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ABSTRACT
Website Fingerprinting (WF) is considered a major threat to the
anonymity of Tor users (and other anonymity systems). While state-
of-the-art WF techniques have claimed high attack accuracies, e.g.,
by leveraging Deep Neural Networks (DNN), several recent works
have questioned the practicality of such WF attacks in the real
world due to the assumptions made in the design and evaluation
of these attacks. In this work1, we argue that such impractical-
ity issues are mainly due to the attacker’s inability in collecting
training data in comprehensive network conditions, e.g., a WF clas-
si�er may be trained only on high-bandwidth samples collected
on speci�c high-bandwidth network links but deployed on connec-
tions with di�erent network conditions. We show that augmenting
network traces can enhance the performance of WF classi�ers in
unobserved network conditions. Speci�cally, we introduce NetAug-
ment, an augmentation technique tailored to the speci�cations of
Tor traces. We instantiate NetAugment through semi-supervised
and self-supervised learning techniques. Our extensive open-world
and close-world experiments demonstrate that under practical eval-
uation settings, our WF attacks provide superior performances
compared to the state-of-the-art; this is due to their use of aug-
mented network traces for training, which allows them to learn
the features of target tra�c in unobserved settings (e.g., unknown
bandwidth, Tor circuits, etc.). For instance, with a 5-shot learning
in a closed-world scenario, our self-supervised WF attack (named
NetCLR) reaches up to 80% accuracy when the traces for evaluation
are collected in a setting unobserved by the WF adversary. This is
compared to an accuracy of 64.4% achieved by the state-of-the-art
Triplet Fingerprinting [34]. We believe that the promising results
of our work can encourage the use of network trace augmentation
in other types of network tra�c analysis.

CCS CONCEPTS
• Networks! Network privacy and anonymity; • Informa-
tion systems ! Tra�c analysis; • Security and privacy !
Pseudonymity, anonymity anduntraceability; Privacy-preserving
protocols.

1An extended version of this paper as well as artifacts are available here [2].
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1 INTRODUCTION
Anonymous communication systems hide the identities of the In-
ternet end-points (e.g., websites) visited by Internet users, therefore
protecting them against online tracking, surveillance, and censor-
ship. Tor [12] is the most popular anonymous communication sys-
tem in the wild with several million daily users [38]. Tor provides
anonymity by relaying clients’ tra�c through cascades of proxies,
known as relays. A major threat to the anonymity provided by
Tor and similar anonymity systems is a class of attacks known as
Website Fingerprinting (WF) [33, 34, 7, 8, 21, 27, 24, 5, 44, 23, 13, 45,
22, 4, 43]. WF is performed by a passive adversary who monitors
the victim’s network tra�c, e.g., a malicious ISP or surveillance
agency. The adversary compares the victim’s observed tra�c trace
against a set of pre-recorded website traces, to identify the webpage
being browsed. State-of-the-art (SOTA) WF attacks achieve signi�-
cantly high accuracies by leveraging deep neural network (DNN)
architectures [22, 4, 33, 34, 8, 27, 21], e.g., Deep Fingerprinting [33]
claims 98% accuracy in a closed-world scenario.
Critiques of WF Studies: Despite the high accuracies claimed
by SOTA WF attacks, several recent works [16, 8, 9, 45, 41] have
questioned the relevance of such attacks in practice due to the (un-
realistic) threat models assumed in evaluating such attacks. Notably,
the following are the major criticisms:

• Resilience to concept drift: Concept drift refers to the phenom-
enon where the properties that distinguish one website from
another can change over time. This can make it more di�cult
forWF techniques to accurately identify and track individual
websites, as the features that were previously used to distin-
guish them may no longer be reliable. Juarez et al. [16] show
that concept drift causes a signi�cant drop in WF accuracy.

• Network condition variations: To collect ground truth data
for training a WF classi�er, researchers usually generate
synthetic network traces via automated browsing of a pre-
de�ned set of websites. However, when deploying the attack,
the WF classi�er may encounter traces that are collected in
di�erent network conditions (e.g., lower bandwidth).

• Inaccurate user imitation: Automated browser crawlers such
as Selenium [32] are used by researchers to collect ground
truth traces. The diversity of browser con�gurations and
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variations in user behavior such as visiting subpages of a
website cannot be replicated by these crawlers.

• Requiring large labeled datasets: Some DNN-based WF tech-
niques require large amounts of labeled data for training to
achieve high accuracies.

In response to above criticisms, researchers proposed various
heuristic techniques [8, 45, 21, 23, 27, 41, 25] in the design and
evaluation of WF attacks. For instance, Wang and Goldberg [45]
propose to maintain a fresh training set to make the model robust
against concept drift. Furthermore, to improve WF accuracy when
limited labeled data is available, GANDaLF [21] and Triplet Fin-
gerprinting (TF) [34] use generative networks and metric learning,
respectively. Most recently, Cherubin et al. [8] aim to address the
issue of inaccurate user imitation by training a WF classi�er on
genuine Tor traces collected from exit Tor relays.
Enabling WF under realistic settings: We argue that the (ad
hoc) approaches mentioned above either only partially address the
issue, or are impractical themselves. For instance, the SOTA works
of GANDaLF [21] and Triplet Fingerprinting (TF) [34] only address
the issue of data availability, but not concept drift. In this work, we
argue that the main reason for these issues with WF techniques is
the attacker’s inability to collect training network traces in variable
network conditions. That is, the WF party is either not able to collect
enough (labeled) training data to represent the diverse and volatile
nature of the web tra�c over time, or the collected training data
only represents a speci�c threat model, e.g., a speci�c network
condition, a particular Tor circuit, or a speci�c time frame. For
instance, the adversary may collect Tor traces in one setting during
training but may encounter traces in a completely di�erent setting
during the deployment that have not been previously observed. One
potential solution to mitigate this issue is to collect Tor traces in a
variety of network settings and scenarios. However, there can be an
in�nite number of settings and in any practical WF scenario, it is
infeasible to collect traces in all possible settings, e.g., to solve the
concept drift problem, the attacker needs to re-train the classi�er
regularly because the contents or even the layout of the websites
may change everyday.

In this work, we aim to alleviate the mentioned issues through
augmentation of network traces. Augmentation is to modify the
existing samples to generate new samples that have the crucial
features of the original ones. Our work is inspired by the success-
ful uses of data augmentation in various SOTA machine learning
architectures, in particular in various emerging semi-supervised
and self-supervised applications. Our intuition is that augment-
ing network traces (e.g., of website connections) can help enhance
the longitudinal perspective of a WF classi�er, by enabling it to
obtain network data samples that represent unobserved network
conditions or settings. However, one can not simply borrow data
augmentation techniques designed for classical machine learning
tasks like vision. Instead, to get the most out of augmentation, we
develop augmentation techniques that are tailored to the speci�c
characteristics of network tra�c.

We demonstrate the impact of data augmentation on boosting
the performance of WF attacks under realistic settings. We start
by evaluating the impact of a naive augmentation approach, i.e.,
randomly �ipping the directions of Tor cells in a Tor trace. We

then evaluate our network-tailored augmentation mechanism, Ne-
tAugment, which is tailored to speci�c con�gurations of Tor tra�c.
NetAugment replicates the modi�cations that may happen in unob-
served WF settings by manipulating bursts of cells in a Tor trace. In
our experiments, we show that NetAugment performs signi�cantly
better than a naive (random) augmentation.
Deploying Network Augmentation: Augmented Tor traces can
be used in di�erent ways to train a WF classi�er. In this work, we
instantiate NetAugment through semi-supervised learning (SemiSL)
and self-supervised learning (SelfSL). We use SemiSL and SelfSL to
reduce the dependency of the model on collecting large amounts
of labeled data. After evaluating several deployments of SelfSL
and SemiSL techniques, we propose NetCLR, a WF attack based
on SelfSL techniques integrated with NetAugment. NetCLR learns
useful representations of Tor traces without any requirement of
labeled data as a pre-training phase. We then �ne-tune the pre-
trained base model to adjust NetCLR to downstream datasets. To
evaluate NetCLR in a realistic scenario, we perform pre-training
and �ne-tuning using traces collected in one setting, and perform
the attack on traces collected in di�erent settings. We split our
datasets into two categories: traces collected in consistent network
conditions (superior traces), and traces collected in poor and low
bandwidth network conditions (inferior traces).
Evaluations: We perform extensive experiments to evaluate Net-
CLR in both closed-world and open-world WF scenarios. We show
that NetCLR outperforms previous WF techniques when the traces
for training and deployment are collected in di�erent settings, e.g.,
in a closed-world scenario and with only 5 labeled samples, NetCLR
has 80% accuracy on inferior traces while Triplet Fingerprinting
(TF), the SOTA low-data WF technique, reaches only 64.4% in an ex-
act same setup. Furthermore, our results show that NetCLR shows
more resilience to concept drift compared to previous systems, e.g.,
when evaluating NetCLR on a dataset with a 5-year gap from the
dataset used in pre-training, NetCLR reaches 72% accuracy using
20 labeled samples while TF only reaches 51% accuracy. NetCLR is
also e�ective in an open-world scenario, e.g., when using 5 labeled
samples, NetCLR reaches 92% precision while Deep Fingerprinting
has only 75% precision.

We also evaluate NetCLR against the Blind Adversarial Pertur-
bations (BAP) [20] countermeasure technique which is based on
adversarial examples and is shown to be e�ective in defending WF
attacks. Based on our results, NetCLR is more robust compared
to existing systems when BAP is active, e.g., the accuracy of Net-
CLR reduces by 4.9% when there are 10 labeled samples while the
accuracy of DF decreases by 52.3%.
Summary of contributions:

• We investigate augmentation of network tra�c to alleviate
realisticness issues of WF techniques that stem from a lack
of longitudinal perspective into network tra�c; follow-up
studies may extend this to other types of tra�c analysis.

• We deploy our network augmentation mechanisms into
novel WF techniques that are based on semi-supervised and
self-supervised mechanisms.

• We perform extensive experiments in closed-world and open-
world settings, demonstrating the superiority of our WF
attacks in realistic settings.
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2 BACKGROUND
2.1 Semi-Supervised Learning
Semi-supervised learning (SemiSL) is an approach to machine learn-
ing that combines a small amount of labeled data with a large
amount of unlabeled data during training. There is a line of research
in SemiSL aiming at producing an arti�cial label for unlabeled sam-
ples and training the model to predict the arti�cial label when fed
unlabeled samples as input [18, 19, 46, 28, 31]. These approaches
are called pseudo-labeling. Similarly, consistency regularization [1,
17, 29] obtains an arti�cial label using the model’s predicted dis-
tribution after randomly modifying the input or model function.
FixMatch [35] is a recent SemiSL algorithm in computer vision that
combines consistency regularization and pseudo-labeling and gen-
erates separate weak and strong augmentations when performing
consistency regularization. FixMatch produces a pseudo-label based
on a weakly-augmented unlabeled sample, which is used as a target
label when the model is fed a strongly-augmented version of the
same input. Note that in computer vision, augmentation refers to
distorting the pixels of an image to generate new samples with the
same label. This includes making small changes to images or using
deep learning models to generate new data points. In FixMatch,
weak augmentation is a standard �ip-and-shift augmentation strat-
egy while strong augmentation is based on AutoAugment [10]. See
the extended version of this paper [2] for the detailed formulation
of FixMatch.

2.2 Self-Supervised Learning
Self-supervised (Unsupervised) learning (SelfSL) tries to learn useful
embeddings from unlabeled data. Contrastive learning is a subset of
unsupervised learning that aims to learn embeddings by enforcing
similar elements to be equal and dissimilar elements to be di�erent.
SimCLR [6] is a recent framework in computer vision for contrastive
learning of visual representations. In particular, SimCLR learns
representations (embeddings) of unlabeled data by maximizing
agreement between di�erently augmented views of the same data
example via a contrastive loss in the latent space. Note that SimCLR
does not use any labeled data to learn the representations of input
samples. We overview the detailed formulation of SimCLR in the
extended version of this paper [2].

2.3 Website Fingerprinting: An Overview
Website Fingerprinting (WF) aims at detecting the websites visited
over encrypted channels like VPNs, Tor, and other proxies. [33, 4, 27,
43, 24, 5, 44, 23, 13, 45, 15, 34, 41]. The attack can be performed by
a passive adversary who monitors the victim’s encrypted network
tra�c, e.g., a malicious ISP or a surveillance agency. The adversary
attempts to identify the website visited by the victim by observing
their encrypted tra�c and using various classi�cation techniques.
Website �ngerprinting has been widely studied in the context of
Tor tra�c analysis [27, 33, 4, 24, 5, 44, 23, 13, 15, 34, 41].

Various machine learning classi�ers have been used for WF,
e.g., using KNN [43], SVM [23], and random forest [13]. However,

SOTA WF algorithms use DNNs to perform website �ngerprint-
ing [33, 27, 4]. DNN-based WF attacks demonstrate e�ective per-
formance in both the closed-world setting, where the user is as-
sumed to only browse websites in a monitored set, and the more
realistic open-world setting, where the user might browse any web-
site, whether monitored or not. For instance, Deep Fingerprinting
(DF) [33] achieves over 98% accuracy in the closed-world setting
and over 0.9 for both precision and recall in the open world by
using convolutional neural networks (CNN). Similarly, Automated
Website Fingerprinting (AWF) [27] is another algorithm based on
CNNs that achieves over 96% accuracy in a closed-world scenario.
To achieve high accuracies, DF and AWF require large amounts
of training data, e.g., DF uses 800 traces per website. Furthermore,
both AWF and DF assume the traces for the training and test have
the same distribution, while in practice, traces can be collected in
di�erent time periods or from di�erent vantage points.

There are recent studies that perform limited-data WF [34, 21, 4],
i.e., Sirinam et al. propose Triplet Fingerprinting (TF) [34] where
they examine how an attacker can leverage N-shot learning—a ma-
chine learning technique requiring just a few training samples to
identify a given class—to reduce the amount of data required for
training as well as mitigate the adverse e�ects of dealing with het-
erogeneous trace distributions. TF leverages triplet networks [30],
an image classi�cation method in contrastive learning, to train a fea-
ture extractor that maps network traces to �xed-length embeddings.
TF uses 25 samples per website and 775 websites to train the feature
extractor in the pre-training phase. The embeddings are then used
in a �ne-tuning phase to # -train a K-Nearest Neighbour (KNN)
classi�er. TF achieves over 92% accuracy using 25 samples per web-
site to train the feature extractor and only 5 samples to train the
KNN classi�er. Generative Adversarial Network for Data-Limited
Fingerprinting (GANDaLF) [21], proposed by Oh et al., is another
e�ective WF attack when few training samples are available. In par-
ticular, GANDaLF uses a Generative Adversarial Network (GAN) to
generate a large set of "fake" network traces, helping to train a DNN
that distinguishes classes of real training data. In the closed-world
setting, GANDaLF achieves 87% accuracy using only 20 instances
per website (100 sites). Online WF [8] is the most recent WF attack
proposed by Cherubin et al. They argue that existingWF techniques
lack realistic assumptions making them impractical in real-world
scenarios. They show that synthetic traces collected by researchers
using automated browsers over entry relays is less diverse than
genuine Tor traces. Therefore, Online WF uses genuine Tor traces
collected over an exit relay to perform a more realistic WF attack.

3 PROBLEM STATEMENT
3.1 Critiques of WF Studies
As overviewed in Section 2.3, state-of-the-art DNN-based WF at-
tacks achieve high accuracies even with 25 labeled samples per
website. However, several recent works [16, 8, 9, 45, 41] have crit-
icized the relevance of such attacks in practice, as existing WF
attacks lack realistic assumptions in their threat model, making
them impractical in real-world. The following are the main criti-
cisms:
Resilience to concept drift: Concept Drift is one of the main
issues making a WF classi�er outdated as the content of many
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websites is changing everyday. Juarez et al. [16] show that concept
drift can cause a signi�cant drop in the accuracy of WF classi�ers.
To overcome this problem, the attacker needs to re-train the model
regularly by fetching updated data [45]. We elaborate on di�erent
types of concept drift that impactWF attack in the extended version
of this paper [2]
Network condition variations: The network conditions where
Tor traces are collected have di�erent characteristics in terms of
their bandwidth, latency, congestion, and so forth. A mismatch
between the network conditions of traces used for training and the
traces the attacker observes in deployment can a�ect the perfor-
mance of the WF model signi�cantly. Researchers usually collect
traces in stable and consistent network conditions which is not al-
ways the case during deployment. Clients in di�erent locations may
experience low bandwidth connections or high latency a�ecting
the underlying features of their Tor traces.
Inaccurate user imitation: Researchers often use automated
browser crawlers such as Selenium [32] positioned in an entry relay
to collect ground truth traces for training WF classi�ers. However,
these synthetic traces do not re�ect actual behavior of a Tor client,
such as di�erent browser con�gurations or visiting subpages of
a website, e.g., it is impractical to assume that clients only have
one tab open while clients usually visit websites concurrently [40,
47]. Researchers have investigated the e�ect of multi-tab browsing
in WF attacks [16, 45]. Online WF [8] shows that synthetic traces
cannot represent genuine Tor traces. They modify the threat model
of a conventional WF attack by collecting genuine Tor traces from
an exit relay for training the WF classi�er.
Requiring large labeled datasets: Despite the high accuracy of
DNN-based WF attacks, they often require large amounts of labeled
data, e.g., DF [33] uses 800 samples per website to achieve 98%
accuracy. Gathering labeled data in any learning-based scenario
in general, and in WF attacks in particular require excessive e�ort
making it impractical in real-world. Researchers used di�erent tech-
niques such as contrastive learning [34], GANs [21], and residual
networks [4] to mitigate the reliability of WF attacks on labeled
data.

Despite the partial success of recent WF studies to ease the
challenges of such attacks in real-world scenarios, they still lack
practicality when it comes to actual Tor traces. In this work, we aim
for the root cause of the mentioned critics: lack of longitudinal per-
spective into network tra�c. As a response, we leverage carefully
designed data augmentation tailored to the Tor network to repre-
sent the diverse and volatile nature of web tra�c. A Tor-tailored
augmentation enables the WF model to obtain traces in unobserved
settings by replicating the modi�cations that may happen during
the deployment of the attack.

3.2 Adversary Model
In this work, we consider a passive and local adversary for Tor.
Network administrators, Internet Service Providers (ISP), and Au-
tonomous Systems (AS) are examples of a local adversary having
access to the link between the client and the entry relay. The adver-
sary collects TCP packets from which it can extract Tor cells. We
assume that the adversary cannot break the encryption provided
by Tor. In machine learning-based WF attacks, the adversary �rst

Training Phase

Deployment Phase

Figure 1: Setup of a machine learning-based WF attack.

trains a classi�cation model (mostly DNNs in recent works) and
then deploys the model against users’ tra�c. Figure 1 shows the
setting of a machine learning-based WF attack.

In this work, the attacker has the same interception point as
previous WF attacks. The attacker collects traces by running an
entry relay and then uses these traces to train a WF classi�er. Note
that, due to privacy reasons and to keep the anonymity of Tor
users, we do not evaluate our system on Tor traces of actual users.
Furthermore, an evaluation on genuine Tor traces cannot be shared
publicly making it challenging for future reproducibility.

To evaluate the ability of the attacker to generalize for unob-
served settings during deployment, we collect traces in di�erent
network settings for training and deployment. These traces are
synthetic as we need to know the labels to train the model. We
assume that the attacker uses traces that are collected in consistent
network conditions with high bandwidth and low latency. Hence,
the attacker performs all the training phases on superior traces. On
the other hand, during deployment, the attacker may encounter
traces in various network conditions such as low bandwidth and
high latency. So to consider the worst-case scenario, we evaluate
the performance of our attack on inferior traces. In Section 6, we
elaborate on how we divide the traces of our dataset into inferior
and superior traces. We believe that in such a scenario, we evalu-
ate the capability of the model of learning the underlying features
of traces in unobserved settings. In Sections 4 and 5 we explain
how we achieve this goal by leveraging data augmentation and
deploying it through SelfSL and SemiSL algorithms.

4 NETAUGMENT: AUGMENTING NETWORK
TRACES

As mentioned before, limitations in data collection are one of the
main weaknesses of existing WF attacks, questioning the relevance
of such attacks in practice. We present augmentation as a potential
solution to this problem as it enables the model to train on di�erent
variations of website traces which it might later face when it is
deployed. These traces can have a distribution di�erent from that
of the training data, as there are unpredictable sources of noise
causing variations in tra�c which might not be present when train-
ing data is collected. An augmentation tailored to the domain of
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network packets and Tor cells enables the adversary to perform clas-
si�cation on traces in a realistic scenario. Augmentation also allows
the attacker to extend their training dataset, therefore eliminating
the need for large amounts of labeled data. There are numerous
works focusing on augmentation techniques applied to images in
computer vision. These techniques range from basic image manip-
ulations, such as resizing, �ipping, shifting, and cropping, to more
complex techniques such as AutoAugment [10], RandAugment [11],
and CTAugment [3]. However, augmenting the network traces is
more challenging due to the di�erent nature of Tor network traces.
Speci�cally, one cannot simply borrow data augmentation tech-
niques designed for classical machine learning tasks. Instead, to
get the most out of augmentation, we develop augmentation tech-
niques that are tailored to the speci�c characteristics of network
tra�c. To come up with a data augmentation approach for Tor
traces, we started by implementing a naive augmentation called
FlipAugment where for each Tor cell, we �ip its direction with a
probability of ? 5 ;8? . FlipAugment is a simple augmentation that
does not necessarily re�ect e�ects of variations that can occur in
Tor network conditions.

We then propose NetAugment, a new data augmentation tech-
nique tailored to the speci�c characteristics of Tor network traces.
We believe that using a Tor-tailored augmentation is necessary
to enable the model to obtain network samples that represent un-
observed network conditions and disparate settings. We demon-
strate the e�ectiveness of NetAugment as opposed to FlipAugment
through extensive experiments in Section 7. Figure 2 shows the
high-level description of NetAugment. NetAugment focuses on
bursts of Tor cell directions since the traces fed to the attack models
are sequences of cells represented by their direction (incoming or
outgoing) (See Section 6.2 for more details on data representation).
We de�ne a sequence of consecutive cell directions as a burst if
they all have the same direction. The number of cells in each burst
is considered the size of that burst. In a Tor trace, incoming bursts
consist of cells transmitted from the website to the client and out-
going bursts consist of cells captured in the other direction. For
each trace, we �rst extract the incoming and outgoing bursts, then
we apply one of three burst manipulations, and �nally, we apply a
shift transformation. Each manipulation represents one or several
cumulative e�ects of varying network conditions on traces.

Since the WF literature de�nes an incoming cell as -1 and an
outgoing cell as +1, incoming bursts have negative sizes and outgo-
ing bursts have positive sizes. Note that when applying each burst
manipulation on a trace, we do not modify the �rst 20 cells, as the
�rst cells are often used for the protocol initiation and handshake
which means they remain the same among di�erent traces of a
particular website. For each trace, NetAugment randomly applies
one of the following burst manipulations:

• Modify incoming burst sizes: The content of most web-
sites is changing every day and as a result, the classi�er may
not be able to capture the unique pattern of each website.
The bursts of incoming Tor cells in a trace contain down-
loaded contents of the websites such as text, images, and
other parts of the website. Figure 3 shows the mean and stan-
dard deviation of the number of incoming cells in traces of
50 websites randomly chosen from AWF dataset. This �gure

shows how di�erent traces of the same website can have
varied numbers of incoming cells, indicating the dynamic
nature of the contents of a website. To replicate this variation
in the contents of a website, we randomly modify the size
of incoming bursts and generate new network traces for the
same website. For traces with less than 1000 Tor cells, we
only increase the size of incoming bursts and for traces with
more than 4000 Tor cells, we only decrease the size of incom-
ing bursts. For traces with a number of Tor cells between
1000 and 4000, we randomly choose to increase or decrease
the size of incoming bursts. The modi�cation of incoming
burst sizes happens with rates AD?B0<?;4 and A3>F=B0<?;4
which are the hyper-parameters of NetAugment.

• Insert outgoing bursts: Tor sends control cells periodically
for �ow control and other purposes. SENDME cells are the
most common control cells that can a�ect the tra�c analysis
algorithm [42]. Di�erent network conditions lead to di�erent
circuit bandwidths which a�ect the number of control cells
that are present in each trace, e.g., when a client is connecting
to a low bandwidth circuit, there could be more control
cells in their network trace. To represent this e�ect in our
augmentation, we randomly split incoming bursts and insert
an outgoing burst to generate an augmented network trace.
To choose the size of these inserted outgoing bursts, we use
the empirical distributions of approximately 198k outgoing
burst sizes obtained from 1000 traces of AWF dataset. Figure 4
shows this distribution. Inserting outgoing bursts happens
at a rate A8=B4AC which is a hyper-parameter of NetAugment.

• Merge incoming bursts: As mentioned previously, higher
circuit bandwidths can translate into fewer control cells.
Therefore, by merging the incoming bursts, our augmenta-
tion represents this variation while maintaining the amount
of incoming data which is consistent among most of the
traces of a single website. We represent this e�ect by merg-
ing incoming bursts and removing some outgoing bursts
randomly. We merge =<4A64 number of incoming bursts at
a rate A<4A64 . =<4A64 and A<4A64 are hyper-parameters of
NetAugment.

Once the burst manipulation is applied, the sequence of bursts is
converted to a sequence of cells. Then, the last step of NetAugment
is to shift the cells. To shift a trace by = cells, we drop the last
= cells of the trace and insert = zero-sized cells to its beginning.
When deploying the attack, the adversary observing the victim’s
tra�c may not know which cell is the �rst cell in a trace. This may
cause that particular trace to be shorter than previously observed
samples of that website. The intuition behind this shifting step is
to represent shorter traces not just by zero-sized ending cells, but
also by introducing zero-size leading cells to increase resilience to
virtual concept drift (See [2] for details on types of concept drift in
WF).

Algorithm 1 summarizes the steps in NetAugment. Furthermore,
Algorithms 2, 4, and 3 show the detailed implementation of the burst
manipulations in NetAugment. Table 1 shows the optimal values of
NetAugment hyperparameters. We select each hyperparameter by
searching through a set of candidates. We pick the hyperparameter
which leads to the best accuracy.
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Figure 2: Overview of NetAugment

� �� �� �� �� ��
:HEVLWH�ODEHO

�

����

����

����

����

����

1
XP
EH
U�R
I�L
QF
RP
LQ
J�
FH
OOV

Figure 3: Mean and standard deviation of the number of
incoming Tor cells in traces of 50 websites in the AWF dataset.
Di�erent samples of the same websites have a varied number
of incoming Tor cells due to their dynamic content.
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Figure 4: Empirical distribution of outgoing burst sizes from
1000 traces. To insert outgoing bursts we randomly sample
from this distribution.

Algorithm 1 NetAugment Algorithm
C  vector of cell directions
(���)  shift parameter
1DABCB = extract_bursts(C )
<0=8?D;0C8>=B  {

Modify Incoming Burst Sizes (Algorithm 2),
Merge Incoming Bursts (Algorithm 4),
Insert Outgoing Bursts (Algorithm 3)
}

M  Randomly pick from<0=8?D;0C8>=B
1DABCB0D6<4=C43 = M(1DABCB, C)
C0D6<4=C43  convert_burst_to_cells(1DABCB0D6<4=C43 )
= = Pick random value from {0, · · · , (���) }
>DC?DC = C0D6<4=C43 >> =

Algorithm 2 Modifying Incoming Burst Sizes Algorithm

functionM�����_S���_��_B�����(1DABCB , C )
AD?B0<?;4  The rate of increasing burst size
A3>F=B0<?;4  The rate of reducing burst size
1DABC_B8I4_C⌘A4B⌘>;3  Minimum number of non-zero

cells in a burst for the manipulation to be applied
if len(C < 0) <= 1000 then

delta = AD?B0<?;4
else if len(C < 0) > 4000 then

delta = -A3>F=B0<?;4
else

ù Randomly decide to increase or decrease size
delta = Pick random value from {AD?B0<?;4 , -A3>F=B0<?;4 }

for 1DABC_B8I4 in 1DABCB do
ù Skipping bursts with less than 10 cells
if 1DABC_B8I4  �1DABC_B8I4_C⌘A4B⌘>;3 then

1DABC_B8I4 ⇥= (1 + random[0, 1] ⇥ 34;C0)
return 1DABCB

5 WEBSITE FINGERPRINTING USING
AUGMENTED TRACES

As mentioned in the previous section, augmentation can boost the
performance of WF attacks under realistic scenarios by enabling
the model to obtain traces in unobserved settings and conditions.
Augmented Tor traces can be used in di�erent methods to train a
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Algorithm 3 Inserting Outgoing Bursts Algorithm

function I�����_O�������_B�����(1DABCB)
A8=B4AC  The rate of inserting outgoing bursts
BS Empirical distribution of burst sizes
for 1DABC_B8I4 in 1DABCB do

if 1DABC_B8I4 < 0 then ù Ignoring outgoing bursts
A0=3><_?A>1 = random[0, 1]
if A0=3><_?A>1 < A8=B4AC then

B8I4 = Sample(BS)
?>B8C8>= = Pick random value

from {3, · · · ,1DABC_B8I4 � 3}
1DABCB .insert(size=B8I4 , position=?>B8C8>=)

return 1DABCB

Algorithm 4Merging Incoming Bursts Algorithm

functionM����_I�������_B�����(1DABCB)
=<4A64  Number of bursts to merge in each step
A<4A64  The rate of merging the bursts
for 1DABC_B8I4 in 1DABCB do

if 1DABC_B8I4 < 0 then ù Ignoring outgoing bursts
A0=3><_?A>1 = random[0, 1]
if A0=3><_?A>1 < A<4A64 then

=D<_<4A64B = Pick random value
from {2, · · · ,=<4A64 }

=4F_1DABC_B8I4  Merging =D<_<4A64
consecutive bursts

Table 1: Hyperparameters of NetAugment

Parameter Search Space Choice
(���) {5, 10, 20, 50} 10

AD?B0<?;4 0.1 ⇠ 1 1
A8=B4AC {0.1, 0.3, 0.5, 0.7} 0.3

A3>F=B0<?;4 0.1 ⇠ 1 0.5
1DABC_B8I4_C⌘A4B⌘>;3 {10, 20} 10

=<4A64 {3, 4, 5, 6} 5
A<4A64 {0.05, 0.1, 0.2, 0.3} 0.1

WF classi�er. In this section, we explain how we instantiate Ne-
tAugment through SelfSL and SemiSL techniques, and then we
describe our proposed deployments of augmentation using SelfSL
and SemiSL: NetCLR and NetFM. We use SemiSL and SelfSL tech-
niques to remove the requirement of gathering large labeled traces
by the adversary.

5.1 NetCLR
We propose NetCLR, a WF attack technique that uses contrastive
learning and network trace augmentation to learn accurate repre-
sentations of network traces. NetCLR is based on SelfSL and does
not require any labeled data for the pre-training phase. NetCLR
adopts the methodology of SimCLR [6] and adjusts its components
to the domain of network traces. NetCLR consists of three phases
to perform the WF attack.
Pre-Training Phase: In the pre-training phase, we train a SelfSL
model that learns to generate lower-dimension representations for

DF Model Projection Head
FC FC ReLU BN 

512 features
vector 128 features

vector

Figure 5: NetCLR Pre-train Structure

website traces. This is similar to what TF [34] does, however, as
opposed to TF which needs at least 25 labeled samples for each of
its 775 websites, NetCLR does not need any labeled samples to per-
form the pre-training. Instead, NetAugment helps the model to see
di�erent samples of a network trace and generate representations
that are su�ciently close to each other for the same website and far
from samples of other websites. As suggested by TF [34] and On-
line WF [8], the base network of NetCLR is the DF neural network
proposed by Sirinam et al. [33]. We also add a projection head to
the top of DF as it improves the performance of the pre-training [6].
The projection head contains two fully connected layers with a
ReLU activation function and a Batch Normalization [14] layer.
Figure 5 shows the structure of NetCLR pre-training model. The
pre-training of NetCLR learns representations of network traces
and converts the traces with 5000 features to representations with
a length of 512. The projection head converts the representations
to an output of size 128. Figure 6 shows the NetCLR pre-training
steps.
Fine-Tuning Phase: In the �ne-tuning phase of NetCLR, the
adversary uses di�erent numbers of labeled traces, denoted as # ,
to �ne-tune the DF model that is pre-trained on augmented traces.
In this phase, we replace the projection head with a simple fully
connected layer with probabilities of the input trace belonging to
each class.We train thewhole base network plus the fully connected
layer. This is similar to the semi-supervised evaluation method
proposed in [6] where the pre-trained SimCLR is �ne-tuned using
a small portion of the dataset as the labeled dataset. We consider
both the pre-training and �ne-tuning phases the training phase.
Deployment Phase: Similar to all WF attacks, in the attack phase,
the adversary performs the actualWF attack and uses the �ne-tuned
model to identify the traces visited by clients.

5.2 NetFM
We also instantiate NetAugment through SemiSL techniques. We
adopt the implementation of FixMatch [35] and integrate NetAug-
ment into it. We then present NetFM, aWF attack based SemiSL and
NetAugment that uses pseudo-labels to generate labels for the un-
labeled portion of the dataset. We then train the WF classi�er using
the augmented traces with generated pseudo-labels. The backbone
of NetFM algorithm is also the DF neural network [33] with the
same parameters. For weak augmentations, we use FlipAugment
with ? 5 ;8? = 0.1.
Note that for both NetFM and NetCLR we use the same parameters
for DF as the ones used in the original paper [33].
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Figure 6: NetCLR pre-training steps

6 DATA COLLECTION AND SETUP
6.1 Network Condition Metric
For evaluating a model in the realistic scenario described in Section
3.2, we need a metric to di�erentiate superior and inferior traces.
We de�ne the network condition metric (NCM) of a trace as the
ratio of the total size of downstream Tor cells to the loading time
of that trace. We approximate the loading time of each trace by
the di�erence between the timestamps of it �rst and last cell. We
believe this metric can re�ect the cumulative e�ects of changes
in bandwidth, latency, loss, and congestion in Tor relays, clients,
and servers. For traces in our datasets, we found 40 kBps to be
the appropriate threshold for the NCM to partition superior and
inferior traces as the performance of existing WF techniques starts
to drop for traces with an NCM value below this threshold.

6.2 Model Input Representation
We use the same representation shared by recent work in WF [27,
34, 44, 33] for model inputs. Each sample of website tra�c trace
used for training and testing a model is converted into a sequence of
Tor cells represented by +1 and -1 for outgoing and incoming cells,
respectively. Since model inputs have a �xed length of 5000, longer
sequences are truncated and shorter traces are padded with zeros.
For each of the datasets described in Section 6.3, these sequences are
processed to �lter out some traces before they are used as model
inputs. Empty traces are discarded. In the closed world setting,
similar to [44], for each trace of a website, if its size is less than
20% of the median trace size of the website, it is discarded. In the
open-world setting, all traces with less than 20 cells are discarded.

6.3 Dataset Labels and Composition
AWF dataset. This large dataset of non-onion websites dataset was
collected by Rimmer et al. [27] in 2017 using Tor browser version
6.5. By contacting the authors, we obtained the full parsed traces
of the dataset which included metadata such as packet timestamps.
The parsed traces we obtained include up to 3000 traces for the
homepage of 1200 monitored websites as well as traces generated by
one-time visits to 565947 unmonitored websites. After processing
these traces according to the method described in Section 6.2, we
categorize them into several di�erent sets for di�erent scenarios.
For the traditional WF scenario in the closed world setting where
the NCM is not taken into account, we assemble the following:

• AWF1: The set of traces for 100 randomly picked monitored
websites.

• AWF2: The set of traces for another 100 randomly picked
monitored websites. Note that the set of websites in AWF1
and AWF2 are distinct.

For the scenario in the closed-world setting where the NCM is
taken into account for training, we assemble the following:

• AWF-attack: The set of traces for the same 69 monitored
websites from the AWF100 dataset in [34] which had enough
superior and inferior traces. This dataset is further split
into superior and inferior traces denoted by AWF-Asup and
AWF-Ainf, respectively.

• AWF-pre-training: The set of traces for 100 other mon-
itored websites, where the websites are randomly picked.
Note that the set of websites in AWF-pre-training and AWF-
attack are distinct. This dataset is further split into supe-
rior and inferior traces denoted by AWF-PTsup and AWF-
PTinf, respectively. Each website in AWF-pre-training has
500 traces in AWF-PTsup and 500 traces in AWF-PTinf.

For the open-world setting, we assemble the following:
• AWF-OW10k:The set of traces for 10000 superior and 10000
inferior unmonitored websites.

• AWF-OW50k, AWF-OW100k, and AWF-OW200k are
de�ned similarly to AWF-OW10k, with 50k, 100k, and 200k
traces of both superior and inferior types, respectively.

Drift dataset. We collected this dataset to study the impact of con-
cept drift on our attacks. For the closed world setting, we collected
up to 550 traces for visits to each one of 225 non-onion websites.
Similar to [27], this list of websites was compiled so as to avoid du-
plicate entries that only di�er in the top-level domain as a means of
website localization. The set of these monitored websites is distinct
from those in AWF-pre-training. While limiting the guard relays to
18 speci�c relays located either in North America or Europe, we
collected over 100 traces for 112 non-onion websites. The purpose
of this set of traces is to investigate the e�ect of the location of
guard relays on WF performance. For the open-world setting, we
collected a single instance for each website. We picked 10000 web-
sites from unmonitored websites in the AWF dataset. As a result,
the set of these websites is also distinct from those in AWF-pre-
training. Note that this dataset was collected more than 5 years
after the AWF dataset. After processing these traces according to
the method described in Section 6.2, we label the subsets as:

• Drift90: The set of 90 monitored websites, where each site
has at least 100 superior and 20 inferior traces. This dataset
is further split into superior and inferior traces denoted by
Drift90 sup and Drift90 inf, respectively.
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• Drift-guard: The set of 90 monitored websites is further
split into a set of traces collected through 11 guard relays in
Europe and a set of traces collected through 7 guard relays
in North America.

• Drift5000: The set of 5000 unmonitored websites.

6.4 Creating the Drift Dataset
6.4.1 Data Collection. We collect traces for the Drift dataset on
multiple Ubuntu 20.04 virtual machines set up through KVM over
the course of three months in multiple batches. We use the Python
library tbseleinum version 0.6.3 [37] to automate the Tor browser
bundle (TBB) version 11.0.10 and use Stem [36] to interact with
the controller interface of TBB’s tor process through Python. As
recommended by [44], we set UseEntryGuards to 0 in torrc to
disable the set of limited entry guards and disable browser caching.
This makes the collected data more realistic. Using asynchronous
Tor controllers, we listen for STREAM, STREAM_BW, and CIRC events.
While the main thread of the script is browsing di�erent websites to
collect tra�c, a separate thread processes the event queue for these
three event types. The STREAM_BW events include the timestamp of
when a speci�c streamwas used to send and receive bytes. We listen
to CIRC events so that every time a new circuit is created we have
its timestamp, id, and path which includes relay IPs and �ngerprints.
STREAM events show which circuit each stream is attached to, as
well as other information such as which website is the target of that
stream. The information collected from these events was stored for
later use in processing packet capture �les.

In each round of collecting tra�c, we open a new tab, close the
previous one, and then start capturing packets using tcpdump. We
wait 5 seconds to ensure the capture has started, then navigate to a
website. Once the load event has been �red, we wait for another 15
seconds. We then stop tcpdump and log the consensus bandwidth
�le if newmeasurements are available. Once everywebsite is visited,
or if there has been an error, we wait until tor would accept a
NEWNYM signal and then manually renew Tor circuits by sending
this signal. We also restart the Tor browser to make sure that the
browser cache is cleared. We also keep a log of any errors so we
can discard the corresponding packet capture �les when processing
the data. If the script is collecting tra�c for monitored websites, it
is then ready to start another round after the restart at the end of
the previous round.

6.4.2 Processing. Since Tor cells are embedded in TLS records, we
parse the packet capture �les by extracting the TLS records from
TCP packets using tshark [39]. The length of a TLS record can
be used to approximate the number of embedded Tor cells, as the
size of a Tor cell is either 512 or 514 [44]. The stored tor event
information described in Section 6.4.1, lets us specify the IP address
of the entry relay for each URL. This IP address is then used to
�nd the relevant TLS records, discarding others. Then, the NCM
is calculated for all traces before they are converted to the format
described in Section 6.2.

6.5 Ethical Consideration
During the three-month period, we visited web pages to collect
data for the Drift dataset, we used less than 10 clients while the Tor
network had over 2 million daily users. As such, our clients should

only have had a limited impact on the Tor network. Since we were
collecting synthetic tra�c on the same machine as the Tor clients,
no information related to genuine traces was collected.

7 EXPERIMENT RESULTS
7.1 Experiment Setup
We perform our experiments using PyTorch 1.12.1 and Python 3.7.
We use a single 2080 Ti GPU for all of our experiments. We fetch
the code of existing models, DF, TF, and GANDaLF, and re-run their
experiments to enable a benchmark for a fair comparison. For the
NetFM evaluation, we set _D = 1 and for the weak augmentation,
we use ? 5 ;8? = 0.1. Refer to the extended version of this paper [2]
for the hyperparameters of NetCLR and NetFM.

The following are the existing state-of-the-art techniques that we
compare NetCLR to. We give brief explanations for each technique
in Section 2. We adopt the original implementations provided by
the researchers and convert them to PyTorch implementations. We
made a few modi�cations when necessary for the data loading
pipeline and hyperparameter tuning.

• Deep Fingerprinting (DF) [33]: DF uses convolutional
neural networks to design a WF classi�er that achieves 98%
accuracy in a traditional closed-world scenario.

• Triplet Fingerprinting (TF) [34]: TF adopts triplet net-
works to design a feature extractor that generates �xed-size
embeddings for network traces. It then applied a simple KNN
model to generated embeddings when there is a low num-
ber of labeled samples. Then, for a small number of labeled
samples, the feature extractor generates embeddings which
are then used to train a KNN model.

• GAN for Data-Limited Fingerprinting (GANDaLF) [21]:
GANDaLF uses generative adversarial networks to generate
"fake" network traces to achieve high accuracies in limited
labeled data scenario.

Note that since the code and dataset for Online WF [8] are not
publicly available due to privacy reasons, we are not able to compare
NetCLR with Online WF.

7.2 Closed-World Scenario
We evaluate NetCLR in a closed-world scenario where we assume
that the clients only browse the set of monitored websites the
adversary is interested in.
Metric: To evaluate the performance in a closed-world scenario,
we use Accuracy which is simply the ratio of correct predictions to
the total number of traces.

7.2.1 Traditional WF Scenario. First, we evaluate NetCLR and Ne-
tAugment in a traditional WF scenario where the attacker uses
traces collected in the same settings for both training and evalua-
tion. To perform the experiments, we use AWF2 dataset to pre-train
NetCLR and we use AWF1 for the �ne-tuning and evaluation data.
To have a fair comparison, we use AWF2 for the feature-extraction
step of TF and the unlabeled dataset of GANDaLF. There is no
pre-training phase in NetFM, hence for NetFM we use the AWF1
dataset for both the labeled and unlabeled samples.

We train each classi�er using # = {5, 10, 20, 90} training samples
per website, randomly sampled from the AWF1 dataset. We set `
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in NetFM to 19 for this experiment, e.g., in the event of 5 labeled
samples, we have 19 ⇥ 5 = 95 unlabeled samples per each website.
Note that this number of unlabeled traces is signi�cantly smaller
than 2500 traces used to train GANDaLF. The test traces are chosen
from AWF1 dataset and they are mutually exclusive from the sam-
ples used for training (AWF2). The test set contains 417 samples
per website of the AWF1 dataset. This is consistent with the num-
bers used in GANDaLF. Table 2 compares NetCLR with other WF
techniques for di�erent values of # . Since the training examples
are chosen randomly, we run each training 5 times and report the
average and standard deviation of the accuracies. As illustrated in
this table, for all values of # , NetCLR has a signi�cantly higher
performance than other techniques, e.g., when # = 5, TF can only
achieve 78% average accuracy while NetCLR have 89.7% average
accuracy. These numbers suggest that our tailored augmentation
e�ectively helps the model learn accurate representations of web-
site traces even with only 5 labeled examples. The results show
that NetCLR has higher accuracy than existing techniques
for di�erent numbers of labeled samples in the traditional
WF scenario.
E�ect of Augmentation : We also evaluate NetCLR when instead
of a NetAugment, we use FlipAugment with ? 5 ;8? = 0.1. Table 2
contains the results of FlipAugment compared to NetAugment. As
expected, NetAugment performs better than FlipAugment for all the
values of # indicating that a tailored augmentation is necessary
to accurately replicate the unobserved settings of Tor traces.
Note that even with FlipAugment, NetCLR performs better than
other systems and this is due to the promising performance of the
SimCLR algorithm which is the base of the NetCLR. Speci�cally,
even randomly �ipping the directions of cells provides a weak
representation of unobserved settings of Tor Traces.

7.2.2 Realistic WF Scenarios. In this part, we evaluate NetCLR
as well as the existing WF techniques in scenarios where the Tor
traces for training and evaluation are collected in di�erent settings.
Speci�cally, we perform experiments in 4 di�erent con�gurations
where the training phase of the WF attack happens in a setting
di�erent than the setting in the deployment phase. Note that since
NetCLR has a better performance than NetFM, for the rest of the
experiments we focus on evaluating NetCLR.
Similar distributions but mutually exclusive datasets: The
most resource intensive step in these attacks is when the adversary
needs to collect a large dataset to train its model. For NetCLR and TF,
it would be the dataset used for pre-training and �ne-tuning, and
for DF, it would be the labeled training dataset. In this scenario, we
assume that the adversary only collects superior traces in this step.
This means inferior traces will only be present in the deployment
phase. We use the AWF-PTsup dataset for the pre-training phase
of both NetCLR and TF. In the �ne-tuning phase, we randomly
sample # labeled traces from the training subset of AWF-Asup.
Lastly, in the deployment phase, we use the remaining traces in
the AWF-attack dataset to generate validation, and test sets with
an equal number of samples from AWF-Asup and AWF-Ainf such
that there are 50 superior and 50 inferior samples per website in
each of the validation and test sets. The validation set is used to
tune the model’s hyperparameters. To compare NetCLR with DF,
we consider 3 con�gurations:

• DF is trained only on # labeled traces per website.
• DFaugmented-data is trained on augmented traces using Ne-
tAugment. For each value of # , we augment the labeled
traces such that there are 500 traces per website which is
similar to the size of AWF-pre-training dataset that is used
in NetCLR. This is due to enabling a benchmark for a fair
comparison. In particular, we want to show how much ben-
e�t we get just from NetAugment without modifying the
training procedure (pre-training and �ne-tuning of NetCLR)
and network architecture.

• DFsame-data is trained on similar amounts of labeled data
as both pre-training and �ne-tuning data of NetCLR. To do
so, we combine AWF-pre-training and AWF-attack datasets
and train DF on them in a supervised manner. For a fair
comparison with other models, we only test DF on AWF-
attack in this con�guration.

Table 3 shows the comparison between di�erent techniques
when the classi�er is trained only on the superior traces. As illus-
trated in the table, NetCLR outperforms other models signi�cantly
when the attack is performed on inferior traces, e.g., with 10 la-
beled samples for each website, TF can only achieve 64.4% accuracy
while NetCLR have 86.1% accuracy on inferior traces. Comparing
DF and DFaugmented-data shows that augmenting the traces using
NetAugment improves the performance of DF independent of the
sophisticated training procedure used in NetCLR. This indicates
that NetAugment is bene�cial on its own in that it can extend
the dataset and make the DF model perform better on unobserved
traces. However, using NetAugment combined with the training
procedure of NetCLR, improves the performance of the WF attack
even further, particularly on inferior traces.

Furthermore, the results show that NetCLR reaches higher ac-
curacies compared to DFsame-data on both inferior and superior
traces for all values of # . Note that another advantage of NetCLR
compared to all con�gurations of DF is that the adversary does not
require any labeled traces to perform pre-training as opposed to DF
where the adversary needs a huge labeled dataset. In summary,
the results show that compared to other techniques, NetCLR
is resilient to unobserved settings of Tor traces that may
be present during attack deployment, even with a limited
number of labeled training samples.

Furthermore, in the extended version of this paper [2], we com-
pare the time required to train DFsame-data and NetCLR. The results
show that the adversary can train NetCLR faster than DFsame-data
by two orders of magnitude.
Comparing the e�ect of NCM on NetCLR: To investigate the
e�ect of superior traces in the training phases of NetCLR, we only
use inferior traces in the pre-training and �ne-tuning phases of
NetCLR algorithm.We then test the model trained on inferior traces
on both inferior and superior traces. We perform the pre-training
using AWF-PTinf. In the �ne-tuning phase, we randomly sample
# = {5, 10, 20} labeled traces from the training subset of AWF-Ainf.
Lastly, in the deployment phase, we use the remaining traces in the
AWF-attack dataset to generate validation, and test sets with an
equal number of samples from AWF-Asup and AWF-Ainf such that
there are 30 superior and 30 inferior samples per website in each of
the validation and test sets. Table 4 illustrates the comparison of
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Table 2: Comparing the performance of NetCLR with DF, TF, GANDaLF, and NetFM with 5-90 labeled traces. We also compare
NetCLR with a scenario where NetAugment is replaced with FlipAugment. For all the scenarios, NetCLR outperforms other
techniques. All numbers are %. We do not show standard deviations less than 1%.

N DF [33] TF [34] GANDaLF [21] NetFM NetCLR (FlipAugment) NetCLR

5 60.9 ± 2 78 ± 1 70 ± 2 77.8 ± 1 80.7 ± 1.2 89.7
10 78.1 ± 1.1 81.6 81.1 ± 1 87.1 90.5 94.5
20 86.1 83.1 87 ± 1 93.3 94.4 96.6
90 96 84.2 95 ± 1 97.6 97.7 98.5

Table 3: Comparing the accuracy of NetCLR with DF and TF over inferior and superior traces in a realistic WF scenario when
the distribution on training data and test data are similar. NetCLR outperforms both DF and TF on inferior and superior for
di�erent numbers of labeled samples. All numbers are %. We do not show standard deviations less than 1%.

DF [33] DF (Trained on augmented traces) DF (Trained on AWF-pre-training and AWF-attack) TF [34] NetCLR

N Inferior Superior Inferior Superior Inferior Superior Inferior Superior Inferior Superior

5 47.7 ± 4.9 55.3 ± 6.2 65.5 80.2 40.4 ± 1 55.2 ± 1.9 64.4 77.9 80.2 90.9
10 64.6 ± 1.4 77.8 ± 2 72.9 88.3 53.5 ± 1 71.6 ± 1.1 69.1 83.3 86.1 ± 1.2 94.8
20 73.6 86.9 77.3 92.6 63.6 ± 1.1 81.7 73.9 87.8 87.1 96.1
90 84.6 93.8 83 95.9 77.5 92.5 79.2 92.5 92.6 98
150 86.6 94.4 85.1 96.9 80.2 94.5 79.7 93.0 93.7 98.1
300 89.6 95.0 87.1 97.6 83.2 96.1 81.4 94.1 94.9 98.5
500 90.5 95.3 90.5 95.3 85.2 96.7 82.8 94.1 95.2 98.6

Table 4: Comparing NetCLR when the model is pre-trained
on either inferior or superior traces. Training on inferior
traces reduces the di�erence in the performance on inferior
and superior traces. All numbers are %.

Trained on inferior traces Trained on superior traces

N Inferior Superior Di�erence Inferior Superior Di�erence

5 85.4 81.4 4 80.6 90.1 9.5
10 90.9 86.2 4.7 86.4 95.1 8.7
20 94.2 89.1 5.1 86.8 96.7 9.9

NetCLR performance when it is trained on inferior and superior
traces. We run each experiment 5 times and report the average and
standard deviation of the accuracy. When the model is pre-trained
and �ne-tuned on inferior traces, the performance of NetCLR is
better on inferior traces. However, the di�erence between the per-
formance on inferior and superior traces is less when the model
is trained on inferior traces. For instance, for # = 10 the inferior
trained model has 90.9% average accuracy on inferior traces and
86.2% average accuracy on superior traces with a ⇠ 5% di�erence
in the accuracy. On the other hand, when the model is trained on
superior traces, the di�erence between accuracies is ⇠ 9%. This im-
plies that when trained in the more challenging setting, the model
achieves a better ability to infer underlying features of Tor cells
in unobserved settings as opposed to the model trained only on
superior traces.
E�ect of concept drift: In this scenario, we evaluate the robust-
ness of NetCLR against concept drift. We use a dataset with a dif-
ferent distribution from AWF-pre-training to perform �ne-tuning
and evaluation. In other words, we replace AWF-attack with con-
cept drift. As mentioned previously, we pre-trained NetCLR with

100 websites of the AWF-PTsup dataset collected in 2017. We then
evaluate the pre-trained NetCLR against Drift90 dataset. There is a
5-year time gap between AWF and our collected dataset. For the
�ne-tuning and deployment phases, we use the Drift90 dataset,
which consists of both inferior and superior traces, to generate
training, validation, and test sets with an equal number of samples
from Drift90 sup and Drift90 inf such that there are 20 superior and
20 inferior samples per website in each of the validation and test
sets. Table 5 shows the results of NetCLR when �ne-tuned with
di�erent numbers of labeled samples, # , from Drift90. As Table 5
illustrates, NetCLR outperforms the other techniques evaluated
on both inferior and superior traces. As expected, the overall re-
sults are worse than the previous experiment due to the concept
drift e�ect. However, NetCLR has signi�cantly better performance
than other systems in this scenario. The results suggest that using
NetAugment makes NetCLR more resilient to concept drift
and helps the classi�er to perform better against potential
modi�cations that can happen as a result of concept drift in
unobserved settings during the attack, e.g., for # = 20, NetCLR
achieves 72.1% accuracy on inferior traces while TF and DF can
only reach to 51% and 45.6% respectively.

Furthermore, in the extended version of this paper [2], we ana-
lyze the actual observed concept drift between Drift90 and AWF-
attack datasets by calculating the di�erence between their accuracy.
The results show that the degradation in accuracy caused due to
concept drift is less for NetCLR compared to DF and TF, con�rming
that NetCLR is more resilient against concept drift.
E�ect of guard relay diversity: In this part, we evaluate the
performance of NetCLR when the guard relays used to collect
traces for �ne-tuning and testing are mutually exclusive. To this
aim, we use a subset of Drift-guard traces that are collected through
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Table 5: Comparing the accuracy of NetCLR with DF and TF
over inferior and superior traces in a realistic WF scenario
in the presence of concept drift. The distribution of training
data and test data is di�erent. NetCLR outperforms both DF
and TF on inferior and superior for di�erent numbers of
labeled samples. All numbers are %.

DF [33] TF [34] NetCLR

N Inferior Superior Inferior Superior Inferior Superior

5 25.2 ± 2.3 40.4 ± 4.8 41.1 60.8 ± 1.5 56.2 84.4
10 36.6 ± 1.5 56.9 ± 2.0 47.0 ± 1.4 68.9 66.6 92.7
20 45.6 72.8 51.0 75.0 72.1 96.0
90 61.9 92.6 56.2 84.8 79.6 98.3

Table 6: Comparing NetCLR with DF and TF when the guard
relays used for collecting �ne-tuning and testing traces are
mutually exclusive. NetCLR outperforms other models when
faced with unobserved guard relays. All numbers are %. We
do not show standard deviations less than 1%.

DF [33] TF [34] NetCLR

N Same Di�erent Same Di�erent Same Di�erent

5 43.5 ± 2.7 36.9 ± 1.3 57.5 47.8 ± 1.1 71.5 ± 1 61.3 ± 2
10 55.5 ± 1.1 47.1 ± 1 63.9 54.5 82 73.4
20 67.6 58.8 69.7 59.4 87.3 80.6
90 83.2 75.6 77 67.1 93.1 89.2

11 guard relays located in Europe for training. The remaining traces
that were collected through guard relays located in North America
were used to generate validation and test sets such that there are
65 traces per website in each set.

Table 6 shows the performance of NetCLR as well as DF and TF
in this setting. As expected, the performance of all WF techniques
is worse when test traces are collected using di�erent guard relays
than �ne-tuning traces. However, NetCLR still outperforms the
other techniques in this setting, e.g., when we have 20 labeled
traces, TF only achieves 59.4% average accuracy when evaluated on
traces with di�erent guard relays while NetCLR has a 80.6% average
accuracy. These results con�rm that NetCLR is more resilient than
TF and DF to varying conditions in the Tor network that were not
observed during training.

To provide further evidence that NetCLR is resilient to previously
unobserved variations in Tor traces during deployment, we also
investigate e�ect of guard relay bandwidth. The relevant results
are included in the extended version of this paper [2].

7.3 Open-World Scenario
In the previous parts, we explored the performance of NetCLR in a
closed-world scenario where the adversary is interested in a limited
set of websites that Tor’s clients are visiting. However, this is not a
practical scenario in that websites users browse are not limited and
they can visit any website among the huge number of websites on
the Internet. In this section, we consider the open-world scenario,
a more practical one where the adversary not only classi�es tra�c
traces based on a limited set of monitored websites but must also

distinguish whether the trace comes from a monitored set or an
unmonitored one. Note that similar to the closed-world scenario,
to evaluate NetCLR in a realistic setting we perform both the pre-
training and �ne-tuning using only superior traces.

For the open-world evaluation, we use the same pre-trained
model in the closed-world scenario. For the �ne-tuning part, as
well as the monitored websites, we use a dataset of unmonitored
websites that has an equal size to the monitored websites, e.g., with
10 labeled samples for each website, we have 10 ⇥ 69 = 690 mon-
itored traces. We also evaluate the robustness of NetCLR against
the concept drift e�ect using our own collected dataset.
Metrics: Since there are far more unmonitored websites and this
makes the dataset imbalanced, we use Precision (P) and Recall (R)
(used in WF literature [27, 33, 34]) to evaluate the performance of
NetCLR in the open world scenario. In particular, we use prediction
probabilities to compute Precision and Recall. If the input trace is
a monitored website trace and the maximum output probability
belongs to any monitored site and is greater than a threshold, we
consider this a true positive sample. If we select the threshold such
that the classi�er has high precision we tune the model for precision
and, if we choose the threshold for high recall we tune the model
for recall. We also evaluate the models using 51 score which is a
weighted average of the precision and recall. Note that if the trace is
determined to be monitored, the adversary can use the multi-class
classi�cation to identify the website the user has actually browsed.
Similar distribution but mutually exclusive datasets: In this
part, the training and evaluation datasets are from the same distribu-
tion, AWF dataset. Here we use AWF-OW10k as the unmonitored
dataset and AWF-attack for monitored websites. Tables 7 and 8
compare the open-world performance of NetCLR with TF and DF
classi�ers with di�erent numbers of labeled examples for the �ne-
tuning part (# ) when the models are tuned for recall and precision
respectively. Also, we only present the results against inferior traces
as it is the more realistic scenario in a WF attack. As shown in these
tables, when the model is tuned for precision, NetCLR outperforms
both DF and TF signi�cantly speci�cally when the attack is per-
formed on inferior traces, e.g., using # = 10 labeled samples for
training the classi�er, TF has 48.3% �1 score while NetCLR achieves
77.9%. When the model is tuned for recall (Table 7), the results show
that DF has a better recall for all the values of # ; however, both
DF and TF do not reach reasonable values of precision. On other
hand, for all the values of # , NetCLR has a higher �1 score than the
other two techniques, e.g., when # = 20, although DF has 88.5%
recall compared to 82.5% recall of NetCLR, the �1 score for NetCLR
is 84.8% while DF has only 63.7% �1 score. The overall results show
that NetCLR outperforms other systems in an open-world
scenario while themodel is evaluated on unobserved settings.

We also compared NetCLR with both TF and DF with di�erent
thresholds using 10K unmonitored samples when the model is
�ne-tuned using 10 labeled samples per website. Figure 7 shows
the precision-recall curves of all three models. As expected, the
performance on superior traces is better than inferior since the
model has not seen inferior samples during training. NetCLR has
signi�cantly higher precision compared to other attacks indicating
that our attack rarely identi�es an unmonitored site as a monitored
one. For smaller thresholds, DF has better recall compared to other
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Table 7: Comparing precision and recall of NetCLR to TF and DF over inferior and superior traces when all models are tuned
for recall. All numbers are %.

DF [33] TF [34] NetCLR

N Precision Recall �1 score Precision Recall �1 score Precision Recall �1 score

5 43.0 77.1 55.2 48.9 74.8 59.1 81.7 64.6 72.2
10 44.5 90.4 59.6 38.5 78.3 51.6 85.0 73.6 78.9
20 49.7 88.5 63.7 40.4 80.3 53.8 87.3 82.5 84.8
90 70.2 91.8 79.6 59.2 82.7 69.0 90.9 89.3 90.1

Table 8: Comparing precision and recall of NetCLR to TF and DF over inferior and superior traces when all models are tuned
for precision. All numbers are %.

DF [33] TF [34] NetCLR

N Precision Recall �1 score Precision Recall �1 score Precision Recall �1 score

5 75.8 21.8 33.9 61.5 44.5 51.6 92.6 55.3 72.2
10 59.3 55.6 57.4 42.7 55.5 48.3 91.9 67.6 77.9
20 60.1 70.1 64.7 43.7 63.4 51.7 92.7 78.1 84.8
90 76.6 86.8 81.4 67.5 71.1 69.3 94.5 86.7 90.4
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Figure 7: Comparing precision and recall of NetCLR with DF
and TF over inferior and superior traces. NetCLR has better
�1 score comparing to other techniques.

attacks but with very low precision. Overall, for all thresholds,
NetCLR has a higher �1 score compared to other systems.

For the previous open-world experiments, we used 10K unmoni-
tored website traces. However, there are millions of active websites
on the Internet. We evaluate NetCLR with di�erent numbers of
unmonitored website traces when the adversary is performing the
attack. Figure 8 shows the precision-recall curve of NetCLR using
AWF-OW10k, AWF-OW50k, AWF-OW100k, and AWF-OW200k un-
monitored traces. The results show that the performance of NetCLR
decreases with increasing the open world size for both inferior and
superior traces, e.g., with 200K unmonitored traces, NetCLR has
only 25% precision while having 74% recall on inferior traces. For
50K unmonitored traces, NetCLR can still achieve 55% precision
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Figure 8: Precision and recall of NetCLR over inferior and
superior traces with larger open world dataset.

while maintaining the 74% recall. For superior traces, even with
100K unmonitored traces, NetCLR has relatively high precision,
75%, with 90% recall.
Concept Drift E�ect: We also perform the same experiment when
the distribution of pre-training data is di�erent from the distribu-
tion of �ne-tuning and test data to evaluate the performance of
NetCLR against concept drift. Table 9 compares the precision-recall
curve of NetCLR with DF and TF. We used 1000 superior unmoni-
tored traces randomly picked fromDrift5000 to perform �ne-tuning.
For evaluation, we use 4000 of each inferior and superior unmoni-
tored traces from Drift5000. We use Drift90 as the monitored traces.
NetCLR has higher precision compared to other attacks. Compared
to AWF-OW, NetCLR has lower recall which is expected due to
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Figure 9: Comparing precision and recall of NetCLR with DF
and TF over inferior and superior traces in the presence of
concept drift. NetCLR has the highest �1 score.

concept drift e�ect. DF still has a higher recall for lower thresh-
olds indicating its ability to distinguish monitored websites from
unmonitored ones. However, NetCLR outperforms both DF and
TF when comparing �1 score indicating that NetAugment makes
NetCLR more robust against concept drift. The overall results
suggest that NetCLR is more resilient against concept drift in
an open-world scenario compared to previous attacks while
the model is evaluated on traces in unobserved settings.

8 ABLATION STUDY
We perform an ablation study to better understand why NetCLR
is able to outperform SOTA. Due to the number of experiments
in our study, we focus on AWF dataset and # = 10 for all hyper-
parameters. We perform the study on 5 hyper-parameters that
belong to NetAugment and the pre-training phase of NetCLR, as
well as the e�ect of ;40A=8=6_A0C4 in the �ne-tuning phase. Our
experiments show that di�erent con�gurations of hyperparameters
for NetAugment do not cause a great deviation in the accuracy of
NetCLR.We include the results of the ablation study in the extended
version of this paper [2]. For each hyper-parameter, we pick the
value with the best accuracy on inferior traces as this is the main
purpose of this work: A WF attack that is able to achieve high
accuracy on unobserved traces.

Di�erent values for ;40A=8=6_A0C4 , however, can a�ect the per-
formance of NetCLR drastically, e.g., a learning rate of 10�5 reduces
the accuracy of NetCLR to 77.4% on inferior traces which is signi�-
cantly smaller than the 86.1% accuracy achieved by a learning rate
of 5 ⇥ 10�4.

9 DISCUSSION OF COUNTERMEASURES
In this section, we assess the performance of NetCLR against one
of the leading WF countermeasure techniques, Blind Adversarial
Perturbations (BAP), proposed by Nasr et al. [20]. BAP is a generic
approach that applies adversarial perturbations on live Tor tra�c.
BAP trains a neural network that is able to generate adversarial

perturbations independent of the incoming Tor trace. BAP is also
implemented as a Tor pluggable transport. In [20], the authors as-
sume that the defender has access to a subset of the training data
the original WF classi�er is trained on. Furthermore, they show that
BAP is transferable and is e�ective in both white-box and black-box
scenarios. Tik-Tok [26] is also another SOTA defense mechanism
against WF attacks. Tik-Tok focuses on the performance gains ob-
tained by combining timing and direction information in what they
call directional timing. However, the results in Tik-Tok paper show
that for undefended traces which is the same scenario as our attack
model, there is no performance gain in using directional timing
compared to only using directions in DF. Furthermore, Tik-Tok
compares using slow and fast circuits as their test set. The authors
show that when training undefended traces, the performance gains
from using directional timing are insigni�cant. We also found no
evidence that Tik-Tok which focuses on DF outperforms TF which
is a limited-data N-shot learning technique. Hence, we only focused
on evaluating NetCLR against BAP defense mechanism.

To evaluate NetCLR against BAP, we assume a stronger defender
with white-box access to the base-model of NetCLR. We also as-
sume that for all the values of # , the defender has access to all
the labeled samples giving them the ability to learn more e�ective
adversarial perturbations. Nasr et al. proposed di�erent methods
to perturb Tor traces, e.g., adding network jitter to inter-packet
delays, inserting dummy packets to modify the sizes of packets,
and injecting adversarial directions. BAP by injecting adversarial
perturbations is proven to be highly e�ective in degrading the accu-
racy of WF classi�ers, e.g., they show that using only 2% bandwidth
overhead, BAP can reduce the accuracy of DF classi�er by 49%
which is higher than other countermeasures. Since NetCLR uses
cell directions as input representations, we use BAP to inject ad-
versarial directions into the traces. The bandwidth overhead of this
method is de�ned by a parameter U which represents the number
of adversarial directions BAP injects into the trace.

For this experiment, we consider a closed-world scenario. We use
the same pre-trained base model as the previous experiments. We
use AWF-attack for both �ne-tuning and evaluation. Table 9 shows
the performance of NetCLR on both inferior and superior traces of
AWF-attack and for di�erent values of # when the defender injects
adversarial directions. We observe that even with 2% bandwidth
overhead (U = 100), NetCLR still has 70% accuracy on inferior traces
when # = 10. This is signi�cantly higher than the performance of
DF against BAP, e.g., when # = 10 and with 2% bandwidth over-
head, the accuracy of DF on inferior traces reduces to 12.6%. These
results show that NetCLR is more robust against countermea-
sure techniques which are due to the pre-training phase of
NetCLR and the tailored augmentations that help the model
perform better when faced with unobserved traces.

10 CONCLUSION
In this work, we propose that one of themajor limitations of existing
website �ngerprinting (WF) techniques is their lack of longitudinal
perspective into network tra�c when training the classi�er. To
alleviate this problem, we propose the use of data augmentation
as a potential solution. Speci�cally, we introduce NetAugment, an
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Table 9: Accuracy of NetCLR against BAP defense technique
with di�erent bandwidth overheads over inferior and supe-
rior traces. As opposed to DF, injecting adversarial directions
do not signi�cantly reduce the performance of NetCLR. All
numbers are %.

No Defense U = 50 U = 100

N inferior superior inferior superior inferior superior

5 80 92.1 73.5 86.8 56.6 70
10 84.5 94.2 80.3 91.2 70.4 82.7
20 88.4 96.1 83.7 93.8 66.9 80.1
90 93.6 97.9 89.2 96.9 71.7 83.7

augmentation technique speci�cally designed for Tor traces, en-
abling the WF model to classify traces in unobserved settings. We
instantiate NetAugment through SemiSL and SelfSL to reduce the
reliability of WF attacks on labeled data. We then propose NetCLR,
a WF attack based on SelfSL and NetAugment. Through extensive
experiments in both closed-world and open-world scenarios, we
demonstrate that NetCLR outperforms existing WF techniques in
a realistic scenario where the model is trained on traces from one
setting and evaluated on traces from a di�erent setting. Our experi-
ments also show that NetCLR is more resilient against concept drift
in this realistic scenario.
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