https: / /doi.org/10.2352/E1.2024.36.1 VDA-362
© 2024, Society for Imaging Science and Technology

RAIV: Researchable Archives for Interactive Visualizations

Hunter Price’, John Duggan’, Robert Sisneros?, Tanner Hobson', James Hammer', James Osborne’, Jian Huang'

"University of Tennessee, Knoxville, TN

2National Center for Supercomputing Applications (NCSA), University of lllinois, Urbana Champagne, IL

Abstract

Web visualization dashboards are popular. We propose a sys-
tem called RAIV that can capture and archive web visualizations
into self-contained objects. RAIV also uses a client-server archi-
tecture to host and manage archived objects as online galleries,
which users can use a standard web browser to experience with-
out needing to install any additional software. RAIV supports in-
telligent search as well. When a search target has been found,
RAIV can show the interaction path required to reach that target.
We demonstrate RAIV’s capability using a genomics web visual-
ization system called KnowEnG from NCSA and publicly avail-
able census data visualizations from US Census.

1 Introduction

When data drives decisions, interactive visualization is important
because it enables users to make discoveries and share insights to
peers, stakeholders, decision makers, and the public alike.

After a user loads a dataset into an interactive visualization
application, the app’s functionality of analyzing that dataset is
represented fully by the user interface (UI) of the app. Funda-
mentally, the user’s interactive experience revolves around a cy-
cle of triggering a UI functionality, seeing the visual display, and
triggering another functionality to continue the cycle.

Furthermore, tasks done using visualization applications are
often repetitive. Given the same sequence of interactions, the
same visualization is produced. To this end, interactive function-
alities to analyze a given dataset using a specific visualization app
can be archived into an independent object and later recreated, as
long as the collective settings of a visualization app’s Ul can rep-
resent the state of the visualizations. When this condition is met,
the same visualization results of the same dataset are reproducible
by using the same settings in the same application.

In a prior work [15], we have confirmed the possibility of
capturing interactive visualization into archived objects, espe-
cially that such archived objects can be meaningfully reused in
practical settings. Our method leveraged the mapping between
the collective status of the visualization’s UI widgets and its visual
output (i.e. framebuffer). Using Tableau, ParaView and journal-
istic visualizations from NYTimes.com as examples, our method
was able to capture a subset of the visualization app’s interactive
functionalities when analyzing a given dataset into a standalone
object. The subset of the original app’s functionalities to capture
is customizable and user specified. That prior work is open source
and called Loom. Technical details in Section 2.2.

While Loom’s capturing process uses automated UI-bots, in
a general desktop setting, the process to set up a Loom capture
is labor intensive and error prone, chiefly because UI-bots require

IS&T Infernational Symposium on Electronic Imaging 2024
Visualization and Data Analysis 2024

information about widgets, such as position, size, and kinds of
events the widget responds to. Even though a human user who
is creating the archived visualization can provide that informa-
tion, the manual specification process is very costly. In this work,
we propose to focus on web-based visualizations due to their
widespread presence and also the fact that such widget-specific
metadata can be harvested, and inferred, from each web applica-
tion directly.

To archive web applications effectively, we have developed a
new system called RAIV, which appears as a browser plugin and
injects code into the Document Object Model (DOM) of a target
web visualization. RAIV’s injected code recognizes the UI wid-
gets involved automatically, so that a user creating an archived vi-
sualization can provide the specifications easily. The result is that
the specification process that previously took minutes can now be
reduced to tens of seconds. RAIV’s injected code also transpar-
ently sets up an automated Ul-bot to orchestrate the capture pro-
cess, which further alleviates the need for human participation.

Unlike Loom using a client-side-only architecture, the RAIV
system employs a client-server architecture. While RAIV pre-
serves Loom’s ability to stay application agnostic. the client-
server architecture and also because RAIV’s injected code trans-
parently instruments a Ul-bot into the target web visualization,
RAIV can greatly accelerate the speed at which the Ul-bot can
function. Of course, as the speed of archival increases, the num-
ber of archivable interactions increases too. As the size of Loom
objects has increased, we have found it beneficial to also develop
a shared repository of archived visualizations.

In addition, in a client-server architecture, we can easily use
the RAIV server as a host of an online “gallery” of captured RAIV
objects. In this regard, because a user browsing through the online
gallery gets to experience the captured objects in a way that is in-
tuitively very similar to using a YouTube and not requiring users
to install any specific software. This capability simplifies how
scientists can share interactive visualizations with peers. Like
YouTube, finding objects of interest relies on a powerful search
engine. Now that we harvest metadata from the application itself,
we can take advantage of the additional metadata to create our
own search engine for archived visualizations.

Lastly, because each RAIV object represents subsets of in-
teractive functionalities of using a visualization app to analyze a
specific dataset, it is easy to imagine a library of RAIV objects,
for example, using KnowEnG !, a genomics visualization appli-
cation, to analyze different genomics datasets. We propose to fur-
ther extend a repository of RAIV objects to also include abilities
of both textual- and image-based search. After a search target has
been found, the corresponding RAIV object can also reveal the

lhttps://knoweng.org/

362-1

interaction paths that a user can take to get to that search result, as
if that user is just using that original KnowEnG application. This
reproducibility capability has general implications.

RAIV enables two types of power users primarily: (i) devel-
opers of web visualizations can create hosted snapshots of user
experiences, as a lower-cost alternative to provide user with ac-
cess to limited analytical functionalities or even as a method for
regression testing, and (ii) data analysts to quickly capture and
record an analysis to keep for records as well as subsequent shar-
ing with peers.

In summary, the contributions of this work are: (1) greatly
improving the usability and reliability of the capturing method of
Loom by focusing on web-based visualizations organized around
the standard DOM structure, (2) extending Loom’s client-side
only architecture to be client-and-server and, with this extension,
created a server that can efficiently encode Loom objects and host
captured objects as a scalable online gallery, (3) based on the
availability of a preliminary archival gallery, creating an initial
method for scientific users to search into the gallery by perform-
ing text- or image-based queries and returning not only the search
target, but also the interaction paths that can take a user to that
search result as if the user were using the original visualization
app.

The rest of the paper is organized in the following way. We
describe related work in Section 2. Our system design is in Sec-
tion 3. We discuss results and conclude in Sections 4 and Sec-
tion 5, respectively.

2 Related Work

2.1 The Science Needs

Among science communities, archival and reproducible scientific
results have been a frequent and national topic in high-profile pub-
lications in Science [12, 4, 11], in Nature [17, 14], and in NSF
reports and Dear Colleague Letters [1, 2, 7, 3, 10].

The growing trend of convergence research brings out an-
other challenge. According to the article “Before Reproducibility
Must Come Preproducibility” [18] in Nature 2018 Special Issue
on Challenges in Irreproducible Research: “Science may be de-
scribed as the art of systematic oversimplification — the art of
discerning what we may with advantage omit. ... Communicat-
ing a scientific result requires enumerating, recording and report-
ing those things that cannot with advantage be omitted.” In other
words, having the right context is crucial to understanding and
evaluating scientific results. Thus, archiving each visual insight
together with the proper context is necessary.

Because archiving visualizations in a form where a user
could still interact with the visualization would be of great ben-
efit, executable paper has been a decade-long vision shared by
the visualization community together with many other scientific
domains. This research area started with the foundational sys-
tem named VisTrails [3, 6]. A plethora of research was published
since, including the very recent paper in Nature’s Communica-
tions Physics [8] that emphasized the need for the technology and
infrastructure to support the idea of executable paper.

Most of these methods rely upon the possibility to preserve
and recreate an execution environment using traditional platforms
or even the cloud [16]. From a practical point of view, the cost, ex-

362-3

root

overview} { profits }
[click] [click]

[Washington }[Oregon }{ J{ Florida J { bar graph }
[hover] [hover] [hover] [scroll]

Figure 1: A simplified action tree example.

pertise required, and the need for clear and actionable standards
are still barriers of widespread deployment. However, there are
deeper barriers too, in particular as pointed out in the 2020 arti-
cle “No Raw Data, No Science: another possible source of the
reproducibility crisis” [13], which illustrates the urgency for and
yet also the dearth and the difficulty of widely sharing the origi-
nal data. Furthermore, as a basis of research, scientific datasets
are the output of previous scientific processes and also the in-
put of new scientific processes. When sharing data, better ways
that allow would-be users to make discernment on their own is
invaluable, because “science advances faster when people waste
less time pursuing false leads” (opening statement, Nature - 2018
Special Issue on Challenges in Irreproducible Research).

We propose to create archives of data visualizations as repos-
itories of Loom objects, and hope to argue that the dataless man-
ner in which Loom captures interaction can address the barriers
of sharing the data. In addition, requiring only a standard web
browser for a user to use and discern can address the barriers due
to difficulties of faithfully recreating the computing environment
used by the original research. In this work, we have developed an
automated tool set to capture web based visualization dashboards
at scale, a server architecture that can encode and host large num-
bers of Loom objects, and demonstrate that the result repositories
can be used for both text- and image-based queries.

2.2 Loom Background

The premise of Loom is to consider visualization dashboards and
applications as black boxes, and to focus solely on the relation-
ship between the input (i.e. interactions / user actions) and the
output (i.e. frame buffer). Obviously, the interaction space can be
exponentially large, as is the potential space of output. Loom’s
perspective is that when a user interacts with complex software,
only a small set of controls on the graphical user interface (GUI)
are used at any time, which leads to each user session covering
a rather narrow space of potential user action. Herein, we refer
to this narrowed space as the interaction space, once defined, the
corresponding output, i.e. the framebuffer space is accordingly
defined.

Loom [15] showed that the interaction space can be captured
together with the corresponding output space through automation,
and that the mapping between the two spaces can be stored with
great space efficiency and reused with great reliability. Loom was
not ready for widespread adoption and use, because the process to
create a Loom object is manual, time consuming, and error prone.

Just as with general user interfaces, interactions with a visu-
alization are hierarchical in nature. With every action, a user can
get a new set of options to interact with the application. Inspired
by behavior trees [9], in Loom we model action hierarchies of an

IS&T Infernational Symposium on Electronic Imaging 2024
Visualization and Data Analysis 2024

RAIV System Architecture

1) RAIV Recorder Client

Action Tree Target Application RAIV Object Composer

s

= IS Ul Elements
‘mv Browser Extension| & & [-)
$¢€ 1
S &
oF, ‘
a L —
r

Code Injection |-» = q
wrra O I

3) Compose RAIV Object From

Specification Uploaded Frames and Action Tree

1) User Provides Interaction
Specification

2) Ui-Bot Replays Interaction ‘

2) RAIV Server

Frames . '
Video

3) RAIV Gallery

[RAIV Object Database
———————) RAIV Playback Client

Browser

Interaction

ranes - ()

4) Request RAIV Object and
Start Interaction Loop

DOM Event Handlers

Action Tree Video

Figure 2: Overview of the RAIV system architecture. (1) The RAIV Recorder Client is injected into the Web Application to harvest th
DOM. A user will specify the actions they would like to capture. Once ready, a user will start the capture sequence. A Ul-bot will replay
the specified actions and take screenshots after each action. These frames and the action specifications will be sent to the RAIV Server.
(2) The RAIV Server will receive the frames from the RAIV Recorder Client and compose the RAIV object. The RAIV object is stored
along with other recorded archives to be displayed in the RAIV Gallery. (3) A user will navigate to the RAIV Gallery and request to view
a specific RAIV object. The RAIV Gallery will then set up the necessary event handlers and begin the interaction loop.

interactive visualization as an action tree (Figure 1). Loom then
traverses the tree automatically, and uses a Ul-bot to takes those
actions and capture the visual responses associated with the ac-
tions. The pairs of action (i.e. input controls) and response (i.e.
visualizations) are then stored together. For space efficiency, and
also more critically, for seamless use and sustainable deployment,
we use modern video technology as the container to package the
action-response (i.e. interaction-framebuffer) data. Our examples
in [15] chose MP4 with H.264 as the container, but WebM and
H.265 should work as well.

When using a Loom object, Loom’s browser-based viewer
reconstructs the visualization application using HTML’s DOM
event handlers. Based on the user’s interactions in the browser,
appropriate visual responses (i.e. framebuffer from the Loom ob-
ject) are selected by Loom and displayed. To end-users, this ex-
perience is as if they are truly interacting with the original visual-
ization and data. In this way, the availability and accessibility of
the recorded user experience do not depend on the original data
or software.

3 The RAIV System

RAIV is designed as an extension and improvement on the
Loom [15] architecture with the goal of improving ease of use and
enabling user to navigate 10s to 100s of archived visualizations.

3.1 Design Objectives

To illustrate the design objectives of RAIV, it is important to
understand its foundation. Loom [15] defines a data model for
archived visualization that partitions a visualization application
into a set of interactions and a set of visual outputs.

To capture an archived visualization, Loom employs a Ul-
bot which injects synthetic user inputs into an application, waits
some time, and then captures the visual output of the application
using standard operating system screenshot mechanisms.

A core challenge behind Loom’s approach is that it lacks
automation to help users specify the capturing process. It treats
an application as a black box and assumes nothing about the un-
derlying software. This inherent lack of information constrains
the recorder, limiting the variety of interactions it can automate.
These shortcomings include but are not limited to: requiring the
user to manually specify bounding boxes of widgets, waiting a

IS&T Infernational Symposium on Electronic Imaging 2024
Visualization and Data Analysis 2024

set amount of time before a screenshot is taken increasing the to-
tal capture time of a recording, no way of automatically detecting
the type of a widget, etc.

There is no centralized and standardized way to manage
Loom archives. If a user wanted to playback someone’s Loom
object, there is no hosted solution, making it inconvenient. This
inconvenience hinders wide spread adoption, as without a plat-
form to share and store recordings, users put more work on them-
selves to ensure the archive reaches its intended audience.

Finally, even if you had a large collection of Loom objects, it
is impossible to enumerate every frame and interaction. You must
selectively filter and search the frames. To this point, there has
been no system introduced to intelligently navigate through these
visual insights.

Goals. This work has two main goals for the RAIV Archi-
tecture. First, (G1) the system should alleviate additional manual
labor in the recording process, to help save developers more time
and effort when capturing applications. Second, (G2) the system
should enable users to navigate through and query our database of
visual analytics.

Objectives. With these goals in mind, we propose the fol-
lowing specific system objectives.

(0O1) Provide robust and efficient recorder automation.
The RAIV recorder must introduce automation to limit the
amount of manual labor a user must undertake for common tasks
to support (GI). (0O1.1) Automation should reduce the effort
required to specify the action-tree of a recording. (01.2) It
should speed up the capture phase by harvesting the DOM to
automatically recognize when the web application has updated.
(01.3) The recorder should automatically upload a recording to
the RAIV Gallery.

(02) Enable scalability together with accessibility. The
RAIV Server and Gallery must provide a centralized location that
holds and serves Loom Objects. By having a central data repos-
itory we can begin to support navigation and queries against this
database (G2). (02.1) The gallery must allow a user to view and
play the collection of archives. (02.2) The RAIV Server should
also allow a user to easily share Loom recordings.

(O3) Support intelligent search capabilities. The RAIV
Gallery must provide an interface that allows a user to intelli-
gently navigate and search through a collection of Loom objects
(G2). (03.1) The system must first be able to index into Loom ob-
jects via a text based query using tags contained with in the DOM
when capturing an application. (03.2) The system must also al-

362-3

Age Group 65-66
[hover]

Age Group 85+
[hover]

Total Population Median Age
[click] 1 [click]

| | J

Close Dialogue
[click]

Close Dialogue Close Dialogue
[click] [click]

Figure 3: An action tree for the United States Census Bureau ex-
ample. The RAIV Recorder builds an action map such as this
when the user specifies which actions to record.

low users to find similar Loom objects and frames within them
using an image-based query on the Loom frames themselves.

3.2 System Architecture

Figure 2 shows an overview of the RAIV system. RAIV has two
core components: (i) the RAIV client-side recorder which is pack-
aged as a Chrome extension, and (ii) the RAIV gallery server,
which hosts and manages the captured Loom objects.

The RAIV client-side recorder (Figure 2.1) serves two pur-
poses. First, it enables a user to specify an action tree that en-
compasses a subset of the interactions within a web application.
Second, it replays the action tree specification with a Ul-bot, and,
for each action, it captures the frame buffer and streams it directly
to the RAIV gallery server.

The RAIV gallery server (Figure 2.2 and 2.3) is a central-
ized service designed to collect and serve archives captured by the
RAIV recorder. The gallery provides several core functionalities.
First, it serves as a centralized database of Loom objects captured
by the RAIV recorder and streamed directly to the server. Sec-
ond, it provides a Youtube like gallery that enables users to easily
navigate through and share user created archives. Next, it allows
users to open and use Loom recordings with a single click on the
gallery. Finally, it enables users to intelligently search through
our database of visual insights.

3.3 The RAIV Client-Side Recorder

We design the RAIV recorder to fulfill the objective of provid
robust and efficient recorder automation. RAIV implements the
recorder as described in Loom. That is, a significant portion of
actions taken within interactive visualizations can be modeled as a
hierarchical directed acyclic graph. When an action is taken on an
application, additional options for actions may then be revealed.
Loom models this hierarchy of actions using an action tree; in this
work we maintain the same abstraction.

In the following sections we provide a brief review of this
abstraction along with our additions to Loom. We then describe
the process a user will undergo to create a recording. Finally, we
detail how the RAIV recorder harvests the DOM in the recording
process.

3.3.1 Representing An Interactive Visualization

A RAIV object comprises a set of frames stored within an MP4
file and the action tree specification within a JSON file. On a high
level, the action tree is a lookup to which frame will be displayed
to a user. Each node in this hierarchy of interactions represents an
index into a collection of frames gathered by the recorder. A node

362-5

332 RAIV Recorder -}

(o] [2]

| View Action Map

View Independent Actions

5 independent actions.
3 normal actions,
18 total frames will be captured.

Video Name|Sample Clustering

Figure 4: The RAIV Recorder user interface. Users will see this
UI when they start the Chrome extension. This interface allows a
user to toggle whether or not they are recording, clear the record-
ing, change server upload settings, set dependencies in the action
specification, and begin the capture.

is also synonymous with an action. Each action within the action
tree represents a widget with which a user interacts. Within this
action object, we hold the following set of fields:

ActionType (String) represents the type of action that a user
can take on the object. Valid types include “click,” “hover,”
“toggle,” and “slider.”

BoundingBox (List) represents the rectangular area that a
user can interact with this action.

Children (Object) represents a list of elements dependent
on this action. An example of this dependence are buttons
that create dialogues or popup. Actions taken on resulting
dialogue are only accessible when at their parent’s action.
Frame Position (Integer) represents the index of the cor-
responding frame within the MP4. When an action is taken
the playback will seek to this index.

Tags (String) holds all of the text within the page. We use
this further down the pipeline to semantically search through
the frames.

This setup allows us to model complex sequences of inter-
actions that may occur within an application. Figure 3 shows an
example of an action tree for capturing a United States Census
Bureau COVID-19 Impact Planning Report. The left side of the
tree shows a chain of hover interactions on a bar chart within the
interactive visualization. In this recording, these hover actions
do not have any dependencies as they are connected directly to
the root. The right side of the tree shows simple dependencies
of buttons that create popup dialogues. The click actions spawn
their dialogues; they each have their own children’s actions that
are only accessible when a user has navigated to their parent.

In addition to the basic dependencies introduced in Loom,
we introduce a concept called independent actions. Independent
actions are those actions that should be accessible regardless of
the current application state. A relevant example of independent
actions is tooltips or hover events. Actions such as these, however
small, significantly improve the dynamic feel of an interactive vi-
sualization.

The recorder supports such actions by allowing a user to
specify a set of actions as independent. On capture time, each

IS&T Infernational Symposium on Electronic Imaging 2024
Visualization and Data Analysis 2024

action specified as independent is appended to all other non-
independent actions.

3.3.2 Specifying A Recording

The general workflow of creating a recording is as follows. First,
the user will navigate to the desired webpage and start the recorder
(shown in Figure 4). The user will then specify which widgets to
record, the action types, and dependencies. Then, the user will en-
ter information about the server to upload to and click capture. A
Ul-bot will then iterate through the action tree and perform them
on the webpage. The bot will take a screenshot of the webpage on
each action and upload that image to the RAIV Gallery. Once the
bot has iterated through the action tree, the Gallery will encode
the images into an MP4 file and store it with the specified action
tree.

3.3.3 Video Encoding

We package the screen captures of an application into a single
MP4 file with H.264 compression using ffimpeg as is done in the
original Loom implementation [15]. While H.264 is a lossy com-
pression standard, the user should not see any noticeable visual
degradation on playback of the archives. Lossless compression al-
gorithms or video file formats can be used as well. Table 1 details
the resulting file sizes of our technique using H.264 compression.

3.3.4 Harvesting The DOM

The RAIV Recorder is implemented as a Chrome Extension.
When a user opens the recorder, the extension injects code into the
active webpage; this allows us to harvest the DOM in the record-
ing process. We implement the following features.

Widget Bounding Box Recognition. We can pinpoint the
DOM element the user interacted with when specifying the set
of desired interactions to capture. With this, we can automat-
ically detect the bounding boxes of the widgets we will capture.
Bounding box recognition addresses a significant limitation of the
original limitation; users previously spent much of the recording
time manually drawing the bounding boxes of widgets within the
dashboards they were capturing. Now that this process is auto-
mated, users can spend more time and focus on specifying a more
complex series of interactions.

Detecting Widget Type. In addition to automatically detect-
ing widgets, we can use the element type of the targeted widget
for further automation. An example of this is in canvas elements.
Often, canvases hold a series of widgets that the user may want to
iterate through, acting on each of these widgets. Upon an action
specification on a canvas, the recorder will detect that the targeted
element is a canvas and allow the user to specify the number of

|

Canvas Canvas 1 Canvas 2 Canvas N
[hover] [hover] [hover] [hover]

Figure 5: A simplified action tree for a targeted canvas element.
A user can specify that any action taken on a canvas element be
discretized and repeated N times throughout the entirety of the
canvas.

IS&T Infernational Symposium on Electronic Imaging 2024
Visualization and Data Analysis 2024

times the action should be repeated horizontally and vertically.
On capture, the recorder will discretize the canvas and duplicate
the action the specified number of times, as shown in Figure 5.

Faster Capture Loop. To minimize the time our Ul-bot
takes between taking an action and capturing a screenshot, we
use Mutation Observers to monitor changes within the document.
One limitation of the previous Loom Recorder implementation
was that it needed an intelligent concept of when an application
has re-rendered after taking an action. Loom set constant timeout
to ensure the application’s screenshot captured the correct con-
tent; this resulted in the reported long capture times. With the
DOM, we can monitor for changes in a page resulting from an ac-
tion. When notified of changes, we trigger the screenshot mecha-
nism.

Manual Capture. Mutation Observers do not handle all
cases. If a change to the application is asynchronous, this may
fail to capture all changes to the page. As a fallback, users may
still specify a wait time on a per-action basis.

For cases that require additional user intervention, we add a
feature that we call manual capture. With manual capture, the UI-
bot executes the specified action and then waits to take a screen-
shot until the user gives feedback. In order to give feedback,
the user presses the continue recording button that appears in the
Chrome extension.

Extracting Metadata. Finally, we can extract attributes
from the DOM to collect valuable metadata from the web page
on capture. The following sections describe a text-based query
system that performs a semantic search on the content embedded
within captured web pages. This text is pulled directly from the
web page for each node on the action tree after the Ul-bot exe-
cutes an action taken.

Security Implications. The RAIV Recorder Chrome exten-
sion conforms to the restrictions enforced by the security poli-
cies of Chrome. When installing the RAIV extension, a user will
accept and grant permissions to the extension. Given these per-
missions, the extension will have access to the browser-provided
APIs that it needs to function. With user-granted privileges, the
RAIV extension can inject a content script into the webpage and
screen capture the page. As commonly expected, the RAIV ex-
tension only interacts with a web page when directed by the user
and is otherwise dormant.

3.4 The RAIV Gallery Server

We have designed RAIV as a standard interface for archived visu-
alizations. We modeled this interface as a YouTube-like sharing
platform called the RAIV Gallery. Thus, the RAIV Gallery inter-
face fulfills the objectives of enabling scalability with accessibil-
ity (02) and supporting intelligent search capabilities (O3).

We anticipate around 10s up to 100s of archived visualiza-
tions within the gallery. This poses a new challenge: How can a
user find a specific visualization from potentially 5,000 different
visual states? Similarly, how can a user find a similar visualization
to one they have already seen? This challenge is compounded be-
cause many of the frames look similar but not identical, and often,
the users do not know what they are searching for.

We have designed the RAIV Gallery to be searchable across
two scenarios: i) searching via text; and ii) searching via images.

362-5

C http:/fexample.com =

Knoweng;: Feature Prioritiz..

Knoweng: Sample Clustering

Knoweng: Gene Set Chara...

Figure 6: The RAIV Gallery shown in the browser. (1) Every
card represents a recorded Loom object. (2) The recordings are
filterable and sortable via the navigation toolbar.

The remainder of this section discusses the gallery’s design
and the search functionalities within the RAIV Gallery.

3.4.1 RAIV Gallery Interface Design

The RAIV Gallery implements a YouTube-like sharing platform
for archives where users can instantly access pre-recorded inter-
active visual insights. The gallery supports two main user types:
developers and end users. Developers will specify and capture
their desired visual insights, and upon capture, this recording will
be uploaded and displayed on the gallery. End users can then
navigate to the hosted gallery, find, view, and interact with any
previously recorded and uploaded RAIV object. Figure 6 shows
the homepage of the gallery.

Creating New Archives. When a user begins capturing their
archive, the recorder notifies the gallery and uploads the action
tree. For each node within the action tree, the recorder performs
the necessary interactions, captures an image of the screen, and
uploads this image to the gallery. Once the recorder has finished
capturing the tree, it signals the gallery to begin processing and
joining the tree and images together. The searchability engine
preprocesses the frames during compilation.

Searchability Engine. We have employed a standard tech-
nique for relevance filtering based on the Al technologies of Con-
volutional Neural Networks (CNN) for images and Large Lan-
guage Models (LLM) for text.

The core idea behind our searchability engine is to transform
the representation of text and images into high-dimensional vec-
tors. These vectors represent the meaning behind the text or im-
ages and have been found to be compatible with standard distance
metrics.

The result is that, instead of the abstract task of “find the
image most similar to this one,” we can focus on the concrete task
of “find the vector closest to this vector in this high-dimensional
space.”

The searchability engine has three high-level tasks: i) con-
vert each frame into a set of texts and images; ii) process the
text and images by an LLM and CNN, respectively; iii) find the

3627

closest text and image within the model’s embedding space. It’s
worth noting that the problem of search and query in large im-
age database is not new. Many classic methods were based on
similarities or distances [19]. However, more recently embedding
space has been shown to outperform [20]. That’s why we chose
an embedding space based approach. More technical details are
in Section 4.2.

Users can utilize the search engine via the navigation tool-
bar on the RAIV gallery homepage. Enable the smart search op-
tion and type directly into the search bar for semantic text search.
Click on the image upload button to upload an image for reverse
image search. Upon a search, a list of the most similar RAIV ob-
jects and their frames will be returned and displayed to the user.
The user can further drill down this list by combining the two
features.

Provenance View. By default, the playback client has a tog-
gleable overlay that displays a RAIV object’s action tree. When
the searchability engine recommends a specific object’s frame,
this overlay reveals the path of actions required to navigate to the
frame on the original application. Figure 7 shows an example of
this overlay.

4 Results And Discussion

This section evaluates our system architecture. First, we assess
the performance of the RAIV Recorder. Then, we evaluate our
support for intelligent search capabilities. Finally, we discuss
these results.

4.1 Recorder

In Section 3.3, we describe the RAIV Recorder additions to
Loom. This section evaluates video size and recording time met-
rics for seven examples captured by the recorder.

Table 1 shows the Loom video recording storage size and
resolution and the number of interactions for seven test cases.
The KB/Interaction ratio also shows how the recording increases
in size on disk for each interaction. All test cases vary in video
size due to RAIV’s ability to capture entire web pages rather than
what is only in view. The Knoweng test cases show how much
a web page’s height can vary even within the same application.
Interestingly, the Knoweng recordings of the Sample Clustering
dashboard are of similar size, but the recording that uses the Can-
vas action duplication feature has over 1,100 more frames; this
is because the frames with repeated canvas actions are similar to
one another. The video compression allows us to store these ex-
tra frames with minimal cost. We expect most cases where one
would use this canvas feature to follow a similar behavior.

Table 2 compares recording specification times for six of the
seven examples. Specification time typically varies depending on
the complexity of the interactions a user records. Compared to
Loom, users spend less time specifying the exact widgets they
want to capture, and instead, complex sequences of interactions
take up most of a user’s time. Recordings in this table with more
significant specification times have action maps that often have
trees of greater depth. Capture time changes based on two fac-
tors. First, if the number of actions the user specifies is large, the
capture time will grow linearly. Second, if the application con-
sists of asynchronous DOM updates, the user will use the set wait

IS&T Infernational Symposium on Electronic Imaging 2024
Visualization and Data Analysis 2024

¢ Action 3

g Action 14 &

- ol

\ Aelon 31 m

& Action 4
m i Actlon - m

m m 2 bl

Figure 7: Provenance view on playback. When users select a recommended frame in a RAIV Recording from the gallery view, they can

toggle on an overlay showing the object’s action tree. A user can select any action node and see the corresponding frame. This view
shows the recommended action (yellow) and the path a user can take to get to the recommended action (red).

RAIV Object Frames

e STATE COMID 19 IMPACT PLANNING REPORT

User Query

c'.éu'\.ilsslﬂ-es'

Uoled Slakes

Cenisus

L -
R 4
s L

G
l

MobileNet-v3 \

Embedding Space \
\\.&< \
} - '.:

Figure 8: Example of querying via reverse image search. The
embedding space shown is a TSNE projection of objects within
the vector database.

time for screenshots or the manual capture feature. Both of these
options will increase capture time. The US Census Bureau: TN
Covid-19 Impact Planning Report exemplifies this behavior.

4.2 Searchability Engine

Section 3.4 describes an engine for performing relevance filtering
across all archived visualizations. In this section, we define the
specific models and techniques RAIV employs.

IS&T Infernational Symposium on Electronic Imaging 2024
Visualization and Data Analysis 2024

Query Prompts

“transportation during the pandemic" "heatmap” ‘

Embedding Space Results

- i

la3

transportation during the pandemic

closest to 'transportation during the pandemic'
heatmap

closest to 'heatmap'

Xoxo

Figure 9: Semantic text search results. Text queries input via the
search bar in the gallery view are fed through an LLM to get
an embedding representative of the meaning of the text. These
embeddings are then compared to embeddings from the text ex-
tracted from the DOM upon capture. This figure shows two ex-
ample queries and their corresponding recommended RAIV view.

Text. To generate the dataset of text embeddings, we use the
text scraped from the captured page for each action. We clean
the scraped text by converting all text to lowercase, removing all
non-character values, removing stopwords, and lemmatizing each
token. We also add the user-specified title for the archive and the
web page’s title to the text. We refer to the cleaned text as the

LT3

frame’s “tags.”

Image. The nature of CNN models for images is that they
are resilient to changes in the images. As a result, we can use
the entire frame of the application as the input to our model, with
effectively no preprocessing.

Models. For text embedding, we use a small BERT model
called al1-MiniLM-L6-v2; this model is 100 MB in size and

3627

Source Application

#1 Size (MB) Resolution (MP) KB/

US Census Bureau: TN Covid-19 Impact Planning Report
Knoweng: Full Demo Pipeline

Knoweng: Signature Analysis

Knoweng: Gene Set Characterization

Knoweng: Sample Clustering

Knoweng: Sample Clustering [Canvas (20x20)x3]
Knoweng: Feature Prioritization

39 0.7 1900x944 (1.7) 19
33 1.8 1900x2652 (5.0 55

5 04 1886x1714 (3.2) 73

78 0.3 1900x698 (1.3) 34
65 44 1886x2716 (5.1) 70
1203 52 1885x2716 (5.1) 4.4
25 46 1886x7824 (15) 190

Table 1: Summary of the sizes of archived objects compared to the number of interactions (#1).

Specification Time (m:s) Capture Time (m)

Source Application min avg max min avg max
US Census Bureau: TN Covid-19 Impact Planning Report ~ 3:06 3:3 4:01 0:48 0:49 0:50
Knoweng: Full Demo Pipeline * * * * * *

Knoweng: Signature Analysis 0:14 0:16 0:18 0:15 0:15 0:15
Knoweng: Gene Set Characterization 0:33 0:38 0:43 0:34 0:34 0:35
Knoweng: Sample Clustering 3:43 4:40 6:52 1:17 1:21 1:26
Knoweng: Sample Clustering [Canvas (20x20)x3] 0:40 0.44 0:51 724 725 7:26
Knoweng: Feature Prioritization 1:17 1:21 1:23 1:35 1:38 1:40

Table 2: Summary of the time to capture archived objects. *Not collected due to time constraints.

Projection Space Query Image

N % STATE COVID-19 IMPACT PL
Terresses (P57
© E—
6709356
wll
. - = - = 129760 2
© query @ most similar @ least similaj [N
| 1 17181775

Figure 10: Reverse image search results. Image queries input via
the image search dialogue in the gallery view are fed through a
CNN to get a representative embedding. This embedding is then
compared to the embeddings of all stored RAIV object frames.
This figure shows an example image query and the most and least
similar results.

transforms around 1 KB of text into a 384-dimensional vector.
We chose this model as it provides generalized semantic text em-
beddings on a CPU with minimal latency for search and lookup.
For image embedding, we use a small MobileNetV3 model (11
MB) that transforms an RGB image into a 1024-dimensional vec-
tor. We chose this model because its outputs generalize across
the image space well due to having fewer parameters, limiting the
risk of over fitting on the image. We have found additional bene-
fits to using a small model, namely that it runs more efficiently on
affordable cloud instances.

Retrieval. After the tags and images have been transformed
into high-dimensional vectors, these vectors get stored within
an open-source embeddings database called ChromaDB. Using
Python, we can query ChromaDB for other high-dimensional vec-
tors with the smallest distance from a query vector. For example,
Figure 10 illustrates three of the embeddings of three images and
how the distance between them correlates with their similarity in
image space. For distance calculations, we use cosine similarity.

3629

4.3 Discussion

Currently RAIV targets only web based visualizations because
harvesting elements from within a web app is already a common
practice, for instance in the cybersecurity research community.
It requires significant future work to develop a portable RAIV
library for all desktop or even mobile app developers to adopt,
such that future visualization applications can include a capturing
functionality as a native part of their application.

The work to develop intelligent search capabilities of RAIV
in this paper assumes that large archives of interactive visualiza-
tions will exist. That is not the reality currently, hence the exam-
ples shown in this work are only preliminary prototypes. A key
research gap that needs to be filled is how provenance data should
be integrated into such large archives along with what real-world
use cases these future archives need to serve.

The current web-based focus of RAIV leads to another im-
portant challenge. That is, the vast and fast-paced creativity in
the web space, especially because web developers are not bound
by standard Ul interactions, they can develop new Ul widgets us-
ing customized Javascript libraries at will. Even though RAIV
covers all of the widget types used by KnowEnG, US Census
and Tableau, it is important to note that RAIV does not cover all
UI widgets known to us and probably will not ever in the future
because of the boundless creativity of the open source commu-
nity. As some current limitations, RAIV does not support widgets
with non-rectangular bounding boxes, widgets embedded within
iframes, and widgets with asynchronous behaviors.

5 Conclusion

This paper presents RAIV as an end-to-end archival service for
recording and sharing web-based interactive visualizations with-
out sharing the underlying data or software. We showed examples
of the RAIV recorder capturing complex sequences of interac-
tions in actual analytic pipelines. On the capturing front, we im-

IS&T Infernational Symposium on Electronic Imaging 2024
Visualization and Data Analysis 2024

proved upon past work by allowing developers and data analysts
to create recordings of visual analytics in less time with greater
ease. The Chrome extension-based recorder allows for a better
level of adoption. The supported user actions include: clicking,
hovering, toggling, and sliding.

The RAIV gallery server is a novel platform for sharing in-
teractive visualization archives without manual work from the de-
veloper. RAIV enhances transparency and allows a more expan-
sive base of users to delve into shared analytics to gain valuable
insights that, previously, may not have been shareable or discover-
able. We have also shown that these archives can be indexed on a
frame level via multiple modalities, effectively searching through
a crowd-sourced analytics database.

A core contribution in this work is the creation of a Searcha-
bility Engine that allows users to selectively filter their collection
of archived visualizations for relevant interactions and visual out-
puts. In contrast with common approaches to image similarity
that are very specific to the problem domain they target, we have
found great success in the application of general-purpose founda-
tional Al models, completely untargeted for our problem domain
of archived visualization applications.

Lastly, with the recent progress of general-purpose Al and
related to RAIV, we feel large archives of interactive visualiza-
tion will provide many research opportunities that may be unfath-
omable today. For better adoption and increased longevity of the
platform, RAIV will be available as open source software.

6 Acknowledgments

The authors would like to thank the anonymous reviewers of this
and previous versions of the manuscript for their valuable com-
ments and suggestions. The authors are supported in part by NSF
Award IIS-2209767 and CCRI-1925615.

References

[1] D. Atkins, T. Dietterich, T. Hey, S. Baker, S. Feldman, and
L. Lyon. Final Report: National Science Foundation Advi-
sory Committee for Cyberinfrastructure Task Force on Data
and Visualization, 2011.

[2] F. Berman and R. Rutenbar. Realizing the Potential of Data
Science - Final Report from the National Science Founda-
tion Computer and Information Science and Engineering
Advisory Committee Data Science Working Group, 2016.

[3] F. L. Cook. NSF 18-053: Dear Colleague Letter: Achiev-
ing New Insights through Replicability and Reproducibility.
2018.

[4] J. Crocker and M. L. Cooper. Addressing Scientific Fraud.
Science, 334(6060):1182-1182, dec 2011. doi: 10.1126/
science.1216775

[5] J. Freire. Making computations and publications repro-
ducible with vistrails. Computing in Science & Engineering,
14(4):18-25, 2012.

[6] D. Koop, E. Santos, P. Mates, H. T. Vo, P. Bonnet, B. Bauer,
B. Surer, M. Troyer, D. N. Williams, J. E. Tohline, et al. A
provenance-based infrastructure to support the life cycle of
executable papers. Procedia Computer Science, 4:648-657,
2011.

IS&T Infernational Symposium on Electronic Imaging 2024
Visualization and Data Analysis 2024

[7] J. Kurose. NSF 17-022: Dear Colleague Letter: Encour-
aging Reproducibility in Computing and Communications
Research. 2016.

[8] J. Lasser. Creating an executable paper is a journey through
open science. Communications Physics, 3(1):143, 2020.

[9] C.-U. Lim, R. Baumgarten, and S. Colton. Evolving be-
haviour trees for the commercial game defcon. In European
Conference on the Applications of Evolutionary Computa-
tion, pp. 100-110. Springer, 2010.

[10] S.Malcomber, M. Martonosi, J. Moore, S. Marguilies, A. Is-
ern, A. Knoedler, K. Sharp, S. Jones, K. Craig-Henderson,
and E. Gianchandani. NSF 23-018: Dear Colleague Letter:
Reproducibility and Replicability in Science. 2023.

[11] M. McNutt. Reproducibility. Science, 343(6168), 2014.

[12] J. P. Mesirov. Accessible reproducible research. Science,
327(5964):415-416, 2010.

[13] T. Miyakawa. No raw data, no science: another possi-
ble source of the reproducibility crisis. Molecular brain,
13(1):1-6, 2020.

[14] J. M. Perkel. Data visualization tools drive interac-
tivity and reproducibility in online publishing. Nature,
554(7690):133-134, jan 2018. doi: 10.1038/d41586-018
-01322-9

[15] M. Raji, J. Duncan, T. Hobson, and J. Huang. Dataless shar-
ing of interactive visualization. IEEE Transactions on Visu-
alization and Computer Graphics, 27(9):3656-3669, 2020.

[16] I. Santana-Perez, R. F. da Silva, M. Rynge, E. Deelman,
M. S. Pérez-Herndndez, and O. Corcho. Reproducibility of
execution environments in computational science using se-
mantics and clouds. Future Generation Computer Systems,
67:354-367, 2017.

[17] N. Springer. Reality Check on Reproducibility. Nature,
533(7604):437-437, May 2016. doi: 10.1038/533437a

[18] P.B. Stark. Before reproducibility must come preproducibil-
ity. Nature, 557(7706):613-614, 2018.

[19] C. Wang, J. P. Reese, H. Zhang, J. Tao, Y. Gu, J. Ma, and
R. J. Nemiroff. Similarity-based visualization of large im-
age collections. Information Visualization, 14(3):183-203,
2015.

[20] Y. Ye, R. Huang, and W. Zeng. Visatlas: An image-based
exploration and query system for large visualization collec-
tions via neural image embedding. [EEE Transactions on
Visualization and Computer Graphics, pp. 1-15, 2022. doi:
10.1109/TVCG.2022.3229023

7 Author Biography

Hunter Price received his BS in Computer Science from the
University of Tennessee, Knoxville, where he is currently an MS
student. His research interests include machine learning, data
visualization, and intelligent systems.

John Duggan received his B.S. and M.S. in Computer Sci-
ence from the University of Tennessee, Knoxville, where he cur-
rently works as a Research Software Engineer.

Robert Sisneros is a Senior Research Scientist at the Na-
tional Center for Supercomputing Applications. His research cov-
ers visualization, data model, parallel algorithm, 1/O optimiza-
tion, and big data. He earned BS in Mathematics and Computer
Science from Austin Peay State University, and MS and PhD in

3629

Computer Science from the University of Tennessee, Knoxville.

James Hammer received BS from the University of Tennessee
Knoxville in Computer Science, where he is currently a PhD stu-
dent. His research interests include real-time rendering, data vi-
sualization systems, and visualization architectures.

Tanner Hobson is a research scientist at the University of

Tennessee, where they also received their Ph.D. in Computer Sci-
ence in 2023. Their research interests include visualization web
service, artificial intelligence, and cloud computing.

James Osborne is a researcher at the University of Ten-
nessee, where he also earned his BS in Computer Science. His
interests include operating systems, open source, and frameworks
Sfor remote data analysis and visualization.

Jian Huang is a professor in the Department of Electri-
cal Engineering and Computer Science at the University of Ten-
nessee, Knoxville. His research focuses on data visualization and
analytics. He received his PhD in Computer Science from the
Ohio State University in 2001. His research has been funded by
NSE Department of Energy, Department of Interior, NASA, UT-
Battelle, and Intel.

362-11

IS&T Infernational Symposium on Electronic Imaging 2024
Visualization and Data Analysis 2024

	Introduction
	Related Work
	The Science Needs
	Loom Background

	The RAIV System
	Design Objectives
	System Architecture
	The RAIV Client-Side Recorder
	Representing An Interactive Visualization
	Specifying A Recording
	Video Encoding
	Harvesting The DOM

	The RAIV Gallery Server
	RAIV Gallery Interface Design

	Results And Discussion
	Recorder
	Searchability Engine
	Discussion

	Conclusion
	Acknowledgments
	Author Biography

