understanding is often 
captured in mathematical models, which reflect our hypoth-
eses about the mechanisms that act in concert to produce 
observable outcomes. But ecology neither succumbs to the 
"unreasonable effectiveness of mathematics" (like purely 
physical phenomena) (23) nor to the "unreasonable effective-
ness of data" (like certain biological phenomena) (24). Simple 
mathematical equations cannot fully capture the essence of 
an ecological system. Likewise, complicated ML models do 
not generalize well enough to capture nonlinearities from 
unexpected perturbations—ML models derive algorithmic 
understanding from data that are often about one particular 
system. Furthermore, because the goal of ecological research 
is not just prediction but phenomenological and mechanistic 
understanding of complex systems, ecologists use a variety 
of modeling techniques at different scales that together 
coherently capture emergent properties in a holistic system-
level way that is conducive to further study (25). This approach 
contrasts with AI research and development, where conflicts 
among multiple models are not undesired because the 

models are only being used for prediction (which one per-
forms best), not for explanation (why does one perform better 
than another) (26). For example, large language models in AI 
show emergent behaviors that are not present in smaller lan-
guage models (27), but current techniques in AI do not explain 
them. The modus operandi of ecological systems research, 
which prioritizes understanding the mechanisms generating 
the data we observe, can push AI researchers to focus on 
methods permitting deeper understanding of the causes 
underlying such observed phenomena—what quantitative 
changes in a system lead to qualitative changes in system 
behavior (27).

A critical emergent behavior of ecological systems—an 
intelligence if you will—is their spectacular resilience to per-
turbation. This quality further points to ecology as an inspi-
ration for AI, which has only experienced mixed success with 
imbuing resilience into the existing brittle intelligence of 
neuroinspired AI (28). Thus, it is not only the different and 
combined ways of modeling ecological systems that can help 
push AI research, but the ecological systems themselves that 
can inspire robust multiscale architectures for AI. [This ech-
oes the synergistic relationship between quantum chemistry 
and quantum computing (29).]

By coproducing an interwoven research path, AI and eco-
logical understanding are well positioned to mutually 
advance beyond where each discipline could arrive inde-
pendently. A future where AI research development is syn-
ergistic with ecological research could advance the quest to 
understand complex ecological systems at temporal and 
spatial scales relevant to societal needs. Below, we provide 
an account of the current state of the art in AI research 
(Section 1). We briefly trace the history of ecological systems 
modeling up to the present use of deep neural networks 
(Section 2) and expand upon the opportunity for convergent 
research in AI and ecology. We then conjecture examples of 
this convergent research paradigm, exploring how the study 
of ecology can advance AI (Section 3), how AI is advancing 
ecology (Section 4), and opportunities for synergistic research 
to accelerate mutual discovery and advancement (Section 5). 
We conclude by identifying some distinct and common biases 
that should be addressed by AI and ecology disciplines and 
highlight some shared opportunities for more responsible 
development and deployment of AI (Section 6).

1.  AI: The Current State of the Art

In the last 10 y, deep neural networks (also known as deep 
learning) have become synonymous with AI due to their pow-
erful modeling abilities. Familiar successes include more accu-
rate clinical diagnoses from radiological imaging and 
increasingly rapid analysis and decision-making used for self-
driving car technology. In December 2022, ChatGPT, a lan-
guage model based on deep learning, showed the rapidly 
expanding potential of deep learning models. Deep neural 
networks are a subfield of ML. ML derives its intelligence from 
the patterns in data, whether tabular data, time series, images, 
or text. The goal is to generalize the patterns from these data 
to new unseen data points. ML models have many forms; 
some are simpler, like decision trees and linear models, and 
others are more complex. For example, artificial neural net-
works are inspired by the wiring of neurons in brains and 
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Fig. 1. A diagram illustrating interconnections between data, information, 
knowledge, and wisdom. Data reflect raw observations or measurements 
(e.g., satellite data such as sea surface temperature (SST) at a specific 
location), while synthesizing these measurements into a meaningful form 
constitutes information (e.g., providing spatial or temporal context to SST 
measurements in the form of time series maps). Knowledge adds context, 
providing similar examples or comparisons to other knowledge systems (e.g., 
some marine organisms will experience heat stress). Finally, wisdom considers 
all of these elements as well as societal or cultural values to assess potential 
actions (e.g., carbon emission limits to mitigate detrimental climate warming 
effects). Arrows represent how machine learning (ML, blue) and ecological 
systems research (yellow) achieve connections within this framework. ML can 
transform data into information but can also bypass the information step to 
direct inference conveyed as knowledge. In contrast, the bidirectional arrows 
for ecology represent iterative feedback to the process of data collection in 
order to achieve knowledge through statistical modeling and hypothesis 
refinement. Intentional and synergistic advances in ML-AI and ecological 
systems science may spur greater understanding, prediction, and protection 
of complex systems function if we can align strengths from each discipline 
to explicitly identify biases and manage uncertainty and different ways of 
knowing, especially at information and knowledge levels.
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utilize a structure of layers that compute weighted dot-
products fed through nonlinear functions. Deep neural net-
works have many layers and are trained on large datasets.

Despite the recent prominence of ML and particularly deep 
learning within AI, several other approaches to AI have devel-
oped in parallel and may overcome the limitations of deep 
learning to model complex systems and enable more resilient 
intelligence. One example is symbolic AI, which involves logical 
reasoning over knowledge graphs. A knowledge graph is dif-
ferent from statistical data in that it explicitly captures con-
cepts and their semantic relationships. A graph might have 
"animals", "cows", "plants", and "grasses" as vertices with 
edges between them indicating that cows "are" animals, 
grasses "are" plants, and cows "eat" grasses. An AI system can 
then reason broader generalizations, such as that some ani-
mals eat some plants. Knowledge graphs are one type of rep-
resentation used in symbolic AI. Other representations are 
ontologies, logical rule sets, probabilistic dependency graphs, 
differential equations, and analytic equations; each has rea-
soning algorithms built on top of them (30). This kind of knowl-
edge and reasoning constitutes expert systems.

The present state of the art in AI is based on "foundation 
models" trained on unimaginably large datasets used as base 
models for many different tasks (31). A process of fine-tuning 
on a small domain-specific dataset specializes the foundation 
model for the task. Moreover, foundation models are being 
used within generative models, which are able to create new 
data (32), for example, to generate the sequences and molec-
ular structures of new viral variants through which to inves-
tigate hypotheses about infection risk to humans and other 
animals.

In another vein, neurosymbolic AI is combining the best 
qualities of deep neural networks and knowledge-based sym-
bolic methods to push beyond each method's unique limita-
tions (33). Neurosymbolic AI systems are considered to be 
broader than more narrowly abled deep learning methods 
and are a step farther on the path toward AGI. They can help 

enable challenging knowledge discovery tasks (generating 
new hypotheses) and deal with heterogeneous and complex 
data of different modalities, scales, qualities, and quantities—
all of which are common in ecological inquiry of complex 
systems. Like Bayesian statistical approaches, neurosymbolic 
AI can incorporate diverse modes of expert knowledge in its 
reasoning that are not always presented as data. It may also 
be more adaptable and robust than other AI approaches and 
may give explainable outputs that lend mechanistic insight, 
which is a guiding principle of ecological research (34).

2.  Ecological Systems Modeling

Prediction in ecological systems epitomizes the difficulty in 
modeling complex systems more generally, which are defined 
by nonlinear dynamics that arise from feedbacks and depend-
encies that span multiple scales of time, space, and social 
dimensions. Because the science of ecological systems sits at 
the intersection of multiple mature subdisciplines, many phys-
ical and biological principles can guide our understanding 
about these systems—for example, the physics of hydrology, 
biogeochemistry, and landscape ecology (35), or the principles 
of fitness in population dynamics. Extracting information from 
observations about ecological systems ideally would consider 
the stochasticity and context dependence that are inherent 
in ecological systems. Ecologists have met this challenge with 
a plethora of modeling approaches, some focusing on system 
components (e.g., questions such as, What are the biophysical 
controls on the distribution and abundance of a limited 
resource?) and others focusing on modeling the bigger picture 
(e.g., How will ecological communities function differently in 
a rapidly changing landscape?). Improving systems-level pre-
diction in ecology may also be fruitful for the development of 
novel AI, and these innovations may happen more quickly 
than they have in the past.

Adoption of new computational methods has generally 
exhibited a multiyear lag in ecological modeling (Fig. 2). 
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Fig. 2. The arc of computational methods in ecological modeling (yellow) has lagged behind the development of the computational methods themselves (blue) 
but is close to converging. The figure is meant to be evocative, not comprehensive. It is biased toward Western scientific traditions and data points may be 
contested. Figure citations (10–21), with Lederberg (20) as a reference for Feigenbaum 1965, and Krizhevsky et al. (10) to accompany Hinton et al. (19).
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Examples include graph theory (e.g., for modeling food webs), 
linear regression (e.g., for modeling heredity), partial differ-
ential equations (e.g., for modeling population growth), 
expert systems (e.g., for managing environmental decisions), 
hierarchical Bayesian methods (e.g., for estimating tree fecun-
dity), and deep learning (e.g., for assessing biodiversity). The 
historical lag between the invention of a computational 
method and its integration into ecological modeling appears 
to be closing (36) (Fig. 2), and the use of AI in ecological mod-
eling has greatly increased (Fig. 3). ML–based prediction has 
started supplementing theory-driven prediction in areas such 
as hydrology (37), zoonotic disease ecology (38), and forest 
ecology (39). However, the scope of application is still largely 
limited to pattern-recognition and prediction, and AI remains 
underutilized as a tool, for example, for synthesizing big data 
in ecology or for identifying and prioritizing novel hypotheses 
about ecological function for further investigations.

Analogous to brain-inspired breakthroughs in deep learn-
ing (41), the self-organizing properties and processes of biol-
ogy are likely to hold hidden inspirations for AI system design 
that will be revealed by a closer coupling of AI research and 
ecological problems. Extending such biological inspiration 
offers a new lens highlighting opportunities for AI innova-
tions that borrow from empirically observed intelligent 
decision-making from simple organisms, like slime molds, 
that defy our current notions of "intelligence" (42). Similarly, 
evolutionary principles that are fundamental to biology and 
ecology have inspired AI research. Evolutionary computing 
is an ecology-inspired branch of AI that applies genetic algo-
rithms to direct the evolution of systems for applied goals, 
whose advances stem from in silico studies, such as directed 
evolution in microbes (43). Symbolic regression is another 
form of evolutionary computing that is currently being 
advanced through applications in ecology (44, 45), leading to 
human-interpretable functional equation models of complex 
ecological systems that are compositions of more primitive 
equations. Biodiversity measurements in ecology, which 
often serve as a surrogate for ecosystem complexity, are 

inspiring AI researchers to develop new ways to measure 
unwanted bias in training data (46).

We are bullish about the synergistic advances that can be 
made between AI and ecological research—where ecological 
theory has potential to advance AI research frontiers; where 
existing AI methods are infused into the ecological modeling 
of complex systems; and where coproduced AI and ecological 
research hold promise for critical mutual advances.

3.  Ecology for AI: Resilience Theory

In ecology, resilience is the capacity of a system to resist or 
recover from perturbation. Ecological systems are resilient 
because the ecological function, or the roles that are played 
by members of the system, are both redundant and context-
dependent. Understanding the resilience of our ecological 
systems is one of the most critical questions facing modern 
science. Progress in our ability to measure and make predic-
tions about system resilience will determine the degree to 
which we are able to prepare for and respond to the rever-
berating impacts of global climate change and land use affect-
ing the biological processes and higher-order interactions 
that underpin ecosystem resilience (47). Resilience theory in 
ecology (48) may offer clues to AI researchers for building 
more robust and adaptable systems involving feedback loops, 
redundant pathways, and satisficing behaviors that identify 
which fundamental principles of a system would ideally be 
quantified and captured in order to reproduce resilience (49). 
These AI systems could themselves be used to model and 
investigate ecological resilience. Out-of-distribution general-
ization and resilience to distribution shift is an active area of 
AI research (50). Future AI technologies that could model such 
context-dependent behavior may benefit from complex and 
nonlinear interactions with robustness built-in. Purposeful 
joint advances between AI research and ecology have the 
potential to extend general systems theory, where novel AI 
that is inspired and constrained by the complexities of an 
ecological system serve as a throughway to other domains, 
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such as psychology or economics where prediction is similarly 
difficult because of complexity spanning multiple interacting 
scales.

4.  AI for Ecology: Knowledge-Guided ML

Extant deep learning algorithms are data hungry and can pro-
duce predictions that are inconsistent with reality due to their 
architectures not including prior knowledge of the phenom-
ena they are modeling. The growing field of knowledge-guided 
ML (KGML) is one way to advance both AI and ecology, espe-
cially under data-sparse conditions, which are still common 
in many areas of ecology (51–54). KGML seeks to inject scien-
tific knowledge into the underpinning architecture of ML algo-
rithms to assist resulting models in making more physically 
consistent predictions (55). This idea is consistent with the 
incorporation of prior knowledge in Bayesian statistical 
approaches, which have been leveraged for similar purposes 
in ecological studies but are often limited by both demands 
for data and computational costs (e.g., refs. 56 and 57). 
Examples of injecting knowledge guidance into ML models 
include customizing loss functions to obey physical laws (53, 
58), using existing ML architectures [e.g., long short-term 
memory (LSTM) (59) or developing new ones to better repre-
sent reality [e.g., mass conserving-LSTM (60), recurrent graph 
networks (61), using process-based model outputs as inputs 
to ML models or as pretraining datasets (62), using partial dif-
ferential equations representing systems in ML models (63), 
or embedding neural networks into hierarchical models (64). 
Going forward, ecological modeling may inspire more advanced 
architectures that include prior ontological knowledge in com-
bination with hierarchies, physical and biological laws, and 
differential equations, along with decentralized and emergent 
training paradigms.

5.  Accelerated Discovery through Synergies 
between AI and Ecology

AI systems are beginning to expand beyond pattern recog-
nition to hypothesis generation and discovery, in part by 
revealing missing links among variables in high-dimensional 
networks that represent complex systems. These missing 
links represent unanticipated interactions or dependencies 
in system components spanning multiple scales. The diver-
sity and breadth of the states and processes in ecological 
systems offer exciting potential for advancing AI capacity to 
identify such missing links and generate novel hypotheses.

One opportunity for synergy between AI and ecology is in 
a problem known as mode collapse in AI research, where algo-
rithms are unable to capture the full diversity of a multimodal 
distribution because modeling is necessarily focused on a 
small number of observed modes. Ecology and AI have alter-
nately approached this long-standing problem—diffusion 
models were a starting point in ecology (65) that are now 
showing some success in addressing this problem in gener-
ative AI (66); but ecological modeling has advanced greatly 
since then, with telegraph models, reaction-diffusion models, 
and population cycling models making continued advances 
to dealing with mode collapse in ecological systems. Here, 
coproduced research holds mutual benefits for both AI and 
ecology—a relevant example is the potential for AI-generated 

hypotheses about multimodal distributions to elucidate what 
is driving the bimodal peaks in the spillover transmission of 
Ebola virus from wildlife hosts (67). Such generative AI would 
benefit from the inclusion of advanced ecological modeling 
techniques.

Unlike many AI systems, ecological systems are understood 
through theory-based rules. For example, our understanding 
of biogeochemistry is founded on rules in physics and chem-
istry, geology, hydrology, and biology. Our understanding of 
how populations change over time is founded on evolutionary 
rules underpinning the concept of fitness, which is fundamen-
tal for predator–prey interactions, competition among organ-
isms, and the structure of food webs. However, although the 
theory-based approach provides understanding of mecha-
nisms (68), it may not be adequate to meet the ecological 
crises we face. In AI research, foundation modeling adopts a 
similar philosophy—that there are rules underpinning pat-
terns and prediction—but in contrast to ecology, foundation 
models learn rules algorithmically by leveraging vast amounts 
of available data rather than through decades of applying the 
scientific method. Reinforcement learning is another active 
frontier of AI research where such rules are explicitly incor-
porated to generate hypotheses about how systems will 
evolve and stabilize over time. Thus, despite the complexity 
and seemingly chaotic unpredictability of ecological systems, 
governing rules, whether they are theory-derived or data-
derived, offer anchor points from which we may observe, 
explain, and predict emergent properties of complex ecolog-
ical systems. This approach holds particular promise for incor-
porating the social dimensions of complex systems, whose 
effects on ecological systems have historically been under-
recognized and remains a transdisciplinary frontier.

6.  Responsible AI and Ecology

The increasing dominance of industry in AI research is leading 
to continued improvements of products and platforms that 
may provide useful methods, whereas research on ethical AI 
and other societal considerations is comparatively neglected 
(69, 70). Nevertheless, calls for safe, ethical and responsible 
AI as well as research into methods for mitigating biases are 
increasing (71–73). Indigenous, feminist, decolonial, and other 
critical perspectives provide a grounding for such AI research 
(74–76), but those perspectives remain on the fringe of AI and 
face epistemic barriers that would need to be overcome to 
be incorporated into mainstream AI research (77).

Similarly, the history of ecology is rooted in colonialism; eco-
logical protectionism was often used to justify control of the 
environment; and exclusionary practices continue to generate 
inference that is beneficial for only a privileged subset of society 
(78). Ecologists are more recently working to develop practices 
for linking diverse knowledge to better understand socioeco-
logical systems. For example, indigenous knowledge (a.k.a. 
traditional ecological knowledge), obtained with informed con-
sent and with an understanding of clear reciprocal benefits to 
the community, has strengthened research directions in ecol-
ogy, extending to conservation, responsible management, 
stewardship, and the relational ethics between people and 
nature (79). As an example, the nuanced understanding of 
Arctic snow and sea–ice conditions imparted by indigenous 
knowledge was used to guide unmanned aerial vehicles and 
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satellite data collection. This information was used to better 
understand and manage ringed seals, a culturally important 
species in a changing climate (80).

Nuances of social and cultural structures and their inte-
gration are essential for gaining knowledge and wisdom 
about complex systems, as well as for responsibly affecting 
their future. For example, systemic racism has profoundly 
affected the social, ecological, and evolutionary characteris-
tics of urban environments and is important to consider for 
ensuring social justice and strengthening the resilience of 
these systems to climate change (81). It is critical that both 
AI and ecology continue to expand epistemic boundaries, 
recognizing different ways of knowing as scientifically valid 
and respecting indigenous data sovereignty. In order to do 
this successfully, both could learn from qualitative research 
methodologies from social science (82) and specifically to 
capture “the context inextricably tied to the Indigenous epis-
temology, while maintaining standardized temporal and 
representational parameters that will make it consistent with 
other datasets for integration and analysis” (the hierarchical 
picture of Fig. 1 is contested under various epistemologies) 
(83). Additionally, following the CARE principles [Collective 
Benefit, Authority to Control, Responsibility, and Ethics, (84)] 
for indigenous data can help ensure that these data are use-
ful for indigenous peoples and remain under their control, 
while also advancing knowledge within AI and ecology.

7.  Looking toward Convergence

The research enterprise has been moving along disciplinary 
trajectories, fast approaching an important convergence 
between AI and the science of ecological systems. Convergent 
research in biomedicine underscores the unrealized potential 

of AI for achieving what were previously characterized as 
"moonshots"—cures for infectious diseases that have yet to 
emerge (85) and for noninfectious diseases stemming from 
multiple sets of interacting factors (86).

Accelerating such convergent breakthroughs would be helped 
by investment on multiple fronts: confronting and ameliorating 
biases and limitations in the data—and ways of knowing—that 
currently exist, considering transdisciplinary thinking and prac-
tices to bridge philosophical and ethical differences in what con-
stitutes knowledge (87), and building trust while exploring new 
disciplinary languages and perspectives. Investing in such inten-
tional convergence has the potential to yield transformative 
perspectives and solutions that are as unimaginable and disrup-
tive as recent breakthroughs in chatbots and generative deep 
learning. In an age where rapid environmental changes pose 
existential risks, strategic synergies between ecological system 
science and AI can help propel us to better understand and 
potentially restore the resilience of the ecological systems upon 
which we depend.

Data, Materials, and Software Availability. Literature search outputs 
for Fig.  3 data have been deposited in Figshare (https://doi.org/10.25390/
caryinstitute.22312177) (40).
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