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e Smartphone access has a “double-edged
sword” effect on pesticide use intensity.

o Greater access led to a higher pesticide
use intensity in regions with low level of /,:\\
digital economy. ’.\

e Greater access led to a lower pesticide
use intensity in regions with high level
of digital economy.

e A comprehensive social and engineering
integration is needed to reduce pesticide
use intensity.
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ARTICLE INFO ABSTRACT

Editor: Jacopo Bacenetti Pesticide overuse has been an increasing concern in China. Digital technology, such as smartphone access, is
considered an effective way to promote proper use of pesticides. Using the Chinese Extended Family Database

Keywords: (2015, 2017, and 2019), this study empirically examines the impact of smartphone access on pesticide use in-

Pesticide use intensity
Smartphone access

Digital economy development
Chinese farmers

tensity among Chinese farmers. The results show a “double-edged sword” effect of smartphone access on
pesticide use intensity. In rural areas with a low level of digital economy, greater smartphone access led to higher
pesticide use intensity. In rural areas with a high digital economy level, smartphone access reduced pesticide use
intensity. The study results show that reducing pesticide use intensity through digital technology is not a linear
process but a complicated one that involves social and engineering integration, including an increase in access to
smartphones, development of a regional digital economy, reconstruction of agricultural extension systems, and
enhancement of the capacity of digital technology.

1. Introduction countries that attempt to modernize their agricultural economy
(Enserink et al., 2013; Popp et al., 2013; Verger and Boobis, 2013; Wu
Proper pesticide use is a challenging issue for many developing et al., 2018; Xie et al., 2020; Zhang et al., 2015a). Pesticide overuse is
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widely observed in those countries, such as China (Zhang et al., 2015a,
2015b), Thailand (Grovermann et al., 2013), Kuwait (Jallow et al.,
2017), and Vietnam (Normile, 2013; Salazar and Rand, 2020). Pesticide
overuse leads to environmental pollution (Hao and Yang, 2013), causes
food safety concerns (Zhang et al., 2021), and increases human health
risks (Enserink et al., 2013; Zhang et al., 2018; Mohring et al., 2020).
Therefore, many technical supports and regulatory strategies have been
introduced to reduce pesticide use intensity and promote the proper use
of pesticides (Enserink et al., 2013; Normile, 2013; Mohring et al.,
2020).

Digital technologies have been applied to transform agricultural
systems and offer an opportunity for properly using pesticides in many
developing countries. Digital agriculture integrating digital technology
with agricultural production helps improve agricultural resource use
efficiency and sustainability (Rotz et al., 2019; Clapp and Ruder, 2020).
Digital technologies are integrated with automation technologies such
as intelligent tractors, drones, and robots to implement variable rate
applications that precisely deliver seeds, water, fertilizers, and pesti-
cides and, therefore, significantly reduce the environmental impacts of
agricultural production (Clapp and Ruder, 2020). Digital technologies
also reduce the cost of tracking product origins, increase transparency,
improve public trust on the value chain of agricultural products, and
help promote environment-friendly production behaviors (Fabregas
et al., 2019). Through mining big data on the Internet, digital technol-
ogies improve farmers' communication, learning, and information
sharing (Nyamba and Mlozi, 2012; Baumiiller, 2018; Zhong et al.,
2023). In China, businesses, such as pesticide producers Bayer and
Sinochem and drone manufacturers XAG technology and DJ-
Innovations, are actively building online platforms to support farmers
adopting new pesticide use technologies.

As a digital technology, mobile phones play a key role in the digital
transformation of agriculture (Min et al., 2020). Mobile phone tech-
nology has become increasingly adopted to promote agricultural
extension services in developing countries (Aker, 2011; Birke et al.,
2019; Cole and Fernando, 2021; Folitse et al., 2019; Janc et al., 2019).
Mobile phones help disseminate product information and increase the
adoption of the recommended agrochemical application rate by 22 % in
sub-Saharan Africa and India (Fabregas et al., 2019). Mobile phones also
connected the ICT revolution to the smallholder cotton farmers and
helped increased the adoption of pesticide use recommendations and
biological pest control methods through an innovative voice-based ICT
advisory service in India (Cole and Fernando, 2021). In Uganda, where
resources are scarce, mobile phones help farmers to access information
on agricultural inputs including pesticides and increase the likelihood of
using these inputs (Freeman and Qin, 2020). In Rwanda and Uganda,
mass social media campaigns involving the use of mobile phones
effectively improved farmers' awareness of pesticide risks and safety
measures and boosted the adoption of environmentally safer alterna-
tives to synthetic pesticides (Tambo et al., 2023). In Ecuador, mobile
phone applications helped increase the adoption of low-toxicity pesti-
cide products among the blackberry farmers (Carrion-Yaguana et al.,
2020).

The impact of mobile phones on farmers' behaviors in agricultural
input use is not uniform and has been highly affected by the develop-
ment of the technology itself. Early mobile technology relied on text
messages in the 2G era and pictures, graphics, voice messages in the 3G
era. These traditional mobile technologies were not able to provide so-
phisticated advice on agricultural practices or new technologies in many
developing countries (Awuor and Otanga, 2019; Nakasone et al., 2014).
The primary reason is that reading and interacting with text messages
through mobile phones requires a high level of literacy that smallholder
farmers do not have (Nakasone et al., 2014; Wyche and Steinfield,
2015), and eventually leads to the problem of information overload
(Awuor and Otanga, 2019).

However, smartphone technology with video message functions in
the 4G and 5G eras allows farmers with a limited literacy to obtain
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agricultural knowledge and information easily. Video information
through smartphones helps farmers understand the advantages and
disadvantages of new farm technologies, ensuring accurate application
(Zheng and Ma, 2023). Empirical research shows that easily accessible
videos through smartphones can deliver complex and rich knowledge
and information on pesticides, increase farmers' understanding of pes-
ticides, and help farmers make more informed decisions on pesticide use
(Chowdhury et al., 2015). Many social media platforms allow some
experienced farmers to be video content creators and become locally
influential experts (Stimane et al., 2018). Learning through videos al-
lows farmers to integrate such information with their local experiences
to update their knowledge and innovate their farming practices (Zossou
et al., 2009).

Although mobile phone technology, especially access to smart-
phones, helps farmers increase their knowledge of pesticides and thus
potentially reduce pesticide use, farmers in many developing countries
still tend to apply more pesticides due to agricultural productivity
concerns (Grovermann et al., 2013; Jallow et al., 2017; Salazar and
Rand, 2020; Schreinemachers et al., 2020; Xie et al., 2020; Zhang et al.,
2015b, 2015a). Pesticide overuse was especially apparent in China,
where the public agricultural extension system collapsed in 1980s
(Zhang et al., 2015a). Without public agricultural extension services,
pesticide sellers have become the primary source of information and
knowledge on pesticides to farmers in China (Fan et al., 2015; Jin et al.,
2015). The profit motive often prompts sellers to oversell agricultural
supplies through various tactics. Since farmers in China are generally
less educated and poorly trained, frequent updates on pesticide varieties
and even changes in packaging further exacerbate such information
asymmetry between farmers and pesticide sellers (Jin et al., 2015).
Motivated by profits, pesticide sellers often promote pesticide sales by
overemphasizing the role of pesticides in agricultural production,
resulting in excessive purchase and overuse of pesticides in China (Wang
and Gu, 2013). Although mobile phones help farmers obtain market
information about pesticides (Cole and Fernando, 2021; Freeman and
Qin, 2020; Tambo et al., 2023), the same technology can also be used by
pesticide sellers to directly market their products to farmers, which leads
to pesticides overuse. A survey from farmers in China suggested that
mobile phone technology, especially smartphone access, has a double-
edged sword effect on pesticide use: smartphone access resulted in a
33 % increase in pesticide expenditure among the farmers in the lowest
20th quantile of the pesticide expenditure, and a 36-39 % reduction in
pesticide expenditure among the farmers in the upper 60th and 80th
quantiles of pesticide expenditure (Ma and Zheng, 2022).

However, no study has yet attempted to systematically analyze the
inherent cause of such a double-edged sword effect of mobile phone
technology on pesticide use. This study aims to understand the under-
lying impact of smartphone access on pesticide use in China. The hy-
pothesis is that the development of a regional digital economy where
mobile phones operate significantly impacts how smartphone access
affects pesticide use. Digital learning through smartphones relies on the
smooth operation of a local digital network characterized by an excel-
lent digital infrastructure, a large population of internet users, and
active content creation. For example, the expansion of regional mobile
phone coverage induces farmers' market participation (Muto and
Yamano, 2009) and increases the provision of agricultural extension
services (Aker, 2011). Without the support of a well-developed local
digital network, smartphones are no better than traditional feature
phones, and therefore, farmers with smartphones cannot reap the ben-
efits of digital learning. For example, in extremely remote rural com-
munities in Papua, Indonesia, smartphones were mainly used for calls
and text messages (Heimerl et al., 2015).

Based on longitudinal survey data on rural households in China, this
study assesses how smartphone access and the development of the
regional digital economy jointly affect farmers' decisions on pesticide
use, which explains the double-edged sword effect of smartphone access
on pesticide use among Chinese farmers. As a developing country where
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smartphones are widely used, China provides an interesting example to
understand the impacts of smartphones and mobile technology on
pesticide use in agriculture. Like many other developing countries in
South Asia and Africa, agriculture in China is still dominated by small-
holder farmers. Therefore, the findings on the impact of smartphones on
pesticide use in China can help developing countries to develop effective
policies and strategies to properly use pesticides and other
agrochemicals.

2. Research background
2.1. Pesticide overuse in China

In traditional agriculture in China, farmers rely on intensive culti-
vation techniques such as timely planting and harvesting, weeding, and
deep plowing to physically prevent and control plant diseases and pests
(Wen, 2016). Despite the fast growth of the “green revolution” in
Western developed countries and other parts of the world, China limited
manufacturing capacity and use of synthetic fertilizers and pesticides
until the 1980s (Pan et al., 2020). Agrochemicals, including fertilizers
and pesticides, grew in popularity in the middle of the 1980s for two
reasons. First, China began to implement its “open door” policies to
foreign technology and investment, significantly increasing the capacity
of manufacturing and supplying agrochemicals in China. Second, China
widely implemented the Rural Household Contract System to grant
farmers nearly complete freedom to conduct their agricultural opera-
tions, which gave farmers the freedom to use agrochemicals to increase
crop yields and farm income.

Fig. 1a presents the total amount of pesticide usage (the left axis) and
the pesticide use intensity on the sown area of crops in China from 1991
to 2021. The total pesticide use in China increased from 0.77 million
tons in 1991 to 1.32 million tons in 1999, a nearly 73 % increase. The
total pesticide usage dropped slightly in 2000, and resumed steady
growth in 2001, reaching its peak of 1.81 million tons in 2013. The
intensity of pesticide use in China experienced similar changes over that
period and reached its peak level of 11.14 kg/ha in 2013. The fast
growth in pesticide use has become a significant concern in China. The
Chinese government began to take a series of actions to reduce pesticide
use in 2010. The Chinese Ministry of Agriculture issued the Action Plan
on Agricultural Crop Pest Control and Disease Prevention in 2010 to
prevent crop diseases and control crop damage while reducing pesticide
use and enhancing agricultural product safety. The Central Government
in China subsequently issued its pesticide reduction policy in the 14th
Five-Year Plan for National Economic and Social Development of the
People's Republic of China and the Outlook of the 2035 Long-term
Development Goals. These policy changes on pesticide use and their
implementation had impacts. As shown in Fig. 1a, both the total pesti-
cide usage and the intensity of pesticide use declined steadily after 2013,
and lowered to 1.24 million tons and 7.35 kg/ha, respectively, in 2021.

Fig. 1b compares the intensity of pesticide use measured by the ratio
of the average weight of active ingredients per unit of farmland in kg/ha
in China to the world from 1990 to 2021, based on data from FAO.'
From 1990 to 1992, the intensity of pesticide use in China was lower
than the world average, as the ratio was less than one. However, from
1993 to 2018, the intensity of pesticide use in China increased signifi-
cantly and surpassed the world average level. The peak was in 2009
when the intensity of pesticide use in China was approximately 1.36
times the world average. The intensity of pesticide use in China started
to drop below the world average in 2019.

1 Source: FAO. Pesticides Use.
org/faostat/zh/#data/RP

FAOSTAT, URL. https://www.fao.
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2.2. The growth of mobile communication in China

China launched its first commercial service of the first-generation
analog mobile communication system (1G) in 1987. Over the next 35
years, China has steadily upgraded its mobile communication system
from 1G to 5G and currently owns the largest 5G network in the world.
According to the China Ministry of Industry and Information Technol-
ogy, China had 475 million 5G mobile phone users, which accounted for
>70 % of the global 5G network users by July 2022. China operates 1.97
million 5G base stations, accounting for over 60 % of the active 5G base
stations worldwide. The growth of mobile communication in the past 35
years in China is further evidenced by a sharp rise in mobile phone
penetration rate, a swift conversion to smartphones, and a steady in-
crease in mobile internet speed.

Fig. 2a shows the penetration rates, i. e., the number of phones per
100 people, of hardline phones and mobile phones in China from 2000
to 2021. Over the 20 years, the mobile phone penetration rate had risen
from 6.7 to 116.3, while the penetration rate for the hardline phones
increased from 12.4 in 2000 to 28.1 in 2006 and then decreased to 12.8
in 2021. By the end of 2021, there were 1.82 billion telephone users in
China, including 1.64 billion mobile phone users and only 181 million
hardline phone users.

Fig. 2b shows the growth of smartphones with 3G/4G services in
China from 2010 to 2018 in terms of the number of phone users, the
ratio of the smartphone users among all mobile phone users, and the
ratio of the number of 3G/4G base stations among all mobile base sta-
tions. The number of 3G/4G users was only 47.05 million, accounting
for 5.5 % of the total mobile phone users in 2010. It grew to 1.3 billion in
2018, i. e., 83.4 % of mobile phone users. The number of 3G/4G base
stations accounted for 32.8 % of all base stations in 2010 and had grown
to 75.5 % by 2018.

As a result, the number of mobile internet users has also grown
rapidly in China. According to the China Internet Network Information
Center, the number of mobile internet users in China grew from 50.4
million in 2007 to 1.03 billion in 2021, corresponding to 24 % of the
total internet users in 2007 and 99.7 % in 2021. In other words,
smartphones have become essential for people in China who want to
access the Internet.

The speed of downloading and uploading mobile Internet has also
increased rapidly. Fig. 2c presents the average downloading speed of the
4G network from 2016 Q3 to 2021 Q4. Mobile internet speed has sky-
rocketed since the launch of the 5G network in China. According to the
China Information and Communication Academy, the average down-
loading speed for 5G users in China was 341.2 Mbps, and the average
uploading speed was 71.98 Mbps in 2022, among the world's fastest
mobile networks. Mobile smartphones are predominantly used for
instant messaging, video sharing, and watching short movies.

Despite the staggering growth of mobile communication in China,
China's rural regions are lagging. According to the China Internet
Network Information Center, the internet penetration rate was 58.8 % in
the rural regions and 82.9 % in urban and urbanizing regions in China in
2022. The internet speed in rural regions is far slower than in urban and
urbanized regions.

3. Method
3.1. Data

This research uses the longitudinal survey data from the Chinese
Family Database (CFD) at Zhejiang University and the China Household
Finance Survey (CHFS) conducted by the Survey and Research Center
for China Household Finance at China Southwestern University of
Finance and Economics (SWUFE). The CFD survey adopted a three-
stratified probability proportion to size (PPS) sampling approach to
select its household samples for the longitudinal survey (Wu et al.,
2018). The selected samples include households from 29 provinces,


https://www.fao.org/faostat/zh/#data/RP
https://www.fao.org/faostat/zh/#data/RP

L. Xie et al.

%)
=3
S

w
S

usand tons

Pesticide usage

—o— Pesticide dosage per unit sown area

(a) Pesticide usage and use intensity in China

(1991-2021)

Science of the Total Environment 943 (2024) 173867

Fig. 1. Pesticide use intensity comparisons in China and the World.
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Fig. 2. The mobile communication infrastructure growth patterns in China.

autonomous regions, and metropolitan areas directly under the control
of the central government in China. Through scientific sampling, mod-
ern survey techniques, and rigorous survey management, the longitu-
dinal surveys aim to collect high-quality micro information on Chinese
families to conduct in-depth research on various issues related to Chi-
nese families. Among them, the 2015 data involved a rural sample of
22,535 households; The 2017 data involved a rural sample of 24,764
households; The 2019 data involved a rural sample of 21,815 house-
holds. This study extracted all rural household samples growing staple
food and/or cash crops from the CFD database, which included 5054 in
2015, 9142 in 2017, and 8757 in 2019. We use these three rounds of

survey data to form a non-equilibrium panel data. The CFD survey
contains the essential information on farmers' farming operations,
including pesticide use and the information on mobile phones, the
Internet, and other digital technologies, and is used in this study.

3.2. Variables

3.2.1. Dependent variable

This study uses pesticide use intensity as the dependent variable. The
quantity and expenditure of pesticides applied per unit area can be used
to define pesticide use intensity, but the CFD survey only reported the
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quantity of pesticide applied in 2015, and not in other years. Therefore, Table 1
we define the pesticide use intensity as the ratio of the total pesticide Description of variable indicators.
expenditure to the sown area following other similar studies (Zhu and Variable category and name Questions in the  Variable References
Wang, 2021). This study takes the logarithmic value of the average CFD Surveys specification
pesticide expenditure to reduce the impacts of those extreme values on Dependent Pesticide use ~ How much did  Ln (pesticide  (Ma and
the results. variable intensity your family expenditure /  Zheng,
spend on the sown 2022; Wu
3.2.2. Variables of interest PEStid‘ie‘th . ara+ ) etal,, 2018)
This study includes two independent variables as the variables of ;};ﬁnf)a'mﬂy: L
interest. The first is access to the smartphone. Farmers in China mainly sown area for
access digital technology services through mobile Internet and smart- staple food and
phones. The CFD contains specific questions on the use of mobile phones cash crops?
among farmers, including the specific types of mobile phones being Independent  Smartphone  What kind of Oneif“17is  (Khanetal,
. .. . variable mobile phone selected, and 2022; Ma
used. Following the similar studies (Khan et al., 2022; Ma and Zheng, are you using sero and Zheng,
2022), this study uses a dummy variable to indicate farmers' smartphone now? (1. otherwise 2022)
access: one if using a smartphone and zero otherwise. The second is the Smartphone; 2.
digital economy index (DEI), which measures regional differences in the Non- hone: 3
development in digital economy in China. DEI is derived from five in- ;Irzac:ﬂ :}?;’le)'
dicators: internet penetration rate, internet-related employment, Digital As described in  In the range (Zhao et al.,
internet-related economic output, mobile internet users, and digital in- economy the text between 2020)
clusive finance index. China National Bureau of Statistics compiles the index 0and 1
first four indicators, and the last one is jointly compiled by the Digital Control Asge The year of The year in (L. Fan
Fi h G £ Peki 3 . d the Ant Fi ial variable birth of the which the etal., 2015;
inance Research Center of Peking University and the Ant Financia farmers survey was Pan et al.,
Services Group. The five indicators were further standardized and interviewed conducted 2021;
aggregated to calculate the composite DEI of all 30 provinces, autono- minus the Zheng
mous regions, and metropolitans under the control of the Central Gov- year of birth etal, 2021;
ernment following Zhao et al. (2020) of the farmer  Zhou and
8 h : interviewed Jin, 2009)
Education What is the The actual
3.2.3. Control variables literacy level of  years of
The control variables include the characteristics of rural households, the farmers education for
villages, and farmland that potentially affect farmers' decisions on interviewed?? options 1-9
icid Th 1 iabl h 1 h hold includ 1. Never went are assigned
pesticide use. The control variables on the rural household include to school; 2. 0.6,9,12,9,
farmers' age (Al Zadjali et al., 2014; Huang et al., 2020; Zhou and Jin, Primary school; 12, 16, 19,
2009), gender (Atreya, 2007; Wang et al., 2017), education (Al Zadjali 3. Junior high and 23
et al., 2014; Goodhue et al., 2010; Jallow et al., 2017; Zhou and Jin, scﬁooi; 4. High
2009), agricultural employment ratio (Hedlund et al., 2020), whether 'Srcec(});i’c:i
the household has any agricultural loan (Rahman, 2003), and received secondary
any agricultural guidance (Huang et al., 2021), and production for self- school; 6.
consumption (Sharifzadeh et al., 2019). The control variables for the Junior college;

7. Bachelors; 8.

village include per-capita income (Li et al., 2023)? and the distance of
Masters; 9. Ph.

the village to the nearest market (Huang et al., 2020). The control var-

D.s
iables on farmlands include the total sown area (Wu et al., 2018), Gender The gender of Select one for
planting structure (the ratio of the sown area for food crops) (Rahman, the farmers female, zero
2016), and land ownership (farmland certification) (Migheli, 2017). The o interviewed O;hETWiSZ
study also contains the control variables on the household and year fixed Ratio o How many The number
. . . agricultural members of of farm
effect being surveyed using dummy variables. employment  your family are laborers/ the
Table 1 presents detailed information on those variables, including engaged in workforce
the variable type, variable name, relevant survey questions, and calcu- agricultural size
lating specifications and relevant references for using the variables. PrOd“t?t‘O;‘ and
operation?
Ratio of What are the The sown
3.3. Fixed effect models staple food sown areas for area for staple
crops staple food food crops/
. . . ) crops? the total sown
Following Greene (2003) and Wooldridge (2010), this study applies area of crops
a two-way fixed effect model to assess the effect of smartphone access on Agricultural  Does your One if “1” is
pesticide use intensity in China. The two-way fixed effect model was loan family have selected, zero
outstanding otherwise

used in other studies using the same database being used in this study
(Fan et al., 2023; Zheng et al., 2023a, 2023b; Zhu and Wang, 2021).

bank loans for
agricultural

Model 1, specified as Eq. (1), considers only the impact of smartphone operations? (1.
access on pesticide use intensity: Yes; 2. No)
Farmland Does your One if “1” is
Certification farmland have a selected, zero
2 o X . X . . rural land otherwise
The existing literature mainly discussed the relationship between household contract right
income level and pesticide application. However, given the endogeneity of certificate?

household income, we controlled the village's annual per capita income as an
alternative. This variable is a higher-level variable that helps reduce the
endogeneity.

(continued on next page)
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Table 1 (continued)

Variable category and name Questions in the ~ Variable References
CFD Surveys specification
Production What were the One if “3”,
for self- main uses of the ~ “4” is
consumption agricultural selected, zero
products your otherwise
family
produced last
year? 1. Direct
sales; 2.
Processed and
sold; 3. For your
use; 4. For your
agricultural
production; 5.
Not yet
produced; 6. To
be sold; 7.
Other.
Agricultural Has your family =~ One if “1” is
guidance received any selected, zero
technical otherwise
guidance on
agricultural
production? (1.
Yes; 2. No)
Total sown What is the Ln (The total
area sown area for sown area +
both staple food 1)
crops and cash
crops?
Annual per What is the per In (Per capita
capita capita income of the
income of the  disposable village +1)
village annual income
of the residents
in this
community?
Distance What is the Ln (Distance
from market distance from from market
the village to +1), if the
the nearest farmers'
farmers' market market or free
or free market? market is in
the village,
the distance is
0
Household Household who Dummy -
was variable
interviewed
Year The year when Dummy
the survey was variable
conducted
Yie = @+ pixlie +yZi +p; + v+ € €y

where i is the index for the farmers being surveyed, t indicates the year
when the survey was conducted, y; is the pesticide use intensity for
farmer i in year t, x1;; indicates whether farmer i uses a smartphone in
year t, Z; is a vector of all control variables for farmer i in year t, a is the
intercept, f; is the regression coefficient for the independent variable
x1;, and y is a vector of coefficients for the control variable vector Z,
and y; is the household fixed effect, and v, is the time-fixed effect and ¢;
is the residual term. The coefficient #; Eq. (1) indicates whether farmers'
smartphone access impacts pesticide use intensity.

As discussed previously, smartphones rely on the availability and
efficiency of the digital network to have the expected impacts on
farmers' behavior change on pesticide application. We also introduce the
DEI as an independent variable in the analysis to assess such effects.
Model 2 considers the impacts of DEI by directly adding the DEI as an
independent variable as specified in Eq. (2):

Yie = @+ P1XLi + Pox2i +yZy +p + v+ € (@3]
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where x2; is the provincial DEI where farmer i is located in year ¢, j, is
the regression coefficient for independent variable x2;; and indicates if
the regional development of the digital economy impacts the pesticide
use intensity. Other variables are previously defined.

Model 3 considers the compounding impacts of both independent
variables by adding an interaction of the two independent variables to
Model (2) and is specified as follows in Eq. (3):

Yii=Q +ﬂlxlit +ﬂ2x21‘t + ﬂgxlitxzit +vZi + U+ Vet € 3)

where fs is the regression coefficient for the newly created interaction
term x1; x2; and indicates the compounding impacts of smartphone
access and the regional development of the digital economy on the
pesticide use intensity, and other variables are previously defined.

3.4. Endogeneity test

The fixed effects model is subject to some endogeneity concerns
because of the potential reverse causal relationship between smartphone
access and pesticide use intensity and potential omission of other critical
control factors in our model specification. We tried to address potential
endogeneity concerns by incorporating an instrumental variable in our
models. Following Evans et al. (1992), we introduced an instrumental
variables at a higher aggregate level to our models to address the
endogeneity concerns. We select the smartphone usage rate in the
village level as the instrumental variable for smartphone usage. This
usage rate is the result of excluding the sample itself. The smartphone
rate in the area reflects the prevalence of digital technology applica-
tions. Under the influence of neighborhood effects, individuals in the
areas with higher smartphone rates are more likely to access smart-
phones, thereby meeting the requirement of instrumental variable
relevance. However, the smartphone usage rate in a village does not
affect individual decision on pesticide use, satisfying the requirement of
instrumental variable exogeneity.

4. Results
4.1. Descriptive statistics of all variables

In this study, we restricted the age of the surveyed farmers to 16 to
80 years, as farmers who were too young or too old could not make their
own decisions. To reduce measurement error, following Wu et al.
(2018), we excluded households spending less than one yuan (RMB) on
pesticide inputs per mu of sown area in any given year and/or did not
report any sown area. Table 2 shows the descriptive statistics of all
variables used in the study based on the combined rural household
samples in 2015, 2017, and 2019. The household expenditure on
pesticide use per hectare of sow area in a year ranges from ¥ 15 to
¥ 28,350. On average, a rural household uses ¥ 1440.17 per hectare of
the sown area. The average smartphone value was 0.4071, indicating
that 40.71 % of rural households use smartphones. The average digital
Economy index is 0.3421 on a scale of O to 1.

The use of mobile phones, especially smartphones, among the
selected rural households steadily increased over the sampling period.
Among all selected rural households in this study, only a small per-
centage didn't have mobile phones, i.e., 3.8 % in 2015, 3.4 % in 2017,
and 2.4 % in 2019, and the number gradually declined over the sampling
periods. Among the selected rural households, 70 % used non-
smartphones, and only 26.2 % used smartphones in 2015. The con-
struction of 4G network base stations and the introduction and growth of
4G smartphones accelerate the adoption among rural households after
2015. The percentage of selected rural households using smartphones
increased to 44 % in 2017 and 57.6 % in 2019, while the percentage
using non-smartphones was decreased to 52.5 % in 2017 and 40 % in
2019.
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Table 2
Statistical description and analysis results of each variable.

Variables Sample size Mean SD. Min Max
Pesticide use intensity (Yuan-ha ') 10,255 1440.17 2667.85 15 28,350
Pesticide use intensity (Yuan-ha™ %, logarithm) 10,255 6.4600 1.2291 2.7726 10.2524
Smartphone 10,343 0.4071 0.4913 0 1
Digital economy index 10,343 0.3421 0.0834 0.2332 0.7727
Age 10,343 54.3781 11.3548 16 80
Education 10,338 8.3405 4.5862 0 19
Gender 10,343 0.6365 0.4810 0 1
Ratio of agricultural employment 10,343 0.6133 0.3428 0 1
Ratio of staple food crops 10,343 0.9253 0.1865 0 1
Agricultural loan 10,327 0.0620 0.2411 0 1
Farmland certification 10,343 0.6462 0.4782 0 1
Production for self-consumption 10,301 0.4615 0.4985 0 1
Agricultural guidance 10,337 0.0928 0.2901 0 1
Total sown area (ha) 10,274 0.7363 1.0735 0.0007 10.6667
Total sown area (ha, logarithm) 10,274 0.4532 0.3892 0.0007 2.4567
Annual per capita income of the village (Yuan) 10,160 9,815.179 8,751.374 0 60,000
Annual per capita income of the village (Yuan, logarithm) 10,160 8.8151 0.9876 0 11.0021
Distance from market (km) 9,065 4.9320 6.0219 0 60
Distance from market (km, logarithm) 9,065 1.4300 0.8289 0 4.1109
v 10,213 0.4062 0.2520 0 1

Note: The raw value minus the sample mean was used for regression analyses to avoid multicollinearity problems following Balli and Sgrensen (2013). The sample size

is obtained after excluding observations with missing values.

4.2. Fixed effect modeling results

We further excluded the top 0.1 %, 0.5 %, 1 % or 5 % of households
in pesticide use intensity and total sown area to eliminate the potential
impacts of sampling outliers to run the fixed effect models. The results
are consistent. Table 3 presents the modeling results for the fixed effect
models excluding the top 1 % of households in pesticide use intensity
and total sown area while the supplemental materials presents the re-
sults excluding the top 0.1 %, 0.5 % and 5 % of households in pesticide
use intensity and total sown area. Based on Model 1, the coefficient for
the independent variable smartphones is 0.077 and statistically signifi-
cant at a 90 % confidence level. This result indicates that smartphone
access would increase pesticide use intensity. Following the calculation
methods in Kennedy (1981), the estimated coefficient of 0.077 indicates
that the average expenditure on pesticide use per ha is 7.9 %" higher for
rural households using smartphones than those not using smartphones,
including non-smartphones and not having phones. The modeling re-
sults from Model 2 confirm the findings from Model 1 on the significant
and positive impacts of smartphone access on pesticide use intensity.
The results from Model 2 also indicate that the reverse relationship
between the digital economy index and the pesticide use intensity as the
model coefficient for DEI is negative at a 95 % confidence level.

As shown in the modeling results from Model 3, the coefficients for
smartphone and DEI have the same signs as those from Models 1 and 2,
but they are no longer statistically significant. However, the coefficient
for the cross-multiplication term between smartphone and DEI, which
indicates the compounding impacts of smartphone access and the
development of the digital economy, is negative and statistically sig-
nificant at a 99 % confidence level. In other words, smartphone access
with a growing digital economy could lead to a decline in the intensity of
pesticide use.

Table 3 also shows the consistent impacts of all control variables
across the three models. A higher ratio of agricultural employment and a
larger scale of sown areas dedicated to staple food crops lead to higher
pesticide use intensity, as indicated by their positive and statistically

3 The calculation formula is: g* = exp <E - %V(E)) — 1.where g" is the rela-

tive effect on pesticide use intensity of the presence of the factor represented by

the smartphones, ¢ is the estimate of the regression coefficient, and V(E) is the
variance of C.

Table 3
The fixed effect modeling results excluding the top 1 % of households in pesti-
cide use intensity, total sown area, and agricultural income per capita.

Variables Model 1 Model 2 Model 3
Smartphone 0.0770* 0.0787* —0.0085
(0.0412) (0.0412) (0.0518)
Digital economy index (DEI) —3.4017** —1.2794
(1.6443) (1.8442)
Smartphone * DEI —3.1269%***
(1.0853)
Age 0.0000 —0.0002 —0.0003
(0.0030) (0.0030) (0.0030)
Education —0.0006 —0.0006 —0.0004
(0.0046) (0.0046) (0.0046)
Gender 0.0184 0.0188 0.0141
(0.0519) (0.0519) (0.0519)
Ratio of agricultural employment 0.0494 0.0581 0.0577
(0.0571) (0.0571) (0.0568)
Ratio of staple food crops 0.4386%** 0.4328%** 0.4379%**
(0.1120) (0.1114) (0.1111)
Agricultural loan 0.0731 0.0696 0.0661
(0.0795) (0.0795) (0.0795)
Production for self-consumption —0.0646 —0.0673* —0.0711*
(0.0400) (0.0399) (0.0400)
Farmland certification —0.0507 —0.0532 —0.0572
(0.0383) (0.0384) (0.0381)
Agricultural guidance 0.0269 0.0271 0.0235
(0.0554) (0.0554) (0.0551)
Total sown area —1.5150%** —1.5125%** —1.5118%**
(0.1001) (0.1000) (0.1000)
—-0.0277 —0.0278 —0.0285
(0.0187) (0.0187) (0.0186)
Distance from market —0.0274 —0.0252 —0.0266
(0.0195) (0.0197) (0.0196)
Constant 7.1688%*** 7.1011%** 7.1705%**
(0.2711) (0.2726) (0.2741)
Household fixed effect Yes Yes Yes
Year fixed effect Yes Yes Yes
N 7998 7998 7998
Adjusted R? 0.1787 0.1800 0.1824
F 25.5976 24.3475 23.2594

Note: Significance levels: * p < 0.1, ** p < 0.05, and *** p < 0.01. The sample
size is obtained after excluding observations with missing values.

significant coefficients. The statistically positive coefficients indicate
that carrying agricultural loans prompts farmers to increase pesticide
use intensity. However, farmers who consume their own products tend
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to lower pesticide use intensity, as shown by significantly negative co-
efficients at the 99 % confidence level. A larger scale of operation
indicated by the total sown area leads to lower pesticide use intensity, as
indicated by negative and statistically significant coefficients. The co-
efficients for other control variables, including farmers' age, gender,
years of education, farmland certification, the annual per capita income
of the village, and distance from the market, don't significantly impact
pesticide use intensity as their coefficients are not statistically
significant.

Based on the fixed effect results in Model 3, we also plot the inter-
active impacts of smartphone access and the DEI on pesticide use in-
tensity in Fig. 3, where the x-axis represents smartphone access and the
y-axis represents the pesticide use intensity. Following Li and Sun
(2017), these impacts were evaluated at the sample means of all control
variables, and the high and low digital economy development levels
were defined as the top and bottom 10 % DEI levels of the samples,
respectively. As shown in Fig. 3, the pesticide use intensity for farmers
with smartphone access is higher than for farmers without smartphone
access under the low digital economy development scenario but higher
under the high digital economy development scenario. Also, the in-
tensity of pesticide use under the high digital economy development
scenario is lower than under the low digital economy development
scenario. The results in Fig. 3 confirm the double-edged sword effect of
smartphone access on pesticide use intensity observed by several
empirical studies in China.

4.3. Endogeneity test results

Table 4 presents the endogeneity test results using the panel data. We
follow the mature method and perform the first stage estimation to test
the correlation between the instrumental and endogenous variable
(Wooldridge et al., 2016). Based on the first stage estimation, the co-
efficient for the instrumental variable is 0.1331 and is statistically sig-
nificant at a 99 % confidence level. This result indicates that the
smartphone usage rate in the village would increase smartphone access
and shows that the instrumental variable satisfies the requirement of
correlation with the endogenous variable.

The second stage confirms the findings on the significant and positive
impacts of smartphone access on pesticide use intensity. According to
previous literature (Stock and Yogo, 2002), we utilize the squared t-
statistic of the regression coefficient for the instrumental variable from
the first-stage regression, denoted as the F-value, to determine whether
there is a weak instrument problem. The results indicate that the F-value
is 11.297," which exceeds 10, suggesting that this study has no weak
instrument problem.

5. Discussion

The understanding of the impacts of smartphone access on pesticide
use intensity has been paradoxical. Some research argued that the
integration of smartphones into agricultural production and manage-
ment allows farmers to access agricultural knowledge and product in-
formation to develop smart and precision agriculture and offers
opportunities to properly use pesticides and achieve pesticide reduction
goals (Rotz et al.,, 2019; Clapp and Ruder, 2020). However, some
empirical studies found that smartphone access did not reduce but, in
some cases, even increased pesticide use intensity (Ma and Zheng,
2022).

Our empirical assessment results explain such a paradox. Overall,
smartphone access hasn't helped reduce pesticide use in China yet: rural
households with smartphone access had 8 % higher pesticide use

2
4 The calculation formula is: F = 2 = (8:533%) =11.297.
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intensity than those without smartphone access. Our findings suggest
that not only smartphone access but also the development in digital
economy significantly affects the intensity of pesticide use. Smartphone
access in the regions with a higher level of development in digital
economy helps lower the pesticide use intensity in China. The overall
increase in the intensity of pesticide use associated with smartphone
access in China was primarily due to the significant increases in pesti-
cide use intensity in those regions with lower levels of development in
digital economy. The results are robust, as the regression coefficients
from the fixed effect models are fairly consistent.

Empirical results indicate that smartphone access must be accom-
panied by a high level of development in digital economy to reduce
farmers' pesticide use. However, the regions with a low development
level of digital economy in China generally have insufficient digital
infrastructure, which results in poor network communication, weak
network signal coverage, slow network speed, and nearly no existence of
content creation and other supporting services. Without the public
agricultural extension services, pesticide sellers have been the primary
source for most farmers to gain pesticide product information and
application knowledge in China (Fan et al., 2015; Jin et al., 2015).
Because of the lack of digital infrastructure, the farmers with smart-
phone access still mainly obtain information through phone calls and
SMS text messages, as in the case of Papua, Indonesia (Heimerl et al.,
2015). The CFD also shows that households with smartphone access are
financially better off and socially better connected than those without
smartphones. Therefore, they are more willing and able to take risks and
increase pesticide use intensity.

However, in regions with a high level of development in digital
economy, smartphones are a new tool in agricultural operations and
profoundly impact agricultural productivity. Farmers can rely on
smartphones to independently search and access online information on
resources and products related to agricultural production. Diverse forms
of information such as text, pictures, voice, and video also help farmers
break through many traditional barriers imposed by limited education,
lack of social connections, and spatial isolation to learn more about
crops and pesticides so that they can more properly use the products to
improve the efficiency of pesticide use and, in many cases, reduce
pesticide use. The flow of knowledge and information on social media
then stimulates the growth of local digital services and content creation
in the rural areas in those regions. Many experienced farmers become
content creators to share their experiences and knowledge of using
pesticides through short videos, live broadcasts, online courses, and
other means (Stimane et al., 2018). Such localized content and services
have been proven to be very effective in influencing farmers' decision in
pest control and disease prevention (Carolan, 2022).

The findings of this study have important implications for achieving
China's pesticide reduction goals. First, smartphone access has a great
potential to reduce the intensity of pesticide use; however, the potential
can only be realized with the development of the local digital economy
and the support of digital infrastructure. Therefore, to reduce the in-
tensity of pesticide use, governmental policies should focus on
increasing farmers' access to smartphones and other smart terminals
such as tablets and investing in digital infrastructure to promote the
development of the local digital economy. Second, after China decom-
missioned its public agricultural extension system in the 1980s, agri-
cultural resource suppliers essentially filled the void left by the public
extension system and became the sole source of agricultural knowledge
and product information for farmers who seek advice, which causes
pesticide overuse in China (Wang and Gu, 2013). In this digital trans-
formation era, Chinese governments must build the public digital agri-
cultural extension system by investing in app development, content
creation and network building to disseminate scientific knowledge on
pesticides and their proper uses. The governments may also encourage
more experienced farmers to get involved in media content creation and
become technical experts in local digital communities to promote peer
learning and knowledge sharing. Third, the farmers need to be trained
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Fig. 3. The impacts of digital economy development on pesticide use intensity.

Table 4
Endogeneity test results excluding the top 1 % of households in pesticide use
intensity, total sown area, and agricultural income per capita.

(€3] )
Smartphone Pesticide use intensity
Smartphone 1.3570*
(0.7327)
Instrumental Variable 0.1331%**
(0.0396)
Age —0.0182%** 0.0235*
(0.0013) (0.0137)
Education 0.0057*** —0.0075
(0.0021) (0.0067)
Gender 0.0446* —0.0574
(0.0228) (0.0657)
Ratio of agricultural employment 0.0326 0.0158
(0.0269) (0.0699)
Ratio of staple food crops —0.0114 0.4232%**
(0.0444) (0.1096)
Agricultural loan —0.0055 0.0867
(0.0344) (0.0847)
Production for self-consumption —0.0153 —0.0457
(0.0194) (0.0491)
Farmland certification —0.0131 —0.0267
(0.0174) (0.0441)
Agricultural guidance 0.0288 —0.0029
(0.0265) (0.0682)
Total sown area 0.0761** —1.6134***
(0.0349) (0.1030)
Annual per capita income of the village —0.0052 —0.0234
(0.0088) (0.0219)
Distance from market —0.0018 —0.0247
(0.0094) (0.0231)
Household fixed effect Yes Yes
Year fixed effect Yes Yes
N 7900 7900
R? 0.2843 0.0805
F 54.49 -

Note: Significance levels: * p < 0.1, ** p < 0.05, and *** p < 0.01. The sample
size is obtained after excluding observations with missing values.

on how to use smartphones to access the necessary information since the
general education level of the farmers is low in China. According to the
China Internet Network Information Center, a lack of user skills, even
the basic keyboard input skills, often prevents many rural residents from
accessing and effectively using the Internet.

6. Conclusion

This study examines the relationship between smartphone access and
pesticide use intensity among rural households in China based on the
Zhejiang University Chinese Family Database in 2015, 2017, and 2019.
The results show that smartphone access increased pesticide use in-
tensity among the sampled rural households in China in those periods.
However, the impacts were mediated by the level of development in
regional digital economy and vary across different regions in China. In
the regions with low levels of development in digital economy, smart-
phone access intensifies pesticide use. However, in the regions with high
levels of development in the digital economy, smartphone access helps
reduce the intensity of pesticide use. Rural households in rural regions
with a high level of development in digital economy can use smart-
phones to access all different contents on pesticides and their proper use,
develop knowledge on crop disease prevention and pest control, and
ultimately reduce the pesticide use intensity. The study results demon-
strate the potential of digital technologies, such as smartphone access, to
reduce the intensity of pesticide use. However, substantial work is
needed to realize such potential. This work includes developing regional
and local digital infrastructure, rebuilding the public agricultural
extension services, and foundational training on farmers to use
smartphones.
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