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Pix2HDR - A pixel-wise acquisition and deep
learning-based synthesis approach for high-speed

HDR videos
Caixin Wang∗, Jie Zhang∗, Matthew A. Wilson, Ralph Etienne-Cummings

Abstract—Accurately capturing dynamic scenes with wide-
ranging motion and light intensity is crucial for many vision
applications. However, acquiring high-speed high dynamic range
(HDR) video is challenging because the camera’s frame rate
restricts its dynamic range. Existing methods sacrifice speed to
acquire multi-exposure frames. Yet, misaligned motion in these
frames can still pose complications for HDR fusion algorithms,
resulting in artifacts. Instead of frame-based exposures, we
sample the videos using individual pixels at varying exposures
and phase offsets. Implemented on a monochrome pixel-wise
programmable image sensor, our sampling pattern captures fast
motion at a high dynamic range. We then transform pixel-wise
outputs into an HDR video using end-to-end learned weights from
deep neural networks, achieving high spatiotemporal resolution
with minimized motion blurring. We demonstrate aliasing-free
HDR video acquisition at 1000 FPS, resolving fast motion under
low-light conditions and against bright backgrounds — both
challenging conditions for conventional cameras. By combining
the versatility of pixel-wise sampling patterns with the strength
of deep neural networks at decoding complex scenes, our method
greatly enhances the vision system’s adaptability and perfor-
mance in dynamic conditions.

Index Terms—High-dynamic-range video, high-speed imaging,
CMOS image sensors, programmable sensors, deep learning,
convolutional neural networks.

I. INTRODUCTION

D IGITAL cameras have become integral to many vi-
sion applications, including videography, smart devices,

autonomous vehicles, and scientific research. The camera’s
performance directly impacts these systems, and failure to
capture crucial video features can have critical consequences.
However, conventional cameras have limited dynamic range
and temporal resolution at a fixed frame rate. They struggle to
capture scenes with a large range of motion and intensities: fast
events are susceptible to aliasing and blurring, high-intensity
events cause overexposure, and low-light regions suffer from
a low signal-to-noise ratio (SNR).

Extending the dynamic range for high-speed videos is
fundamentally challenging, given the conventional camera’s
inability to accommodate multiple exposures at each video
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Fig. 1. The overview of the Pix2HDR acquisition / synthesis. Pix2HDR ac-
quires the HDR scene using the multi-phase varying exposure (MPVE) pixel-
wise sampling pattern, implemented on a CMOS image sensor (PE-CMOS).
MPVE configures pixels into different exposures, speeds, and phase offsets to
enhance temporal resolution and dynamic range. Pix2HDR synthesizes a high
spatiotemporal HDR video from pixel-wise outputs using weights obtained
through a deep neural network through end-to-end training, achieving high
spatiotemporal resolution with minimized motion blurring.

frame. While multi-camera systems are commonly employed
to boost dynamic range, they do so at the expense of large size,
higher power consumption and complexity [1]–[3]. Alterna-
tively, computational techniques can merge time-interleaved
frames acquired from a single camera at both short and
long exposures to extend the dynamic range [4], [5]. But its
performance heavily relies on motion alignment accuracy in
under- and over-exposed regions and may introduce ghosting
artifacts. Interpolation applied to frame pairs of short and long
exposures can facilitate the alignment of inter-frame motion
in scenarios involving slow motions [6]. However, it is less
effective in aligning and reconstructing high-speed motions,
where significant changes occur between consecutive frames.

Recent innovations enabled computational imaging sensors
and systems to control exposure at the pixel level [7]–[16].
This allows the sensors to capture local high-light areas in
an HDR scene with adjacent pixels configured in varying ex-
posure durations. While the pixel-wise imaging configuration
significantly simplifies cross-frame motion alignment, it comes
at the expense of reduced spatial resolution [8]. Furthermore,
the temporal resolution of these systems is limited by the
longest-exposing pixels [7], [12], [13]. While computational
methods can recover video motion faster than the frame
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rate using Compressed Sensing principles, the reconstruction
performance heavily depends on scene sparsity [7], [10], [12],
[13], [17].

We present a pixel-wise imaging approach (Pix2HDR) for
sampling HDR scenes at high-speed. Pix2HDR first acquires
the scene using a multi-phase varying exposure pixel-wise
exposure pattern (MPVE) (Fig. 1). By using multiple pixels
at different exposure durations and phase offsets, MPVE
guarantees that each small pixel patch captures high-temporal
resolution scene details with an extended dynamic range.
Pix2HDR then transforms pixel-wise outputs into high-speed
HDR videos using a deep neural network (LDR-HDR net-
work) (Fig. 1), leveraging learned weights to achieve high
spatiotemporal resolution and dynamic range while eliminat-
ing aliasing and motion blur.

The rest of the paper is organized as follows: Section
II provides a short summary of previous works. Section III
offers a brief overview of our system, and in Section IV, we
outline an optimized pixel-wise strategy for capturing HDR
videos. Section V then delves into the specifics of Pix2HDR’s
architecture for synthesizing high-speed HDR videos from
pixel-wise outputs. For results in Section VI, we first evaluate
our method’s performance against other works using publicly
available datasets. We then capture HDR scenes using our
method to assess its spatial resolution, temporal resolution,
dynamic range, motion deblurring performance, and the capa-
bility to detect object motion under low-light conditions and
against bright backgrounds. We conclude in Section VII by
discussing its applications, greater impact, encoding scheme,
system limitations, and future work.

II. PREVIOUS WORK ON HDR IMAGING

1) Acquiring and merging multiple frames of varying ex-
posure: Learning-based or classic tone-mapping methods can
merge time-synchronized low dynamic range (LDR) frames
captured at different exposures into a single HDR frame [18]–
[29]. However, the performance of these methods depends on
additional alignment techniques to rectify differences between
frames due to motion, overexposure, and occlusions. Failure
to synchronize the LDR frames results in ghosting artifacts in
the merged HDR frame.

Obtaining time-aligned frames can also be challenging and
often requires using multiple cameras. These setups either split
incoming light using beam splitters among different cameras
[3], [30], [31], or employing an array of cameras, each with its
independent optical path [1], [2], [32]. Multi-camera systems
add significant complexity, bulkiness, and increased power
consumption. Moreover, dividing the incoming light among
multiple detectors degrades the overall SNR. Additionally,
camera arrays demand parallax correction to align cameras’
FOV, which leaves room for artifacts and errors.

2) HDR imaging through pixel-wise exposure modulation:
Pixel-wise exposure modulation allows precise control of each
pixel’s exposure duration. Given natural scenes’ inherent high
spatial correlation, local pixels, set with distinct exposures, can
capture the scene at varying dynamic ranges. This method
simplifies the alignment between multiple exposure pixels

and allows HDR reconstruction using simple spatial filtering
(or learning-based methods) but at the cost of lower spatial
resolution [7]–[11], [14], [33].

Previously implemented sensors with pixel-wise exposure
control have several key disadvantages: exposure control cir-
cuits at the pixel level occupy valuable detector areas and
reduce the photodiode fill factor [7], [34]. This degrades the
pixel sensitivity compared to a conventional CMOS image
sensor. Furthermore, previous pixel-wise exposure sensors
have slow frame rates (∼30 FPS), constrained by the longest
pixel exposure duration [7]–[9], [33], [35], [36]. This leads to
pixels with shorter exposures operating at the same sampling
rate as those with longer exposures and limits the sensor’s
ability to perform high-speed imaging.

III. OVERVIEW

The Pix2HDR consists of an acquisition system and a
synthesis method (Fig. 1). The acquisition system is a camera
built with the pixel-wise programmable exposure (PE-CMOS)
image sensor [37]. Individual pixels in PE-CMOS can be
separately exposed. This feature allows for different expo-
sure durations and phases at each pixel, making it possible
to coordinate their configurations to optimize the temporal
resolution and dynamic range during high-speed imaging. PE-
CMOS features an efficient pixel design and achieves a 75%
photodiode fill factor with a 10 µm pixel pitch. The PE-CMOS
has comparable low-light performance to state-of-the-art low-
noise CMOS sensors without pixel-wise exposure control [37].

Using the PE-CMOS sensor, we implemented the MPVE
sampling pattern optimized for high-speed HDR imaging. In
MPVE, neighboring pixels have variable exposure, sampling
rate, and phase offsets (Fig. 1). As we will demonstrate in
Section IV, varying pixel-wise exposure expands the dynamic
range and prevents motion blur. Relative phase offsets in
adjacent pixels enhance the acquisition’s temporal resolution
without increasing pixel sampling speed. We will show that
with a 250 Hz pixel sampling rate, the Pix2HDR method can
sample the scene with a 1000 Hz temporal resolution.

The Pix2HDR video synthesis algorithm employs deep neu-
ral networks to determine the optimal weights for converting
the sensor’s pixel outputs into high-speed HDR video. The
deep learning-based method efficiently addresses the conflict-
ing demands of high spatiotemporal resolution and dynamic
range while preventing aliasing and motion blur. As described
in Section V, the Pix2HDR synthesis networks, implemented
on an Nvidia RTX3080, have achieved an average frame
inference time of 2.5 ms and support a 400 FPS real-time
HDR video synthesis.

IV. MULTI-PHASE VARYING EXPOSURE (MPVE)
PIXEL-WISE SAMPLING CONFIGURATION

We proposed the MPVE pixel-wise sampling configuration
to maximize temporal resolution, SNR (for fast transient
events and static scenes) and dynamic range at sampling HDR
scenes. Here we discuss each consideration and derive the
MPVE sampling pattern for HDR video acquisition.
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Fig. 2. Multi-phase sampling enhances the temporal resolution without
increasing sampling speed. A. Conventional camera samples all the pixels
(y1, ..., y4) concurrently (global shutter) or in fast line sequences (rolling
shutter) with pixel exposure of TE and sampling rate at 1/TE . B. Frequency
spectrum of the averaged pixel value, yavg. Its Nyquist bandwidth is limited
to 1/(2TE) and suffers from a significant amount of temporal aliasing. C. In
multi-phase sampling, pixels of exposure TE are phase-offsetted in multiples
of TE/4. D. Without increasing the sampling rate, multi-phase exposures
extend the yavg bandwidth by four times to 2/TE and mitigate temporal
aliasing by pushing the replica spectra to higher frequencies.

A. Eliminating temporal aliasing with pixel-wise phase offset

The camera’s temporal resolution is an essential considera-
tion for high-speed imaging. The selection of pixel exposure,
TE , establishes the pixel’s sampling rate to 1/TE , along with
its Nyquist bandwidth at 1/(2TE). For a conventional camera,
where pixels are either all simultaneously integrated (global
shutter) or sequentially in rows (rolling shutter), the choice of
TE also limits the temporal resolution of the camera (Fig. 2A).
We can increase the temporal resolution by shortening TE . But

it comes at the cost of lower SNR and higher sampling speed
and higher power consumption.

While we cannot increase the temporal resolution of a
single pixel without reducing TE , we could exploit the phase
relationship between multiple pixels to enhance the sensor’s
temporal resolution. This approach is viable due to the inherent
spatial correlations of natural scenes, where closely situated
pixels capture closely related activities. To illustrate (Fig. 2),
we assume a light impulse, δ(t), is simultaneously sampled
by 4 adjacent pixels, y1(n), ..., y4(n), each with an exposure
function e(t). The single pixel output y1(t) is:

y1(t) = e(t) ∗ δ(t), e(t) =

{
1, 0 ≤ t ≤ TE ,

0, otherwise,
(1)

y1(t) is then sampled by an ADC at a period of TE , the
discretized version, y1[n] is:

y[n] = y(nTE), (2)

with frequency spectrum:

Y1(f) =
1

TE

∞∑
n=−∞

E(f − n

TE
), (3)

where E(f−n/TE) are the replicas of the exposure function’s
spectrum resulting from sampling. We can plot Y1(f) to see
that the majority of the frequency spectrum is aliased, resulting
in signal distortion (Fig. 2B).

By relying on the phase difference between neighboring
pixels, we can eliminate the aliasing effect without increasing
each pixel’s sampling speed. To achieve this, relative to the
phase of pixel 1, we can introduce phase shifts of TE/4, TE/2,
(3TE)/4 to pixel 2, 3, and 4 respectively (Fig. 2C). These
pixels’ spectrum, Yk(f), becomes:

Yk(f) =
1

TE

∞∑
n=−∞

E(f − n

TE
)e−j2π

n(k−1)
4 , (4)

where k ∈ {1, 2, 3, 4}. If we average these four pixels, the
resulting spectrum becomes:

Yavg(f) =
1

4

4∑
k=1

Yk(f) =

1

4TE

∞∑
n=−∞

E(f − n

TE
)

4∑
k=1

e−j2π
n(k−1)

4 ,

(5)

since Yavg(f) = 0 when n is not a multiple of 4, the above
equation can be rewritten as:

Yavg(f) =
1

4TE

∞∑
n=−∞

E(f − 4n

TE
), (6)

which spaces the frequency replicas of E(f) away from each
other and avoids aliasing (Fig. 2D). The average spectrum
of phase shifted pixels increases the Nyquist bandwidth of
individual pixels by four times, without increasing in per-pixel
sampling rate. From a time-domain viewpoint, the combined
phase-shifted pixel outputs are equivalent to the sampling of
the impulse signal, δ(t), at a higher rate of frequency, 4/TE .
We will demonstrate this using an experiment in Section VI
(Fig. 13)
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Fig. 3. Exposure duration determines pixel SNR at sampling high-speed
events. To illustrate: Left. Transient events of amplitude A with baseline
intensity B, and different falling time constants (τ ) of 0.6, 1.2 and 2.4 ms.
Right. Pixel SNR with respect to the exposure time, TE , for the signals on
the left. Each curve is normalized with the maximum SNR set to 100%. The
SNR increases with longer exposure time but drops as extra integration time
adds more shot noise than signal power.

B. Maximizing SNR for high-speed signals

Maximizing the SNR for detecting ultra-fast events is an-
other important consideration for the pixel sampling pattern.
Fast events can result from various phenomena, such as the
fast fluorescent intensity change in biological tissues (neurons,
cardiac cells, etc.) and the rapid movement of small objects,
whose signals appear as pulsed events at individual pixels.
The optimal duration of exposure that maximizes the SNR for
detecting these events depends on the temporal characteristics
of the signal. The SNR may be compromised if pixels are
sampled with an inappropriate exposure time: A short exposure
time is inadequate for pixel to integrate the signal, while an
excessively long exposure time increases shot noise without
increasing signal power, resulting in SNR degradation.

We can demonstrate this by deriving an expression for a
pixel’s SNR. Let v(t) represent a fast transient signal at a
particular pixel. This could result from the movement of an
ultra-fast object or the fast change of light intensity of a
stationary object. For simplicity, v(t) is denoted as a signal
with an instantaneous rise time and a fall time modeled by an
exponential function with time constant, τ , amplitude A, and
baseline intensity B (Fig. 3):

v(t) =

{
B, when t < 0,

B +Ae−t/τ , when t ≥ 0.
(7)

Using Eq.1, the pixel output y(t) is obtained as the convo-
lution result between v(t) and the exposure e(t). The discrete
samples, y[n], of the resulting output are written as:

y[n] = y(nTE) + σ[n], (8)

where σ[n] is the noise containing both shot noise and circuit
read noise. The shot noise is described by a Poisson distribu-
tion with a rate factor λ equal to the signal at the pixel. As
such, the noise power is expressed as:

Nshot = y[n] +B · TE , (9)

If we assume the pixel is operating in a shot noise-limited
region, where the read noise is negligible (i.e. B ≫ Nread).
The SNR can be expressed as:

SNR =
S

Nshot
=

max{y}2

max{y}+B · TE
. (10)
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Fig. 4. MPVE sampling pattern uses varying exposures (short, medium, and
long) at different phase offsets to maximize SNR for signals of different
temporal characteristics.

We plotted the SNR with respect to TE for signals of differ-
ent time constants (Fig. 3). The SNR curves exhibit a concave
pattern in relation to TE : SNR first grows as the increase in
TE allows more signal energy to be integrated into the pixel.
However, once a peak value is reached, further increase of TE

no longer results in additional energy integration but raises the
shot noise power due to the baseline intensity, B.

The relationship of SNR with TE indicates that a continuous
exposure function of appropriate duration is the key to maxi-
mizing SNR. To improve the SNR of signals encompassing a
range of frequencies, we can configure adjacent pixels to have
different exposure durations (Fig. 4). This leads to the Multi-
Phase Varying Exposure (MPVE) pixel-wise sampling pattern.
Every 2 × 2 patches are arranged to have a short (TE/2),
medium (TE) and long exposure (2TE) arranged with relative
phase offset of TE/4, reaching the overall temporal resolution
of TE/4.

We can qualitatively illustrate the MPVE’s advantages over
other patterns at sampling a signal with diverse temporal
characteristics (Fig. 5A). The signal, common to four pixels
(y1, ..., y4), comprises a faint, slowly fluctuating baseline with
two rapid burst events occurring 4 ms apart. MPVE’s phase-
shifted pixel arrangement ensures that fast events’ timing
can be unambiguously acquired (Fig. 5A). In addition, short
exposures are used to maximize the SNR of the burst events.
At the same time, the medium and long exposure at y2, y3
and y4 enhances the SNR of the weak baseline signal.

In contrast to MPVE, the time-interleaved long-short expo-
sure method introduces aliasing in frames when burst events
coincide with a long exposure periods (Fig. 5B). The long
exposure also limits the maximum frame rate. Similarly, in
pixel-wise coded exposure, the random arrangement of expo-
sure times can create ambiguity when trying to resolve the
timing of fast events: the pixel outputs will be identical if a
spike occur at the two alised frames, causing ambiguity (Fig.
5C). Furthermore, this approach results in lower pixel SNR
because photons are not sampled during exposure off-times.

C. Minimizing blurring and extending the dynamic range

The MPVE naturally extend the sampled dynamic range
within a 2×2 pixel patch, as pixels acquire the scene irradiance
at different exposures. In addition, The varying pixel exposures
also suppress blurring that would have occurred if all pixels
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events, the MPVE guarantees aliasing-free sampling at high time resolution.
Long pixel exposure also increases the SNR of the slow variations and expands
the dynamic range. B. Sampling the same signal using time-interleaved long-
short exposure will introduce aliasing, unable to resolve the timing of these
two events. C. Multiple-on coded exposure pattern distributed randomly also
creates aliasing: events appearing at either of the red colored frames generate
the same reading at all pixel outputs, creating ambiguity in the events’ timing.

Fig. 6. PSF kernels of the MPVE exposure pattern. The same motion
translates to PSF length 2L to 8L for at pixel y1 to y4, depending on their
exposure. The corresponding spectra are sinc functions with zeros at multiples
of 1/2L, 1/4L, 1/8L, causing unrecoverable blurring effects. The spectrum
of MPVE output, Yavg, eliminates zeros except at 1/2L, achieving deblurring
goal of which means the blurring effect of ideal recovered frame keeps at 2L.

were exposed for the same duration. To illustrate, a motion
across the FOV translates to point spread function (PSF) of
length 2L to 8L at pixel y1 to y4, depending on their exposure
length (Fig. 6). These PSF’s spectra contain zeros that cause
unrecoverable blurring effects [38]. The PSF of the averaged
pixel values in MPVE, yavg, can eliminate the zeros except at

locations multiples of 1/2L, reaching a deblurring resolution
of 2L. Incorporating non-integer multiples of pixel exposures
can improve deblurring performance. However, its implemen-
tation might require adopting an alternative spatiotemporal
pixel configuration, with distinct trade-offs in anti-aliasing and
dynamic range.

V. LDR-HDR NETWORKS FOR SYNTHESIZING HDR
VIDEOS FROM PIXEL-WISE OUTPUTS.

With MPVE, each small pixel patch of PE-CMOS captures
high-temporal resolution scene details with an extended dy-
namic range. The proposed video synthesis algorithm aims to
convert pixel outputs into a high-speed HDR video, achieving
high spatiotemporal resolution and dynamic range while elim-
inating aliasing and motion blur. Conventional linear models,
which derive each pixel value through a linear combination
of its neighboring pixels, often fail to meet all specifications
simultaneously. Instead, we leverage a deep learning approach
to find the optimal weights for transforming pixel-wise outputs
into high spatiotemporal resolution HDR video.

Our proposed LDR-HDR architecture consists of a pair of
3D CNN networks: LDR-net and HDR-net. LDR-net handles
spatiotemporal upsampling/interpolation by transforming PE-
CMOS outputs into three videos, [ŷlow, ŷmid, ŷhigh] (Fig. 7).
These videos of lower dynamic range (LDR), with a spatial
resolution of Nc × Nr and a temporal resolution of Nt,
render the scenes at low, medium, and high irradiance levels.
Meanwhile, HDR-net is responsible for HDR fusion, com-
bining high-speed, high-resolution, low dynamic range video
stacks into a single tone-mapped HDR video (Fig. 7). Here
we discuss the details of training data generation and the
architecture of LDR-HDR network.

A. Training data generation: transforming ground truth HDR
video to pixel outputs

We generate training data using public HDR video datasets
(hdm-hdr-2014) [31]. This process is summarized in Fig. 7
and expanded into details in Fig. 8. Original HDR video cube,
porig ∈ RNr×Nc×Nt , is first normalized by clipping the 1%
intensity outliers to p99%, the 99% percentile of the intensity
range:

p = clip(
porig

p99%
), (11)

where, p ∈ RNr×Nc×Nt , is ground truth video and clip(·)
operations set any pixel value that is outside the range [0,1]
to 1.

p is then transformed into pixel measurements, ymea ∈
RNr×Nc×Nt through modulation with the exposure cube, e:

ymea = R(p ⊙ e + n). (12)

Here, the operator ⊙ represents the PE-CMOS camera’s
operation of pixel integration and sampling (Fig. 7, 8). We
ensure ymea has the same dimension as p by up-sampling the
resulting pixel values in time. A noise term, n, consisting of
read noise and shot components, is then added to the pixel
values. R(·) is the measured camera response function (CRF)
that corrects for the camera’s non-linear response between
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Fig. 7. LDR-HDR network for HDR video synthesis. A. Training data generation: The ground truth video, p, are modulated by MVPE cube, e, and then
converted from irradiance value to camera outputs, ymea, through a camera response function (CRF), R(·). B. Spatio-temporal fusion using LDR-net: ymea
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ŷi at low, medium, and high exposure levels. C. HDR mapping using HDR-net: ŷi are first mapped to their corresponding irradiance, p̂i, using the inverse
CRF, R−1(·). Then ŷi and p̂i are inputs into the HDR-net DHDR(·) to obtain the weights ŵi to fuse p̂i into a single HDR video, p̂.

exposure and sampled pixel values (Fig. 8). Finally, ymea is
quantized to a 10-bit resolution. The pairs of ymea and p form
the training data of the LDR-HDR networks (LDR-net and
HDR-net).

B. LDR-net: Mapping pixel-wise outputs to high spatio-
temporal resolution videos at different exposure levels

1) LDR-net architecture: The goal of the LDR-net, denoted
as DLDR, is to transform pixel-wise outputs, ŷmea, contain-
ing pixel outputs at different exposure, speed, and phase
offsets, into three high-speed, high-spatial-resolution videos,
ŷlow, ŷmid, ŷhigh, at low, medium and high exposure level. We
adopted a 3D U-net architecture to accomplish this task: DLDR

consists of an encoder module, a bottleneck module, and a
decoder module. Three skip connections are attached between
the encoder and decoder modules. Instead of using pooling
layers, we adopt convolutional and transposed convolutional
layers for down- and up-sample feature mapping.

The encoder module has three blocks: the first block consists
of a 7×7×7 convolutional layer followed by a leaky rectified
linear unit (LeakyReLU) and a batch normalization layer. In
the other two blocks, the convolutional layer is replaced by
two 3×3×3 convolutional layers. While the stride of the first

layer is 1, the stride length of the second layer rises to 2 to
downsample the feature map size.

The bottleneck module contains 12 residual blocks, where
each block has two 3 × 3 × 3 convolutional layers, between
which there are a LeakyReLU, a batch normalization layer,
and a skip connection.

The decoder module contains three blocks, each of which
contains a 4 × 4 × 4 transposed convolutional layer with a
stride equals to 2 and padding size equal to 1 (up-sampling
layer), a 3 × 3 × 3 convolutional layer, a LeakyReLU, and a
batch normalization layer. The output video is non-linearized
with a sigmoid function so that its range is between [0,1]. All
operations are conducted in 4D tensors, and the input channel
size is 1 (grayscale), and the output channel size is 3 (three
LDR videos under low, mid, and high exposures).

2) training: DLDR learns the mapping for interpolat-
ing ymea to high spatiotemporal resolution LDR videos
[ŷlow, ŷmid, ŷhigh]:

[ŷlow, ŷmid, ŷhigh] = DLDR(ymea). (13)

To train the DLDR’s parameters, we first generate ground
truth LDR videos from raw HDR video p:

ylow = R(2p), ymid = R(4p), yhigh = R(8p). (14)
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The training process minimize the loss function L(·) with
the ADAM stochastic gradient-based optimization algorithm
[39]:

argmin
DLDR

∑
i

L(ŷi, yi), (15)

where i ∈ {low,mid, high} and L(·) is a combination of three
loss functions, defined as:

L = LMSE + Lperc + LSSIM. (16)

3) Loss function: LMSE is the loss function minimize the
mean square error between two images. Lperc is the perceptual
loss of two images l̂ and l defined as:

Lperc(̂l, l) = L1(ϕk (̂l), ϕk(l)), (17)

where ϕk(·) are features extracted from kth layer of VGG16
network [40]. We use k = 8 for Lperc.
LSSIM is a loss fucntion to maximize the structural similar-

ity metric (SSIM) between two images [41], [42]. SSIM for
image l̂ and l is defined as:

SSIM(̂l, l) =
(2µ̂lµl +C1)(2σ̂ll +C2)

(µ2
l̂
+ µ2

l +C1)(σ2
l̂
+ σ2

l +C2)
, (18)

where µl, σ2
l , and σl̂l are the mean of l, the variance of l,

and the covariance of l and l̂. C1 and C2 are constant values
and we set them as 1e−4 and 9e−4 respectively. To evaluate
SSIM, we use a sliding Gaussian window with a size equals
to 11 to attain the mean SSIM(̂l, l):

MSSIM(̂l, l) =
1

M

M∑
i=0

SSIM(̂li, li). (19)

The final LSSIM is defined as:

LSSIM(̂l, l) = 1−MSSIM(̂l, l). (20)

C. HDR-net: fusing multi-irradiance video into a single HDR
video

1) HDR-net architecture: The HDR-net, DrmHDR(·), is
used to generate weight matrices [ŵlow, ŵmid, ŵhigh] for fusing
multiple LDR videos from DLDR into a single HDR video. We

built DHDR(·) with 5 consecutive 3D CNN residual modules
(3× 3× 3 convolutional layers inside). The HDR-net receives
6-channel 4D tensor (6 stacked video cubes) as the input and
generates 3-channel 4D tensor (3 weight cubes) as the output.

2) training: DHDR(·) completes the following transforma-
tion:

ŵi = DHDR(ŷi, p̂i), i ∈ {low,mid, high}, (21)

where [p̂low, p̂mid, p̂high] are derived from DLDR(·) outputs
[ŷlow, ŷmid, ŷhigh] using the inverse CRF function:

p̂i = R−1(ŷi) i ∈ {low,mid, high}. (22)

.
Finally, the output weights, [ŵlow, ŵmid, ŵhigh], are used to

combine coarsely refined cubes [p̂low, p̂mid, p̂high] to form a
single HDR video p̂ ∈ RNr×Nc×Nt :

p̂ =
ŵlow ⊙ p̂low + ŵmid ⊙ p̂mid + ŵhigh ⊙ p̂high∑

i ŵi
. (23)

We adopt the differentiable µ-law function [4], [5] tone-
map the training input/output videos, before computing the
loss function. To do this, we set the medium exposure 4p as
the reference ground truth. Then the estimated tone-mapped
video l̂ and ground truth l are:

l̂ =
log(1 + µp̂)
log(1 + µ)

, l =
log(1 + 4µp)
log(1 + µ)

, (24)

where µ is typically set as 5000. Then we minimize the
loss function L(·), described in Section V(B), to fuse HDR
frames:

argmin
DHDR

L(̂l, l). (25)

VI. RESULTS

A. Comparison with previous work using HDR database

We compared the performance of the Pix2HDR method with
previous works using the hdm-hdr-2014 dataset [31]. We put
the MPVE exposure pattern in different configurations so that
the min-max pixel exposure ratios within a 2 × 2 pixel block
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Fig. 9. Comparison of Pix2HDR with the time-interleaved long-short exposure method (Chen21) at synthesis HDR videos. A. generation of training/testing
dataset from ground truth. Chen21 transforms HDR frames into LDR frames using camera exposure functions (RS, RM, and RL), simulating medium, short
and long exposure. This dataset does not simulate motion blur and frame rate decrease resulting from prolonged exposure. B. to correctly model motion
blurring, we summed the ground truth HDR frames’ pixel values before transforming them through the camera response function (Rp). P2, P4, P8, P32,
denote pixels undergoing exposure equivalent to 2, 4, 8, or 32 frames of the ground truth frames. The Pix2HDR’s dataset correctly simulates motion blur and
the frame rate decrease resulting from long exposure.

are 1:4, 1:8, and 1:16. We then train three models to fit the
measurements with new exposure ratios. To prepare the train-
ing data for the LDR-HDR networks, we first downsample the
ground truth video from its resolution (1920×1080) by half to
ensure each 128×128 pixel patch has FOV comparable to our
camera. We then crop the consecutive frame into 128×128×8
(when exposure ratio is 1:4) or 128×128×16 (when exposure
ratio is 1:8 or 1:16) video cubes for training. The cubes have
a 50% overlap along the temporal axis. The training dataset is
also augmented with 90°, 180°, and 270°rotated versions. 21
HDR videos are used as training data from the dataset, with
one (named Poker Fullshot) used for testing. LDR-net and
HDR-net training were completed on a Nvidia RTX3080, and
the average inference time to generate one frame is 2.5ms,
which supports 400Hz real-time HDR video streaming. The
code and real-world video demonstrations can be found at:
https://github.com/csmslab/Pix2hdr.

We compared our Pix2HDR method of different min-max
pixel exposures with the interleaved long-short exposure sam-
pling & deep learning-based synthesis method demonstrated
by Chen et. al. (“Chen21” [5]). To simulate the long and short
exposure frames, Chen et. al. transformed HDR ground truth
videos back into LDR videos at interleaved short, medium, and
long exposures, utilizing nonlinear camera response functions
(denoted here as RS, RM, and RL, Fig. 9). To simulate over-
exposure, they applied a thresholding technique that clamps
pixel values at predetermined levels. These generated LDR
images then served as inputs for a neural network designed to
reconstruct HDR frames. This LDR video generation process
mimics the frames at different exposures. However, it notably
fails to replicate one critical aspect of long exposure: motion
blur. As indicated in Fig. 9 ground truth frame G[1] has the

same motion blur as the generated LDR input RS[1]. As a
result, the trained neural network does not have to resolve
motion blurring caused by prolonged exposure. While this
could yield high-performance relative to the ground truth in
the test setup, it might hurt the performance when the method
is applied to real imaging applications.

To correctly account for motion blurring in generating input
data in our MPVE sampling, we summed the ground truth
HDR frames’ pixel values before transforming them through
the camera response function. To illustrate, in MPVE with
an exposure ratio of 1:16, P2, P4, P8, P32 denote pixels
undergoing exposure equivalent to 2, 4, 8, or 32 frames of the
ground truth frames (Fig. 9) Overexposure is also simulated
by thresholding to clamp pixel values at predetermined levels.
The level is chosen to match that of Chen21 to ensure a
similar amount of overexposure. As a result, long exposure
pixels, such as P8, P32 are corrupted by motion blur and
overexposures.

It is also worth noting that the pixel sampling rate from
MPVE sampling is much lower than that of the ground truth.
This is compared to Chen21, where the frame rate of the
generated LDR frames is the same as the HDR ground truth.
The inclusion of motion blur, combined with reduced frame
rate, increases the task complexity of our method compared
to that of Chen21. We compared the PSNR and SSIM of
the synthesized HDR video to evaluate the HDR synthesis
performance from both methods. We measured two additional
metrics HDR-VDP [43] and HDR-VQM [44]. HDR-VDP
evaluates image pair differences from arbitrary luminance
ranges, and HDR-VQM measures the same differences for the
entire video sequences. The higher the number, the closer the
synthesized frames are to the ground truth.
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TABLE I
COMPARATIVE METRICS OF PIX2HDR WITH EXISTING METHODS AT RESOLVING HDR VIDEOS

Name (exp. ratio) Sampling method Synthesis method PSNR(dB) SSIM HDR-VDP HDR-VQM
Box filter [8] (1:4) Spatially varying exposure Spatial box filter 32.99 0.9679 95.38 50.86
Chen21 [5] (1:16) Long-short exposure 2D CNN + Flow net 40.20 0.9364 95.03 54.61
Pix2HDR (1:16) MPVE 3D CNN 42.66 0.9782 95.54 66.95
Pix2HDR (1:8) MPVE 3D CNN 42.94 0.9786 95.55 67.62
Pix2HDR (1:4) MPVE 3D CNN 43.51 0.9821 95.60 68.96

The results show that our Pix2HDR method at different
MPVE configurations consistently outperforms the interleaved
long-short exposure method (Table I). This superiority is at-
tributed to the MPVE sampling’s capacity to maintain optimal
pixel exposure in all the local video regions and time steps,
thereby preventing loss of spatiotemporal information due to
overexposure, low SNR, or blurring. This is evident in the test
image, P[0], which consists of pixels at exposure 2, 4, 8, and
32 (Fig. 9). The preservation of spatiotemporal information
during sampling greatly eases the synthesis neural network’s
effort to recover them during HDR video generation (Fig. 10).

In contrast, interleaved long-short exposure sampling can
result in large spatiotemporal information loss. As illustrated
in the test images, in RL[0] (Fig. 9), long pixel exposure
completely saturates the details of the hand, while in RS[1],
the bottle in the background is sampled with low SNR due
to short exposure. Although Chen21’s neural networks utilize
3 frames before and after the target frame to recover the
lost information, this approach often results in suboptimal
outcomes due to a significant loss of information at the
sampled frames (Fig. 10).

We also synthesized HDR videos from MPVE sampling out-
puts using a spatial box filter [8], yielding inferior performance
compared to the results from the HDR-LDR network. In the
example, it is unable to separate the background bottle and
the hand. This demonstrates the superior performance of the
Pix2HDR method is attributed to both the MPVE sampling
and the HDR-LDR video synthesis network.

The Pix2HDR’s LDR-HDR net’s superior synthesis perfor-
mance is also evident when it is compared with the spatial
filtering [8]. Both methods acquired pixel-wise outputs using
MPVE sampling but synthesized HDR videos with different
techniques. The spatial box filter processes each frame inde-
pendently without considering its temporal correlations with

Fig. 11. PE-CMOS image sensor and the acquisition camera

adjacent frames. The reconstructed video sequence thus suffers
from blurring from long exposure pixels (Fig. 10). In addition,
each frame has a lower resolution due to the low-pass nature of
the filter. In contrast, Pix2HDR utilizes LDR-HDR networks
to covert pixel-wise outputs directly to high-resolution HDR
video cubes, using learned weights that minimize blurring,
resulting in notably enhanced performance in all the metrics
(Table I).

B. Pix2HDR performance at capturing HDR scenes

Next, we assess the Pix2HDR’s performance at capturing
real-world HDR scenes. Specifically, we evaluate its temporal
resolutions, dynamic range, motion deblurring, and ability to
detect object motion under low-light conditions and against
bright backgrounds — essential metrics for high-speed HDR
imaging.

We built a camera using the PE-CMOS image sensor that
implements the MPVE pixel-wise sampling pattern (Fig. 11).
The PE-CMOS sensor is described in detail in our previous
publication [37], here, we summarize the readout control
of the multi-phase sampling scheme. The PE-CMOS pixel
design (Fig. 12B) comprises 6 transistors (T1 - T6) and
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Fig. 12. PE-CMOS design and control timing. A. an example timing to put pixel 1 – 4 at different exposure duration and phase. B. the PE-CMOS schematic.
Pixels are organized in groups consisting of 4 row and 1 column that shares row control signals (RST, TX, and SEL). Each column shares one amplifier
and ADC. The pixel design features 6 transistors (T1 – T6) to provide pixel-wise exposure control while maximizing the pixel fill factor. C. Pixel layout. D.
sensor specifications table.

one pinned photodiode (PD). T1 to T4 form the standard
rolling shutter 4T-pixel design. During pixel exposure, the PD
converts incoming photons into electrons. When the PD is
ready to be sampled, T3, controlled by a row reset (RST)
signal, first resets the voltage on the floating diffusion (FD)
node. T4 (controlled by TX) then moves the electrons from
the PD to FD, producing a change in voltage. The voltage
signal is buffered by T1 and connected to the readout circuits
by T2 (controlled by SEL), where the column readout circuitry
samples it.

We incorporated two additional transistors (T5 and T6) into
the PE-CMOS pixel design to enable pixel-level exposure
programmability. T5 and T6 operate as switches with input
driven by column signals, EX. In PE-CMOS, each set of row
signals (TX, RST, SEL) selects 4 rows of pixels as candidates
for readout. At each column, out of these K pixels, only the
pixel with both T5 and T6 activated will end its exposure
phase and be sampled by the column circuitry. Meanwhile, the
other pixels, with their T5 and T6 remaining off, will continue
their exposure. T5 and T6 are controlled by column bus lines
EX⟨1 : 4⟩ placed at each column. Pixel-wise exposure control
can be achieved by synchronizing the EX signals with row
signals (RST, SEL, and TX). An example pixel-wise operation
diagram is shown in Fig. 12A. For a group of K pixels, the
pixel ends its exposure (at the time marked by dotted red line

in Fig. 12A) whenever its corresponding EX signal is high
during the readout operation driven by the signals: RST⟨N⟩,
TX⟨N⟩ and SEL⟨N⟩signal.

The PE-CMOS pixel is implemented using a commercial
CMOS image sensor process. The design can be easily in-
corporated into any CMOS image sensors design to achieve
flexible pixel-wise control. The pixel is optimized for high-
speed low-light applications with high PD fill factor (75%),
high conversion gain (110 µV/e−), and low noise (2.67 e−).
Its layout and specification are shown in Fig. 12C and D. The
PE-CMOS sensor interfaces with an FPGA (Xilinx Kintex-
7), which controls the signal timings and receives the pixel
outputs from the chip and then transfers them to a host PC
through a high-speed PCIe bus. We implement the acquisition
software on the PC using the Open-Ephys ONIX API [45],
designed for high-speed PCIe interfaces.

1) Temporal Resolution: We first evaluate the Pix2HDR’s
temporal resolution at sampling high-speed events. We direct
the camera at an LED array, where sequential activation of two
LEDs (R and L) takes place with a short time delay (Fig. 13A).
Our objective is to demonstrate Pix2HDR’s capability to detect
the transient ‘ON’ events with time resolution surpassing the
camera’s shortest exposure time.

We set up the MPVE with pixel exposures of 4 ms (short),
8 ms (medium), and 16 ms (long). These pixels are organized
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into four phases, with a minimal phase offset of 2 ms between
adjacent pixels (Fig. 13A). The LED activation time delay is
configured to ∼2 ms — much faster than the shortest pixel
exposure time.

As expected, even the pixels with the shortest exposure time
fail to discern the individual LED’s activation events: pixels
at phase 1, sampled at 10 ms and 14 ms, do not capture
LED R’s activation. This event, however, is unambiguously
isolated by pixels with phase offsets at phase 2, sampled at 12
ms (Fig. 13B). Between phase-shifted pixels, Pix2HDR can
resolve a temporal resolution of 2 ms (500 Hz), two times
faster than the shorted pixels exposure at 4 ms (250 Hz).
Consequently, Pix2HDR can synthesize HDR video sequences
at a time resolution of 2 ms with 500 FPS (Fig. 13C).

2) Dynamic range and deblurring performance: Next, we
assess the Pix2HDR’s performance at capturing motion in
an HDR context. We set up a scene with diverse intensity
and motions: a bright area created by a light bulb, a dark
region with a USAF target, and a fan rotating at a speed
of ∼300 rpm, with a letter “H” printed on it. To capture
this scene, we configured the MPVE with pixel exposures
of 2 ms (short), 4 ms (medium), and 8 ms (long), with a 1
ms minimal pixel-wise phase offset (Fig. 14A). Pixels raw
outputs are displayed by grouping into subframe with 1/4
spatial resolution. Short exposure pixels capture blurred free
motion and avoid overexposure at the bright region at the cost
of lower SNR. Pixels with longer exposures enhance the SNR

at the expense of blurring and overexposure.
We combined the pixel-wise outputs to form an HDR

video sequence with the LDR-HDR nets and then compared
the synthesized sequences with those constructed through a
spatial box filter. The Pix2HDR results have better HDR
spatial contrast and resolution, notably in the reconstructed
light blub and the USAF target (Fig. 14B). To quantify the
motion trajectory, we take the intensity of a single pixel
located along the path of the rotation motion. As the letter
“H” passes through it, it generates a time-varying intensity,
v, corresponding to the letter’s strokes’ trajectory (Fig. 14C).
We slightly modified the Michelson contrast [46] to temporal
axis and calculated the temporal contrast (TC) of v, during a
pass-through event:

TC =
vpeak − vthrough
vpeak + vthrough

. (26)

The TC quantifies the overall detectability of a motion
pattern. It is affected by a few spatial and temporal factors:
SNR, spatial contrast, and motion blurring, as smoothed edges
can lead to TC value degradation. Pix2HDR’s synthesized
HDR frames exhibit significantly improved TC compared to
box-filtered outputs, clearly resolving the edges of the fast-
moving letter ”H” (Fig. 14C).

3) Spatial resolution: To quantify Pix2HDR’s spatial reso-
lution, we measured its modulation transfer functions (MTFs)
using the slanted-edge method [47]. The target scene contains
a single edge that abruptly transitions from dark to bright.
We then synthesized the HDR frames from MPVE pixel-wise
outputs with the Pix2HDR and box filtering.

The edge transfer and MTF all indicate higher spatial resolu-
tion for Pix2HDR at preserving sharp edges (Fig. 15). MTF50
denotes the spatial frequency where contrast drops to 50% of
its original value — a higher MTF50 score signifies a sharper,
more detailed image. As the recovery strategies (box filter and
Pix2HDR) inevitably cause sharpness loss in above frames, we
also acquired the full-resolution frame using PE-CMOS with
fixed pixel-wise exposures and set its scores as the theoretical
limits to the camera optics and pixel pitch. Pix2HDR achieves
superior edge transfer (0.885 pixels for 10-90% rise rate) and
MTF50 values (0.647 cycles/pixel), surpassing those from the
box-filtered output and approaching theoretical limits of 0.765
pixels and 0.654 cycles/pixel, respectively.

4) Dynamic range enhancement: To quantify the dynamic
range enhancement from our method, we set the PE-CMOS
pixels in 3 different configurations, with min-max pixel ex-
posure ratios of 1:4, 1:8, and 1:16 using MPVE sampling
pattern with pixels at 500, 250, 125, 63, and 32 Hz (Fig.16).
We then reconstructed HDR videos at 1000 Hz using our
LDR-HDR network. We first sampled a fixed target (the ISO-
21550 dynamic range film target) of different transmittances
to evaluate the dynamic range performance of these configura-
tions (Fig.16A). The pixel’s dynamic range is determined by
the difference between its maximum and minimum resolvable
transmittance values, indicated by the horizontal color bar
in the figures. The PE-CMOS pixels are designed for high-
speed (1000 Hz) and high-sensitivity imaging applications
with low full-well capacity, high converstion gain and analog
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with 125 - 500 Hz sampling rate, and relative phase shifts of 0 - 4 ms. B. Recovered HDR frames (using box filter and Pix2HDR method). The frame from
our Pix2HDR has higher spatial contrast and lower blurring to resolve to moving letter “H” with sharper resolution. C. Temporal resolution measurements.
We fix a single pixel and record its irradiance value across frames. Our Pix2HDR method shows larger irradiance variation corresponding to the motion of
the “H” and thereby results in a much higher temporal contrast (TC = 0.2) than box filter (TC = 0.06).

amplifications, which limits each pixel’s dynamic range to 36
dB. With MPVE, the combined video at 1000 Hz improves
the dynamic range by 12 – 24 dB, depending on the pixel con-
figurations (Fig.16B). The higher the min-max pixel exposure
ratio, the higher better the dynamic range improvement. The
pixel exposure ratio could be increased further, as PE-CMOS
has no limitation in extending a pixel’s exposure indefinitely.
But a consideration that would discourage excessively long-
pixel exposure is the high-speed performance, as prolonged
exposure will result in extra motion blur that could affect the
performance of the synthesized HDR video. Some examples
at different MPVE configurations are shown in supplemental
videos.

5) Motion detection under low-light conditions: We then
showcase that Pix2HDR can harness the benefits of short
and long pixel exposures to track movement, particularly for
detecting fast motion in low-light conditions - a challenging
task for video acquisition. We dim the ambient light for the
demonstration and set a fan with the “H” logo printed on it
into a rotational motion (Fig. 17A-D). This creates a low-light
condition for resolving motion in the dark. We sampled the
scene with the MPVE using exposures of 2 ms (short), 4 ms
(medium), and 8 ms (long), with a 1 ms minimal pixel-wise
phase offset.

For metrics, in addition to TC, we also calculate the motion
trajectory’s full duration (FD) to quantify blurring. We define
FD as the timespan between 15% of the peak irradiance
measured from the rising and falling edges (Fig. 17B). The
shorter the FD, the less the blurring in the motion trajectory.

In low ambient light conditions, pixels at different exposures
have distinct advantages in terms of temporal contrast or

motion blurring. Long exposures pixels show the highest tem-
poral contrast (TC: 0.246) in comparison to those undergoing
medium and short exposures (0.223) (Fig. 17B). Meanwhile,
short exposures have the minimum amount of motion blurring
(FD: 172 ms), compared with medium and long exposures at
183 - 190 ms. Both the TC and FD are pure temporal metrics
derived from a single pixel. They effectively resemble the
outcome if cameras with the same exposures were employed.

From the subframes, the Pix2HDR’s LDR-HDR net syn-
thesizes a high-resolution video from pixel-wise outputs,
resulting in enhanced temporal contrast (TC: 0.307) while
simultaneously maintaining minimal blurring (FD: 175 ms).
This highlights the Pix2HDR’s advantage over single-exposure
cameras in tracking motion trajectories in low light conditions.

6) Motion detection with bright background: Last, we
demonstrate the PixHDR’s ability to resolve motion against
a bright background to evaluate its ability to capture fast
movement amid overexposures. Using the same setup, we
turned on a bright LED light in the middle of the FOV (Fig.17
E-H). The bright light produces various degrees of blooming
effects at each subframes.

While the additional light improved the temporal contrast
of short and medium exposure (TC: 0.493 and 0.485), the
blooming effects caused large overexposures in subframes with
long exposures. The clipping of pixel values leads to long-
exposure subframes having low temporal contrast (TC: 0.213
and 0.280). Pix2HDR’s synthesized HDR videos are robust
against overexposures. The temporal contrast value is even
enhanced (TC: 0.531) while the full duration (FD: 156 ms) is
kept short, indicating minimal motion blurring.

These benchtop demos in this section seek to mimic chal-
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method only loses neglectable spatial resolution after reconstruction. Meanwhile, the box filter gives much worse scores in the metrics and even generates
jagged vertical edge in the recovered frame.

lenging conditions encountered during real-world vision appli-
cations, such as motion capture at night and against a bright
headlight of incoming vehicles. The results of the demonstra-
tion showed the advantages of Pix2HDR at capturing motion
during extreme conditions of low light and against bright
background, having better motion detection performance than
conventional cameras with fixed pixel exposures.

VII. DISCUSSION

We have demonstrated that by combining a versatile pixel-
wise sampling method with the strength of the neural networks
in decoding complex light and motion patterns, Pix2HDR
significantly outperforms existing methods in capturing motion
in HDR settings. This makes Pix2HDR as an ideal solution
for motion-tracking applications in robotics, AR/VR, and
autonomous vehicles, among other vision applications. Our
sensor is also compact and power-efficient. The pixel-wise
sampling is implemented using the pixel circuitry and it
achieves high temporal resolution using low data rate. These

features make Pix2HDR applicable for mobile applications.
Several aspects of Pix2HDR can be further improved:

Adaptation to color videos: The proposed MPVE sampling
method and the LDR-HDR network are also adaptable for
color video through the integration of RGB Bayer filter
patterns (commonly used for color sensor) onto the PE-CMOS
image sensor’s pixel array (Fig.18A). To achieve high dynamic
range (HDR) across all color channels, we can configure pixel
exposures at short, medium, long, and extra-long durations
for RGB color pixels respectively (Fig.18B). The LDR-HDR
synthesis network could then be trained separately for each
color channel or collectively for the combined RGB. The
capability to adjust exposure at the pixel level also allows each
color channel to operate at different speeds, providing multi-
temporal resolution suited for multi-spectral applications. For
instance, we can configure the green pixels to sample at high
speed with short exposures in two phases, while maintaining
HDR in the blue and red channels with long exposures
(Fig.18C). This approach is particularly beneficial for fluo-
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Fig. 17. Imaging fast motion in dark and against bright background. A. Subframes of PE-CMOS outputs under low illumination conditions. B. Time series
of at a single pixel value indicating the advantage of different exposures at capturing motion: Long exposure subframes have higher temporal contrast (TC)
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bright background. Its high TC and low FD indicates Pix2HDR’s robust performance in resolving motion amid overexposures.
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rescence imaging, where it can be tailored to accommodate
fluorescent indicators with distinct spectral characteristics,
time constants, and dynamic ranges.

LDR-HDR network improvements: We also plan to improve
the performance of our synthesis method in future work.
Currently, our LDR-HDR network features a modular archi-
tecture: The HDR network is for HDR synthesis, and the
LDR network undertakes various tasks, including spatiotem-
poral up-sampling, deblurring, and rendering LDR videos at
low, medium, and high exposure levels. We aim to refine
our approach to each task separately before merging them
into multiple LDR frames for input to the HDR network.
For instance, we could optimize the network to deblur and
temporally upsample the long-exposure pixels, similar to the
methods described in [48], [49]. However, unlike [48], [49],
which depends on a neural network to upsample and recon-
struct blurred frames — a challenging inverse problem —
our method may leverage MPVE sampling of short-exposure
pixels to provide high temporal resolution, enhancing motion
estimation and deblurring. Similarly, other deep learning based
architectures could be developed to recover overexposure and
improve the SNR of the LDR frames, prior to video synthesis
using the HDR network.

On the synthesis side, the training steps can be made more
generalizable. Currently, when creating the training dataset,
camera-specific CRFs are used to map ground truth videos to
each camera’s output. This specificity ties the trained network
weights to individual cameras. A more generalized approach
could involve training the network with an overall gamma
correction and mapping the captured frames from each camera
to a pre-defined transfer function before network migration.

Encoding of MPVE outputs and synthesized HDR videos:
In the MPVE sampling method, neighboring pixels operate at
different frame rates and exposures, resulting in large pixel
intensity differences at the small region of the video frames
that might not be efficient for the standard encoding method
(e.g. Fig. 14A). To efficiently encode MPVE outputs, pixels
at the same exposure (subframes) should be encoded together.
This will produce four encoded video streams, each with 1/4
of the original spatial resolution. In our future work, we plan to
investigate how the compression ratio of these encoded streams
impacts the quality of the synthesized High Dynamic Range

(HDR) videos.
The HDR video output from the LDR-HDR network can

be encoded using standard video encoding formats for further
processing, transmission, and storage. The choice of encoding
format depends on the bit-depth of the videos, which in turn is
dictated by their dynamic range. For example, the PE-CMOS
sensor with MPVE configuration of min-max pixel exposure
ratio of 1:16 has a dynamic range of 60 dB (Fig. 16). This
range corresponds to a 10-bit digital format, which can be
efficiently encoded using the HEVC formats. Depending on
the pixel characteristics, the same MPVE configuration may
have lower or higher dynamic ranges, resulting in different bit
depth, and determine its encoding schemes.

In summary, the Pix2HDR approach aligns with the general
trend of image sensor technology development. With advance-
ments in CMOS technology, which enable the reduction of
transistor size and allow 3D integration of the pixel array
and processing chips, the next generation of image sensor
development is emphasizing pixel-level reconfigurability with
edge processing. By combining versatile pixel-wise sampling
with learning-based HDR synthesis methods that can be im-
plemented at the edge, Pix2HDR enhances the adaptability of
vision systems in dynamic conditions, addressing the growing
demands of vision applications.
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