Stealing the Decoding Algorithms of Language Models

Ali Naseh

University of Massachusetts Amherst
Ambherst, Massachusetts, USA
anaseh@cs.umass.edu

Mohit Iyyer
University of Massachusetts Amherst
Ambherst, Massachusetts, USA
miyyer@cs.umass.edu

ABSTRACT

A key component of generating text from modern language models
(LM) is the selection and tuning of decoding algorithms. These algo-
rithms determine how to generate text from the internal probability
distribution generated by the LM. The process of choosing a de-
coding algorithm and tuning its hyperparameters takes significant
time, manual effort, and computation, and it also requires extensive
human evaluation. Therefore, the identity and hyperparameters of
such decoding algorithms are considered to be extremely valuable
to their owners. In this work, we show, for the first time, that an
adversary with typical API access to an LM can steal the type and
hyperparameters of its decoding algorithms at very low monetary
costs. Our attack is effective against popular LMs used in text gener-
ation APIs, including GPT-2, GPT-3 and GPT-Neo. We demonstrate
the feasibility of stealing such information with only a few dollars,
e.g., $0.8, $1, $4, and $40 for the four versions of GPT-3.

CCS CONCEPTS

« Security and privacy; - Computing methodologies — Ma-
chine learning;

KEYWORDS

Hyperparameter stealing, language models, decoding algorithms

ACM Reference Format:

Ali Naseh, Kalpesh Krishna, Mohit Iyyer, and Amir Houmansadr. 2023.
Stealing the Decoding Algorithms of Language Models. In Proceedings of the
2023 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’23), November 26—30, 2023, Copenhagen, Denmark. ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3576915.3616652

1 INTRODUCTION

Language models (LM) have become a crucial part of various text
generation APIs, such as machine translation, question answering,
story generation, and text summarization. Large-scale LMs like

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0050-7/23/11...$15.00
https://doi.org/10.1145/3576915.3616652

Kalpesh Krishna

University of Massachusetts Amherst
Ambherst, Massachusetts, USA
kalpesh@cs.umass.edu

Amir Houmansadr
University of Massachusetts Amherst
Ambherst, Massachusetts, USA
amir@cs.umass.edu

GPT-2 [37], GPT-3 [4] and GPT-Neo [3] have been shown to gen-
erate high-quality texts for these tasks. To generate a sequence of
tokens, LMs produce a probability distribution over the vocabulary
at each time step, from which the predicted token is drawn. Enumer-
ating all possible output sequences for a given input and choosing
the one with the highest probability is intractable; furthermore,
relatively low-probability sequences may even be desirable for cer-
tain tasks (e.g., creative writing). Therefore, LMs rely on decoding
algorithms to decide which output tokens to produce based on their
probabilities, i.e., to decode the text.

As shown in the literature [11], the choice of the decoding al-
gorithm and its hyperparameters is critical to the performance of
the LM on text generation tasks. Thus, users of many LM-based
APIs are offered a choice of decoding algorithms and also the abil-
ity to adjust any corresponding hyperparameters. For example,
in machine translation, beam search is more common than other
methods; however, in story generation, sampling-based methods
are preferred for their ability to generate more diverse text [39].

Deciding and fine-tuning the decoding algorithm is a costly
operation in typical text generation tasks. This is because automatic
metrics poorly reflect quality, so human evaluation is needed to tune
the decoding algorithms [16, 7]. That is, the service provider needs
to perform a manual human evaluation to find the best decoding
algorithm and the corresponding hyperparameter(s). For instance,
they need to recruit people to read and evaluate the generated texts
manually, a process that could be costly. There is also the cost of
developing and maintaining the evaluation infrastructure, such
as software and hardware used to conduct the evaluations, and
the cost of analyzing and interpreting the results. To summarize,
decoding algorithms are considered to be significant assets
of conventional LM systems. We refer the reader to Section 3.3
for a more elaborate discussion on the value of decoding algorithms
with an example scenario.

In this paper, we ask the following question: Can an adversary
steal (i.e., infer) the type of decoding algorithm in an LM-
based systems, as well as its corresponding hyperparameter(s)
by merely accessing the text generation APIs? And if yes, at
what monetary costs? We show that it is indeed possible to infer
the type and hyperparameters of a deployed decoding algorithm
with high accuracies and at low costs!

To the best of our knowledge, our paper is the first to explore
decoding algorithm stealing attacks on LM systems. While there ex-
ist model stealing attacks in other machine learning (ML) contexts
(like vision tasks [35]), such stealing techniques can not be applied

https://doi.org/10.1145/3576915.3616652
https://doi.org/10.1145/3576915.3616652

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

0.059

Students| opened | their

Size: 50257

DECODER

Model Vocabulary

0.064

DECODER

DECODER

Input

DECODER

Language Model (Black-Box 1)

doors

eyes

Inner Probability Distribution

Ali Naseh, Kalpesh Krishna, Mohit lyyer, and Amir Houmansadr

Target of Our Attack
0.133 doors
Decoding ’
Algorithm Students| opened | their eyes
0.149 eyes
Output

Black-Box 2
Final Probability Distribution

Figure 1: Overview of a typical LM-based API; it includes two independent black boxes: an LM which generates a probability
distribution over the vocabulary, and a decoding algorithm which dictates text generation based on the LM’s inner probability

distribution.

to the setting of LMs. Unlike computer vision and text classifica-
tion tasks, text generation systems are composed of two cascaded
building black boxes, as shown in Figure 1: the language model
and the decoding algorithm. In this setting, the adversary aims to
attack the second black box, given some (public) knowledge about
the first block. Therefore, this is a unique problem like no other ML
stealing attack, which requires tailored attack algorithms.
Overview of our stealing attack: The main intuition of our attack
is that different decoding algorithms and different values of hyper-
parameters can leave distinguishable signatures on the text being
generated by LM-based APIs [11]. For instance, Table 1 shows how
different decoding algorithms can lead to entirely different API
outputs given the exact same input text. We, therefore, obtain ana-
lytical algorithms that aim to infer the type and hyperparameters
of the decoding algorithms based on their API observations.

Our attack aims to distinguish between the widely used decod-
ing algorithms, i.e., greedy search, beam search, pure sampling,
sampling with temperature, top-k sampling, Nucleus Sampling, and
even the combination of these algorithms, just by observing the
output of the LM APIs. Notably, these six decoding algorithms are
currently the most widely utilized. While several alternative algo-
rithms have been proposed recently (e.g., RankGen decoding [23]),
none have been implemented in any publicly available LM-based
API. Moreover, our approach can be adapted to accommodate new
decoding algorithms. To provide a tangible example, the most pop-
ular LM API (OpenAI's GPT-3) offers users a choice of only three
decoding algorithms, all of which can be detected by our method.

Specifically, we design a multi-stage attack algorithm that lever-
ages the text generation API. We assume that the adversary has
access to the probability distributions provided by the target LM,
which is a standard assumption in the NLP literature [43, 50, 49, 6]
and valid in the real world, e.g., the GPT-3 API gives probability dis-
tribution for top tokens, and many causal LMs are open-source [37,
51, 33]. In Section 3.4, we demonstrate three scenarios in which the
attacker can obtain the necessary information, namely the inner
probability distribution provided by the API’'s LM. Furthermore, in
Section 5.5 and Appendix D, we demonstrate how the attacker can
apply our proposed attack in each of these scenarios and the extent
of information that can be stolen.

Summary of our results: We assessed the efficacy of our proposed
attack by testing it on three of the most prominent LMs: GPT-2,
GPT-3, and GPT-Neo. We conducted experiments using various
sizes of GPT-2 and GPT-3 to demonstrate that the size of the model
does not affect the results of our attack. In other words, our attack
demonstrates consistent performance across different sizes of these
models. We achieve almost perfect accuracy in detecting the type of
decoding algorithm while also obtaining accurate estimates of the
hyperparameters. All of these can be done with a few dollars, e.g.,
$0.8, $1, $4, and $40 for the four versions of GPT-3 (more details
in Section 6). All our experiments are centered around employing
a custom decoding algorithm in collaboration with GPT-2/3/Neo
models, as opposed to targeting a real deployment of these LMs.

In all cases, the probability distribution resulting from the esti-
mated decoding algorithms was found to be similar to the probabil-
ity distribution provided by the targeted API. The high p-value and
low KL-divergence score in all cases confirm our claims. Further-
more, we provide both theoretical and practical evaluations of the
number of queries required to perform accurate attacks.

Finally, we introduce a potential defense against our attack and
assess its implications on the quality of the generated text. Our
evaluations show the effectiveness of our countermeasure, i.e., the
inferred hyperparameters significantly deviate from their true val-
ues in the presence of our countermeasure. For instance, upon
deploying our defense mechanism, we observe that the inferred
values for the temperature and p in Nucleus Sampling will, on av-
erage, differ by 0.1 from their actual values, representing a notable
discrepancy. Given that these hyperparameters typically fall within
the range of 0 to 1, such deviations can lead to varying behaviors
in LM systems. On the other hand, our countermeasure does not
substantially affect the utility of the system as measured by the
perplexity feature.

Availability

The code used to conduct the experiments presented in this paper
is available on GitHub.! Additionally, the appendices can be found
in the full version of this paper [32].

Uhttps://github.com/SPIN-UMass/Stealing-the-Decoding- Algorithms-of - Language-
Models

https://github.com/SPIN-UMass/Stealing-the-Decoding-Algorithms-of-Language-Models
https://github.com/SPIN-UMass/Stealing-the-Decoding-Algorithms-of-Language-Models

Stealing the Decoding Algorithms of Language Models

2 BACKGROUND

In this section, we will review some basic concepts from language
modeling. Many architectures have been proposed to be used as
LMs in various applications. Graves [17] introduces Long Short-
Term Memory recurrent neural networks to generate real-valued
sequences with long-range structures to predict the next token.
Bahdanau et al. [2] present an encoding-decoding approach using
an attention mechanism for machine translation systems. More
recently, Vaswani et al. [46] introduce an attention-based mecha-
nism, called Transformers, to replace the former RNN-based mod-
els. All the large-scale NLP algorithms are using transformers, like
BERT [10], T5 [38], GPT-2 [37], GPT-3 [4]. We will skip the details
of the architectures and refer the reader to the mentioned works.

2.1 Open-Ended Text Generation

Many text generation tasks use autoregressive LMs to generate
text. For some of these tasks, including machine translation [2] and
summarization [31, 53], the output is more constrained due to the
input. However, diverse outputs are desirable in several NLP tasks,
including story generation and Question-Answering. As described
in [9, 22], the task of open-ended text generation is to generate text
that forms a coherent continuation from the given context. In other
words, suppose that wi, wa, ..., wj are tokens of a sequence from a
vocabulary V; we want the model to generate r continuation tokens
in a left-to-right fashion by applying the chain rule of probability:

I+r

Pr(wigey) = | | Prwilwiizt) (1)
i=1

The next step after computing the conditional probabilities, we
need to decide how we want to pick the next token based on the
probabilities.

2.2 Decoding Algorithms

In this section, we overview the six most commonly used decod-
ing algorithms. Two of these approaches are deterministic (greedy
decoding and beam search), and the other four use probabilistic
sampling techniques (random sampling, sampling with tempera-
ture, top-k sampling, and Nucleus Sampling). Examples of texts
generated by various decoding algorithms can be found in Table 1.

2.2.1 Maximization-Based Methods. We assume that the model as-
signs higher probability scores to higher quality text in maximization-
based decoding approaches [21]. Hence, these methods search for
continuation to maximize the probability of the generated sequence.
Greedy and Beam search are two prominent maximization-based
decoding methods.

As a simple method, Greedy Search selects the word with the
highest probability as the next token: w; = arg max,, Pr(w|wy.j—1)
at each time step t. However, this approach may result in locally
optimal, but globally sub-optimal decisions, where high probabil-
ity paths are not encountered. To mitigate this limitation, Beam
Search generates a specified number of hypotheses at each time
step, and selects the token sequence with the highest probability
among them. However, research has shown that text generated by
both of these methods can lack quality and diversity, even with
a high number of beams, as reported in studies such as [40, 47].

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Although beam search is effective in tasks with constrained outputs
such as machine translation, it fails to perform well in open-ended
text generation scenarios.

2.2.2 Sampling-Based Methods. In open-ended text generation,
to have a more diverse output, it is suggested to use probabilistic
(i.e., sampling-based) decoding algorithms [39]. The basic sampling
method is the simple random sampling using conditional proba-
bility distribution at each time step. However, the major drawback
of this approach is that any irrelevant token has a chance to be
picked [21], so it can lead to an inappropriate and irrelevant output.
Below we introduce alternative probabilistic decoding mechanisms
that are commonly used.

Top-K Sampling. In this approach [12], at each time step, the
algorithm picks k tokens with the highest probabilities from the dis-
tribution over the vocabulary. Then, we re-scale the probabilities of
these k tokens to sum 1. Now, we can sample from resulted k tokens.
In other words, with given probability distribution Pr(w|wi.i—1)
and the set of k tokens with the highest probabilities V) we will
sample from the new distribution:

Pr(w|wii—1)
Pri(wlwyi-1) = o s

where S = 3}, .) Pr(w|wr:i—1). We can create more human-like
text using the Top-k approach compared to the basic sampling.
However, choosing an appropriate k for a specific task is always a
concern. Also, after setting k, we will use the same k for all time
steps, which is problematic. In some time steps, the probability
distribution might be flat, and in some other time steps might be
peaked. So, a fixed k may not be a good choice for some time steps.
Nucleus Sampling aims to address this issue.

Nucleus Sampling. Unlike top-k sampling, the Nucleus Sam-
pling [21] algorithm does not pick a fixed number of tokens. Instead,
it picks the smallest number of tokens whose cumulative proba-
bility exceeds p. Then, it re-scales these probabilities to sum 1.
Then, we can sample from the new distribution. Similarly, sup-
pose that we are given probability distribution Pr(w|wj.;j—1) and
the smallest set of tokens V(?) whose cumulative probability ex-
ceeds p, 3\, cy(p Pr(w|lwii—1) > p. We will sample from the new
distribution:

ifwev®

otherwise

@)

Pr(w|wij—1)

ifwev®

0 otherwise

Pr/(wlwiii-1) = { ®)
whereS = 3 .y (» Pr(w|wi.i—1). This dynamic selection approach
leads to generate more human-like texts.

Sampling with Temperature. Another popular alternative to
the basic random sampling technique is adding temperature to the
probability distribution [1]. This approach has been used in various
text generation applications [13, 5]. As described before, in the basic
random sampling method, any token even with low conditional
probability has the chance to be picked. If we apply temperature to
the softmax, we will amplify the likelihood of high probable tokens
and attenuate the likelihood of low probable ones. More formally,
suppose that uy.y| are our logits, and we are given the temperature
t. Then, the new softmax formula will be:

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Ali Naseh, Kalpesh Krishna, Mohit lyyer, and Amir Houmansadr

Table 1: These are some text examples generated by the API using various decoding algorithms. The initial prompt is "Yesterday,

I have decided to"

Decoding Algorithm Generated Text
Greedy Search Yesterday, I have decided to write a blog post about the recent events in the United States. I will be writing about the events
Beam Search Yesterday, I have decided to take a look at some of the more interesting things that have happened in the last couple of weeks.
Pure Sampling Yesterday, I have decided to go to Africa for the spiritual transformation, and to have a hard time making it work if I don

Sampling with Temperature
Top-k Sampling
Nucleus Sampling
Top-k and Nucleus Sampling

Yesterday, I have decided to start my 6th season as a fan. My goal is always to make my class stand again.

Yesterday, I have decided to go ahead and continue contributing to the discussion here on RSI (RSS Feed). In short —
Yesterday, I have decided to write something more in French! It’s something that I was at the Festival last year, in Canada
Yesterday, I have decided to post this post. I was planning to post it a few days before the deadline, but have decided

Temperature, Top-k and Nucleus Sampling Yesterday, I have decided to make a post for your consideration. Please note that I am not a psychologist.

exp(2)
VI
k=1
Recent works show that using smaller ¢ decreases the diversity
even though the quality of generated text increases [19].

Pr'(w = Vjlwyi-1) =

4)

exp(

3 HIGH-LEVEL OVERVIEW OF OUR ATTACK

In this section, we first establish the key terminology used through-
out the paper. We then go through the adversary’s capabilities,
objectives, and targets. Following that, we provide a detailed ex-
ample to motivate the problem. Finally, we elaborate on different
scenarios in which the adversary can acquire the inner probabilities.

3.1 Terminologies

We define two types of probability distributions which will be refer-
enced throughout our algorithms. The inner probability distribution
represents the probability distribution generated by the LM before
being fed into the decoding section. The final probability distribu-
tion represents the probability distribution of tokens generated by
the API as a whole after the application of the decoding algorithm.
These two probability distributions are illustrated in Figure 1.

3.2 Threat Model

Adversary’s Capabilities. As previously discussed, open-ended
text generation APIs consist of two independent components: a lan-
guage model and a decoding algorithm. In our attack, the adversary
has black-box access to both of these components, meaning that
the attacker has no information about the specifics of the decoding
algorithm. Additionally, in the majority of cases, text generation
APIs operate using a restricted range of models, including GPT-3.
These models exhibit distinct behaviors that can lead to different
orders of tokens when sorted by their probabilities at a given time
step; decoding algorithms then only adjust the weighting assigned
to each token. This characteristic facilitates the identification of
the base model used by the API through output comparison. Hence,
the adversary does not need to know the details of the targeted
LM. The only information the attacker has is the inner probability
distribution. Specifically, the attacker only needs the probabilities of
the top two tokens to apply all stages of the attack. In Section 3.4, we
describe in detail how the attacker can get such information.

Adversary’s Objective. In our attack, the first step is for the
adversary to infer the type of decoding algorithm used by the API
and subsequently extract any corresponding hyperparameters. The
ultimate goal is that by using the extracted decoding type and

corresponding hyperparameters, the final probability distribution
of generated tokens should be the same as that of the victim model.
Attack Target. In this study, we selected GPT-2 [37], GPT-3 [4],
and GPT-Neo [3] as the victim models. GPT-2 is a large transformer-
based LM that was pre-trained on a dataset of 8 million web pages.
GPT-3 is another large LM that was pre-trained on a dataset of
terabytes of text data, comprising a diverse range of web pages,
books, articles, and other text sources. GPT-Neo is an open-source,
large-scale language model developed by EleutherAl. GPT-Neo is de-
signed to provide similar capabilities and performance as OpenAI’s
GPT-3 while being accessible to the broader research community.
GPT-Neo has been pre-trained on the Pile [15], a diverse dataset
comprising over 800 gigabytes of text data developed by EleutherAl.
All of these models have outstanding capabilities in text generation
tasks. Since GPT-2 is available free of charge and we needed to
send millions of queries for our experiments, it was more feasible
to conduct the majority of our experiments using this model.

3.3 Attack’s Motivation

Many large-scale LMs developers, including OpenAl, Google, Ama-
zon, and Microsoft, have trained their own LMs and released them
via API access for various tasks. Concurrently, numerous compa-
nies, primarily startups such as Jasper? and perplexity.ai®, have
launched products that essentially serve as wrappers around these
APIs. Tuned decoding algorithms constitute a significant competi-
tive advantage for these companies, as considerable time and effort
are required for optimization. Our paper demonstrates that any
party with access to their own LM (i.e., any of these companies) can
employ low-cost attacks to pilfer decoding algorithms associated
with other APIs, posing a concern for businesses that depend on
LMs.

To further elucidate the significance of this issue, we present a
pertinent example. We reference the data provided in [11], which
detail the costs associated with their annotation process using Ama-
zon Mechanical Turk. Suppose a company seeks to identify the
optimal decoding algorithm and corresponding hyperparameters
from nine different configurations, comprising three decoding algo-
rithms and three distinct hyperparameters for each. The company
generates 100 paragraphs using each configuration and enlists 20
crowd workers to assess them. Based on the data in [11], if the
company pays $3.5 per paragraph, the total cost for evaluating
all configurations amounts to $63, 000. Additionally, there are ex-
penses related to designing and administering qualification exams

Zhttps://www.jasper.ai
3https://www.perplexity.ai

Stealing the Decoding Algorithms of Language Models

for these crowd workers. These numbers underscore the importance
of safeguarding such information.

3.4 Attack’s Prerequisites

As previously discussed, the attacker only requires knowledge of
the inner probability distribution generated by the API’s LM, specif-
ically the top two tokens. There are three scenarios in which an
attacker can acquire this prerequisite information.

First, the attacker may have direct access to the probability distri-
bution of the LM, as some APIs such as OpenAl GPT-3 provide the
probabilities of the top tokens, which are sufficient for our attack.

Second, the attacker may not have direct access to the proba-
bility distribution but can approximate these values. For example,
if the APIs use unmodified base models, the attacker can use the
base model as a reference. Additionally, in some LM-based tools
and APIs that use prompt engineering instead of fine-tuning, the
attacker can still use the base model as an approximation of the in-
ner probability distribution. There are various platforms that allow
users to generate high-quality written content such as blog posts,
product descriptions, and other personalized content. Such APIs
usually rely on prompt engineering instead of fine-tuning these
models. In Section 5.5, we show that in such cases the attacker can
still use the base model as the reference model.

Third, the attacker can employ a model-stealing approach to
infer these probabilities. It is important to note that model stealing
attacks are a parallel research direction that aims to extract the
inner probability distribution by targeting the first black box of
the text generation system. However, our focus is on attacking the
second black box, the decoding algorithm. Using a model-stealing
approach is typically employed when the API fine-tunes a pre-
trained model [24]. However, it is essential to consider that the
fine-tuning process can alter the weights of the model.

3.5 High-level Attack Approach

Our mathematical-based attack leverages the properties of each
decoding method to detect them in consecutive stages (as shown
in Figure 2). For example, we utilize statistical properties and the
probability distribution generated by these decoding approaches
in sampling-based methods. In addition to detecting the type, we
will also aim to estimate the hyperparameters. To achieve this, we
provide mathematical formulas that utilize the internal probabilities
provided by the API’s LM, as well as the final probabilities generated
by the API. We also demonstrate the theoretical reasoning behind
why these formulae result in accurate estimation.

4 DETAILS OF OUR ATTACK ALGORITHMS

In this section, we propose multi-stage algorithm to extract the
type and then the corresponding hyperparameter(s) used in the
API. To make all of our experiments and analysis more consistent,
we will focus on the task of text completion.

Stage 1: Is it a sampling decoding algorithm or not? In the
first step, we aim to determine whether the decoding algorithm is a
sampling-based method or not. With sampling methods, the output
vary if the same query is sent to the API multiple times. However, if
the API employs a non-sampling method and an arbitrary prompt
is sent to the API, the output will be the same. In this case, we

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

can conclude that the decoding algorithm is either greedy or beam
search. However, it’s possible that for very small values of p or k
(although this is unlikely to occur in practical applications), the
same behavior is observed. In such cases, increasing the number of
queries reduces the probability of this outcome to close to zero.
Stage 2: Is it greedy or beam search? In the second step, we aim
to determine whether the decoding algorithm is greedy or beam
search. In greedy search, at each time step, the most probable token
is selected from the probability distribution provided by the model.
In other words, when starting with an arbitrary sequence and gen-
erating tokens one at a time, at each time step t, the subsequences
s182...si for i < t will not change. An example of this can be seen
in Table 2.

However, this is not necessarily the case in beam search. Suppose
that at time step ¢, the token s; is the most probable token from
the probability distribution provided by the model. If we query the
sequence s152...5; to the API to generate the sequence s153...5¢41, in
the generated sequence, s; is not necessarily the same as the s; in
the previous time step. Hence, if we start with an arbitrary sequence
and try to complete it token by token and if the subsequences in
the output do not change, it means that with a high probability, it
is greedy; otherwise, it is beam search.

An example is provided in Table 2. In this example, the API gen-
erates "to" at time step ¢ + 1 and index i. After generating the token
at time step ¢ +4, we do not see "to" in the subsequence at the index
i anymore, and this is due to the nature of beam search. To increase
this probability, we can repeat this experiment for more time steps
and more arbitrary sequences. We will discuss the required number
of queries in Section 5. In Table 2, some examples of generated
text using these two decoding strategies for consecutive tokens are
presented.

After detecting beam search as the decoding algorithm, we must

estimate the beam size as its hyperparameter. Again, suppose that
we start with the arbitrary sequence sy, sy, ..., s;—1, and we plan to
generate tokens one by one. In the first step, we generate the token
s¢. Then, we use the sequence s, sp, ..., s; and try to generate the
token at time step ¢ + 1. If we continue with the same process, the
token at position ¢ may not be the same as the token we generated
in the first step. After repeating this process multiple times, we
might have different tokens generated at the position t. Then, we
find the rank of these tokens from the sorted tokens based on their
probabilities provided by the model. The maximum rank among
these tokens is our estimation of the beam size. To make our estima-
tion more reliable, we can repeat this process for multiple arbitrary
sequences and pick the maximum value as our final estimation. In
Appendix A, we provide more detailed examples to further illustrate
this method.
Detecting combined decoding strategies: In the sampling-based
decoding algorithms, note that in some cases, the decoding algo-
rithm can be a combination of more than one decoding algorithm.
In particular, the following cases are common:

1) only temperature; 2) only top-k sampling; 3) only Nucleus
Sampling; 4) only random sampling; 5) both temperature and top-
k Sampling; 6) both temperature and Nucleus Sampling; 7) both
top-k and Nucleus Sampling; 8) all temperature, top-k, and Nucleus
Sampling.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Table 2: This table presents some text examples generated by
the API using the greedy or beam search decoding approach
for consecutive time steps. The examples are generated us-
ing the initial prompt "Students opened their". It showcases
the difference in the generated text by these two decoding
approach.

Time Step Generated Text Approach

t Students opened their doors Greedy Search
t+1 Students opened their doors to Greedy Search
t+2 Students opened their doors to the Greedy Search
t+3 Students opened their doors to the public Greedy Search
t+4 Students opened their doors to the public on Greedy Search
t+5 Students opened their doors to the public on Friday ~Greedy Search

t Students opened their doors Beam Search
t+1 Students opened their doors to Beam Search
t+2 Students opened their doors to the Beam Search
t+3 Students opened their doors to the public Beam Search
t+4 Students opened their doors for the first time Beam Search
t+5 Students opened their doors at 6 p.m Beam Search

In other words, we want to determine which combination of

decoding algorithms the API uses, and then determine the cor-
responding hyperparameter(s). In all cases, we send an arbitrary
sequence to the API multiple times. Then, we sort all tokens gen-
erated at time step ¢ in descending order based on the number of
times they are generated. We use this approach to approximate the
final probability distribution of the APL Our results in Section 5
show how many queries might be enough for each stage to have a
good approximation of the final probability distribution.
Stage 3: Does the API use temperature to decode? As the first
step towards detecting sampling-based decoding methods, we want
to see if the API uses a temperature 7 # 1 to decode or not. In the
next theorem, we attempt to find a formula for 7.

Theorem 1. Assume that the victim API uses random sam-
pling with temperature as its decoding algorithm. Suppose that
P1, P2, - p|v| are descending sorted inner probabilities of token
among all vocabularies provided by the API's model. Also, assume
that p1, py, ..., pl’ v are sorted approximated final probabilities gen-

In(£L)
erated by the APL Then we have r = —7—.
ln(;i_)

ProOF. Suppose that I3, I, ..., |y are sorted logits generated by
L
et
v L
j=1¢"

and then p] =

VI

j e

the APT’s model. So, we have p; = S eli

L
Set S = ZLzll eli. So, we have p; xS =e7 and p; X § = eli If we
divide both side of the recent two equations, we have

pi _¢ li-1; pi
—=—=e"=j-1j=In(— (5)
pj el T

Similarly, we have
p{ el?" -1 I —1; p(
S =7 > —L=In(5 ©)
Pj % ‘ Pj

If we substitute the equation (5), we have:

Ali Naseh, Kalpesh Krishna, Mohit lyyer, and Amir Houmansadr

pi

-l In(57)
= =T (7)
pj ln(f’_})

st

]

In the next theorem, we will demonstrate that even if the API

employs temperature and Nucleus Sampling simultaneously, the
In(22
formula 7 = ‘;{ remains valid. Intuitively, this is because the
In(27)
Pj
normalization applied after implementing Nucleus Sampling is
canceled by the division of probabilities.

Theorem 2. Assume that the victim API uses Nucleus Sampling
with the hyperparameter p and temperature 7 as its decoding al-
gorithm. Suppose that p1, pa, ..., p|v| are descending sorted inner
probabilities of token among all vocabularies provided by the API’s

model. Also, assume that p{, p;, ""pIIPI are sorted approximated
pi
In(5%)

.
In(5%)
J

final probabilities generated by the APL Then we have 7 =

Proor. Suppose that Iy, I, ..., [|y| are sorted logits generated by
the API’s model. In this scenario, in the decoding step, the API first
apply the temperature 7, and then pick the minimum number of to-
kens whose probabilities sum exceeds p. Then it samples from this
set of tokens. Now, assume that p{’ , pé’, pl' (/‘ are sorted probabil-
ities after applying the temperature and before applying Nucleus

.

l: L
Sampling. In other words, we have p; = Zlg‘Lelj Py = |\i\r T and
j=1 et
Pi= % where |P| is the number of tokens selected by Nucleus

j=1P;
Sampling. Note that after applying Nucleus Sampling, the selected
probabilities will get scaled to sum up to 1. So we have:
L pi
" + li-1; L—1;, In(3%)
:p—l:e —e T =>T= IPC]:% (8)
(%) n(%h)

The last equation is achieved from the equation (5) in the last
theorem. O

RS

e

Similarly, we can demonstrate that if the API utilizes a combina-
tion of temperature and top-k sampling, the parameter 7 can still
be obtained using the same formula.

Theorem 3. Assume that the victim API uses top-k sampling
with the hyperparameter k and temperature 7 as its decoding al-
gorithm. Suppose that p1, pa, ... p|y| are descending sorted inner
probabilities of token among all vocabularies provided by the API’s
model. Also, assume that p{, pj, ..., p; are sorted approximated final

In(5t

probabilities generated by the APL Then we have 7 = —7—.
In(5#)
Pj

Proor. In this scenario, in the decoding step, the API first ap-
plies the temperature 7, then selects the top k tokens with the
highest probabilities from the resulting distribution. It then rescales
the probabilities of these k selected tokens so that they sum to
1 and samples from this set of tokens. To clarify, suppose that

Stealing the Decoding Algorithms of Language Models

No
ﬁ» It is Beam Search!
- N
/Sége 2:Is it Gree}w

search’) /

No

) Itis Greedy
Stage 1: Is it Search!
" 2 =
\\\sampllng >
~_

Yes

Y

Stage 3: Is
Qmperature use

~_ _—

\3

Stage 4: Is it
Top-k-Temperature?

Stage 4: Is it
Top-k?

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

No
> It is Temperature!
//
No g Stage 5: Is Yes It is Temperature-
\\\ NS used?/// /ﬁ Top-k-NS!
~__ e \\\

/ﬁage 6:ls Top-k\\
used besides NS}

It is Temperature-

No NS!
It is Top-k-
Yes Temperature!
No . Itis Random
Sampling!
-
e No)
No g Stage 5: Is Itis NS!
~ NS used? //
\\\ /// P O

S
/ﬁage 6:ls Top-k\
used besides NS}

It is Top-k-NS!

> It is Top-k!

Figure 2: This flowchart presents an overview of all stages of our attack algorithm.

I, ..., l|V| are sorted logits generated by the API's model, and
p’1,p"2,..,p”|V| are the probabilities resulting from applying
I

the temperature to the logits. That is, we have p; = —&-
3 j=1Vleli
ki
pi= L,, and p{ being the probabilities after applying top-
s j=Vlet

where k is the number

k sampling, which is obtained by 55 1 T

of tokens selected by top-k sampling. So we have:

I bi
ol by et -l _ ()
p_i:ﬁz Q':er =>T=ll p;]:I—Pz (9)
i ex n(p—}) n(p_})
o

Eventually, in the most complicated scenario, when the API uses
all three approaches, including temperature, top-k sampling and
Nucleus Sampling, at the same time, we can use the same formula
to estimate the temperature. In the following theorem, we will show
why this is correct.

Theorem 4 Assume that the API uses all three sampling meth-
ods, including temperature, top-k and Nucleus Sampling, together
as its decoding algorithm. Suppose that p1, pa, ..., p|y| are descend-
ing sorted inner probabilities of token among all vocabularies pro-
vided by the API's model. Also, assume that p{, pj, ..., p;. are sorted
approximated probabilities generated by the API. Then we have

Vg
In(#)

ProoF. In this scenario, the API employs a decoding algorithm

that involves multiple steps. First, it applies a temperature 7 to the

logits generated by its model. Next, it selects the first k tokens with
the highest probabilities, based on the probabilities obtained after

applying temperature. Then, it applies Nucleus Sampling, and picks
the minimum number of tokens whose probabilities sum exceeds a
threshold p. Finally, it samples from this set of tokens. Now, sup-
pose thatly, I, ..., || are sorted logits generated by the API's model,
py.py, .. p} are sorted probabilities after applying the tempera-
ture and before applying top-k sampling, and pi”, p}”, ..., pp’ are
sorted probabilities after applying the top-k sampling and before

applying Nucleus Sampling. More precisely, we have p; = Zlv‘l

i
eT ”nro_ Pz /
1 > Pi = 3% ”,andpi—

Z ///
j=1Pj j=1Pj

"

where k is the

7
py =
ZIV\

Jj= 1€

hyperparameter of top-k sampling and P is the number of tokens

whose probability sum exceeds p. Note that after applying top-k

and Nucleus Sampling, the selected probabilities are scaled to sum
l .

up to 1. If we set §” = Z‘lel e7,8" = Zl;:1 p;.’ and §""’ = Zf lp;”,

we have:

"

7 z L
pi_sm b s WS _er _ ol
P s AL
by Y g7 1 e er
Thus, we have:
_ In(&
_ l lJ _ (Pj)
T= =— (11)

In(5F) ln(j,L;)

As we showed in theorems, in all cases, we can use the same
formula to estimate temperature. So, in the third step, we can see if

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

the API uses temperature or not, and if so, we can find the hyper-
parameter too (if 7 & 1 then we can conclude the temperature is
not used in decoding algorrithm).

Stage 4: Is the decoding algorithm one of top-k or temper-
ature and top-k combined? In this step, we propose a simple
approach to determine whether the API uses top-k as the last compo-
nent of its decoding algorithm. This approach does not determine
whether top-k is used before Nucleus Sampling, if both are em-
ployed by the APL Our approach leverages the property of top-k
sampling that the API always selects the first k tokens with the high-
est probability. To clarify, suppose we regenerate the next token for
an arbitrary sequence multiple times. If we repeat this process from
scratch, we consistently obtain the same set of unique tokens. The
number of unique generated tokens is the hyperparameter k for this
decoding approach. Consequently, by utilizing the results obtained
from previous and current stages, we can determine whether the
decoding algorithm is top-k or temperature and top-k.

To be more specific, we begin with an arbitrary prompt and
regenerate the following token N times. If we repeat this process
with other arbitrary prompts and obtain the same number of unique
tokens, it suggests with a high probability that the API employs
top-k sampling as the last step of its decoding algorithm, either
top-k sampling or temperature and top-k sampling. The probability
that the API does not use top-k sampling and we obtain the same
number of unique tokens for some arbitrary sequences is very low.
We do a theoretical evaluation in Section 5 to show how probable
this happens.

Stage 5: Does the API use Nucleus Sampling as part of its
decoding algorithm? In this section, we will show if the API uses
Nucleus Sampling as part of its decoding algorithm or not and what
its hyperparameter is. In the following theorems, we attempt to
find a formula to estimate the Nucleus Sampling hyperparameter p.

Theorem 5. Assuming that the victim API employs Nucleus
Sampling with the hyperparameter p as its decoding algorithm, and
let p1, pa, ..., p|v| be the descending sorted inner probabilities of
tokens among all vocabularies provided by the API’s model. Also,
assume that p’1,p’2, ..., pllP\ are the sorted approximated probabili-

ties generated by the API. Then, the ratio %ﬁ serves as an estimation

for p. l

PrOOF. Suppose that p1, pa, ..., p|v| are sorted inner probabilities
generated by the API’s model at a specific time step. Also, assume
that p, py, ..., pl’ p| are sorted final probabilities generated by the
API after applying Nucleus Sampling as decoding algorithm. Hence,
we have:

,__p n
=S =200 (12
j=1FJ Jj=1 !

We propose that ZLZ'I pj serves as an acceptable approximation

for p. As per the definition of Nucleus Sampling, we select the min-
imum number of tokens such that the sum of their probabilities
exceeds p. Therefore, Zjill pj represents the sum of the probabil-
ities of these tokens. While it may be slightly different from the
actual value of p for some cases, it is still an acceptable estimation.
Even if we utilize Nucleus Sampling with our estimated value, the

Ali Naseh, Kalpesh Krishna, Mohit lyyer, and Amir Houmansadr

final probability distribution will remain unchanged. This claim is
further confirmed by our results in Section 5.
[m]

The above formula provides an estimation of p when the prob-
abilities before and after applying Nucleus Sampling are known.
Additionally, we can use the ratio % at stage 5 to determine whether
Nucleus Sampling is employed or not. To clarify, if % # 1,1t in-
dicates that neither top-k nor Nucleus Sampling is utilized in the
decoding algorithm. Once the type of sampling is determined, this
formula can be used to estimate p.

For instance, after determining that the API applies temperature

and Nucleus Sampling in combination, we first use equation (8) to
estimate the temperature, then apply this temperature and provide
a probability distribution of tokens p1, pa, ..., p|v|- After that, we
can use equation (12) to estimate the hyperparameter p.
Second approach for estimating p in Nucleus Sampling. In
this section, we propose an alternative approach for estimating the
value of p in Nucleus Sampling that is more straightforward. While
the first approach yields accurate estimates, it is highly dependent
on the probabilities of the victim model, and small changes in these
probabilities can lead to inaccurate estimates. To reduce the reliance
on these probabilities, we propose the following approach.

Suppose that p1, pa, ..., p|v| are the inner probabilities generated
by the API’s model, and p/, p5. ""pI/PI are the final probabilities

generated by the APL In this case, we can estimate p as 21.5‘1 pi-

While this approach may be less accurate than the first method, it
may be useful in situations where the exact inner probabilities are
not available.

Stage 6: Is top-k used before Nucleus Sampling? In the final
cases, we aim to investigate the potential solutions when the API
employs top-k sampling before Nucleus Sampling. In the previous
stage, we determined whether Nucleus Sampling is employed or
not. Suppose that top-k is utilized before Nucleus Sampling in the
decoding algorithm. In this scenario, if we apply formula (12) for
consecutive time steps, the value obtained from the formula will
vary. In other words, top-k truncates the probability distribution
prior to applying Nucleus Sampling. As different probability distri-
butions exist across different time steps, the resulting value from
the formula will vary. If temperature is also utilized (as determined
in stage 3), we can apply it first and then proceed to determine if
top-k is employed before Nucleus Sampling. It is important to note
that this case emerges as the most complicated one in our analysis
and, arguably, not very practical. A summary of our algorithm is
presented in Figure 2.

Estimating k and p when they are used together: In stage 6 of our
investigation, we determine whether the top-k sampling method
is applied prior to Nucleus Sampling. If this is indeed the case,
we propose a systematic approach for estimating the values of p
and k when top-k sampling and Nucleus Sampling are employed
concurrently as components of a decoding algorithm. Suppose
that py, pa, ... pv| and g1, g2, .. q|v| are descending sorted inner
probabilities of a token among all vocabularies provided by the
API’s model at time steps #; and tp respectively. Also, assume that

Stealing the Decoding Algorithms of Language Models

PPy ooes pl' P and ¢/, g3, ..., q" p|are sorted approximated probabili-

ties generated by the API at these time steps. Set S](Cl) = Zle pjs
2 1 P 2 P

Sl(c) = i1 i SI<7) = ZL':ll p}.’, and Slg) = ZL.JI q}'. where

105, pl’c’ and q7,q5, ... q;c' are sorted probabilities after ap-

plying the top-k and before applying Nucleus Sampling. It is not so

- Di ’ i
hard to show that pi = W and qi = W
k °p k °p
Since p is fixed, we can assume that Sp is also fixed. Thus, it

can be canceled from the equations. Hence, we have plf = S‘Z—b and
2

q; = 5(;{_;) By dividing the both sides of the recent equations, we

have:

(1)
S _Pi @

s,(f) q; pi

(13)

Since there are two unknown variables here (S](cl) and S]EZ)), we
set the value for one of them to estimate the other one. To accom-
plish this, we begin by considering different values of k, and then

calculate S](cl) at time step 1. Using the formula (13), we can com-
pute Sliz) for time step t2. Then, we can examine the corresponding

value of k, which leads to the sum Sl£2) in the probability distri-
bution of time step t;. We repeat this procedure until we find a k
such that the corresponding hyperparameter k’ resulting from the
second time step equals k. Next, we use the estimated k to provide
the new probability distribution resulting from top-k, and then
apply formula (12) to estimate p. Our experiments will demonstrate
the accuracy of the estimation resulting from this approach.

5 EVALUATIONS AND EXPERIMENTS

In this study, we conduct separate experiments on GPT-2, GPT-
3, and GPT-Neo models due to the extensive utilization of these
models across numerous APIs in various applications. For the ex-
periments on GPT-2 and GPT-Neo, we use the Huggingface® library,
which allows us to implement various combinations of decoding al-
gorithms. On the other hand, for the experiments on GPT-3, we use
the OpenAl AP, which only provides access to temperature and Nu-
cleus Sampling. While our proposed attacks are agnostic to the size
of the underlying LM, due to the large number of experiments and
computational constraints we primarily conduct our experiments
on the smaller versions of both models. Nevertheless, in Appendix
B, we conduct some representative experiments on larger GPT-2
(medium, large) and GPT-3 models (babbage and curie) to show gen-
eralization of our proposed attacks across model sizes. Furthermore,
we perform some experiments utilizing the GPT-Neo model. Also,
it should be noted that our experiments involve utilizing a custom
decoding algorithm in conjunction with GPT-2/3/Neo, rather than
directly attacking an actual deployment of these language models.

5.1 Evaluation Metrics

To determine the similarity in functionality between two LMs or
text generation-based APIs, we must compare the probability dis-
tributions generated by them at each time step. This is because

4https://huggingface.co

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

similar decoding algorithms and corresponding hyperparameters
will result in similar truncated probability distributions. To evalu-
ate our estimation, we compare the probability distributions of the
victim API and the API that uses our estimation as the type and
corresponding hyperparameters. In this paper, we use two metrics
to achieve this goal: the Kolmogorov-Smirnov test [29] and the
Kullback-Leibler divergence (KL divergence) [25].

Kolmogorov-Smirnov Test: One such metric is the Kolmogorov-
Smirnov test (K-S test). The K-S test is a non-parametric statistical
test that is used to compare two discrete probability distributions.
The test evaluates the similarity between the two distributions by
comparing the cumulative distribution functions (CDFs) of the ob-
served and hypothesized distributions. The K-S test calculates the
maximum distance (referred to as the K-S statistic) between the
two CDFs and compares it to a critical value determined by the
sample size. If the calculated K-S statistic is larger than the critical
value, the null hypothesis that the two distributions are the same is
rejected. Results of the K-S test are typically reported as a p-value,
which represents the probability that the observed differences be-
tween the two distributions are due to chance. A small p-value
(typically less than 0.05) indicates that the observed differences
are statistically significant and that the two distributions are likely
different from each other.

KL Divergence: Another metric for comparing probability dis-
tributions is the KL divergence. KL divergence is a measure of the
difference between two probability distributions. It is defined as the
sum of the product of the probability of each event in one distribu-
tion with the natural logarithm of the ratio of the probability of that
event in the other distribution. KL divergence is a non-negative
value, and it is zero only if the two distributions are identical.

Given that the KL-divergence metric yields a single value, it
is necessary to determine what is a good KL-divergence score in
our specific context. To address this concern, we compare numer-
ous pairs of probability distributions generated by using the same
decoding type and hyperparameters. The average score for these
pairs is 0.0017 + 0.0007. This value can serve as a benchmark for
evaluation. However, it should be noted that KL-divergence scores
typically exceed 0.1 when different hyperparameters are used.

It is worth noting that MAUVE [36] is a recently proposed auto-
matic metric for evaluating language generators. In other words, it
measures the similarity of token distribution between two gener-
ated texts. However, like KL-divergence, it also produces a single
scalar value. Additionally, evaluating each pair of decoding algo-
rithms using MAUVE requires generating a large number of lengthy
sequences using each decoding algorithm, which is not feasible for
the number of experiments conducted in this study.

5.2 Evaluation of Each Stage on GPT-2

Since each stage of our attack uses a different algorithm, here we
evaluate the performance of each stage of our attack, described in
Section 4, one by one.

Stage 1: As theoretical evaluation for this stage, assume the API
uses a sampling-based method. The API rarely generates the same
sequence if we query the API many times. More precisely, suppose
we use the API to generate a sequence of length 50 each time. Also,
assume that p1, po, ..., pso are the probabilities that each tokens

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Ali Naseh, Kalpesh Krishna, Mohit lyyer, and Amir Houmansadr

Table 3: Results of temperature estimation with different decoding combinations. The accuracy of the estimation is measured
using the K-S test p-value and KL divergence score, which indicate the similarity between the provided probability distributions
using the estimated hyperparameters and the actual hyperparameters.

Decoding Strategy Real Temperature Estimated Temperature p-value KL Divergence
Top-k (k = 30) & Temperature 0.85 0.8568 + 0.016 1.0 0.002 + 0.016
Top-k (k = 40) & Temperature 0.75 0.7569 + 0.016 1.0 0.007 + 0.011
Top-k (k = 60) & Temperature 0.65 0.6586 + 0.014 1.0 0.002 + 0.009
NS (p = 0.9) & Temperature 0.85 0.8575 £ 0.018 1.0 0.004 = 0.01
NS (p = 0.8) & Temperature 0.8 0.8080 + 0.014 1.0 0.008 + 0.01
NS (p = 0.85) & Temperature 0.75 0.7579 £ 0.017 1.0 0.007 = 0.016
Top-k (k = 40) & NS (p = 0.8) & Temperature 0.9 0.9096 + 0.017 0.996 0.001 = 0.0163
Top-k (k = 50) & NS (p = 0.8) & Temperature 0.85 0.8603 + 0.017 1.0 0.003 + 0.012
Top-k (k = 60) & NS (p = 0.8) & Temperature 0.80 0.8022 + 0.014 1.0 0.002 = 0.01

can be generated. Thus, if we send the same prompt as query N
times, the probability that API generates the same sequence is
pN x pN x .. x pIN. Even if we set p; = 0.99 and N = 20, this
probability will be around 4.31e — 5 which is very low. So, it always
predicts correctly.

Stage 2: In the second stage of our evaluation, we consider 1000
different APIs. Each API may randomly use either greedy search or
beam search as its decoding algorithm. Additionally, if the API uses
beam search, the beam size is chosen randomly from a range of
common values, specifically between 2 and 10. Our results show that
we can detect the type of decoding method used with 100% accuracy.
Furthermore, our experiments demonstrate that we can detect the
beam size with a high degree of accuracy, using only 40 arbitrary
prompts. While it is not straightforward to provide a theoretical
justification for the number of queries required to guarantee the
correct detection of the beam size, we provide examples in the
Appendix A that support our results.

Stage 3: In the third stage, we estimate the temperature for scenar-
ios where it is used as part of the decoding algorithm. We use the
inner and final probabilities generated by the API and apply the
formula (7) to estimate the temperature. To approximate the final
probabilities generated by the APL, we send an arbitrary prompt
to the API and generate the next token N times. By increasing N,
we can achieve a more accurate estimation. In our experiment, we
use the arbitrary sequence "Students opened their" as a prompt.
Figure 3 illustrates the number of queries required to achieve an
accurate estimation of temperature. Additionally, we consider dif-
ferent cases where temperature is used as part of the decoding
method and show that the same formula can be used to estimate
the temperature in all cases. To demonstrate this, we use various
arbitrary values of hyperparameters k and p for top-k and Nucleus
Sampling respectively (Table 3).

As shown in Figure 3, with only 1000 queries, we cannot get an
acceptable estimation. However, increasing the number of queries
makes the estimation more accurate. Even with 10000 queries, we
can estimate the temperature.

Stage 4: In the fourth stage, we aim to determine whether the de-
coding algorithm used by the API employs top-k sampling as its last
component, and if so, estimate the value of the hyperparameter k.
To do this, we select four arbitrary prompts and repeatedly generate

10

0.12 4

—k— temperature = 0.9
—&— temperature = 0.8
—e— temperature = 0.7

0.10 1

0.08

0.06 1

0.04 4

Estimation Error

0.02 4

0.00

T T T T T T T
5000 7500 10000 12500 15000 17500 20000
Number of Queries

T T
0 2500

Figure 3: Estimation error of the temperature 7 for different
numbers of queries. The graph illustrates that using 10000
queries may be sufficient to achieve an accurate estimation.

the next token N times, where N is chosen based on the expected
value of k. If the number of unique tokens generated across all
sequences is the same, it is likely that the API’s decoding algorithm
uses top-k sampling, and the number of unique tokens will serve
as our estimate for the value of k. We apply this algorithm to eight
different decoding strategies and for a range of values for k from
10 to 100. The results in Table 4 indicate the number of queries
used in our experiments to estimate k. It should be noted that these
values do not necessarily represent the minimum number of queries
required to obtain an accurate estimate of k.

Additionally, it is important to consider the number of queries
needed to ensure that all top-k tokens have been generated at
least once, including the least probable token among them. This
question can be viewed as a variant of the well-known problem
of determining the expected number of trials until success, where
success is defined as the generation of the least probable top-k
token. If the probability of success is p, the expected number of
trials until success is <. By using the inner probability distribution
provided by the API’s model, we can gain insight into the lower
bound for the number of queries needed. In practice, the attacker
may choose to send more queries than this lower bound to ensure
an accurate estimation.

Stealing the Decoding Algorithms of Language Models

0.035

0.030 A

I
o
N
&

0.020 A

0.015 -

Estimation Error

0.010 A

0.005 -

T T T T T T
7500 10000 12500 15000 17500 20000
Number of Queries

T T T
0 2500 5000

Figure 4: Estimation error of the hyperparameter p for dif-
ferent numbers of queries. The graph shows that even with
as few as 5000 queries, an accurate estimation of the hyper-
parameter p can be achieved.

As previously discussed in Section 3, this approach is ineffective
if there is at least one token among the top-k tokens that the API
will not generate. The probability of this occurrence is (1 — p)N,
where p is the probability of that token being generated by the
APT’s model. As an example, if p = 0.0001 for a token, and we
send queries N = 50000 times, we will have (1 — p)N = 6.7 x 1073,
To decrease the likelihood of this approach failing, we must either
increase N or p. Increasing N may be cost-prohibitive, so to increase
p, we can select prompts that result in a more flattened probability
distribution over the next token. We use Kurtosis as a metric to
evaluate the level of flattening in the probability distribution.

It is also important to note that when using temperature in
addition to top-k sampling, the probability of less likely tokens
being generated decreases. This means that more queries are needed
to ensure they will be generated in order to make an accurate
prediction for the hyperparameter k.

Stage 5: In order to evaluate this stage, we will only consider
scenarios that involve Nucleus Sampling and Nucleus Sampling
with temperature. As previously discussed in Section 3, it is not
possible to use Equation (12) to estimate the hyperparameter p
when the API also utilizes top-k sampling. This will be addressed in
the next stage. However, we can use Equation (12) to confirm that
Nucleus Sampling is being used (if p computed by Equation (12) does
not equal 1). We calculate Equation (12) for multiple tokens to obtain
a more reliable estimation, and then take the average. Figure 4
illustrates the estimation and the required number of queries, and
Table 5 presents the results for various decoding strategies.

Stage 6: In the last stage, we aim to figure out if top-k sampling
is used before Nucleus Sampling and then estimate p and k (if top-
k is used). To do so, as described in Section 3, we need the final
probability distributions in two different time steps. Hence, we use
two different prompts: "My school is close to the" and "Students
opened their". Then we apply the formula (13) to estimate k. After
finding k, then we can apply the formula (12) to estimate p. Results
shown in Table 6.

End-to-end Analysis of the Attack: We consider all these steps
as a single framework in the second part of our experiments. In
other words, we consider 100 different APIs randomly picks one of

11

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Table 4: This table displays the query count required for a
precise estimation of the hyperparameter k, which may be
slightly higher than the minimal necessary number.

Decoding Strategy Realk Number of Queries
Top-k 30 700
Top-k 40 1,000
Top-k 60 1,500
Top-k 80 4,000
Top-k 100 8,000
Top-k & Temperature (r = 0.8) 30 1,500
Top-k & Temperature (r = 0.8) 40 2,000
Top-k & Temperature (r = 0.8) 60 5,000
Top-k & Temperature (r = 0.8) 80 15,000
Top-k & Temperature (r = 0.8) 100 20,000

Table 5: Results of hyperparameter p estimation employing
strategies of Nucleus Sampling (NS) alone or combined with
temperature.

Decoding Strategy Realp Estimated p p-value
NS 0.75 0.75 + 0.005 1.0
NS 0.90 0.899 + 0.005 1.0
NS 0.85 0.847 £ 0.005 0.99 +0.011
Temperature (r = 0.85) & NS 0.80 0.801 =+ 0.002 1.0
Temperature (r = 0.75) & NS 0.70 0.699 + 0.003 0.99 + 0.009
Temperature (r = 0.65) & NS 0.70 0.696 + 0.005 1.0

discussed decoding strategies scenario with random values as their
hyperparameters. Then, we apply our algorithm and see which
combination of decoding algorithms the API uses. The whole APT’s
decoding algorithms have been predicted correctly by our attack.

5.3 Experiments on GPT-3

Unlike HuggingFace, which offers a variety of options for utilizing
the GPT-2 model, OpenAI’s functionality is more limited. Specifi-
cally, the text completion function provided by OpenAl includes
options for controlling the diversity of the output, such as temper-
ature and top-p for Nucleus Sampling. However, it does not offer
features such as top-k or beam search. Given this constraint, we
decided to conduct experiments with GPT-3 in a separate section.
We also discovered that in the generation function, employing both
temperature and top-p results in only the temperature parameter
being applied. Therefore, it is generally recommended to set either
top-p or temperature to 1 when using one of these options.

Our experiments involving GPT-3 were executed in a manner
analogous to those conducted with GPT-2. OpenAl facilitates ac-
cess to the GPT-3 API via Python code, employing a public key
for querying purposes. This approach allows us to derive the final
probability distribution through multiple API queries. The GPT-3
API supplies the inner probability, which we then utilize in con-
junction with the formula proposed in our paper to estimate the
hyperparameters effectively.

In order to determine which decoding algorithm has been em-
ployed by the API, we must first identify whether temperature
or Nucleus Sampling is being used. To do this, we evaluate the

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Table 6: Hyperparameter estimation results for a combined
top-k and Nucleus Sampling (NS) decoding strategy, focusing
on the hyperparameters k and p.

Decoding Strategy Estimated k Estimated p p-value
NS (p = 0.80) & Top-k (k = 30) 28 0.824 0.96 + 0.043
NS (p = 0.90) & Top-k (k = 30) 29 0.916 0.99 + 0.005
NS (p = 0.80) & Top-k (k = 40) 35 0.833 0.97 £ 0.023
NS (p = 0.90) & Top-k (k = 40) 38 0.909 0.99 + 0.004
NS (p = 0.80) & Top-k (k = 50) 49 0.806 0.99 + 0.004
NS (p = 0.90) & Top-k (k = 50) 48 0.909 0.99 + 0.01

temperature formula and check if it is equal to 1, which indicates
that temperature is not being utilized. In this case, either top-p is
being used or neither temperature nor top-p are being utilized. To
determine whether top-p is being used, we apply the formula for
top-p and check if Nucleus Sampling is being applied. Through this
process, we are able to detect the type of decoding algorithm as
well as its corresponding value.

In these experiments, we set the initial prompt as "My school is
close to" and generated the next two tokens 10000 times. We then
applied the corresponding formulas to both the original probability
distribution provided by the OpenAI API and the resulting distri-
bution obtained by querying the victim API In order to increase
the reliability of our results, we repeated these experiments 8 times
and present the results in the Table 7.

5.4 Experiments on GPT-Neo

As previously mentioned, GPT-Neo is a language model similar
to GPT-3 that is pre-trained on the Pile dataset. Developed by
EleutherAl the Pile is a large-scale, diverse, and high-quality dataset
designed for training language models. In this section, we conduct
several experiments using GPT-Neo 1.3B, which has 1.3 billion pa-
rameters. The experimental settings remain the same, with 10,000
queries sent each time, and the process is repeated four times to
obtain more consistent estimations. The results are presented in
Table 8 and 9.

These results effectively illustrate the close alignment of hyper-
parameter estimations across various scenarios for the GPT-Neo
model when employed by the API By analyzing these results, it
becomes apparent that our estimation methods for GPT-Neo yield
results that are on par with those of GPT-2 and GPT-3, thus con-
firming the validity and robustness of our approach in accurately
estimating the hyperparameters of the decoding algorithm for GPT-
Neo.

5.5 Attack Efficacy in an API with Prompt
Engineering

As previously discussed, the only knowledge the attacker requires
is the probabilities of the top two tokens generated by the APT’s
LM. There are multiple ways in which an attacker can acquire this
information, which are described in detail in Section 3.2. One option
is to use a model stealing approach to obtain the internal probability
distribution. However, since there have been no successful model-
stealing attacks proposed for text generation tasks, the attacker
may be motivated to employ our attack without direct access to the
probabilities. In this section, we will demonstrate how the attacker

12

Ali Naseh, Kalpesh Krishna, Mohit lyyer, and Amir Houmansadr

Table 7: Hyperparameter estimation in a GPT-3-based API
utilizing either Nucleus Sampling (NS) or temperature decod-
ing.

Decoding Strategy Real Value Estimated Value p-value
Temperature 0.6 0.596 + 0.005 1.0
Temperature 0.7 0.701 £ 0.004 1.0
Temperature 0.8 0.795 £ 0.006 1.0

NS 0.6 0.601 + 0.001 1.0
NS 0.8 0.801 + 0.007 1.0
NS 0.9 0.903 + 0.006 1.0

can do this when the API relies on prompt engineering rather than
fine-tuning.

GPT-2/3/Neo models can be applied in various applications
through direct usage, prompt engineering, or fine-tuning. Fine-
tuning these models for downstream tasks requires computational
resources and a private dataset. These limitations have motivated
the use of prompt engineering to generate desired text in many
text-based tools and applications. There are various platforms that
allow users to generate high-quality written content such as blog
posts, product descriptions, and other personalized content, such
as OpenAl playground, ChatGPT?, Articoolo®, and Perplexity AT’.

In these cases, the attacker can use long prompts to generate
probability distributions that are similar to those of the victim model.
Specifically, by querying the API with a long prompt, the attacker
can use the same prompt and the base model as a reference to
approximate the internal probability distribution. Our experiments
have shown that adding a prompt to the beginning of a long text
does not significantly change the probability distribution over the
next token. It is important to note that the long text must be in the
same context. For example, if the attacker is attempting to attack
a story generation API, using a long drama story and asking the
API to complete it as a drama story will result in a probability
distribution that is not vastly different. More detailed results are
provided in the Appendix C.

6 ANALYSIS OF THE COST OF THE ATTACK

In this section, we aim to provide an estimation of the costs associ-
ated with querying the API in order to execute our hyperparameter
stealing algorithm. Our primary motivation for this attack is that
hiring individuals for human evaluation to determine the best de-
coding algorithm and corresponding hyperparameters can be costly.
Therefore, stealing this information at a lower cost is desirable.
To analyze the cost of our algorithm, we consider the worst-
case scenario. In the worst case, if the API utilizes both top-k and
Nucleus Sampling as its decoding algorithm, as depicted in Figure 2,
all stages of our algorithm must be executed. To do so, we need to
send approximately 400, 000 queries to the APL Each query consists
of 5 tokens. As a result, we will have 2,000, 000 tokens in total.
Therefore, in the worst-case scenario, the cost of querying the API

Shttps://chat.openai.com
®http://articoolo.com
https://www.perplexity.ai

Stealing the Decoding Algorithms of Language Models

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Table 8: Results of hyperparameter estimation for GPT-Neo. This table presents the results of our estimation for the hyperpa-

rameters 7 and p when the API uses GPT-Neo 1.3B models.

Decoding Strategy ‘ Real Value Estimated Value p-value KL Divergence
‘ 0.7 0.7132 £+ 0.021 1.0 0.003 + 0.002
Temperature ‘ 0.8 0.8195 £ 0.035 0.99 +£ 0.008 0.002 + 0.011
‘ 0.9 0.9154 + 0.066 1.0 0.006 + 0.003
‘ 0.7 0.706 + 0.011 1.0 0.006 + 0.01
Nucleus Sampling ‘ 0.8 0.8056 £+ 0.016 0.97 £ 0.006 0.006 = 0.012
‘ 0.9 0.9104 £+ 0.017 1.0 0.009 + 0.002

Table 9: Temperature estimation for the GPT-Neo 1.3B model with various decoding combinations. The K-S test p-value and KL
divergence score assess the estimation accuracy by comparing the derived and actual hyperparameter distributions.

Decoding Strategy Real Temperature Estimated Temperature p-value KL Divergence
Top-k (k = 30) & Temperature 0.85 0.8659 + 0.033 1.0 0.001 + 0.001
Top-k (k = 40) & Temperature 0.75 0.7563 + 0.021 1.0 0.003 + 0.001
Top-k (k = 60) & Temperature 0.65 0.6561 + 0.015 1.0 0.001 + 0.001

NS (p = 0.9) & Temperature 0.85 0.8665 £ 0.037 1.0 0.004 = 0.01
NS (p = 0.8) & Temperature 0.8 0.8097 £ 0.025 0.992 0.008 = 0.013
NS (p = 0.85) & Temperature 0.75 0.7567 £ 0.019 1.0 0.007 = 0.016

with 2,000, 000 tokens would be (2, 000,000/1000 X x), where x is
the cost of querying the API with 1000 tokens.

As an example, OpenAl provides pricing information for different
versions of the GPT-3 API. GPT-3 has four versions, named Ada,
Babbage, Curie, and Davinci. The cost for these models are $0.0004,
$0.0005, $0.002, and $0.02 per 1000 tokens, respectively. Ada is the
fastest and cheapest version, while Davinci is the most powerful
and expensive one. Therefore, the cost for this API would be $0.8,
$1, $4, and $40 for the four versions respectively.

7 POTENTIAL COUNTERMEASURE

This paper demonstrates that LM-based APIs are vulnerable to hy-
perparameter stealing attacks, specifically, that the information in
the decoding section of LMs in open-ended text generation tasks can
be extracted. This highlights the need for APIs to develop defense
mechanisms against such attacks. These attacks are dependent on
the accuracy of the API’s final probability distribution. As a defense,
the API can introduce noise into this probability distribution by
randomly replacing generated tokens at certain time steps with a
probability of 0.1.

A similar approach, known as watermarking, was introduced
in [44]. By introducing this noise, the final probability distribution
is different from the original one, thus making it more difficult
for an attacker to extract the hyperparameters using the formula
proposed in the paper. This method is particularly effective for
sensitive hyperparameters such as temperature, as small changes
in temperature can lead to significant changes in the probability

13

distribution. Table 10 shows that this method is able to effectively
defend against the attack.

It should be noted that any defense mechanism may hurt the
APT’s performance. To minimize this impact, the API can replace
the generated token with a random one among the most probable
tokens. This will disrupt the attacker’s ability to extract the hyper-
parameters while minimizing the effect on the API’s performance.

However, to demonstrate that our proposed defense does not
negatively impact performance, we select 150 samples from our
genre-based story generation dataset and provide 150 correspond-
ing prompts for the text completion task. We then employ both
the modified text generation system and the system without our
defense to complete these prompts. We utilize perplexity as a met-
ric to illustrate that the performance of our proposed defense is
not significantly affected. Table 10 presents the perplexity of the
generated text both with and without our proposed defense.

8 ETHICS DISCUSSIONS

Through the course of our experiments, we did not attempt to steal
the decoding algorithms of any real-world LM systems. Instead,
our experiments were all performed on our own LM systems.

Our work demonstrates the possibility of stealing IP information
from real-world LM systems. Note that our demonstrated attacks
do not target GPT-2/3/Neo, but instead third parties who use these
LMs in building their downstream tasks. Given the abundance of
such third parties, it will not be possible to contact these third
parties for responsible disclosure of this vulnerability. This paper

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Ali Naseh, Kalpesh Krishna, Mohit lyyer, and Amir Houmansadr

Table 10: Results of hyperparameter estimation after applying proposed countermeasure. The table shows the p-values of
the new estimations, which confirm that the ruined estimations lead to a significantly different probability distribution.
Additionally, the table compares system perplexity before and after deployment, indicating a minor alteration.

Decoding Strategy =~ New Estimated Hyperparameter =~ p-value Perplexity Without Defense Perplexity With Defense
Temperature (7 = 0.9) 1.0711 1.43e-93 36.659 + 1.883 36.748 + 1.827
Temperature (7 = 0.8) 0.9248 1.6312e-37 25.562 + 1.573 26.403 £ 1.079
Temperature (7 = 0.7) 0.7888 7.135e-08 17.971 + 1.213 19.664 + 1.042

NS (p =0.9) 0.9863 1.3e-15 26.418 + 1.164 28.646 + 1.204
NS (p = 0.8) 0.9040 2.9e-80 19.674 + 0.812 21.024 £ 0.772
NS (p =0.7) 0.7863 3.2e-60 16.239 + 0.842 17.1942 + 0.625

serves to disclose the threat of stealing decoding algorithms of LM-
based systems to the whole community. Additionally, we discussed
potential countermeasure for the API providers.

9 LIMITATIONS

As previously discussed, certain stages of our attack, such as detect-
ing greedy and beam search or identifying k in top-k sampling, do
not necessitate access to inner probabilities, and these stages can
be applied to any type of LMs. However, some stages do require
such information, resulting in a potential limitation: the reference
model used to obtain inner probabilities must be of the same type
as the targeted model, as different models exhibit distinct behaviors
on sequences. Most text generation APIs rely on a limited set of
models, such as GPT-2, GPT-3, or GPT-Neo. Despite their distinct
behaviors on identical sequences, it is possible to compare the out-
puts with texts generated by these models. It is important to note
that decoding algorithms do not alter the order of tokens based
on their probabilities; they only adjust the probabilities to assign
different weights to various tokens. Consequently, detecting the
base model employed by the API is not an overly challenging task.

10 RELATED WORKS: ATTACKS ON NLP

Like image applications, NLP models are vulnerable to any types
of attacks. Membership Inference Attacks (MIA) disclose if a data-
point was used to train the victim model [43]. Recent works have
shown how powerful these attacks are on NLP classification tasks [41].
Mahloujifar et al. [28] show that word embedding is also vulnerable
to MIA. Carlini et al. [6] investigate memorization in large LMs
that leads to data extraction attacks. Model inversion attacks [14]
reconstruct representative views of subset of examples.

The backdoor attack [18] is another emergent issue that threats
language models. In backdoor attacks, the adversary injects back-
door into language models during the training. Hence, the adversary
uses a trigger in a poisoned example to activate the backdoor to
make the model produces the output it wants, while the model has a
normal behavior for other benign examples. Recently, many works
have been done to investigate backdoor attack in language mod-
els [8, 52, 26, 42]. Besides these, two more relevant attacks to our
work are model stealing/imitation and hyperparameter stealing.

Model Stealing/Imitation/Extraction Attack. Model stealing
attacks, also called model extraction attacks or model imitation
attacks, have been widely explored in simple classification [45]
computer vision tasks [35], both theoretically [30] and empirically.

14

Model extraction attacks seek to replicate the functionality of the
victim model, thereby facilitating further attacks against it. For
instance, the adversary can use the extracted model to construct
adversarial examples that make the model to have incorrect predic-
tions [20].

Many works [24, 20, 27] study model extraction attacks against
BERT-based APIs. Wallace et al. [48] investigate model stealing
attacks on machine translation by querying them in black-box
setting. Most of these works solve the problem for the tasks where
the output or response is more restricted or predictable, including
sentiment classification, machine translation, or extractive QA tasks.
Model extraction attacks has not been explored for open-ended text
generation that requires the output to be more diverse. This problem
is a potential research path as future works.

Hyperparameter Stealing Attack. Wang et al. [49] demon-
strate that various machine learning algorithms are vulnerable to
hyperparameter stealing attacks. Oh et al. [34] propose a meta-
model to infer some attributes of the Neural Network related to the
architecture and training process. In LMs, hyperparameters can be
classified into two groups: one comprising parameters universal to
many machine learning algorithms (e.g., batch size, regularization
term, k in KNN), and the other exclusive to NLP models. This pa-
per concentrates on decoding algorithms and their corresponding
hyperparameters. Stealing hyperparameters has not been studied
as much as other attacks.

11 CONCLUSION

In this paper, we presented the first decoding algorithm stealing
attack on LMs. The decoding algorithms used in open-ended text
generation are critical, and organizations are willing to invest sig-
nificant resources to find the best decoding strategies and corre-
sponding hyperparameters. This motivates adversaries to attempt
to steal this information. Our results showed that it is possible to
do so at a relatively low cost. We also proposed potential defense
against this mathematical attack. Additionally, we highlighted that
inferring certain information is possible even without direct access
to the probabilities provided by the APT’s LM. We hope that this
work brings attention to the vulnerabilities of decoding algorithms
in LM-based systems and encourages further research in this area.

ACKNOWLEDGMENTS
This work was supported by the NSF grant 2131910.

Stealing the Decoding Algorithms of Language Models

REFERENCES

(1]
(2]

(3]

(4]

[12]
[13]

[14]

[15]

[17]

(18]

[19]

[23]

[24]

[25]

[26]

[27]

David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. 1985. A learning
algorithm for boltzmann machines. Cognitive science, 9, 1, 147-169.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473.

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. 2022. Gpt-
neo: large scale autoregressive language modeling with mesh-tensorflow, 2021.
URL: https://doi. org/10.5281/zenodo, 5297715.

Tom Brown et al. 2020. Language models are few-shot learners. Advances in
neural information processing systems, 33, 1877-1901.

Massimo Caccia, Lucas Caccia, William Fedus, Hugo Larochelle, Joelle Pineau,
and Laurent Charlin. 2020. Language gans falling short. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net. https://openreview.net/forum?id=BJgza6VtPB.
Nicholas Carlini et al. 2021. Extracting training data from large language models.
In 30th USENIX Security Symposium (USENIX Security 21), 2633-2650.

Asli Celikyilmaz, Elizabeth Clark, and Jianfeng Gao. 2020. Evaluation of text
generation: a survey. arXiv preprint arXiv:2006.14799.

Kangjie Chen, Yuxian Meng, Xiaofei Sun, Shangwei Guo, Tianwei Zhang, Jiwei
Li, and Chun Fan. 2021. Badpre: task-agnostic backdoor attacks to pre-trained
nlp foundation models. arXiv preprint arXiv:2110.02467.

Elizabeth Clark, Yangfeng Ji, and Noah A Smith. 2018. Neural text generation
in stories using entity representations as context. In Proceedings of the 2018
conference of the North American chapter of the association for computational
linguistics: human language technologies, volume 1 (long papers), 2250-2260.
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805.

Yao Dou, Maxwell Forbes, Rik Koncel-Kedziorski, Noah A Smith, and Yejin Choi.
2021. Scarecrow: a framework for scrutinizing machine text. arXiv preprint
arXiv:2107.01294.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hierarchical neural story
generation. arXiv preprint arXiv:1805.04833.

Jessica Ficler and Yoav Goldberg. 2017. Controlling linguistic style aspects in
neural language generation. arXiv preprint arXiv:1707.02633.

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model inversion
attacks that exploit confidence information and basic countermeasures. In Pro-
ceedings of the 22nd ACM SIGSAC conference on computer and communications
security, 1322-1333.

Leo Gao and Stella Biderman. 2020. Sid black, laurence golding, travis hoppe,
charles foster, jason phang, horace he, anish thite, noa nabeshima, shawn
presser, and connor leahy. 2020. the pile: an 800gb dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027.

Sebastian Gehrmann, Elizabeth Clark, and Thibault Sellam. 2022. Repairing the
cracked foundation: a survey of obstacles in evaluation practices for generated
text. arXiv preprint arXiv:2202.06935.

Alex Graves. 2013. Generating sequences with recurrent neural networks. arXiv
preprint arXiv:1308.0850.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 2017. Badnets: identify-
ing vulnerabilities in the machine learning model supply chain. arXiv preprint
arXiv:1708.06733.

Tatsunori B Hashimoto, Hugh Zhang, and Percy Liang. 2019. Unifying hu-
man and statistical evaluation for natural language generation. arXiv preprint
arXiv:1904.02792.

Xuanli He, Lingjuan Lyu, Qiongkai Xu, and Lichao Sun. 2021. Model extrac-
tion and adversarial transferability, your bert is vulnerable! arXiv preprint
arXiv:2103.10013.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2019. The
curious case of neural text degeneration. arXiv preprint arXiv:1904.09751.

Ari Holtzman, Jan Buys, Maxwell Forbes, Antoine Bosselut, David Golub, and
Yejin Choi. 2018. Learning to write with cooperative discriminators. arXiv
preprint arXiv:1805.06087.

Kalpesh Krishna, Yapei Chang, John Wieting, and Mohit Iyyer. 2022. Rankgen:

improving text generation with large ranking models. arXiv preprint arXiv:2205.09726.

Kalpesh Krishna, Gaurav Singh Tomar, Ankur P Parikh, Nicolas Papernot, and
Mohit Iyyer. 2020. Thieves on sesame street! model extraction of bert-based
apis. In International Conference on Learning Representations.

Solomon Kullback and Richard A Leibler. 1951. On information and sufficiency.
The annals of mathematical statistics, 22, 1, 79-86.

Linyang Li, Demin Song, Xiaonan Li, Jiehang Zeng, Ruotian Ma, and Xipeng Qiu.
2021. Backdoor attacks on pre-trained models by layerwise weight poisoning.
arXiv preprint arXiv:2108.13888.

Lingjuan Lyu, Xuanli He, Fangzhao Wu, and Lichao Sun. 2021. Killing two
birds with one stone: stealing model and inferring attribute from bert-based
apis. arXiv preprint arXiv:2105.10909.

15

(28]

[29]

(30]

(35]

[36]

(39]

(40]

[41]

[42]

[43]

[44]

[46]

[47]

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Saeed Mahloujifar, Huseyin A Inan, Melissa Chase, Esha Ghosh, and Marcello
Hasegawa. 2021. Membership inference on word embedding and beyond. arXiv
preprint arXiv:2106.11384.

Frank] Massey Jr. 1951. The kolmogorov-smirnov test for goodness of fit.
Journal of the American statistical Association, 46, 253, 68-78.

Smitha Milli, Ludwig Schmidt, Anca D Dragan, and Moritz Hardt. 2019. Model
reconstruction from model explanations. In Proceedings of the Conference on
Fairness, Accountability, and Transparency, 1-9.

Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre, Bing Xiang, et al. 2016.
Abstractive text summarization using sequence-to-sequence rnns and beyond.
arXiv preprint arXiv:1602.06023.

Ali Naseh, Kalpesh Krishna, Mohit Iyyer, and Amir Houmansadr. 2023. Stealing
the decoding algorithms of language models. (2023). arXiv: 2303.04729 [cs.LG].
Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou,
Silvio Savarese, and Caiming Xiong. 2022. A conversational paradigm for
program synthesis. arXiv preprint arXiv:2203.13474.

Seong Joon Oh, Max Augustin, Mario Fritz, and Bernt Schiele. 2018. Towards
reverse-engineering black-box neural networks. In International Conference on
Learning Representations.

Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. 2019. Knockoff nets:
stealing functionality of black-box models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 4954-4963.

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean
Welleck, Yejin Choi, and Zaid Harchaoui. 2021. Mauve: measuring the gap
between neural text and human text using divergence frontiers. Advances in
Neural Information Processing Systems, 34, 4816-4828.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, et al. 2019. Language models are unsupervised multitask learners.
OpenAl blog, 1, 8, 9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text transformer. . Mach. Learn. Res.,
21, 140, 1-67.

Abigail See, Aneesh Pappu, Rohun Saxena, Akhila Yerukola, and Christopher
D. Manning. 2019. Do massively pretrained language models make better
storytellers? In Proceedings of the 23rd Conference on Computational Natural
Language Learning (CoNLL). Association for Computational Linguistics, Hong
Kong, China, (Nov. 2019), 843-861. por: 10.18653/v1/K19-1079.

Louis Shao, Stephan Gouws, Denny Britz, Anna Goldie, Brian Strope, and
Ray Kurzweil. 2017. Generating high-quality and informative conversation
responses with sequence-to-sequence models. In https://arxiv.org/abs/1701.03
185.

Virat Shejwalkar, Huseyin A Inan, Amir Houmansadr, and Robert Sim. 2021.
Membership inference attacks against nlp classification models. In NeurIPS
2021 Workshop Privacy in Machine Learning.

Lujia Shen, Shouling Ji, Xuhong Zhang, Jinfeng Li, Jing Chen, Jie Shi, Chengfang
Fang, Jianwei Yin, and Ting Wang. 2021. Backdoor pre-trained models can
transfer to all. arXiv preprint arXiv:2111.00197.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017.
Membership inference attacks against machine learning models. In 2017 IEEE
symposium on security and privacy (SP). IEEE, 3-18.

Sebastian Szyller, Buse Gul Atli, Samuel Marchal, and N Asokan. 2021. Dawn:
dynamic adversarial watermarking of neural networks. In Proceedings of the
29th ACM International Conference on Multimedia, 4417-4425.

Florian Tramér, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.
2016. Stealing machine learning models via prediction {apis}. In 25th USENIX
security symposium (USENIX Security 16), 601-618.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In https://arxiv.org/pdf/1706.03762.pdf.

Ashwin K Vijayakumar, Michael Cogswell, Ramprasath R Selvaraju, Qing Sun,
Stefan Lee, David Crandall, and Dhruv Batra. 2016. Diverse beam search: decod-
ing diverse solutions from neural sequence models. arXiv preprint arXiv:1610.02424.
Eric Wallace, Mitchell Stern, and Dawn Song. 2020. Imitation attacks and de-
fenses for black-box machine translation systems. arXiv preprint arXiv:2004.15015.
Binghui Wang and Neil Zhenqiang Gong. 2018. Stealing hyperparameters in
machine learning. In 2018 IEEE symposium on security and privacy (SP). IEEE,
36-52.

Ziqi Yang, Ee-Chien Chang, and Zhenkai Liang. 2019. Adversarial neural net-
work inversion via auxiliary knowledge alignment. arXiv preprint arXiv:1902.08552.
Susan Zhang et al. 2022. Opt: open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Xinyang Zhang, Zheng Zhang, Shouling Ji, and Ting Wang. 2021. Trojaning
language models for fun and profit. In 2021 IEEE European Symposium on
Security and Privacy (EuroS&P). IEEE, 179-197.

Ming Zhong, Pengfei Liu, Yiran Chen, Danqing Wang, Xipeng Qiu, and Xuan-
jing Huang. 2020. Extractive summarization as text matching. arXiv preprint
arXiv:2004.08795.

https://openreview.net/forum?id=BJgza6VtPB
https://arxiv.org/abs/2303.04729
https://doi.org/10.18653/v1/K19-1079
https://arxiv.org/abs/1701.03185
https://arxiv.org/abs/1701.03185
https://arxiv.org/pdf/1706.03762.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Open-Ended Text Generation
	2.2 Decoding Algorithms

	3 High-level Overview of Our Attack
	3.1 Terminologies
	3.2 Threat Model
	3.3 Attack's Motivation
	3.4 Attack's Prerequisites
	3.5 High-level Attack Approach

	4 Details of Our Attack Algorithms
	5 Evaluations and Experiments
	5.1 Evaluation Metrics
	5.2 Evaluation of Each Stage on GPT-2
	5.3 Experiments on GPT-3
	5.4 Experiments on GPT-Neo
	5.5 Attack Efficacy in an API with Prompt Engineering

	6 Analysis of the Cost of the Attack
	7 Potential Countermeasure
	8 Ethics Discussions
	9 Limitations
	10 Related Works: Attacks on NLP
	11 Conclusion

