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• Smartphone access has a “double-edged 
sword” effect on pesticide use intensity. 

• Greater access led to a higher pesticide 
use intensity in regions with low level of 
digital economy. 

• Greater access led to a lower pesticide 
use intensity in regions with high level 
of digital economy. 

• A comprehensive social and engineering 
integration is needed to reduce pesticide 
use intensity.  
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A B S T R A C T   

Pesticide overuse has been an increasing concern in China. Digital technology, such as smartphone access, is 
considered an effective way to promote proper use of pesticides. Using the Chinese Extended Family Database 
(2015, 2017, and 2019), this study empirically examines the impact of smartphone access on pesticide use in
tensity among Chinese farmers. The results show a “double-edged sword” effect of smartphone access on 
pesticide use intensity. In rural areas with a low level of digital economy, greater smartphone access led to higher 
pesticide use intensity. In rural areas with a high digital economy level, smartphone access reduced pesticide use 
intensity. The study results show that reducing pesticide use intensity through digital technology is not a linear 
process but a complicated one that involves social and engineering integration, including an increase in access to 
smartphones, development of a regional digital economy, reconstruction of agricultural extension systems, and 
enhancement of the capacity of digital technology.   

1. Introduction 

Proper pesticide use is a challenging issue for many developing 

countries that attempt to modernize their agricultural economy 
(Enserink et al., 2013; Popp et al., 2013; Verger and Boobis, 2013; Wu 
et al., 2018; Xie et al., 2020; Zhang et al., 2015a). Pesticide overuse is 
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widely observed in those countries, such as China (Zhang et al., 2015a, 
2015b), Thailand (Grovermann et al., 2013), Kuwait (Jallow et al., 
2017), and Vietnam (Normile, 2013; Salazar and Rand, 2020). Pesticide 
overuse leads to environmental pollution (Hao and Yang, 2013), causes 
food safety concerns (Zhang et al., 2021), and increases human health 
risks (Enserink et al., 2013; Zhang et al., 2018; Möhring et al., 2020). 
Therefore, many technical supports and regulatory strategies have been 
introduced to reduce pesticide use intensity and promote the proper use 
of pesticides (Enserink et al., 2013; Normile, 2013; Möhring et al., 
2020). 

Digital technologies have been applied to transform agricultural 
systems and offer an opportunity for properly using pesticides in many 
developing countries. Digital agriculture integrating digital technology 
with agricultural production helps improve agricultural resource use 
efficiency and sustainability (Rotz et al., 2019; Clapp and Ruder, 2020). 
Digital technologies are integrated with automation technologies such 
as intelligent tractors, drones, and robots to implement variable rate 
applications that precisely deliver seeds, water, fertilizers, and pesti
cides and, therefore, significantly reduce the environmental impacts of 
agricultural production (Clapp and Ruder, 2020). Digital technologies 
also reduce the cost of tracking product origins, increase transparency, 
improve public trust on the value chain of agricultural products, and 
help promote environment-friendly production behaviors (Fabregas 
et al., 2019). Through mining big data on the Internet, digital technol
ogies improve farmers' communication, learning, and information 
sharing (Nyamba and Mlozi, 2012; Baumüller, 2018; Zhong et al., 
2023). In China, businesses, such as pesticide producers Bayer and 
Sinochem and drone manufacturers XAG technology and DJ- 
Innovations, are actively building online platforms to support farmers 
adopting new pesticide use technologies. 

As a digital technology, mobile phones play a key role in the digital 
transformation of agriculture (Min et al., 2020). Mobile phone tech
nology has become increasingly adopted to promote agricultural 
extension services in developing countries (Aker, 2011; Birke et al., 
2019; Cole and Fernando, 2021; Folitse et al., 2019; Janc et al., 2019). 
Mobile phones help disseminate product information and increase the 
adoption of the recommended agrochemical application rate by 22 % in 
sub-Saharan Africa and India (Fabregas et al., 2019). Mobile phones also 
connected the ICT revolution to the smallholder cotton farmers and 
helped increased the adoption of pesticide use recommendations and 
biological pest control methods through an innovative voice-based ICT 
advisory service in India (Cole and Fernando, 2021). In Uganda, where 
resources are scarce, mobile phones help farmers to access information 
on agricultural inputs including pesticides and increase the likelihood of 
using these inputs (Freeman and Qin, 2020). In Rwanda and Uganda, 
mass social media campaigns involving the use of mobile phones 
effectively improved farmers' awareness of pesticide risks and safety 
measures and boosted the adoption of environmentally safer alterna
tives to synthetic pesticides (Tambo et al., 2023). In Ecuador, mobile 
phone applications helped increase the adoption of low-toxicity pesti
cide products among the blackberry farmers (Carrión-Yaguana et al., 
2020). 

The impact of mobile phones on farmers' behaviors in agricultural 
input use is not uniform and has been highly affected by the develop
ment of the technology itself. Early mobile technology relied on text 
messages in the 2G era and pictures, graphics, voice messages in the 3G 
era. These traditional mobile technologies were not able to provide so
phisticated advice on agricultural practices or new technologies in many 
developing countries (Awuor and Otanga, 2019; Nakasone et al., 2014). 
The primary reason is that reading and interacting with text messages 
through mobile phones requires a high level of literacy that smallholder 
farmers do not have (Nakasone et al., 2014; Wyche and Steinfield, 
2015), and eventually leads to the problem of information overload 
(Awuor and Otanga, 2019). 

However, smartphone technology with video message functions in 
the 4G and 5G eras allows farmers with a limited literacy to obtain 

agricultural knowledge and information easily. Video information 
through smartphones helps farmers understand the advantages and 
disadvantages of new farm technologies, ensuring accurate application 
(Zheng and Ma, 2023). Empirical research shows that easily accessible 
videos through smartphones can deliver complex and rich knowledge 
and information on pesticides, increase farmers' understanding of pes
ticides, and help farmers make more informed decisions on pesticide use 
(Chowdhury et al., 2015). Many social media platforms allow some 
experienced farmers to be video content creators and become locally 
influential experts (Šūmane et al., 2018). Learning through videos al
lows farmers to integrate such information with their local experiences 
to update their knowledge and innovate their farming practices (Zossou 
et al., 2009). 

Although mobile phone technology, especially access to smart
phones, helps farmers increase their knowledge of pesticides and thus 
potentially reduce pesticide use, farmers in many developing countries 
still tend to apply more pesticides due to agricultural productivity 
concerns (Grovermann et al., 2013; Jallow et al., 2017; Salazar and 
Rand, 2020; Schreinemachers et al., 2020; Xie et al., 2020; Zhang et al., 
2015b, 2015a). Pesticide overuse was especially apparent in China, 
where the public agricultural extension system collapsed in 1980s 
(Zhang et al., 2015a). Without public agricultural extension services, 
pesticide sellers have become the primary source of information and 
knowledge on pesticides to farmers in China (Fan et al., 2015; Jin et al., 
2015). The profit motive often prompts sellers to oversell agricultural 
supplies through various tactics. Since farmers in China are generally 
less educated and poorly trained, frequent updates on pesticide varieties 
and even changes in packaging further exacerbate such information 
asymmetry between farmers and pesticide sellers (Jin et al., 2015). 
Motivated by profits, pesticide sellers often promote pesticide sales by 
overemphasizing the role of pesticides in agricultural production, 
resulting in excessive purchase and overuse of pesticides in China (Wang 
and Gu, 2013). Although mobile phones help farmers obtain market 
information about pesticides (Cole and Fernando, 2021; Freeman and 
Qin, 2020; Tambo et al., 2023), the same technology can also be used by 
pesticide sellers to directly market their products to farmers, which leads 
to pesticides overuse. A survey from farmers in China suggested that 
mobile phone technology, especially smartphone access, has a double- 
edged sword effect on pesticide use: smartphone access resulted in a 
33 % increase in pesticide expenditure among the farmers in the lowest 
20th quantile of the pesticide expenditure, and a 36–39 % reduction in 
pesticide expenditure among the farmers in the upper 60th and 80th 
quantiles of pesticide expenditure (Ma and Zheng, 2022). 

However, no study has yet attempted to systematically analyze the 
inherent cause of such a double-edged sword effect of mobile phone 
technology on pesticide use. This study aims to understand the under
lying impact of smartphone access on pesticide use in China. The hy
pothesis is that the development of a regional digital economy where 
mobile phones operate significantly impacts how smartphone access 
affects pesticide use. Digital learning through smartphones relies on the 
smooth operation of a local digital network characterized by an excel
lent digital infrastructure, a large population of internet users, and 
active content creation. For example, the expansion of regional mobile 
phone coverage induces farmers' market participation (Muto and 
Yamano, 2009) and increases the provision of agricultural extension 
services (Aker, 2011). Without the support of a well-developed local 
digital network, smartphones are no better than traditional feature 
phones, and therefore, farmers with smartphones cannot reap the ben
efits of digital learning. For example, in extremely remote rural com
munities in Papua, Indonesia, smartphones were mainly used for calls 
and text messages (Heimerl et al., 2015). 

Based on longitudinal survey data on rural households in China, this 
study assesses how smartphone access and the development of the 
regional digital economy jointly affect farmers' decisions on pesticide 
use, which explains the double-edged sword effect of smartphone access 
on pesticide use among Chinese farmers. As a developing country where 
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smartphones are widely used, China provides an interesting example to 
understand the impacts of smartphones and mobile technology on 
pesticide use in agriculture. Like many other developing countries in 
South Asia and Africa, agriculture in China is still dominated by small
holder farmers. Therefore, the findings on the impact of smartphones on 
pesticide use in China can help developing countries to develop effective 
policies and strategies to properly use pesticides and other 
agrochemicals. 

2. Research background 

2.1. Pesticide overuse in China 

In traditional agriculture in China, farmers rely on intensive culti
vation techniques such as timely planting and harvesting, weeding, and 
deep plowing to physically prevent and control plant diseases and pests 
(Wen, 2016). Despite the fast growth of the “green revolution” in 
Western developed countries and other parts of the world, China limited 
manufacturing capacity and use of synthetic fertilizers and pesticides 
until the 1980s (Pan et al., 2020). Agrochemicals, including fertilizers 
and pesticides, grew in popularity in the middle of the 1980s for two 
reasons. First, China began to implement its “open door” policies to 
foreign technology and investment, significantly increasing the capacity 
of manufacturing and supplying agrochemicals in China. Second, China 
widely implemented the Rural Household Contract System to grant 
farmers nearly complete freedom to conduct their agricultural opera
tions, which gave farmers the freedom to use agrochemicals to increase 
crop yields and farm income. 

Fig. 1a presents the total amount of pesticide usage (the left axis) and 
the pesticide use intensity on the sown area of crops in China from 1991 
to 2021. The total pesticide use in China increased from 0.77 million 
tons in 1991 to 1.32 million tons in 1999, a nearly 73 % increase. The 
total pesticide usage dropped slightly in 2000, and resumed steady 
growth in 2001, reaching its peak of 1.81 million tons in 2013. The 
intensity of pesticide use in China experienced similar changes over that 
period and reached its peak level of 11.14 kg/ha in 2013. The fast 
growth in pesticide use has become a significant concern in China. The 
Chinese government began to take a series of actions to reduce pesticide 
use in 2010. The Chinese Ministry of Agriculture issued the Action Plan 
on Agricultural Crop Pest Control and Disease Prevention in 2010 to 
prevent crop diseases and control crop damage while reducing pesticide 
use and enhancing agricultural product safety. The Central Government 
in China subsequently issued its pesticide reduction policy in the 14th 
Five-Year Plan for National Economic and Social Development of the 
People's Republic of China and the Outlook of the 2035 Long-term 
Development Goals. These policy changes on pesticide use and their 
implementation had impacts. As shown in Fig. 1a, both the total pesti
cide usage and the intensity of pesticide use declined steadily after 2013, 
and lowered to 1.24 million tons and 7.35 kg/ha, respectively, in 2021. 

Fig. 1b compares the intensity of pesticide use measured by the ratio 
of the average weight of active ingredients per unit of farmland in kg/ha 
in China to the world from 1990 to 2021, based on data from FAO.1 

From 1990 to 1992, the intensity of pesticide use in China was lower 
than the world average, as the ratio was less than one. However, from 
1993 to 2018, the intensity of pesticide use in China increased signifi
cantly and surpassed the world average level. The peak was in 2009 
when the intensity of pesticide use in China was approximately 1.36 
times the world average. The intensity of pesticide use in China started 
to drop below the world average in 2019. 

2.2. The growth of mobile communication in China 

China launched its first commercial service of the first-generation 
analog mobile communication system (1G) in 1987. Over the next 35 
years, China has steadily upgraded its mobile communication system 
from 1G to 5G and currently owns the largest 5G network in the world. 
According to the China Ministry of Industry and Information Technol
ogy, China had 475 million 5G mobile phone users, which accounted for 
>70 % of the global 5G network users by July 2022. China operates 1.97 
million 5G base stations, accounting for over 60 % of the active 5G base 
stations worldwide. The growth of mobile communication in the past 35 
years in China is further evidenced by a sharp rise in mobile phone 
penetration rate, a swift conversion to smartphones, and a steady in
crease in mobile internet speed. 

Fig. 2a shows the penetration rates, i. e., the number of phones per 
100 people, of hardline phones and mobile phones in China from 2000 
to 2021. Over the 20 years, the mobile phone penetration rate had risen 
from 6.7 to 116.3, while the penetration rate for the hardline phones 
increased from 12.4 in 2000 to 28.1 in 2006 and then decreased to 12.8 
in 2021. By the end of 2021, there were 1.82 billion telephone users in 
China, including 1.64 billion mobile phone users and only 181 million 
hardline phone users. 

Fig. 2b shows the growth of smartphones with 3G/4G services in 
China from 2010 to 2018 in terms of the number of phone users, the 
ratio of the smartphone users among all mobile phone users, and the 
ratio of the number of 3G/4G base stations among all mobile base sta
tions. The number of 3G/4G users was only 47.05 million, accounting 
for 5.5 % of the total mobile phone users in 2010. It grew to 1.3 billion in 
2018, i. e., 83.4 % of mobile phone users. The number of 3G/4G base 
stations accounted for 32.8 % of all base stations in 2010 and had grown 
to 75.5 % by 2018. 

As a result, the number of mobile internet users has also grown 
rapidly in China. According to the China Internet Network Information 
Center, the number of mobile internet users in China grew from 50.4 
million in 2007 to 1.03 billion in 2021, corresponding to 24 % of the 
total internet users in 2007 and 99.7 % in 2021. In other words, 
smartphones have become essential for people in China who want to 
access the Internet. 

The speed of downloading and uploading mobile Internet has also 
increased rapidly. Fig. 2c presents the average downloading speed of the 
4G network from 2016 Q3 to 2021 Q4. Mobile internet speed has sky
rocketed since the launch of the 5G network in China. According to the 
China Information and Communication Academy, the average down
loading speed for 5G users in China was 341.2 Mbps, and the average 
uploading speed was 71.98 Mbps in 2022, among the world's fastest 
mobile networks. Mobile smartphones are predominantly used for 
instant messaging, video sharing, and watching short movies. 

Despite the staggering growth of mobile communication in China, 
China's rural regions are lagging. According to the China Internet 
Network Information Center, the internet penetration rate was 58.8 % in 
the rural regions and 82.9 % in urban and urbanizing regions in China in 
2022. The internet speed in rural regions is far slower than in urban and 
urbanized regions. 

3. Method 

3.1. Data 

This research uses the longitudinal survey data from the Chinese 
Family Database (CFD) at Zhejiang University and the China Household 
Finance Survey (CHFS) conducted by the Survey and Research Center 
for China Household Finance at China Southwestern University of 
Finance and Economics (SWUFE). The CFD survey adopted a three- 
stratified probability proportion to size (PPS) sampling approach to 
select its household samples for the longitudinal survey (Wu et al., 
2018). The selected samples include households from 29 provinces, 

1 Source: FAO. Pesticides Use. FAOSTAT, URL. https://www.fao. 
org/faostat/zh/#data/RP 
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autonomous regions, and metropolitan areas directly under the control 
of the central government in China. Through scientific sampling, mod
ern survey techniques, and rigorous survey management, the longitu
dinal surveys aim to collect high-quality micro information on Chinese 
families to conduct in-depth research on various issues related to Chi
nese families. Among them, the 2015 data involved a rural sample of 
22,535 households; The 2017 data involved a rural sample of 24,764 
households; The 2019 data involved a rural sample of 21,815 house
holds. This study extracted all rural household samples growing staple 
food and/or cash crops from the CFD database, which included 5054 in 
2015, 9142 in 2017, and 8757 in 2019. We use these three rounds of 

survey data to form a non-equilibrium panel data. The CFD survey 
contains the essential information on farmers' farming operations, 
including pesticide use and the information on mobile phones, the 
Internet, and other digital technologies, and is used in this study. 

3.2. Variables 

3.2.1. Dependent variable 
This study uses pesticide use intensity as the dependent variable. The 

quantity and expenditure of pesticides applied per unit area can be used 
to define pesticide use intensity, but the CFD survey only reported the 

Fig. 1. Pesticide use intensity comparisons in China and the World.  

Fig. 2. The mobile communication infrastructure growth patterns in China.  
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quantity of pesticide applied in 2015, and not in other years. Therefore, 
we define the pesticide use intensity as the ratio of the total pesticide 
expenditure to the sown area following other similar studies (Zhu and 
Wang, 2021). This study takes the logarithmic value of the average 
pesticide expenditure to reduce the impacts of those extreme values on 
the results. 

3.2.2. Variables of interest 
This study includes two independent variables as the variables of 

interest. The first is access to the smartphone. Farmers in China mainly 
access digital technology services through mobile Internet and smart
phones. The CFD contains specific questions on the use of mobile phones 
among farmers, including the specific types of mobile phones being 
used. Following the similar studies (Khan et al., 2022; Ma and Zheng, 
2022), this study uses a dummy variable to indicate farmers' smartphone 
access: one if using a smartphone and zero otherwise. The second is the 
digital economy index (DEI), which measures regional differences in the 
development in digital economy in China. DEI is derived from five in
dicators: internet penetration rate, internet-related employment, 
internet-related economic output, mobile internet users, and digital in
clusive finance index. China National Bureau of Statistics compiles the 
first four indicators, and the last one is jointly compiled by the Digital 
Finance Research Center of Peking University and the Ant Financial 
Services Group. The five indicators were further standardized and 
aggregated to calculate the composite DEI of all 30 provinces, autono
mous regions, and metropolitans under the control of the Central Gov
ernment following Zhao et al. (2020). 

3.2.3. Control variables 
The control variables include the characteristics of rural households, 

villages, and farmland that potentially affect farmers' decisions on 
pesticide use. The control variables on the rural household include 
farmers' age (Al Zadjali et al., 2014; Huang et al., 2020; Zhou and Jin, 
2009), gender (Atreya, 2007; Wang et al., 2017), education (Al Zadjali 
et al., 2014; Goodhue et al., 2010; Jallow et al., 2017; Zhou and Jin, 
2009), agricultural employment ratio (Hedlund et al., 2020), whether 
the household has any agricultural loan (Rahman, 2003), and received 
any agricultural guidance (Huang et al., 2021), and production for self- 
consumption (Sharifzadeh et al., 2019). The control variables for the 
village include per-capita income (Li et al., 2023)2 and the distance of 
the village to the nearest market (Huang et al., 2020). The control var
iables on farmlands include the total sown area (Wu et al., 2018), 
planting structure (the ratio of the sown area for food crops) (Rahman, 
2016), and land ownership (farmland certification) (Migheli, 2017). The 
study also contains the control variables on the household and year fixed 
effect being surveyed using dummy variables. 

Table 1 presents detailed information on those variables, including 
the variable type, variable name, relevant survey questions, and calcu
lating specifications and relevant references for using the variables. 

3.3. Fixed effect models 

Following Greene (2003) and Wooldridge (2010), this study applies 
a two-way fixed effect model to assess the effect of smartphone access on 
pesticide use intensity in China. The two-way fixed effect model was 
used in other studies using the same database being used in this study 
(Fan et al., 2023; Zheng et al., 2023a, 2023b; Zhu and Wang, 2021). 
Model 1, specified as Eq. (1), considers only the impact of smartphone 
access on pesticide use intensity: 

Table 1 
Description of variable indicators.  

Variable category and name Questions in the 
CFD Surveys 

Variable 
specification 

References 

Dependent 
variable 

Pesticide use 
intensity 

How much did 
your family 
spend on 
pesticides 
(yuan)? What is 
your family's 
sown area for 
staple food and 
cash crops? 

Ln (pesticide 
expenditure / 
the sown 
area + 1) 

(Ma and 
Zheng, 
2022; Wu 
et al., 2018) 

Independent 
variable 

Smartphone What kind of 
mobile phone 
are you using 
now? (1. 
Smartphone; 2. 
Non- 
smartphone; 3. 
No cell phone) 

One if “1” is 
selected, and 
zero 
otherwise 

(Khan et al., 
2022; Ma 
and Zheng, 
2022) 

Digital 
economy 
index 

As described in 
the text 

In the range 
between 
0 and 1 

(Zhao et al., 
2020) 

Control 
variable 

Age The year of 
birth of the 
farmers 
interviewed 

The year in 
which the 
survey was 
conducted 
minus the 
year of birth 
of the farmer 
interviewed 

(L. Fan 
et al., 2015; 
Pan et al., 
2021;  
Zheng 
et al., 2021; 
Zhou and 
Jin, 2009) 

Education What is the 
literacy level of 
the farmers 
interviewed?? 
1. Never went 
to school; 2. 
Primary school; 
3. Junior high 
school; 4. High 
school; 5. 
Technical 
secondary 
school; 6. 
Junior college; 
7. Bachelors; 8. 
Masters; 9. Ph. 
D. s 

The actual 
years of 
education for 
options 1–9 
are assigned 
0, 6, 9, 12, 9, 
12, 16, 19, 
and 23 

Gender The gender of 
the farmers 
interviewed 

Select one for 
female, zero 
otherwise 

Ratio of 
agricultural 
employment 

How many 
members of 
your family are 
engaged in 
agricultural 
production and 
operation? 

The number 
of farm 
laborers/ the 
workforce 
size 

Ratio of 
staple food 
crops 

What are the 
sown areas for 
staple food 
crops? 

The sown 
area for staple 
food crops/ 
the total sown 
area of crops 

Agricultural 
loan 

Does your 
family have 
outstanding 
bank loans for 
agricultural 
operations? (1. 
Yes; 2. No) 

One if “1” is 
selected, zero 
otherwise 

Farmland 
Certification 

Does your 
farmland have a 
rural land 
contract right 
certificate? 

One if “1” is 
selected, zero 
otherwise 

(continued on next page) 

2 The existing literature mainly discussed the relationship between household 
income level and pesticide application. However, given the endogeneity of 
household income, we controlled the village's annual per capita income as an 
alternative. This variable is a higher-level variable that helps reduce the 
endogeneity. 
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yit = α + β1x1it + γZit + μi + νt + εit (1)  

where i is the index for the farmers being surveyed, t indicates the year 
when the survey was conducted, yit is the pesticide use intensity for 
farmer i in year t, x1it indicates whether farmer i uses a smartphone in 
year t, Zit is a vector of all control variables for farmer i in year t, α is the 
intercept, β1 is the regression coefficient for the independent variable 
x1it, and γ is a vector of coefficients for the control variable vector Zit ,

and μi is the household fixed effect, and νt is the time-fixed effect and ϵit 
is the residual term. The coefficient β1 Eq. (1) indicates whether farmers' 
smartphone access impacts pesticide use intensity. 

As discussed previously, smartphones rely on the availability and 
efficiency of the digital network to have the expected impacts on 
farmers' behavior change on pesticide application. We also introduce the 
DEI as an independent variable in the analysis to assess such effects. 
Model 2 considers the impacts of DEI by directly adding the DEI as an 
independent variable as specified in Eq. (2): 

yit = α + β1x1it + β2x2it + γZit + μi + νt + εit (2)  

where x2it is the provincial DEI where farmer i is located in year t, β2 is 
the regression coefficient for independent variable x2it and indicates if 
the regional development of the digital economy impacts the pesticide 
use intensity. Other variables are previously defined. 

Model 3 considers the compounding impacts of both independent 
variables by adding an interaction of the two independent variables to 
Model (2) and is specified as follows in Eq. (3): 

yit = α + β1x1it + β2x2it + β3x1itx2it + γZit + μi + νt + εit (3)  

where β3 is the regression coefficient for the newly created interaction 
term x1it x2it and indicates the compounding impacts of smartphone 
access and the regional development of the digital economy on the 
pesticide use intensity, and other variables are previously defined. 

3.4. Endogeneity test 

The fixed effects model is subject to some endogeneity concerns 
because of the potential reverse causal relationship between smartphone 
access and pesticide use intensity and potential omission of other critical 
control factors in our model specification. We tried to address potential 
endogeneity concerns by incorporating an instrumental variable in our 
models. Following Evans et al. (1992), we introduced an instrumental 
variables at a higher aggregate level to our models to address the 
endogeneity concerns. We select the smartphone usage rate in the 
village level as the instrumental variable for smartphone usage. This 
usage rate is the result of excluding the sample itself. The smartphone 
rate in the area reflects the prevalence of digital technology applica
tions. Under the influence of neighborhood effects, individuals in the 
areas with higher smartphone rates are more likely to access smart
phones, thereby meeting the requirement of instrumental variable 
relevance. However, the smartphone usage rate in a village does not 
affect individual decision on pesticide use, satisfying the requirement of 
instrumental variable exogeneity. 

4. Results 

4.1. Descriptive statistics of all variables 

In this study, we restricted the age of the surveyed farmers to 16 to 
80 years, as farmers who were too young or too old could not make their 
own decisions. To reduce measurement error, following Wu et al. 
(2018), we excluded households spending less than one yuan (RMB) on 
pesticide inputs per mu of sown area in any given year and/or did not 
report any sown area. Table 2 shows the descriptive statistics of all 
variables used in the study based on the combined rural household 
samples in 2015, 2017, and 2019. The household expenditure on 
pesticide use per hectare of sow area in a year ranges from ￥15 to 
￥28,350. On average, a rural household uses ￥1440.17 per hectare of 
the sown area. The average smartphone value was 0.4071, indicating 
that 40.71 % of rural households use smartphones. The average digital 
Economy index is 0.3421 on a scale of 0 to 1. 

The use of mobile phones, especially smartphones, among the 
selected rural households steadily increased over the sampling period. 
Among all selected rural households in this study, only a small per
centage didn't have mobile phones, i.e., 3.8 % in 2015, 3.4 % in 2017, 
and 2.4 % in 2019, and the number gradually declined over the sampling 
periods. Among the selected rural households, 70 % used non- 
smartphones, and only 26.2 % used smartphones in 2015. The con
struction of 4G network base stations and the introduction and growth of 
4G smartphones accelerate the adoption among rural households after 
2015. The percentage of selected rural households using smartphones 
increased to 44 % in 2017 and 57.6 % in 2019, while the percentage 
using non-smartphones was decreased to 52.5 % in 2017 and 40 % in 
2019. 

Table 1 (continued ) 

Variable category and name Questions in the 
CFD Surveys 

Variable 
specification 

References 

Production 
for self- 
consumption 

What were the 
main uses of the 
agricultural 
products your 
family 
produced last 
year? 1. Direct 
sales; 2. 
Processed and 
sold; 3. For your 
use; 4. For your 
agricultural 
production; 5. 
Not yet 
produced; 6. To 
be sold; 7. 
Other. 

One if “3”, 
“4” is 
selected, zero 
otherwise 

Agricultural 
guidance 

Has your family 
received any 
technical 
guidance on 
agricultural 
production? (1. 
Yes; 2. No) 

One if “1” is 
selected, zero 
otherwise 

Total sown 
area 

What is the 
sown area for 
both staple food 
crops and cash 
crops? 

Ln (The total 
sown area +
1) 

Annual per 
capita 
income of the 
village 

What is the per 
capita 
disposable 
annual income 
of the residents 
in this 
community? 

ln (Per capita 
income of the 
village +1) 

Distance 
from market 

What is the 
distance from 
the village to 
the nearest 
farmers' market 
or free market? 

Ln (Distance 
from market 
+1), if the 
farmers' 
market or free 
market is in 
the village, 
the distance is 
0 

Household Household who 
was 
interviewed 

Dummy 
variable 

– 

Year The year when 
the survey was 
conducted 

Dummy 
variable  
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4.2. Fixed effect modeling results 

We further excluded the top 0.1 %, 0.5 %, 1 % or 5 % of households 
in pesticide use intensity and total sown area to eliminate the potential 
impacts of sampling outliers to run the fixed effect models. The results 
are consistent. Table 3 presents the modeling results for the fixed effect 
models excluding the top 1 % of households in pesticide use intensity 
and total sown area while the supplemental materials presents the re
sults excluding the top 0.1 %, 0.5 % and 5 % of households in pesticide 
use intensity and total sown area. Based on Model 1, the coefficient for 
the independent variable smartphones is 0.077 and statistically signifi
cant at a 90 % confidence level. This result indicates that smartphone 
access would increase pesticide use intensity. Following the calculation 
methods in Kennedy (1981), the estimated coefficient of 0.077 indicates 
that the average expenditure on pesticide use per ha is 7.9 %3 higher for 
rural households using smartphones than those not using smartphones, 
including non-smartphones and not having phones. The modeling re
sults from Model 2 confirm the findings from Model 1 on the significant 
and positive impacts of smartphone access on pesticide use intensity. 
The results from Model 2 also indicate that the reverse relationship 
between the digital economy index and the pesticide use intensity as the 
model coefficient for DEI is negative at a 95 % confidence level. 

As shown in the modeling results from Model 3, the coefficients for 
smartphone and DEI have the same signs as those from Models 1 and 2, 
but they are no longer statistically significant. However, the coefficient 
for the cross-multiplication term between smartphone and DEI, which 
indicates the compounding impacts of smartphone access and the 
development of the digital economy, is negative and statistically sig
nificant at a 99 % confidence level. In other words, smartphone access 
with a growing digital economy could lead to a decline in the intensity of 
pesticide use. 

Table 3 also shows the consistent impacts of all control variables 
across the three models. A higher ratio of agricultural employment and a 
larger scale of sown areas dedicated to staple food crops lead to higher 
pesticide use intensity, as indicated by their positive and statistically 

significant coefficients. The statistically positive coefficients indicate 
that carrying agricultural loans prompts farmers to increase pesticide 
use intensity. However, farmers who consume their own products tend 

Table 2 
Statistical description and analysis results of each variable.  

Variables Sample size Mean SD. Min Max 

Pesticide use intensity (Yuan⋅ha− 1)  10,255  1440.17  2667.85  15  28,350 
Pesticide use intensity (Yuan⋅ha− 1, logarithm)  10,255  6.4600  1.2291  2.7726  10.2524 
Smartphone  10,343  0.4071  0.4913  0  1 
Digital economy index  10,343  0.3421  0.0834  0.2332  0.7727 
Age  10,343  54.3781  11.3548  16  80 
Education  10,338  8.3405  4.5862  0  19 
Gender  10,343  0.6365  0.4810  0  1 
Ratio of agricultural employment  10,343  0.6133  0.3428  0  1 
Ratio of staple food crops  10,343  0.9253  0.1865  0  1 
Agricultural loan  10,327  0.0620  0.2411  0  1 
Farmland certification  10,343  0.6462  0.4782  0  1 
Production for self-consumption  10,301  0.4615  0.4985  0  1 
Agricultural guidance  10,337  0.0928  0.2901  0  1 
Total sown area (ha)  10,274  0.7363  1.0735  0.0007  10.6667 
Total sown area (ha, logarithm)  10,274  0.4532  0.3892  0.0007  2.4567 
Annual per capita income of the village (Yuan)  10,160  9,815.179  8,751.374  0  60,000 
Annual per capita income of the village (Yuan, logarithm)  10,160  8.8151  0.9876  0  11.0021 
Distance from market (km)  9,065  4.9320  6.0219  0  60 
Distance from market (km, logarithm)  9,065  1.4300  0.8289  0  4.1109 
IV  10,213  0.4062  0.2520  0  1 

Note: The raw value minus the sample mean was used for regression analyses to avoid multicollinearity problems following Balli and Sørensen (2013). The sample size 
is obtained after excluding observations with missing values. 

Table 3 
The fixed effect modeling results excluding the top 1 % of households in pesti
cide use intensity, total sown area, and agricultural income per capita.  

Variables Model 1 Model 2 Model 3 

Smartphone 0.0770* 0.0787* − 0.0085 
(0.0412) (0.0412) (0.0518) 

Digital economy index (DEI)  − 3.4017** − 1.2794  
(1.6443) (1.8442) 

Smartphone * DEI   − 3.1269***   
(1.0853) 

Age 0.0000 − 0.0002 − 0.0003 
(0.0030) (0.0030) (0.0030) 

Education − 0.0006 − 0.0006 − 0.0004 
(0.0046) (0.0046) (0.0046) 

Gender 0.0184 0.0188 0.0141 
(0.0519) (0.0519) (0.0519) 

Ratio of agricultural employment 0.0494 0.0581 0.0577 
(0.0571) (0.0571) (0.0568) 

Ratio of staple food crops 0.4386*** 0.4328*** 0.4379*** 
(0.1120) (0.1114) (0.1111) 

Agricultural loan 0.0731 0.0696 0.0661 
(0.0795) (0.0795) (0.0795) 

Production for self-consumption − 0.0646 − 0.0673* − 0.0711* 
(0.0400) (0.0399) (0.0400) 

Farmland certification − 0.0507 − 0.0532 − 0.0572 
(0.0383) (0.0384) (0.0381) 

Agricultural guidance 0.0269 0.0271 0.0235 
(0.0554) (0.0554) (0.0551) 

Total sown area − 1.5150*** − 1.5125*** − 1.5118*** 
(0.1001) (0.1000) (0.1000)  
− 0.0277 − 0.0278 − 0.0285  
(0.0187) (0.0187) (0.0186) 

Distance from market − 0.0274 − 0.0252 − 0.0266 
(0.0195) (0.0197) (0.0196) 

Constant 7.1688*** 7.1011*** 7.1705***  
(0.2711) (0.2726) (0.2741) 

Household fixed effect Yes Yes Yes 
Year fixed effect Yes Yes Yes 
N 7998 7998 7998 
Adjusted R2 0.1787 0.1800 0.1824 
F 25.5976 24.3475 23.2594 

Note: Significance levels: * p < 0.1, ** p < 0.05, and *** p < 0.01. The sample 
size is obtained after excluding observations with missing values. 

3 The calculation formula is: g* = exp
(

ĉ − 1
2V̂(ĉ)

)

− 1.where g* is the rela

tive effect on pesticide use intensity of the presence of the factor represented by 
the smartphones, ĉ is the estimate of the regression coefficient, and V̂(ĉ) is the 
variance of ĉ. 
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to lower pesticide use intensity, as shown by significantly negative co
efficients at the 99 % confidence level. A larger scale of operation 
indicated by the total sown area leads to lower pesticide use intensity, as 
indicated by negative and statistically significant coefficients. The co
efficients for other control variables, including farmers' age, gender, 
years of education, farmland certification, the annual per capita income 
of the village, and distance from the market, don't significantly impact 
pesticide use intensity as their coefficients are not statistically 
significant. 

Based on the fixed effect results in Model 3, we also plot the inter
active impacts of smartphone access and the DEI on pesticide use in
tensity in Fig. 3, where the x-axis represents smartphone access and the 
y-axis represents the pesticide use intensity. Following Li and Sun 
(2017), these impacts were evaluated at the sample means of all control 
variables, and the high and low digital economy development levels 
were defined as the top and bottom 10 % DEI levels of the samples, 
respectively. As shown in Fig. 3, the pesticide use intensity for farmers 
with smartphone access is higher than for farmers without smartphone 
access under the low digital economy development scenario but higher 
under the high digital economy development scenario. Also, the in
tensity of pesticide use under the high digital economy development 
scenario is lower than under the low digital economy development 
scenario. The results in Fig. 3 confirm the double-edged sword effect of 
smartphone access on pesticide use intensity observed by several 
empirical studies in China. 

4.3. Endogeneity test results 

Table 4 presents the endogeneity test results using the panel data. We 
follow the mature method and perform the first stage estimation to test 
the correlation between the instrumental and endogenous variable 
(Wooldridge et al., 2016). Based on the first stage estimation, the co
efficient for the instrumental variable is 0.1331 and is statistically sig
nificant at a 99 % confidence level. This result indicates that the 
smartphone usage rate in the village would increase smartphone access 
and shows that the instrumental variable satisfies the requirement of 
correlation with the endogenous variable. 

The second stage confirms the findings on the significant and positive 
impacts of smartphone access on pesticide use intensity. According to 
previous literature (Stock and Yogo, 2002), we utilize the squared t- 
statistic of the regression coefficient for the instrumental variable from 
the first-stage regression, denoted as the F-value, to determine whether 
there is a weak instrument problem. The results indicate that the F-value 
is 11.297,4 which exceeds 10, suggesting that this study has no weak 
instrument problem. 

5. Discussion 

The understanding of the impacts of smartphone access on pesticide 
use intensity has been paradoxical. Some research argued that the 
integration of smartphones into agricultural production and manage
ment allows farmers to access agricultural knowledge and product in
formation to develop smart and precision agriculture and offers 
opportunities to properly use pesticides and achieve pesticide reduction 
goals (Rotz et al., 2019; Clapp and Ruder, 2020). However, some 
empirical studies found that smartphone access did not reduce but, in 
some cases, even increased pesticide use intensity (Ma and Zheng, 
2022). 

Our empirical assessment results explain such a paradox. Overall, 
smartphone access hasn't helped reduce pesticide use in China yet: rural 
households with smartphone access had 8 % higher pesticide use 

intensity than those without smartphone access. Our findings suggest 
that not only smartphone access but also the development in digital 
economy significantly affects the intensity of pesticide use. Smartphone 
access in the regions with a higher level of development in digital 
economy helps lower the pesticide use intensity in China. The overall 
increase in the intensity of pesticide use associated with smartphone 
access in China was primarily due to the significant increases in pesti
cide use intensity in those regions with lower levels of development in 
digital economy. The results are robust, as the regression coefficients 
from the fixed effect models are fairly consistent. 

Empirical results indicate that smartphone access must be accom
panied by a high level of development in digital economy to reduce 
farmers' pesticide use. However, the regions with a low development 
level of digital economy in China generally have insufficient digital 
infrastructure, which results in poor network communication, weak 
network signal coverage, slow network speed, and nearly no existence of 
content creation and other supporting services. Without the public 
agricultural extension services, pesticide sellers have been the primary 
source for most farmers to gain pesticide product information and 
application knowledge in China (Fan et al., 2015; Jin et al., 2015). 
Because of the lack of digital infrastructure, the farmers with smart
phone access still mainly obtain information through phone calls and 
SMS text messages, as in the case of Papua, Indonesia (Heimerl et al., 
2015). The CFD also shows that households with smartphone access are 
financially better off and socially better connected than those without 
smartphones. Therefore, they are more willing and able to take risks and 
increase pesticide use intensity. 

However, in regions with a high level of development in digital 
economy, smartphones are a new tool in agricultural operations and 
profoundly impact agricultural productivity. Farmers can rely on 
smartphones to independently search and access online information on 
resources and products related to agricultural production. Diverse forms 
of information such as text, pictures, voice, and video also help farmers 
break through many traditional barriers imposed by limited education, 
lack of social connections, and spatial isolation to learn more about 
crops and pesticides so that they can more properly use the products to 
improve the efficiency of pesticide use and, in many cases, reduce 
pesticide use. The flow of knowledge and information on social media 
then stimulates the growth of local digital services and content creation 
in the rural areas in those regions. Many experienced farmers become 
content creators to share their experiences and knowledge of using 
pesticides through short videos, live broadcasts, online courses, and 
other means (Šūmane et al., 2018). Such localized content and services 
have been proven to be very effective in influencing farmers' decision in 
pest control and disease prevention (Carolan, 2022). 

The findings of this study have important implications for achieving 
China's pesticide reduction goals. First, smartphone access has a great 
potential to reduce the intensity of pesticide use; however, the potential 
can only be realized with the development of the local digital economy 
and the support of digital infrastructure. Therefore, to reduce the in
tensity of pesticide use, governmental policies should focus on 
increasing farmers' access to smartphones and other smart terminals 
such as tablets and investing in digital infrastructure to promote the 
development of the local digital economy. Second, after China decom
missioned its public agricultural extension system in the 1980s, agri
cultural resource suppliers essentially filled the void left by the public 
extension system and became the sole source of agricultural knowledge 
and product information for farmers who seek advice, which causes 
pesticide overuse in China (Wang and Gu, 2013). In this digital trans
formation era, Chinese governments must build the public digital agri
cultural extension system by investing in app development, content 
creation and network building to disseminate scientific knowledge on 
pesticides and their proper uses. The governments may also encourage 
more experienced farmers to get involved in media content creation and 
become technical experts in local digital communities to promote peer 
learning and knowledge sharing. Third, the farmers need to be trained 

4 The calculation formula is: F = t2 =

(
0.1331
0.0396

)2
= 11.297. 
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on how to use smartphones to access the necessary information since the 
general education level of the farmers is low in China. According to the 
China Internet Network Information Center, a lack of user skills, even 
the basic keyboard input skills, often prevents many rural residents from 
accessing and effectively using the Internet. 

6. Conclusion 

This study examines the relationship between smartphone access and 
pesticide use intensity among rural households in China based on the 
Zhejiang University Chinese Family Database in 2015, 2017, and 2019. 
The results show that smartphone access increased pesticide use in
tensity among the sampled rural households in China in those periods. 
However, the impacts were mediated by the level of development in 
regional digital economy and vary across different regions in China. In 
the regions with low levels of development in digital economy, smart
phone access intensifies pesticide use. However, in the regions with high 
levels of development in the digital economy, smartphone access helps 
reduce the intensity of pesticide use. Rural households in rural regions 
with a high level of development in digital economy can use smart
phones to access all different contents on pesticides and their proper use, 
develop knowledge on crop disease prevention and pest control, and 
ultimately reduce the pesticide use intensity. The study results demon
strate the potential of digital technologies, such as smartphone access, to 
reduce the intensity of pesticide use. However, substantial work is 
needed to realize such potential. This work includes developing regional 
and local digital infrastructure, rebuilding the public agricultural 
extension services, and foundational training on farmers to use 
smartphones. 
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Fig. 3. The impacts of digital economy development on pesticide use intensity.  

Table 4 
Endogeneity test results excluding the top 1 % of households in pesticide use 
intensity, total sown area, and agricultural income per capita.   

(1) (2) 

Smartphone Pesticide use intensity 

Smartphone  1.3570*  
(0.7327) 

Instrumental Variable 0.1331***  
(0.0396)  

Age − 0.0182*** 0.0235* 
(0.0013) (0.0137) 

Education 0.0057*** − 0.0075 
(0.0021) (0.0067) 

Gender 0.0446* − 0.0574 
(0.0228) (0.0657) 

Ratio of agricultural employment 0.0326 0.0158 
(0.0269) (0.0699) 

Ratio of staple food crops − 0.0114 0.4232*** 
(0.0444) (0.1096) 

Agricultural loan − 0.0055 0.0867 
(0.0344) (0.0847) 

Production for self-consumption − 0.0153 − 0.0457 
(0.0194) (0.0491) 

Farmland certification − 0.0131 − 0.0267 
(0.0174) (0.0441) 

Agricultural guidance 0.0288 − 0.0029 
(0.0265) (0.0682) 

Total sown area 0.0761** − 1.6134*** 
(0.0349) (0.1030) 

Annual per capita income of the village − 0.0052 − 0.0234 
(0.0088) (0.0219) 

Distance from market − 0.0018 − 0.0247  
(0.0094) (0.0231) 

Household fixed effect Yes Yes 
Year fixed effect Yes Yes 
N 7900 7900 
R2 0.2843 0.0805 
F 54.49 – 

Note: Significance levels: * p < 0.1, ** p < 0.05, and *** p < 0.01. The sample 
size is obtained after excluding observations with missing values. 
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