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SUMMARY

Detecting novelty is ethologically useful for an organism’s survival. Recent experiments characterize how
different types of novelty over timescales from seconds to weeks are reflected in the activity of excitatory
and inhibitory neuron types. Here, we introduce a learning mechanism, familiarity-modulated synapses
(FMSs), consisting of multiplicative modulations dependent on presynaptic or pre/postsynaptic neuron ac-
tivity. With FMSs, network responses that encode novelty emerge under unsupervised continual learning
and minimal connectivity constraints. Implementing FMSs within an experimentally constrained model of a
visual cortical circuit, we demonstrate the generalizability of FMSs by simultaneously fitting absolute, contex-
tual, and omission novelty effects. Our model also reproduces functional diversity within cell subpopulations,
leading to experimentally testable predictions about connectivity and synaptic dynamics that can produce
both population-level novelty responses and heterogeneous individual neuron signals. Altogether, our find-
ings demonstrate how simple plasticity mechanisms within a cortical circuit structure can produce qualita-
tively distinct and complex novelty responses.

INTRODUCTION

Brains of complex organisms contain internal representations of

the world that are shaped by stimuli they have become familiar

with over time. Since their environment can change rapidly, an

organism’s survival can be dependent upon its ability to quickly

identify novel stimuli. Indeed, over decades of study, effects of

stimulus novelty have been found throughout the brain and are

known to occur over many timescales1–5 These effects vary

from internal changes, such as promoting learning and memory,

to behavioral adjustments, including changes to perception,

attention, and exploration.2–4 Across sensory modalities and

species, novel stimuli are generally associated with an increased

response relative to their familiar counterparts.2,3 Such novelty

responses (or their inverse, familiarity-responses) have been

observed in cortical, subcortical, and neuromodulatory areas

of the brain at both an individual cell level6–9 and across macro-

scopic cell populations.10–12 Additionally, studies have distin-

guished responses to distinct types of novelty. For example, ab-

solute novelty, when an organism is exposed to a previously

unobserved stimulus,10,13 is distinguished from contextual (or

oddball) novelty, where a previously observed stimulus is novel

only in the context of recently observed stimuli that may also

occur from the omission of an expected stimulus.14–16

The mammalian neocortex is believed to play an especially

important role in modeling the world around us and thus how it

responds to these various types of novel stimuli is of great inter-

est.3 Within the cortex, what is believed to be a general purpose

disinhibitory circuit is repeated across different brain regions and

species, and many recent experimental studies have elucidated

the properties of the cells within this circuit.17–20 Specifically, the

structure of this cortical circuit is defined by connectivity be-

tween somatostatin (SST) and vasoactive/intestinal peptide

(VIP) expressing inhibitory interneurons as well as pyramidal

excitatory neurons.21 This circuit is thought to facilitate novelty

responses through mutual inhibition between the VIP and SST

populations that provides a disinhibitory pathway from VIP to

excitatory cells.22 Recent experimental studies have found that

novelty responses vary significantly across these distinct cell

populations.23,24 These studies suggest that the enhanced

response of VIP cells to novel stimuli suppresses the SST popu-

lation’s response, releasing the local excitatory population

from inhibition and leading to an increased excitatory novelty

response.

Although broad cell classes are a useful simplification to un-

derstand the function of the cortical circuit, each class can be

further divided into subclasses or types that differ in gene

expression patterns, synaptic connectivity, electrical properties,

and morphology.19,25–28 Indeed, within the excitatory, SST, and

VIP cell populations, subpopulations that have distinct feature-

coding across familiar and novel stimuli have been recently iden-

tified.23,24 Given these recent results, an open question is what
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biological mechanisms might allow populations to have such di-

versity in experience-dependent coding, and how this coding di-

versity relates to changes in the population’s macroscopic

response to novel stimuli.

Since the observation of the brain’s ability to rapidly detect

novel stimuli, computational models have been used to investi-

gate how the brain might distinguish familiar representations

and evoke distinct responses to unfamiliar stimuli.16,29,30

Many of these models rely on modifications of synaptic con-

nections to encode stimuli. For example, Hopfield networks

can encode familiar stimuli via lateral connections and are

capable of recalling said stimuli using recurrent activity.31 How-

ever, many of these computational models require carefully

placed synaptic connections to encode distinct memories32,33

or strict training and testing phases that do not reflect an or-

ganism’s natural behavior,32,34 both of which limit their ability

to be implemented into more general models. Additionally,

some models rely on complex non-local credit assignment

mechanisms that are biologically unrealistic to develop their

novelty responses.35,36

In this work, we introduce a mechanism that implements sim-

ple plasticity rules via synaptic modulations and is capable of

adapting to stimuli through biologically realistic local, unsuper-

vised learning. Broadly, it relies on modulating the synapses

that play a role in producing the output responses of familiar

stimuli, and as such we refer to the mechanism as familiarity-

modulated synapses (FMSs). A strength of FMSs is their

simplicity and thus generality; we show FMSs can broadly repre-

sent various synaptic plasticity effects that occur over different

timescales. We focused on parameterizing the FMSs such that

they represent biologically realistic plasticity mechanisms such

as long-term potentiation/depression (LTP/D)37,38 or short-term

synaptic plasticity (STSP).39 FMSs can be implemented on a

set of excitatory or inhibitory synapses feeding from one cell

population to another whose strengths and connections are

randomly drawn, meaning it requires essentially no specialized

architecture and is thus straightforward to implement into more

complex neural network models. The mechanism also requires

no specific training regimen, simply becoming adapted to stimuli

it has seen in recent history under continuous learning, similar to

how biological organisms learn.

We first establish properties of the FMSs in the simplest

possible feedforward setting. Afterward, we incorporate several

distinct FMS mechanisms into a model of the visual cortical cir-

cuit, with connectivity properties constrained from multi-patch

synaptic physiology studies,20 relative cell counts from in situ hy-

bridization experiments,17,18 and additional cell properties from

electrophysiology recordings.19 We demonstrate the generaliz-

ability of the FMSs bymodeling three distinct novelty effects: ab-

solute,10,13 contextual (oddball),14,15 and omission novelty.16

Although each of these novelty effects has been studied in isola-

tion, recent studies in the visual cortical circuit of mice investi-

gate how distinct cell populations respond to all three types of

novelty.23,24 The flexibility of FMSs allows for us to simulta-

neously capture the three novelty effects within our experimen-

tally constrained model of the cortical circuit, while also repro-

ducing the diverse subpopulation coding seen in the same

experiments.24

Related works
Many existing models of novelty detection rely on modifications

of synaptic connections in order to encode familiar stimuli, but

often require specialized connection architectures in order to

encode distinct memories,32,33 do not operate under a continual

learning setting,22,32,34,40,41 or rely on complex non-local credit

assignment,35,36,42 all of which the FMSs avoid. Lim et al.40

and Sukbin41 consider how a firing-rate dependent learning

rule, directly derived from passive and dimming-detection ex-

periments, can match time-averaged and time-dependent

responses. Feedforward adaptation as a means of repetition

suppression has been previously studied previously22,29,35,42–44

and is advantageous because it does not require convergence

to a steady-state or feedback-dependent activity to distinguish

stimuli.45 Novelty responses on an image change detection

task were reproduced using STSP-like synaptic modula-

tions.29,42 The specific form of the synaptic modulations used

in this work are an unsupervised version of those described in

Tyulmankov et al.35 and Aitkin and Mihalas36 that originated in

the learning-how-to-learn machine learning literature.46

Many other computational models of the visual cortical circuit

have been built to understand the individual cell population ef-

fects of disinhibition and how the circuit’s activity might change

over learning.18,22,47–54 While many models of cortical circuits

treat inhibitory interneurons as a unitary population,47,53 more

recent models have incorporated the diversity of interneuron

populations, including the VIP-SST-Excitatory disinhibitory cir-

cuit.18,22,48–52,54 Keller et al.51 studied and modeled the VIP-

SST-Exc. disinhibitory circuit in L2/3 of mice in the setting of

visual context modulation and found contextual modulation is

unlikely to be inherited from L4 and thus may rely on local cir-

cuitry. A computational model of the cortical circuit constrained

by electrophysiological studies that incorporates population

diversity and inhibitory plasticity was recently used to study pre-

diction errors in Hertäg and Sprekeler52 and Hertäg and Clo-

path.54 Although they also investigate how connectivity influ-

ences the development of neuron subpopulations, the training/

testing stimulus sequences are different from the ones we inves-

tigate here.

Setup: FMSs
In this work we consider networks of firing-rate, point-like excit-

atory, and inhibitory neurons that can influence one another

through synapses that we represent using weight matrices. Let

W represent a set of fixed synapses that connect a presynaptic

population of neurons to a postsynaptic population, with firing

rates at time t represented by the vectors xpret and ypostt , respec-

tively (Figure 1A, left). For example, the postsynaptic popula-

tion’s firing rates may be related to the presynaptic population’s

activity via ypostt = f
�
Wxpret

�
, where fð$ÞR0 is a nonlinear func-

tion that accounts for the postsynaptic neurons’ properties such

as their firing threshold andmaximumfiring rate.We takeW to be

sparse and, for simplicity, take the nonzero weights to be drawn

from a normal distribution. Furthermore, the sign of the nonzero

elements of W are fixed by the cell type of the presynaptic pop-

ulation: excitatory neurons only have positive-weight synapses

so that they increase postsynaptic potentials and inhibitory neu-

rons only have negative-weight synapses.
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We modify the fixed weights to be FMSs by taking

W / W+W 1 Mt; (Equation 1)

whereMt represents time-dependent modulations to the synap-

ses represented byW and1 is the element-wise product. In our

exemplar network, the relation between pre- and postsynaptic

activity would be ypostt = f
�ðW+W 1 MtÞxpret

�
(Figure 1A, right).

We investigate two distinct modulation mechanisms throughout

this work that determine how Mt evolves in time,

Mt = lMt�1 + hypostt ðxpre
t ÞT ; ðassociativeÞ ; (Equation 2a)

Mt = lMt�1 + h1ðxpre
t ÞT

. ffiffiffi
n

p
; ðpre� onlyÞ : (Equation 2b)

Both rules are completely unsupervised andmodulated based

on only information locally available to the synapse. The associa-

tive update, Equation 2A, is the more general modulation rule

dependent upon both the post- and presynaptic neuron firing

rates at time t (Figure 1B). The parameter 0< l< 1 controls how

quickly the modulations return to their baseline values, while

jhj determines the size of the updates. Importantly, the sign of

h controls the sign ofM and thus whether synapses are strength-

ened or weakened by the modulations, i.e., if their magnitude

increases or decreases, respectively. The pre-only modulation

update expression, Equation 2B, is only dependent on the pre-

synaptic firing rate, in which case the dependence on ypostt is re-

placed with 1, the all 1’s vector, and normalized by the square

root of the number of output neurons n.

Throughout this work, all W are fixed and thus the total syn-

apse strength is only modified through the Mt term. ‘‘Training’’

will refer to the time period where a network is exposed to certain

stimuli and its synapses are modified solely via the unsupervised

FMSs described above. Crucially, we do not allow the modula-

tions to change whether a synapse is excitatory or inhibitory,

i.e., if Wij R0 then Wij +WijMt;ij R0 for all time. For simplicity,

we also do not allow for new synapses to form, i.e., a synapse

that does not exist at initialization cannot be modulated.

Biologically, we envision the modulations as various mecha-

nisms leading to changes in the synapses that occur over varied

timescales and biological mechanisms. The associative mecha-

nism, Equation 2A, could broadly represent long timescale syn-

aptic changes resulting from LTP/D mechanisms. Long-term

potentiation or depression of said synapses can be implemented

by changing the sign of the learning rate, h. Meanwhile, themod-

ulations that are only presynapse-dependent, Equation 2B,

could represent faster modulation mechanisms such as STSP.

With these biological mechanisms in mind, we limit the size of

the modulations such that they do not exceed synaptic changes

that have been observed in the experiment (see STAR Methods

for additional details).

RESULTS

A simple, unsupervised, feedforward novelty-detector
To explore some basic properties of the FMSs, we first investi-

gate their effect in a simple feedforward network that we show

develops distinct responses to stimuli it has been exposed to

before, what we refer to as familiar stimuli throughout this

work. Many of the results we establish in the simple network

with a single FMSmechanism generalize to the visual cortical cir-

cuit model we discuss afterward in the section ‘‘Cortical micro-

circuit novelty response in a stimulus change task’’ with several

distinct FMS mechanisms.

We represent the neuronal encodings of stimuli using distinct

sparse random binary vectors (Figure 2A, STAR Methods). Prior

to training, we draw two sets of eight stimuli from this distribu-

tion. During training, the stimuli from what becomes the familiar

set will be exposed to the network while its weights undergo un-

supervised updates via an FMS mechanism. After training, we

compare the network’s response to the familiar set and the other

set that was held out during training, what we refer to as the novel

set. Noise is added to all input stimuli throughout this work (STAR

Methods).

The simple network consists of only two populations of neu-

rons, an excitatory input population and an arbitrary output

A B

Figure 1. Familiarity modulated synapses

(A) On the left, an exemple feedforward firing-rate network, where a population of (firing-rate) input neurons, xpre, influences a population of output neurons, ypost,

through a set of fixed synaptic connections,W. On the right, the fixed synaptic connections are modified to become familiarity modulated synapses (FMSs), i.e.,

W/W+W1 Mt , allowing each synapse’s strength to be modulated over time via the matrix Mt.

(B) The two types of modulations we consider in this work: (1) associative and (2) pre-only dependent. See Equation 2 for explicit expressions. For an associative

update rule, examples of how the behavior of neurons influences the way their synapses are modulated (see Figure S1A for equivalent pre-only diagram). In short,

the modulations will either strengthen ðh > 0Þ or weaken ðh < 0Þ the neuron connections if both the pre- and postsynaptic neuron are firing and a synaptic

connection already exists between said neurons.
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population (in this setup, cell type [excitatory versus inhibitory]

only influences the sign of weights leaving a population; since

the activity of the output neuron population is directly measured,

results here hold for either excitatory or inhibitory output neu-

rons; an excitatory input population was chosen for simplicity,

see STAR Methods for the equivalent setup with inhibitory neu-

rons as well) that are sparsely connected by synapses repre-

sented by the weight matrix W and with nonlinearity 4ð $Þ
providing the output population activity (Figure 2B). For brevity,

we refer to this network as the familiar modulated synapse

network (FMSN). Before training, the synapse strengths are

randomly initialized, but they are subject to modulations via an

FMS mechanism, represented by the matrix Mt. The two modu-

lation types of Equation 2 and the possibility of strengthening or

weakening synapses (i.e., the sign of h) gives four qualitatively

distinct FMSs. For the example we explicitly consider here, we

take the FMS’s modulations to be associative and weakening,

meaning a synapse/weight is weakened if both its pre- and post-

synaptic neurons are firing, e.g., it is LTD-like (Figure 2C). This

corresponds to updates via Equation 2a with h< 0. Equivalent

plots for the pre-only rule, e.g., STSP-like, and synapses that

are strengthened by the modulations, e.g., LTP-like, are pro-

vided in the supplemental figures (Figure S1). We will later return

to how these choices affect the results presented here.

The FMSN develops distinct responses to familiar and
novel stimuli
We use a training schedule where the FMSN is sequentially

passed stimuli from the familiar training set several times in a

random order. That is, at each time step, a stimulus is randomly

A B C

D E F G

Figure 2. Familiar modulated synapses in a simple network

(A–C) Schematic of network behavior and exposure to familiar set.

(A) The familiar (red) and novel (blue) sets of stimuli that excite the input neuron population are drawn from the same distribution, random sparse binary vectors

with added noise.

(B) We consider a simple two-layer network with FMSs connecting an excitatory input population to an output neuron population. At each time step, a randomly

chosen familiar stimulus excites the input population and, through themodulated synapses, causes the output population to fire in some pattern. For the example

considered in this figure, the associative modulations weaken any synapses that connect a pre- and postsynaptic neuron that both fired for the given familiar

stimulus, e.g., an effect that could arise from LTD.

(C) After training, many of the network’s synapses have been modulated, changing its output behavior. The familiar set’s mean output activity is reduced relative

to its pre-training activity. The post-training mean output activity of the novel set is relatively unchanged.

(D–G) Results from example network and training. In this example, there are eight familiar and eight novel stimuli. Each familiar stimulus has been input into the

network 10 times (shuffled order) for 80 training steps total.

(D) Example raw output response activity for a familiar (red) and novel (blue) stimulus pre- and post-training.

(E) Change in mean output activity of the familiar and novel sets over training. Mean output activity across each stimulus set (dark) and individual stimuli (light)

shown.

(F) Normalized mean row magnitude of the modulation term,W1Mt (purple), the unmodulated weight matrix, W (green), and total synaptic strength (green and

purple) over training. Mean (dark) and individual rows (light) shown.

(G) Change in important synapse magnitude for familiar and novel inputs as a function of training time (STAR Methods). See also Figure S1.
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drawn from the familiar set, noise is added to it, and it is input into

the network. After each pass through the network, the FMSs are

updated according to Equation 2a. For the example considered

here, each familiar stimulus is presented to the network 10 times,

for a total of 80 training steps. Post-training, we observe that the

familiar output activity is significantly suppressed relative to its

pre-training activity (Figure 2D). Comparatively, the novel output

activity changes little from the modulations, and so post-training

its activity is large relative to the familiar set. (To evaluate the

novel activity pre-training without it becoming ‘‘familiar’’ to the

network, we treat as we would a test set and do not modulate

the synapses from its activity via Equation 2a. The FMSN then

has no memory of being exposed to it. We emphasize this is

done solely for the sake of comparison to the familiar set and

is not a necessary step in training.) We can understand how

the network’s response changes during training by comparing

the output activity of the familiar and novel sets had we stopped

training after a certain number of familiar stimulus exposures.

Over the course of training, we see the network’s response to

all eight familiar stimuli quickly weakens while its response to

the eight stimuli of the novel set remains relatively unchanged

(Figure 2E). This happens concurrently with a growth in the

size of the synaptic modulations and, since the modulations in

this example are weakening, a smaller total synaptic magnitude

(Figure 2F). Eventually, the changes to the network stabilize as

additional examples continue to be presented. The reduction

of output activity for the familiar stimuli occurs concurrently

with a sparser response to the familiar stimuli over time as well

as decreased decodability of stimulus identity, consistent

with experimental results of familiarization (STAR Methods,

Figures S2A–S2C).23,24

Distinct ‘‘important synapses’’ lead to distinct
responses
What about the pattern of synapse modulation causing this sig-

nificant change in response for stimuli in the familiar set?

Although almost all synapses undergo some modulation during

training (a byproduct of the noise added to inputs), only a small

percentage are modulated significantly (Figure S2D). Intuitively,

a reason for the distinct output behavior could be that different

synapses have large contributions to the output activity formem-

bers of the familiar and novel sets, so changing a subset of them

only affects certain stimuli (Figure 2C). For a given stimulus, we

define its important synapses as those synapses that would be

modulated according to Equation 2a from passing the stimulus

through the network, before any training has occurred (STAR

Methods). With this definition, for the setup we consider here,

each (nonzero) synapse has an approximately 2:5% chance of

being an important synapse for a given stimulus. Prior to training,

we can check that the important synapses of distinct stimuli have

little overlap: a familiar and novel stimulus share on average only

0:14% of their important synapses. We can then track how the

update rule of Equation 2a affects the important synapses of

the familiar and novel sets differently. The total strength of the

important synapses of the familiar set changes drastically, while

those of the novel set remain relatively unchanged because of

the small overlap of important synapses (Figure 2E). It is the

greater weakening of important synapses associated to the

familiar stimuli, often bringing the neurons’ activity below firing

thresholds, that leads to their significantly smaller responses

relative to the novel stimuli.

The idea of targeted synaptic modulations as a means of en-

coding familiarity has been known for quite some time, most

famously in Hopfield networks.31 In the STAR Methods, we

argue the FMSN can be approximately viewed as a feedforward

Hopfield network, i.e., the weight modulations that encode the

memory of the familiar inputs are on feedforward synapses

and not lateral connections. A stimulus forward pass through

the FMSN is similar to measuring its energy in the equivalent

Hopfield network. Thus, familiar stimuli having a low mean

response is similar to them being low-energy states.

Synapsemodulations change responses to stimuli in the
subspace spanned by familiar stimuli
Since we draw the familiar and novel stimuli from the same dis-

tribution, between-stimulus correlations are relatively uniform

across all stimuli. How would the FMSN respond to a stimulus

that is more correlated with a familiar stimulus than the novel

stimuli? More generally, one may consider what characteristics

of stimuli determine how much they are suppressed by the

learned modulations.

In the STAR Methods, we argue that the approximate M

learned over the FMSN training causes any stimulus that lies in

the subspace spanned by the familiar set to have a decreased

response relative to its pre-training magnitude. (For this approx-

imation, we have assumed that all familiar inputs are presented

roughly the same number of times in a randomized order, as is

done for the FMSN training. For cases where familiar stimuli

are presented in an uneven manner, the network will respond

most weakly to inputs it has been exposed to themost and those

most recently presented, see the STAR Methods.) This includes

the familiar stimuli themselves but also their linear combinations

(Figure 3A). Furthermore, since any stimulus can be decom-

posed into parts that lie within and perpendicular to said sub-

space, the less any stimulus lies within this familiar subspace

the less its response will be suppressed by modulations

(Figures 3A and S3A). In other words, the more a stimulus is

correlated with the familiar inputs, the more its response will

be suppressed in the FMSN. Part of the success of the FMSN

we investigate here relies on the fact that the familiar subspace

is small relative to the full space of possible stimuli. Stimuli

randomly drawn from the distribution that are not exposed to

the network, e.g., the novel inputs, are likely to lie approximately

perpendicular to this subspace and thus have their response

relatively unchanged by training.

Learning and decay rates strongly influence magnitude
of modulation effects
For training, we have assumed that one stimulus is presented

at each time step and time steps are separated by some Dt

that could be a characteristic timescale of the input stimulus

sequence. Of course, biological effects such as STSP and

LTP/D can affect synapses over significantly different time-

scales. How can the FMSs be adjusted to account for such ef-

fects? To investigate this, it is useful to recast the FMS’s decay

rate, l, as decay timescale, tdecay = Dt=ð1 � lÞ. Modifying
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tdecay affects the time to saturation of the modulations, allowing

one to tune both the number of stimuli and time it takes to see the

modulations stabilize as well as their steady-state magnitude

(Figure 3B). Varying the size of the FMS’s other parameter, the

learning rate h, affects the size of the modulations and thus the

speed and magnitude of the FMSN’s change in response. For

large enough h, the modulations encounter the biological

bounds, which limit their growth in size (Figure 3B). Relatedly,

how long a given input influences the modulations, or, how

long the FMSN ‘‘remembers’’ a past stimulus, is also affected

by the decay timescale and learning rate (Figure 3C). A single

familiar input can influence responses for only a few time

steps or thousands, a fact that will play an important role later

on when we model novelty effects of significantly different

timescales.

The modulation learning rate can also influence how many ex-

posures to the familiar set are needed in order for the network to

develop distinct responses relative to the novel set. The larger

the modulations, the greater the change to the FMSN from a sin-

gle input stimulus, leading to distinct responses in a fewer num-

ber of stimulus presentations (Figure 3D). Notably, in the setup

we consider here, distinct responses can develop after just

one exposure to each familiar stimulus. Although large learning

rates can lead to quicker response changes, when one has noisy

input stimuli, a large learning rate causes the modulations to also

fit the noise. Indeed, for fixed training time, there exists optimal

learning rates for distinguishing the familiar and novel sets that

balance this trade-off between modulations that quickly capture

the stimulus signal but not the noise (Figure 3E).

What FMSN properties lead to significant differences in
familiar and novel responses?
So far, we have specifically considered the case of an FMS that

has associative updates that weaken the network’s excitatory

synapses. Of course, this covers a small subset of biological

mechanisms—there are synapse modulations that strengthen

connections, are only presynaptic dependent, and/or act on

inhibitory synapses. The FMSs of Equation 2 are general enough

to model all these cases.

Much of what we discussed above also holds for the presy-

napse-only updatemechanism of Equation 2b that also weakens

the excitatory synapses of the FMSN (Figure S1). However,

A B C D

E F G H

Figure 3. Additional properties of familiarity modulated synapses

(A) Cosine distance of stimuli to the subspace spanned by the familiar stimuli (‘‘familiar subspace’’) versus mean output from the FMSN. Gray dots show sparse

random binary vectors (STARMethods). Familiar stimuli (light red), their linear combinations (dark red), and the novel stimuli (blue) are highlighted. Gray line shows

linear regression fit.

(B) Growth of modulation magnitude while being repeatedly exposed to a single familiar stimulus as a function of tdecay = 1=ð1 � lÞ, in units of time steps, and h.

Dashed gray line shows maximum modulation strength imposed by biological constraints (STAR Methods).

(C) Decay of modulation magnitude after a single familiar stimulus exposure as function of l and h.

(D) Ability to distinguish output magnitude distributions of familiar and novel sets (KS-test p value) as a function of learning rate, h, and the number of times each

familiar stimulus has been exposed.

(E–H) KS-test to distinguish post-training output magnitude distributions of familiar and novel sets for the four types of modulations as a function of tdecay and h.

(E) FMSN with associative weakening modulations. The gray vertical line shows the timescale of the task, 80 time steps.

(F) Same as (E), for pre-only weakening modulations.

(G) Associative strengthening modulations.

(H) Pre-only strengthening modulations. See also Figures S2 and S3.
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because of its lack of postsynaptic dependence to pinpoint

which synapses to update, the pre-only weakening mechanism

is much more susceptible to noise. Too large of a learning rate

can overfit the noise and quickly cause all inputs to be sup-

pressed (Figure 3F). Surprisingly, we observe that distinguishing

the familiar and novel outputs using modulations that strengthen

the excitatory connections of the FMSN is significantly less

effective for both associative and pre-only dependent FMSs

(Figures 3G and 3H). Note that the strengthening of excitatory

synapses enhances the response of familiar stimuli relative

to their pre-training magnitudes (Figure S1B). We investigate

what causes the differences between the strengthening

and weakening FMSs in more detail in the STAR Methods

(Figures S3B–S3J). In short, we find two major contributions to

the relatively poorer performance of the strengthening mecha-

nisms: (1) tighter modulation bounds for strengthening imposed

by experiment and (2) neurons’ nonlinear behavior that causes

firing to cut off below certain potentials and saturate at higher po-

tentials, built into 4ð $Þ. The latter of these effects can be partially

overcome by considering an FMS that strengthens inhibitory

synapses.22 Stronger inhibition causes the output neurons’ re-

sponses to get smaller, a similar effect as the weakening of exci-

tation we found to be the most effective above (STAR Methods,

Figures S3B–S3J]).

There are many other properties of the FMSN that can be

explored that we only briefly touch upon here. For example, al-

lowing modulations to further weaken or strengthen synapses

beyond the bounds imposed by associating these modulations

with LTP/D and STSP leads to even larger differences between

the FMSN’s response to familiar and novel stimuli (Figures S2E

and S2F). Increasing the noise makes it harder for the FMS

mechanism to isolate the signal, making it more difficult to distin-

guish novel and familiar responses (Figure S2G). However, ef-

fects from noise can be overcome by exposing the network to

the familiar stimuli more times, giving it more observations to

isolate the signal. Increasing both the number of input and output

neurons also increases the distinguishability between the

familiar and novel sets (Figure S2H). Thoughwe leave a full inves-

tigation of FMS capacity for future work, we also see the FMSN is

capable of becoming familiar with much more than eight stimuli

while still having a distinct response to novel stimuli (Figures S2K

and S2L). Last, we can use the FMSN to predict the most effi-

cient coding of the sparse binary input vectors for distinguishing

the familiar and novel sets. Lower sparsity reduces the variance

in neuronal responses, and thus makes it easier to distinguish

familiar and novel inputs, but also increases the similarity of

any two stimuli because each one has more nonzero compo-

nents. Thus, optimal sparsity is not too high or low (Figure S2J).

Cortical microcircuit novelty response in a stimulus
change task
We now implement the FMSs in a visual cortical circuit model to

capture three distinct novelty responses recently observed in

mice while they perform an image change detection task.23,24

We note that the primary purpose of this model is to demon-

strate the flexibility of FMSs and their ability to simultaneously

produce three novelty effects observed in the VIP population

recordings,23,24 but do not attempt to constrain this as the

only types of plasticity that could lead to the experimentally

observed results.

Review of image change detection task and
measurement
The stimuli used in the experimental task consist of a set of eight

familiar training images and a held out set of eight novel images

(Figure 4A). The task consists of image presentations from these

sets at quick, regular intervals that are separated by a gray

screen (Figure 4B). The same image is presented several times

in a row before switching to another image within the set and

mice are rewarded for responding to the image change by licking

a waterspout. During this time, neuronal responses from the vi-

sual cortex are recorded in hour-long sessions using two-photon

calcium imaging. Mice are trained on what becomes a familiar

set of eight images and their neuronal responses are recorded

in a ‘‘familiar’’ imaging session after achieving a performance

threshold (Figure 4C). Shortly after, neuronal responses are

also gathered over multiple sessions when themice are exposed

to the same task using the novel set of eight images. The mice’s

initial exposure and exposure after at least one session to this

novel set of images are referred to as the ‘‘novel’’ and ‘‘novel-

plus’’ imaging sessions. Additionally, only during the imaging

sessions, image omissions can occur, i.e., gray screen is dis-

played in place of a single image presentation (Figure 4B).

The responses to various novelty effects are recorded across

several transgenic lines to capture excitatory, SST, and VIP pop-

ulation responses in the visual cortex. These cell populations

form the cortical microcircuit discussed in the introduction

whose connection probabilities and strengths have been care-

fully studied (Figure 4D). Experimental analyses show that the ef-

fects of novelty give rise to significantly different responses in

these three populations,23,24 which we discuss in more detail

below.

Cortical microcircuit model
Given that we have observed the FMSmechanism yields distinct

responses to familiar and novel stimuli, we built a model of the

cortical microcircuit to study if it can develop the several exper-

imentally observed novelty responses when exposed to stimulus

sequences similar to that of experiment. Our firing-rate model

consists of three groups of neurons, representing the SST, VIP,

and excitatory neuron populations (Figure 4E). (Parvalbumin

[PV] expressing inhibitory neurons is not included in our cortical

circuit model directly, though the inhibition it provides to the

other populations is partially accounted for from the threshold

adjustments at the model’s initialization [STAR Methods]. This

important simplification is driven by the desire to build a minimal

model of the data fromGarrett et al.,24 where excitatory, VIP, and

SST neurons were recorded and furthermore from the fact that

VIP cells do not receive strong input from the PV population [Fig-

ure S4A]. The blanket inhibition in our model is in part supported

by the general lack of specificity of PV to excitatory connec-

tions,55 though more recent evidence points to some levels of

specificity.56) The excitatory population receives inputs repre-

senting the bottom-up encoding of the raw stimulus sequence

while the VIP population receives inputs representing top-

down information about the history of the sequence (specifically
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the ‘‘timing’’ of recent stimuli and not image identity, see below

for additional details). We estimate connection properties be-

tween populations by aggregating results from several recent

experimental studies. Relative cell counts are estimated from

in situ hybridization experiments17,18 (STAR Methods). An esti-

mation of inter-population connection probabilities comes from

multi-patch synaptic physiology20 and the relative strength of

neuron connections between populations is estimated from the

same study, supplemented with additional cell dynamical prop-

erties from electrophysiology recordings19 (Figures 4F and 4G;

STAR Methods). In particular, fits of measured postsynaptic po-

tentials are used to estimate unmodulated, individual synapse

strengths as a function of the pre- and postsynaptic cell type

(Figure S4). Due to the unprecedented detail of recent experi-

ments,17–20 coupled with necessary corrections from the exper-

imental to the in vivo setting, we believe the ‘‘skeleton’’ of the

cortical circuit model represents one of the most accurate esti-

mates of this system to date.

We allow the connections in our microcircuit model to change

by introducing several FMS mechanisms into the synapses con-

necting the various populations of the network. Since it is

observed that the VIP cells drastically change their response

across all three types of novelty in the experiment,24 in this

work we focus on adding FMS mechanisms to capture their

A B C

D E F G

H I J

Figure 4. Image change task and visual cortical circuit: Experiment and model setup

(A–C) Experimental stimulus details.

(A) Example familiar and novel image sets (reproduced, with permissions from Garrett et al.24).

(B) Sample stimulus sequences showing an image change (top) and omission (bottom).

(C) Typical training/imaging schedule. Boxes represent sessions that occur on different days, each lasting an hour or two.

(D) Diagram of a subset of the visual cortical circuit showing the cell populations that were recorded in experiment.

(E) Diagram of the cortical circuit model we study in this work. The SST, VIP, and Exc. circles each represent populations of neurons connected by weights fixed

from experimental data.17,18,20 Three FMS mechanisms (purple), FMSA, FMSP, and FMSAH, are added to the network to model novelty responses. At each time

step, the network receives inputs representing an encoding of the ‘‘present stimulus’’ being shown (blue) as well as ‘‘stimulus history’’ information (red) in the form

of an encoding of the time since the last image presentation (STAR Methods).

(F) Many features of the cortical circuit model are fixed by experimental literature.17,18,20

(G) Mean inter-population connection strengths. Values from an exemplar model (top) and analytically computed values (bottom) are shown (STAR Methods).

(H–J) Model stimulus details.

(H) Exemplar familiar and novel stimuli sets, drawn from a sparse random binary vector distribution.

(I) Sample present stimulus sequences showing a stimulus change (top) and omission (bottom, STAR Methods).

(J) Model training scheduling consisting of training session on familiar stimuli, familiar ‘‘imaging’’ session, and then novel/novel-plus ‘‘imaging’’ sessions. At all

points of training and imaging, all FMSs are continuously updated via their unsupervised rules as stimuli are passed through the network. See also Figure S4.
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specific novelty responses. The purpose of focusing only on the

VIP response is to demonstrate how several FMS mechanisms

may collectively model distinct novelty responses within a single

population. We leave a complete modeling of the distinct cell

type responses and related plasticity mechanisms for future

work. To capture the VIP novelty responses, we add three sepa-

rate FMS mechanisms to the synapses onto the VIP neurons:

FMSA, FMSP, and FMSAH (Figure 4E).

(1) FMSA (Associative, Exc. / VIP) is added on the synap-

ses going from the excitatory to the VIP cells. Its learning

and decay rate (h and l) are tuned to learn and retain fa-

miliarity over a timescale of hours to days. Since it oper-

ates on a slow timescale and is pre- and postsynaptic

dependent, FMSA could model LTD-like effects on said

synapses.

(2) FMSP (Pre-only, Exc. / VIP) is also added to the set of

synapses between the excitatory and VIP populations,

but unlike FMSA it is tuned to learn and forget on a time-

scale of seconds. The fast timescale over which it oper-

ates and its presynaptic dependence makes FMSP a nat-

ural model for STSP-like effects on the synapses.

(3) FMSAH (Associative, Stimulus history / VIP) is added

to the synapses feeding into the VIP population from the

stimulus history input neurons (see below). Its learning

and decay rates are tuned to operate over long time-

scales, similar to the LTD-like FMSA.

Motivations for adding these particular modulations within the

circuit are discussed below.

Model ‘‘image’’ change stimulus
As we saw in the FMSN, modulations are entirely driven by the

stimuli being passed to the network, sowe reproduce the pattern

of stimuli from the image change detection experiment. To repre-

sent neuronal encodings of the images used in the experiment,

we again use random sparse binary vectors as the distinct stimuli

(Figure 4H). An ‘‘image’’ presentation is represented by a stim-

ulus encoding being passed to the network for several time steps

along with time-varying noise (Figure 4I). The image presentation

is followed by a proportional number of gray screen time steps,

where the network receives only noisy input (Figure 4I). This

pattern repeats with a similar distribution of image change times

used in the experiment (Figure S5A). Stimulus omissions are rep-

resented by additional gray screen time steps (Figure S5B). We

assume the excitatory population receives this bottom-up pre-

sent stimulus input and drives the other populations (Figure 4E).

Additionally, we assume the microcircuit receives top-down in-

puts representing information about the recent history of the

stimulus (STAR Methods, Figure S5C). In particular, the stimulus

history input is an encoding of the time since the last stimulus

presentation, with encodings of similar times more correlated

than disparate times. (The primary purpose of this input is to

give the microcircuit information about the recent stimulus his-

tory. A simple neuronal circuit that counts the time steps since

the last stimulus presentation, e.g., an RNN, could represent

the higher cortical areas that may produce this additional input

directly from the bottom-up present stimulus input.) This infor-

mation is passed directly to the VIP cells, which are known to

receive feedback inputs from higher cortical areas.8,20 Finally,

time-correlated noise is injected into all neuron populations to

represent activity from sources neglected in this model, e.g., ac-

tivity from behavior (STAR Methods, Figure S5D).

Similar to the training schedule used in the experiment, we first

expose the network to the familiar stimuli over a long training

session, then gather cell responses to the task using the familiar

set in what we continue to call an ‘‘imaging’’ session. Immedi-

ately afterward, we gather responses to the stimulus change

task using the novel stimulus set, and, after additional exposure

to the novel image set, gather the novel-plus responses (Fig-

ure 4J, STARMethods). The familiar, novel, and novel-plus imag-

ing session stimulus sequences are statistically identical. Impor-

tantly, the neuronal responses presented here are gathered in

a continuous learning setting, i.e., the network continues to

modulate its weights via FMSA, FMSP, and FMSAH at all steps

of training and imaging. We scan over three parameters, the

learning rates for all three FMS mechanisms, to determine mod-

ulation rates that best match experimental observations (STAR

Methods, Figure S5O). We emphasize that, other than minor ad-

justments to the network at initialization to ensure realistic re-

sponses, the cortical circuit model only undergoes unsupervised

adjustments via the various FMS mechanisms from exposure to

stimulus sequences that closely match the stimuli on which the

mice were trained (STAR Methods).

For the purposes of comparing our model to the experiment,

we first focus on three distinct novelty responses that our model

captures seen in mean VIP population responses of the experi-

mental data24: (1) absolute, (2) contextual, and (3) omission nov-

elty (see Figure S6 for SST and Exc.).

Absolute novelty: familiar modulation occurs despite

irregular stimulus sequence.

The change between the familiar and novel image sets repre-

sents absolute novelty—up until the novel imaging session the

mice have never observed the set of images now used in the im-

age change task. In both the experiment and our model, the VIP

cells respond weakly to image presentations in the session that

uses the familiar set relative to image presentations in the ses-

sion that uses the novel set (Figure 5A). As we confirm below,

for the cortical circuit model, the change in response is caused

by FMSA, the slow-learning FMS mechanism on the excitatory

to VIP synapses. FMSA functions almost identically to the

FMSN discussed earlier: over training, exposure to the familiar

stimuli causes the network to develop a suppressed response

to them relative to the novel stimuli (Figure 5B). The stimulus

sequence here is quite different from that of the FMSN: a single

stimulus is repeatedly input to the network and is often sepa-

rated by noisy gray screen. Additionally, the postsynaptic popu-

lation of FMSA, the VIP cells, receive input from several addi-

tional sources such as the SST population and the recurrent

VIP connections. Nevertheless, over the long familiar training

period, FMSA gradually modulates the important synapses of

the familiar set more than the novel set, leading to a distinct

response across sessions (Figure 5B). Notably, the additional

synaptic inputs and noise makemodulating only those synapses
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important for the familiar set more difficult, leading to a fair

amount of suppression to novel inputs as well. However, after

these changes stabilize, we still observe distinct responses to

the familiar and novel stimuli. Just like the FMSN, the change

in stimulus response occurs concurrently with a growth in the

modulations of FMSA over training and, since the modulations

are once again weakening, an overall decrease in the strength

of the synapses connecting the excitatory population to the

VIP population (Figure 5C).

To confirm that it is the modulations from FMSA that cause the

large difference in VIP response across the familiar and novel

sessions, we can isolate its effect by training identical microcir-

cuit models with different FMSA learning rates. Indeed we see

that, as we decrease (or increase) FMSA’s learning rate and

thus its modulation magnitude, the response of the VIP popula-

tion in the familiar sessions grows (or shrinks) as the overall

strength of the excitatory to VIP synapses changes (Figures 5D

and S7A). Once again there is a trade-off between modulations

A B C D

E F G

H I J K

Figure 5. FMSs implement three distinct novelty effects in a cortical circuit model

(A) Mean VIP responses to image changes of the cortical circuit model (solid colored line) and experiment (gray dotted line).24 Top shows mean response in the

familiar imaging session and bottom in the novel imaging session. Green-shaded background represents timewhere changed image is presented, yellow-shaded

is pre-change image.

(B–D) Absolute novelty and FMSA.

(B) Exemplar mean VIP image change responses to the familiar (red) and novel (blue) sets over training (STAR Methods).

(C) Change in FMSA (purple solid) and FMSP (purple dashed) modulations over training. Green dotted line shows fixed portion of excitatory to VIP synapses.

(D) Same as top of (A), for different FMSA learning rates (STAR Methods).

(E–G) Contextual novelty and FMSP.

(E) Normalized VIP responses around an image change event. Yellow is pre-change image, green is changed image.

(F) Same as (C) but zoomed in to show change in FMSP over an example image change.

(G) Same as bottom of (A), for different FMSP learning rates.

(H) Same as (A), for mean VIP response to image omission in a familiar session. Area between vertical dotted lines represents times where image would normally

be presented.

(I–K) Omission novelty and FMSAH.

(I) Change in VIP response to various encoded times over training. Red encoded times are seen during training, blue are times when omissions are present.

(J) Change in FMSAH (purple) modulations over training. Green dotted line shows fixed portion of stimulus history to VIP synapses.

(K) Same as (H), for different FMSAH learning rates. See also Figures S5–S7.
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with too large of a learning rate that suppresses all responses

and those with too small of a learning rate that suppresses none.

Contextual novelty: fast familiarization and forgetting

captures local oddball effects.

In the experimental task, image changes represent contextual

novelty—since images are repeatedly presented at least 10

times, when the image identity changes it represents a local

oddball and is contextually novel. In the novel session, we

observe an increased response of VIP cells to image changes

relative to the pre-change image in both our model and the

experimental data (Figure 5A, bottom). Although smaller, the ef-

fect is also present in the familiar session (Figure 5A, top).

Notably, this is a very different effect from the absolute novelty

we discussed above; it only takes seconds for mice to establish

an image as their baseline and this information is quickly updated

to the current image being presented.24 To model a novelty ef-

fect that learns and forgets quickly, FMSP is introduced. For

FMSP, the presynaptic-dependent modulations make the most

recent stimulus presentations become familiar, leading to

smaller VIP response on repeats of the same stimulus. An image

after a change is novel to FMSP, meaning the VIP response is

larger because it is not familiarity suppressed (Figure 5E). After

the change occurs, FMSP begins suppressing the important syn-

apses of the current stimulus, while those that were important for

the pre-change image are gradually released from suppression.

This rapid turnover is reflected in the significantly quicker growth

and decay of the FMSP modulations relative to those of FMSA

(Figure 5F). Finally, as we did for FMSA, we see that varying

the learning rate of FMSP isolates its effects on the cortical circuit

response. A weaker learning rate changes the relative heights of

the pre-change and post-change VIP responses because the im-

age that has been presented several times in a row is less sup-

pressed by modulations (Figures 5G and S7B).

The operation of both FMSA and FMSP on the excitatory to VIP

synapses demonstrates a remarkable property of the FMSs:

distinct types of modulations, e.g., slow and fast, can function

on the same set of synapses simultaneously. This matches

biology, where effects of LTP/D and STSP can affect the same

set of synapses. The distinct FMSs can encode different types

of novelty present in stimuli, allowing them to model the various

novelty responses that are observed in certain neuronal popula-

tions. This allows for a single synaptic population to affect the

postsynaptic population’s response in a way that compounds

the various novelty effects. For example, the largest responses

of the VIP cells occur when both absolute and contextual novelty

occurs, i.e., a novel image change, which is a result of the mini-

mal suppression from FMSA and FMSP simultaneously.

Omission novelty: a decrease in familiar correlation

causes omission ramping.

Due to the temporal structure of the task during training, im-

ages are expected to be separated by 500 ms of gray screen.

Omission novelty occurs when, instead of an image, additional

gray screen is displayed, representing a global oddball. We

observe a ramping response in the VIP cells of both the model

and experiment when images are omitted (Figure 5H). In the

model, this is a result of FMSAH, the FMS mechanism on the

stimulus history input synapses to the VIP cells. Recall that

the stimulus history signal is a neuronal encoding of the time

since the last stimulus presentation, where the encodings of

similar times aremore correlated than disparate times (Figure 5E,

STARMethods). Over training, FMSAH becomes familiar with en-

coded times-since-last-image that occur with no omissions,

suppressing the corresponding VIP responses to the stimulus

history signal. When omissions occur, longer-time encodings

are passed to the network and the familiarity suppression is

lost, leading to an increased response in VIP cells. The ramping

occurs because the longer-time encodings have a less corre-

lated representation to the familiar short-time encodings. That

is, similar to what was seen in the FMSN, the network has formed

a familiar subspace of the short-time encodings and the longer-

time encodings that gradually get farther from this subspace

cause a gradual increase in the VIP response (Figure 5I). The en-

coded times that are novel but still close to the encoded times

that are familiar, e.g., 510 ms, have their outputs quite sup-

pressed. The longer encoded times, e.g., 1,000ms, have outputs

barely suppressed at all. As with the other FMSs we’ve investi-

gated, this change in response occurs concurrently with a

gradual growth in the modulations on FMSAH’s synapses over

training (Figure 5J). Additionally, the size and time of onset of

the VIP ramping can be changed by adjusting the magnitude of

FMSAH’s learning rate (Figures 5K and S7C).

The omission novelty responses occurring concurrently with

the absolute and contextual demonstrates the ability to have

multiple inputs into the same postsynaptic cell population with

distinct synaptic dynamics. FMSA and FMSP operate on the

excitatory to VIP synapses, while FMSAH acts on the stimulus

history to VIP synapses and all three can produce their corre-

sponding novelty effect in the VIP cells when the corresponding

stimulus occurs.

Novel images become familiar with exposure over time
Although the novel image set is initially unfamiliar to themice and

evokes distinct novelty-related responses across cell popula-

tions, over many exposures one would expect the images to

gradually become familiar to the mice. Indeed, the enhanced

VIP response to the novel images persists throughout the entire

novel imaging session, but gradually disappears as the mice

become accustomed to the novel set over many sessions of

exposure.23,24 Since our model is evaluated in a continuous

learning setting, the FMS mechanisms are actively modulating

the network’s response, allowing it to also adapt to the novel

stimulus set over time in the same way it adapted to the familiar

set during training. Hence, our model also exhibits a gradual

change in response to the novel image set over sessions, even-

tually returning to a suppressed VIP response to novel set im-

ages in the novel-plus imaging session (Figure S6A, top right;

STAR Methods). In the experiment, even after being exposed

to the novel set of images, the familiar set of images still evoke

a response consistent with them being familiar stimuli.24 The

FMSA modulations decay slowly enough that the modulatory ef-

fects of both the familiar and novel images can persist simulta-

neously (Figure S5P). Additionally, as in the experiment, the im-

age omission response does not change considerably between
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the familiar and novel-plus sessions (Figure S6B, top right). (We

do not attempt to model the suppressed omission ramping that

is observed in the VIP population during the novel session that

gradually returns to familiar levels in the novel-plus session.24

See the discussion for potential mechanisms that can model

this effect.)

Cortical circuit model’s cell subpopulations have
diverse coding
Although the changes in mean response of our model’s cell pop-

ulations is dependent upon the behavior of individual cells within

these populations, we observe a significant variation in each

neuron’s response over both stimulus features and experience

level. Indeed, a key finding of Garrett et al.24 is the emergence

of functional cell subpopulations within the VIP, SST, and excit-

atory cell populations. Within each population, subpopulations

are identified with similar changes in coding features over expe-

rience level, asmeasured by a coding scoremetric that we briefly

review. To determine the coding score, each cell’s response is fit

using a kernel regression model.57–60 Several input features that

may influence a cell’s response, including image presentations,

image omissions, and task-relevant triggers such as image

changes, are convolved with fit kernels to reproduce the cell’s

activity (Figure 6A, top; STARMethods). To determine the impor-

tance of a given input feature category in explaining a cell’s ac-

tivity, the regression model is refit while omitting each category

and its corresponding kernel(s). The coding score of a cell to a

given feature category is defined as the relative amount of

variance explained that the regression model loses by removing

the feature category (Figure 6A, bottom; STAR Methods).

This procedure is repeated across the three distinct sessions/

experience levels for four feature categories, resulting in a

12-dimensional coding score vector for each cell. Last, the re-

sulting coding score vectors of a given cell type are collected

across mice and run through an unsupervised clustering algo-

rithm (Figure 6B, STAR Methods).24

We use the same analysis pipeline to analyze cell subpopula-

tion diversity in our cortical circuit model. We again focus on

investigating the VIP population’s activity in particular (Figure S8

for Exc. and SST). Since we have no explicit behavioral effects in

the network, we only code for three input feature categories: im-

age presentations, omissions, and changes (‘‘task’’). Repeating

the aforementioned fitting procedure to determine coding scores

and then clustering the data across 10 network initializations, we

again observe diverse coding across features and experience

levels in the VIP population (Figure 6C). Notably, the resulting

kernel fits of the cortical microcircuit qualitatively resemble the

fits on the experimental data (Figures 6D and S8). Membership

of the clusters is shared across the different networks, demon-

strating the diversity is not due to the different initialization pa-

rameters or training sequences (Figure S8F).

Many of the same subpopulationmotifs observed in the exper-

iment are also present in the microcircuit model.24 Although our

overall cell coding scores are larger, we observe subpopulations

that have very little coding to any feature or can be coded to one

or more features (STAR Methods). Several clusters of cells have

weak coding to images in the familiar session only to gain said

coding in later sessions and vice versa. As in the experiment,

since the VIP population responds more strongly to image

changes in the novel session, its average image coding score in-

creases relative to that in the familiar and novel-plus sessions

(Figure S8C, right). Nevertheless, there are many features of

the experimental VIP subpopulations that we do not observe in

our model: solely novel-plus image coded clusters, a clear over-

representation of novel image coding, and significantly less di-

versity in omission coding.

The FMS mechanisms we have inserted into our model

evidently affect cell diversity in addition to the mean responses.

Since the familiar and novel stimulus trains are statistically iden-

tical, without the FMS modulations, the coding scores would be

distributed across the two sessions evenly. That is, the fact that

the excitatory to VIP synapses are not as familiarity suppressed

by FMSA causesmany cells to become image-driven in the novel

session. The effects of the FMS modulations can also be seen in

the substantial difference in coding scores between the novel

and novel-plus sessions. Since these sessions are driven by

the same stimuli trains, there should be no statistical difference

in coding scores without changes in connection properties due

to modulations. There are several qualitative features of the

experimental data we do not capture that are outside the scope

of this work, e.g., clusters with experience-dependent omission

coding. In the discussion, we comment on how additional FMS

mechanisms could be added to the model to produce such

effects.

Cell-specific synapse properties strongly influence cell
coding
Having observed a diversity in VIP cell coding in the cortical cir-

cuit model, we analyzed what cell-specific network properties

may be responsible for the heterogeneous coding. The point-

like neurons in our model primarily differ in their connectivity

properties and how said connectivity is acted upon by the

FMS mechanisms. To determine what differences individual

VIP neurons may have that explain their diverse coding scores,

we take many cell-specific network properties and see how

well each of these correlates with either individual cell coding

scores or cluster-averaged coding scores (STAR Methods). For

example, if we plot the cluster-averaged novel image coding

scores as a function of the total synaptic input a VIP cell receives

from the excitatory to VIP synapses during the image presenta-

tions of a novel session, we observe a statistically significant

positive correlation (p = 0:002; Figure 6E). Since the amount

of input a given VIP cell receives is influenced by the heteroge-

neous synaptic connections and image encoding signals, this

quantity is different for each VIP cell and is evidently reflected

in the cell’s image coding scores. We repeat this procedure

across 16 cell-specific network properties of our cortical circuit

model and all nine coding score values (Figure S9). Additionally,

we analyze how said network properties vary as a function of

each VIP cluster (Figure S10).

Across all the cell-specific properties we consider, the

strength of the modulated excitatory to VIP synapses mentioned

above has the largest correlation with the novel image coding

scores (Figures 6F and S9). Similarly, if a given VIP cell happens

to have strong input from excitatory synapses during familiar im-

age presentations, it tends to have a larger familiar image coding
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score (Figure 6F). As might be expected, we see the amount of

input a cell receives in a familiar session has relatively little cor-

relation with the novel image coding score and vice versa. These

coding score correlations can be used to determine properties

that cells in a given cluster may share. For example, the clus-

ter-averaged excitatory input from the familiar and novel sets

roughly separates clusters into those that are familiar and/or

novel image coded across network initializations (Figure 6G).

Interestingly, the image coding scores for the familiar and

novel-plus sessions also have a strong correlation with how

much stimulus history input the cells receive (Figure S9). That

is, in the absence of significant within-layer excitatory input, a

result of FMSA’s suppression, the VIP cells that happen to

have strong synapses from stimulus history sources are the

most coded to images during the familiar and novel-plus ses-

sions. An important distinction about the stimulus history input

the VIP cells receive is that it is image-presentation-correlated

but is uniform across all images, up to effects from noise. This

lines upwith the experimental observation that VIP cells increase

image decodability during the novel session, but do not see a

significant increase in decodability during presentations of the

familiar and novel-plus sessions.24 Note that since these inputs

A B

C

D E F G H

Figure 6. Coding diversity in the cortical circuit model

(A) Kernel regression model: input features are convolved with learned kernels and summed to predict individual cell activity in a kernel regression model (STAR

Methods). Top: The cortical circuit model is driven by three primary feature categories: image presentations, omissions, and task-relevant image changes. The

experimental data share these same feature categories as well as behavioral effects.24 Bottom: Feature categories are removed one at a time and the kernel

regression model is refit to determine each feature’s contribution to a cell’s activity, summarized by the category’s coding score.

(B and C) VIP coding scores.

(B) Experimental results.24 Left shows clustered VIP coding scores for all four feature categories across the familiar, novel, and novel-plus sessions; middle shows

cluster means; and right shows mean over all cells (STAR Methods).

(C) Same as (B) for the cortical circuit model.

(D) Normalized mean image feature kernels for the familiar (red), novel (blue), and novel-plus sessions (purple). Dark lines show fits to model data, light lines to

experimental data.24

(E–H) Cell-specific cortical circuit properties influence VIP cell coding.

(E) Cluster-averaged novel image coding scores as a function of themean input each cell receives from the excitatory population during the novel session. Colors

show three different initializations, dots are cluster-averaged values, lines are linear regression fits.

(F) Change in correlation of familiar (red) and novel (blue) image coding scores with network properties. Correlation over all VIP cells (light) and cluster-averaged

values (dark). Dots are median, error bars are Q1 to Q3 over initializations.

(G) Cluster-averaged network properties across 10 different initializations. Colored dots (red, blue, green) show clusters with distinct types of image coding, gray

dots are clusters not coded to images. Gray dotted line shows equal familiar and novel input.

(H) Network properties for omission-coded clusters (pink) versus omission-agnostic clusters (gray). See also Figures S8–S10.
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do not change across images or sessions significantly, this could

alternatively be interpreted as cells coded to familiar/novel-plus

images are those closer to firing thresholds during all image

presentations.

Although the model’s omission coding exhibits far less expe-

rience-level diversity than what is observed in the data, we see

how strongly connected a given VIP cell is to those cells excited

during omission-encoded times, i.e., > 500 ms, strongly influ-

ences the omission coding (Figure S9). Additionally, there is a

slight negative correlation of the omission coding scores with

the amount of input a VIP cell receives during non-omission-en-

coded times, i.e., %500 ms. Any VIP cell that receives stimulus

history input during the training session will have their presynap-

tic connections suppressed by FMSAH, meaning said inputs will

not influence the omission response.We see the clusters that are

omission-coded tend to have larger input during large encoded

times compared with those that do not (Figure 6H).

DISCUSSION

In this work we have introduced FMSs, a simple familiarity-

detection mechanism that relies solely on local, unsupervised

synaptic modulations to encode exposure to past stimuli. The in-

dividual modulations of the FMS mechanisms evolve via well-

characterized dynamics: Hebbian or anti-Hebbian associative

or presynaptic only dependence. We first investigated the basic

properties of the FMS mechanism in a simple feedforward

network, what we refer to as the FMSN. Therewe saw that, unlike

several other familiarity-detectionmodels, FMSs can detect nov-

elty in a single forward pass, which is supported by evidence

showing such stimulus distinctions can occur rapidly in hu-

mans.61,62 We then demonstrated the generalizability of FMSs

by modeling three distinct novelty novelty effects recently

observed in a cortical disinhibitory circuit containing excitatory,

VIP, and SST neurons. The connectivity of the cortical circuit

model we develop is constrained by an aggregate of recent

experimental results.17,18,20 The three separate VIP novelty ef-

fects were reproduced in a continual learning setting with exper-

imentally realistic stimulus sequences. Finally, due largely to the

modulations that change the network’s response over time, we

found significant cell subpopulation diversity in ourmodel, repro-

ducing results that have been recently highlighted in the cortical

disinhibitory circuit.24

Although we do not explicitly model all the novelty effects

observed in the experiment (see limitations below), given the re-

sults we have seen here we can speculate on how the generaliz-

ability of FMSs would allow them to model such effects. The in-

hibition from the VIP population alone is not enough to produce

the change in SST response seen across the familiar and novel

sessions (Figure S6). A slow strengthening FMS on the the excit-

atory to SST synapses, i.e., similar FMSA with positive learning

rate, would result in a larger SST population response in the

familiar session, similar to what is observed in the experimental

data.23,24 A fast FMS, analogous to FMSP, on synapses that

carry the bottom-up signal into the excitatory population could

drive the observed increased excitatory response to image

changes, very similar to what we produced in the VIP cells. We

also do not attempt to model the suppressed omission ramping

that is observed in the VIP population during the novel session.24

A population of VIP neurons that have increased mean activity in

a novel session, via an FMS mechanism similar to FMSA, could

act to gate the ramping signal. If this population inhibits the excit-

atory neurons that produce the stimulus history input signal, it

would lead to an overall smaller input and thus a smaller ramping

only during the novel session. Furthermore, if this VIP population

activity was different across experience levels, like the VIP pop-

ulation in our model and experiment, the inhibition to the history

input would change between sessions, potentially leading to

experience-level-dependent omission coding that has been

observed24 (Figure 6B). We also note that it may be possible to

observe the omission ramping response using a fast, STSP-

like FMS in place of the LTD-like FMSAH, i.e., the %500-ms en-

coded times become familiar on a timescale of seconds rather

than hours/day.

We cannot rule out that part of the novelty responses observed

in the cortical circuit may be driven by signals outside the visual

cortex (though see Keller et al.51). Regardless, since it has been

confirmed that it is not the specific stimuli in the familiar and

novel image sets that evoke the novelty responses,24 they

must be generated somewhere in the brain and we have demon-

strated a plausible plasticity mechanism that could produce said

responses in cell populations.

As mentioned above, the FMSs’ simplicity, generality, and

effectiveness in producing novelty effects makes them an ideal

Table 1. Relative cell counts and inter-population connection

strengths of the various cell populations

Rel. count Post Exc. Post SST Post VIP Post PV

Pre Exc.

(L2/3)

27.35 0.105 0.750 1.000 0.908

Pre SST 1.00 � 0:081 � 0:024 � 0:356 � 0:060

Pre VIP 1.67 � 0:008 � 0:227 � 0:020 � 0:004

Pre PV 1.38 � 0:262 � 0:107 N/A � 0:353

Second column shows relative cell counts for Layer 2/3, and it is

assumed that 70% of Htr3a cells are VIP.18 Third through sixth columns

show population connection strengths for various pre- and postsynaptic

combinations. See STAR Methods for details on how relative population

connection strengths are computed. Note, although PV neurons are not

included in our microcircuit model, they are included in this table for

completeness. The ‘‘N/A’’ entry corresponds to synapses for which there

are no data in Campagnola et al.20

Table 2. Threshold voltage estimates

Cell type Cre-line Cell count

Vthreshold

(mV, mean ± SD)

Exc. Cux2-CreERT2 81 � 47:4± 6:0

SST Sst-IRES-Cre 123 � 41:0± 7:6

VIP Vip-IRES-Cre 97 � 47:2± 8:7

PV Pvalb-IRES-Cre 217 � 35:0± 8:1

Values are computed across an entire session sweep and then averaged

across a given specimen ID and then Cre-line. From the Allen Cell Types

Database, found at https://celltypes.brain-map.org/data.19
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candidate for studying plasticity in future work. For example,

modeling projects could scan over various FMS configurations

and parameterizations within the cortical circuit to match the

experimentally observed novelty responses and see if the result-

ing fits match or may constrain experimentally observed plas-

ticity.20,39 On the experimental end, understanding how neuronal

responses change throughout all of training would allow us to

further characterize the types of plasticity that modulate experi-

ence-dependent activity. From our cortical circuit model, predic-

tions about how connectivity and plasticity influence the

observed cell subpopulation diversity could be tested by pairing

physiological and learning studies together. Finally, the FMS’s

similarity to Hopfield networks means modern extensions to

said networks could be used in the FMSs to increase their effec-

tiveness and/or capacity.63

Altogether, the effectiveness of FMSs highlights the role sim-

ple modulations within large synapse populations may have in

shaping neuronal responses to stimuli. We demonstrated the

FMS relies on no specialized training and testing schedules

and requires no carefully placed excitatory or inhibitory connec-

tions to operate. Our cortical circuit demonstrates two impor-

tant features of the FMS mechanism: (1) its ability to operate

with several distinct types of modulations on the same synap-

ses, even at significantly different timescales, as well as (2) the

ability to have multiple inputs with distinct synaptic dynamics

influencing a single cell population. Crucially, these mecha-

nisms allowed us to model the novelty effects that have been

observed to occur over significantly different timescales (sec-

onds to days) and from different sets of information on the

same set of cells.24 Other than a few parameters adjusted at

initialization to ensure realistic input and firing rates (< 10), the

cortical circuit’s response is driven by the FMS mechanisms,

themselves only containing one free parameter apiece: their

learning rate/size of modulations. It is surprising to the authors

that what seem like complicated novelty responses can be

captured by such straightforward modulation mechanisms,

yet speaks toward the influence that simple synaptic changes

can have on our brains.

Limitations of the study
In the cortical circuit model, we specifically focused on repro-

ducing three distinct novelty effects seen in the VIP population

responses. The goal of this modeling study was to demonstrate

how several FMS mechanisms could be combined to produce

various novelty responses within a single cell population. With

this in mind, the specific choices of where we have added

FMS mechanisms and their parameterization are not tested

against other potential plasticity configurations that could also

give rise to the novelty responses. With the addition of plasticity

elsewhere in the cortical circuit and/or further neuronal contribu-

tions to the model that we have neglected, plasticity that

weakens the synapses feeding into the VIP neurons may not

be necessary to produce novelty effects.22 We leave an exten-

sive study of how various plasticity configurations could give

rise to all the novelty effects observed within the cortical circuit

for future work (see above).24 We do not attempt to model the

heterogeneous learning rates across the same synaptic popula-

tion that has been observed in short-term plasticity.20 However,

since synapses continue to either be strengthening orweakening

on average, we do not believe this will affect themean population

activity significantly. We also neglect effects of neuron scaling,

e.g., adjusting those synapses not strengthened/weakened via,

say, heterosynaptic LTP or LTD.
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METHOD DETAILS

Many quantities we consider throughout this work are sequence time-dependent, and their time dependence is generally denoted by

a subscript t (and sometimes s), i.e., xt. Time is uniformly discretized in our setup, so the quantities xt and xt+1 are separated by Dt.

When unambiguous, we use I; J = 1;.;d to index the neurons of the presynaptic layer, and i; j = 1;.;n to index the neurons of the

postsynaptic layer.

Familiarity modulated synapses (FMSs)
As in the main text, we take xt ˛Rd to represent the presynaptic (i.e., input) neuron population firing rates at time t and yt ˛ Rn the

postsynaptic (output) equivalent. The synaptic modulation matrix, Mt ˛Rn3d, represents changes to the network’s connections

induced by some general biological mechanism through unsupervised learning. To incorporate changes in synapses due to various

modulation mechanisms, we allow the modulation matrix to change otherwise fixed synapses generally represented by some

randomly initialized matrix W.(An alternative form of the modulations considered in Refs. 35,36 uses an additive modulation, rather

than the multiplicative one we consider here. Essentially all results used for the FMSN generalize to this form of modulations as

well [Figure S11].) We consider two distinct update rules for the modulations in this work. The associative mechanism, Equation

2a, dependent upon both the pre- and postsynaptic firing rates, is given by

Mt+1 = lMt + hytx
T
t : (Equation 3)

The simpler pre-only modulation update that is only dependent upon the presynaptic firing rates, Equation 2b, is

Mt+1 = lMt + h1xT
t

� ffiffiffi
n

p
; (Equation 4)

where 1˛Rn is the 1s vector. In the above expressions, h˛R is the learning rate of the modulations that controls the rate at which

modulations are learned. Its sign determines the sign of the modulations and thus whether they strengthen or weaken the corre-

sponding synapses.(Since we use the FMSs to model several distinct types of synapse modulations that have their own vocabulary

for synapse changes (e.g., depression and facilitation for STSP versus depression and potentiation for more long-term effects), we

use ‘‘strengthening’’ and ‘‘weakening’’ as a general terminology that applies across the individual mechanisms the FMSsmaymodel.)

The other parameter, 0< l< 1, represents the gradual decay of changes to the weight matrix. Occasionally it will be useful to discuss

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Image change detection data Garrett et al., 202324 https://portal.brain-map.org/circuits-behavior/visual-behavior-2p

Software and algorithms

Code for models and data analysis This paper https://github.com/kaitken17/fms
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the decay timescale tdecay, which is related to the decay rate via l = 1 � Dt=tdecay. Throughout this work, at the beginning of training,

the modulations are initialized to be zero, i.e., M0 = 0.

We distinguish neurons in the networkswe consider between excitatory and inhibitory. A neuron that is excitatory is defined to have

only positive weights leaving it so that it can only enhance the response of the postsynaptic neurons it feeds into. Similarly, an inhib-

itory neuron has all negative weights leaving it, ensuring it can only depress the postsynaptic neurons it feeds into. For this definition

of excitation/inhibition to bemeaningful, we also limit all firing rates in the network to be positive definite, including all input firing rates.

Explicitly, this means the weights of our network are subject to the constraints

Neuron I Excitatory : WiI R0; (Equation 5a)

Neuron I Inhibitory : WiI %0; (Equation 5b)

for all i = 1;.;n. Importantly, we do not allow for modulations to change the sign of weights leaving a given neuron. Per our definition

above, this ensures that an excitatory neuron can never inhibit and vice-versa. Explicitly, this means that

Neuron I Excitatory : WiI + WiIMiI;t R0; (Equation 6a)

Neuron I Inhibitory : WiI + WiIMiI;t % 0; (Equation 6b)

for all i = 1;.; n and all t.

Several experimental studies have investigated the amount of change a given neuron can undergo through mechanisms such as

STSP or LTP/D. To bound the modulations to realistic values, we further restrict the modulations so they cannot enhance or depress

weights beyond what has been observed in experimental settings. Since such changes can differ depending on the mechanism, we

enforce different bounds for the associative and pre-only dependent modulations. Explicitly, we limit

MA;lower
b % MiI;t %MA;upper

b ; (Equation 7a)

MP;lower
b % MiI;t %MP;upper

b ; (Equation 7b)

We takeMA;upper
b = MP;upper

b = 1:0, so that both types of modulations can at most double the strength of the corresponding syn-

apses. Meanwhile, we takeMA;lower
b = � 0:8, i.e., a synapse can at most be reduced to 20% of its original strength, similar to values

observed in several long-term plasticity experiments.39,64,65 STSP has been recently observed to almost completely suppress certain

synapses,20 so we takeMP;lower
b = � 1:0. Note with these chosen values ofMb, the bounds are stricter than those of Equation 6, so in

practice the enforcement of Equation 7 implies the bounds of Equation 6 are automatically met.

Familiarity modulated synapse network (FMSN)
As mentioned in the main text, it is useful to first understand the properties of FMSs in a simple setting. To this end, we investigate

FMS properties in a simple two-layer neural network, what we call the familiarity modulated synapse network (FMSN). We take the

input and output layers to have d and n neurons, respectively. The input and output layers are connected byweights, representing the

synapses of a biological neural network. We will assume the synapses of the network have some underlying strength at initialization,

that we denote by the weight matrix W˛Rn3d. We take W to be sparse such that its elements have magnitude

jWiIj = jwiIjbiI;wiI � N
�
0;w2

�
;biI � BernoulliðpWÞ (Equation 8)

where the parameters w and pW determine the magnitude of the nonzero elements and the sparsity, respectively. The signs of the

nonzero elements are determined by the input neuron cell type (see above).

Like the synapses in the brain, we allow the individual weights in our network to be modulated over time. We denote the modula-

tions at time step t by Mt ˛Rn3d, i.e., the same size as the weight matrix W. The combined weights and modulation matrix yield the

output neuron preactiviation values,

~yt = ðW + W1MtÞxt +b; (Equation 9)

where b = b1 with 1˛Rn is a uniform bias term that can represent neuron firing-rate thresholds as well as other network factors ne-

glected in this simplemodel (see below). The parameter b is adjusted at initialization to ensure realistic response sparsity in the output

population, but is otherwise fixed throughout training, see below. Finally, the output preactiviations are passed through a nonlinear

function, 4ð $Þ, representing the output neurons’ properties such as their firing rate threshold and maximum firing rate. Thus, the

output population’s activity at time t is given by

yt = 4ð~ytÞ; (Equation 10)
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where 4ð $Þ is applied piecewise. Throughout this work, we use a rectified tanh as the output neuron’s nonlinearity,

4ðxÞ = ReTanhðxÞh
�
tanhðxÞ for xR 0;

0 for x <0:
(Equation 11)

This activation was chosen since it has three desirable properties: (1) it is positive definite which was required for cell types in our

model to make sense, (2) it is bounded, and (3) it is approximately linear for 0< x � 1, so small positive preactivation values become

small activity.

The FMSN’s behavior can be changed considerably by modifying the distribution of excitatory/inhibitory neurons in the input

neuron population. Note that since the neuron types only influence the sign of the weights/synapses leaving the neurons, the cell

types of the output neurons do not affect the FMSN’s behavior. When we investigate the FMSN in the main text, for simplicity, we

consider a setup that only has excitatory neurons in its input layer. The bias adjustment within the output population that we perform

to ensure realistic firing rates helps balance excitation/inhibition in the output population that only explicitly receives excitatory input.

We find that the bias term is always negative for the output population firing rates we consider, which can be thought of a uniform

inhibitory input into the output neuron population that provides E-I balance.

In the Methods, to understand the effect of FMSs applied to inhibitory synapses, we also consider cases where input population of

the FMSN has both excitatory and inhibitory neurons in it. In these cases, the unmodulated weight matrix,W, has some columns with

all positive nonzero elements and some columns with all negative nonzero elements. We study a simple case where the FMS mech-

anism applies to synapses belonging to either the excitatory or inhibitory input neuron populations. Of course, it is also possible to

have modulations acting on both populations, but we leave such investigations to future work. All other properties of the FMSN,

including the firing rate adjustment, remain unchanged.

Response sparsity adjustment
With only excitatory synapses in the input later of the FMSN, all inputs to the output neuron population are positive and so, without any

threshold/bias term, the output population would have a response rate of close to 100% for every possible stimulus. Of course, such

a response is not realistic over an entire population of neurons in the visual cortex and such excitation should be balanced by inhi-

bition to achieve realistic response sparsities. This could be achieved by introducing inhibitory neurons with appropriate synaptic

strengths into the input layer, in which case output neurons would receive somewhat balanced levels of excitation and inhibition.

Indeed, we study such a network when we want to consider modulations on inhibitory neurons. However, for the FMSN investigated

in the main text we choose a simpler solution that we discuss here that generalizes to the method we use to balance the cortical

microcircuit below.

The output neuron population’s response rate can also be adjusted by changing the population’s firing threshold/bias, b in Equa-

tion 9. In this work, we only consider b = b1 with 1˛Rn so that the point neurons we study only differ in connectivity and noise in-

jection. For a given neuron, a negative b effectively acts as a uniform inhibition across all possible inputs. Across the entire output

population, a negative bias allows the neurons to have more realistic response sparsities despite only receiving excitatory inputs.

To adjust b to get the desired response rate, we first draw a validation set of size 100 from the same distribution that generates the

familiar and novel sets. This entire validation set is passed through the network at initialization with b = 0, with no adjustment to the

modulationmatrixM. Given the known activation function, Equation 11, from the validation set’s preactivation values the bias needed

to have the desired response sparsity across the validation set can be exactly computed. In short, all preactivation values (across the

stimuli of the validation set and output neurons) are sorted by value, and the bias is chosen such that the desired percentage of these

values are above 0. Since the familiar and novel sets are drawn from the same distribution as the validation set, this yields a similar

response rate over said sets without being directly fit to them. Note this procedure means that the network has the desired response

sparsities at initialization, but the induced modulations during training can change the response rate of the novel and familiar sets

(Figure S2A).

Decoding accuracy and dimensionality
For the associative weakening FMSN example considering in the main text, the change in output activity of the familiar set signifi-

cantly affects the decodability of the output signal. Post-training, decodability of stimulus identity within the familiar set is significantly

lower (0:46± 0:05) while that of the novel set is perfect (1:00± 0:0, mean ± std). The difficultly in decodability is reflected in the effec-

tive dimensionality of each set’s output activity: the novel outputs occupy a low-dimensional space (D = 6:3± 1:5) while the familiar

outputs are small enough that their signal is hard to distinguish from noise and thus the space they occupy is significantly higher

dimensional (D = 48:5± 7:1, mean ± std, Figures S2B and S2C). Both the above properties are a function of the amount of mod-

ulation within the network, so the decoability/dimensionality of the familiar and novel sets can vary significantly by, say, changing the

modulation learning rate (Figures S2M and S2N).

To compute the decoding accuracy of the familiar and novel sets, we use the same input noise that is used during training (see

above) to create 1000 noisy versions of each stimulus. Each noisy stimulus is then passed through the trained network, resulting

in a total of 8000 output responses across the entire familiar or novel set. Said responses are then labeled by their index within their

set and a linear SVC is used to decode them using 10-fold cross validation to compute test accuracies. Specifically, we use
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sklearn.svm.LinearSVC with default parameters other than max_iterations=1e5. The approximate dimensionality of the

representations reported in themain text are computed using the participation ratio of the ratios of variance explained of the resulting

PCA fits.

Strengthening versus weakening
Here we briefly discuss differences in the effectiveness of developing distinct responses to the familiar and novel sets in the FMSN

from strengthening and weakening modulation mechanisms. We first study the FMSN in the setting we investigated in the main text,

namely networkswith only excitatory synapses in the input layer. As a result, a strengthening (or weakening) of the synapses results in

a larger (or smaller) output neuron response.

There is a significant difference in the evolution of the Mt as a function of training time in identical FMSNs that simply differ in the

sign of h (Figure S3B). Notably,Mt at roughly the same rate for the first 8 training steps, but for the weakening mechanism the growth

ofMt drops significantly after these first few times steps. This is a result of the output activity being smaller, whichmeans the updates

to Mt are smaller (Figures S3C and S3D).

We can also see the effect the biological bounds have on the modulation growth. In particular, for the strengthening mechanism,

the evolution ofMt differs significantly with and without the biological bounds (Figures S3E and S3F). Notably, the weakening mech-

anism isn’t as strongly affected by said bounds. The fact that weakening has been observed down to 20% for associative and only

200% for strengthening makes the former much more effective. This is a simple comparison of ratios of novel to familiar: for weak-

ening, 20% leads to a ratio of 1=0:2 = 5 whereas strengthening to 200% leads to a ratio of only 2=1 = 2.

Anothermajor difference between the strengthening andweakeningmechanisms is theway the biologically motivated nonlinearity,

Equation 11, acts on preactivation values. Since strengthening excitatory connections can only increase a neuron’s output, but said

output is bounded by the nonlinearity, eventually the strengthening yields diminishing returns in terms of how much a given output

can change.Meanwhile, weakening excitatory connections can push a neuron below its firing threshold, completely cutting off a neu-

ron’s response. We see that the evolution of preactivation values is fairly comparable between the two mechanisms (Figure S3G).

Thus we have seen two major factors that cause the weakening and strengthening of excitatory synapses to differ: (1) a difference

in the bounds of said changes from experiment and (2) an asymmetry in the FMSN of how larger/smaller output activity is handled

through the neuron’s nonlinearity as well as the the modulation updates. Of course, we have only considered plasticity mechanisms

on synapses belonging to excitatory neurons thus far. For inhibitory synapses, a strengthening (or weakening) of the synapses results

in smaller (or larger) output neurons response, the opposite effect of the excitatory synapses. Thus we can investigate if the FMSN

has different behavior when introducing inhibitory neurons in the input population and then make the inhibitory synapses FMSs.

For direct comparison to the FMSNwith only excitatory synapses, we assume inhibitory plasticity obeys similar bounds to what we

use for STSP and LTP/D effects.20,39 We compare the behavior of an FMSN with both excitatory and inhibitory neurons in its input

when either the excitatory or inhibitory neurons have a strengthening FMS mechanism on them (Figure S3H). Consistent with our

findings above, we find that strengthening of the inhibitory neurons is more effects of at separating the novel and familiar distributions

than a strengthening of excitatory neurons (Figures S3I and S3J). Since the bounds of the two FMS mechanisms are identical, this

difference is caused by the neuron’s nonlinear behavior discussed in point (2) above.

Cortical microcircuit network
A rough schematic of the cortical microcircuit network is shown in Figure 2C. The three primary populations we consider in the

network are the excitatory, SST, and VIP neuron populations. We will index variables belonging to these three populations using

p = E;S;V, respectively. Lastly, we also include an additional population of excitatory neurons that drive the stimulus history inputs

into the VIP population and represent a subset of the top-down input into the cortical layer we explicitly model. We denote these

additional excitatory neurons by the superscript ‘hist’. We do not make any attempt to model behavioral effects related to the image

change task, including the licking response to the task.42

We begin by introducing the cortical microcircuit without any FMSmechanisms added to its synapses. The preactivation response

of the excitatory, VIP, and SST populations are respectively given by

~yEt = WE;EyEt� 1 +WE;VyVt� 1 +WE;SySt� 1 +bE +nE
t + xstim

t ; (Equation 12a)

~ySt = WS;EyEt +WS;VyVt� 1 +WS;SySt� 1 +bS +nS
t : (Equation 12b)

~yVt = WV;EyEt +WV;VyVt� 1 +WV;SySt +bV +nV
t +WV;histxhist

t ; (Equation 12c)

whereWp;p0
represents the synapses connecting presynaptic population p0 to postsynaptic population p, bp is the bias vector of pop-

ulation p, and np
t represents additional noise injection (see below). Note the three populations do not update in sync: at time t the

excitatory population’s activity is updated first, followed by the SST population, and then VIP. Asynchronous updates were found

to help numerical stability. This order is also biologically motivated since the canonical input to layer 2/3 from layer 4 pyramidal neu-

rons is much weaker to VIP and SST than pyramidal neurons.
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All the preactivation responses pass through a nonlinearity,

ypt = 4ð~ypt Þ; for p = E;S;V; (Equation 13)

where 4ð $Þ = ReTanhð $Þ, ensuring the rate remains positive definite, see Equation 11.

The excitatory and VIP populations both receive additional external input related to the stimulus change task. Specifically, xstimt and

xhistt represent the present stimulus input and activity of the stimulus history excitatory neurons, respectively (see below for details).

Note the activity of the excitatory neurons that drive the stimulus history signal is an input to the network, sowe have denoted it by xhistt

rather than yhistt� 1 for clarity. Both stimulus inputs, xstimt and xhistt , are fed directly into an excitatory population that in turn drives the rest

of the circuit through sparse synapses. The primary difference between them is that the former drives an excitatory population inside

themicrocircuit while the latter drives an excitatory population that is assumed to reside in a higher cortical area that we do not explic-

itly model. The stimulus history excitatory neurons represent a subset of top-down information fed into the microcircuit and were

chosen to feed into the VIP population since they are known to receive feedback input.20

TheWp;p0
are sparsematrices whose elements are also drawn according to Equation 8, i.e., in the sameway as the weight matrix of

the FMSN. Once again, the cell type of the presynaptic population p determines the sign of the nonzero Wp;p0
elements, and thus

Wp;E R 0,Wp;S %0, andWp;V %0 for all p. For a givenWp;p0
, the sparsity of the synapses (i.e., pW ), magnitude of the nonzero elements

(i.e.,w), and relative number of cells in each population are all set by experimental literature,17,18,20 see below. In short, for allWp;p0
, we

take pW to be the corresponding entry in Figure S4D andw to be the corresponding entry in Figure S4B, up to amultiplicative constant

c. Importantly, c is the same for all Wp;p0
, and thus the relative connection strengths between populations are completely fixed by

experimental results, up to changes from FMSs.

Since WV;hist represents an unknown subset of top-down excitatory to VIP connections, we simply set its sparsity equal to the

within-layer excitatory to VIP connections. Its synaptic strength is set to a value comparable to the within-layer excitatory connec-

tions so that the omission ramping response has a comparable magnitude to image responses.

All three biases are parameterized similarly to the FMSN, i.e., bp = bp1 where 1 is the all 1’s vector in the corresponding space.

Once again, the bp are adjusted at initialization to ensure realistic response sparsities in all three neuron populations, see STAR

Methods.

We add the following three FMS mechanisms onto synapses feeding into the VIP cells,

WV;E /WV;E + WV;E1
�
M

ðAÞ
t + M

ðPÞ
t

�
; (Equation 14a)

WV;hist /WV;hist + WV;hist1MðAHÞ
t ; (Equation 14b)

where the superscripts in ð $Þ refer to distinct FMS mechanisms. Specifically, ðAÞ, ðPÞ, and ðAHÞ respectively correspond to what we

refer to as the FMSA, FMSP, and FMSAH mechanisms. Note we have added two FMSmechanisms to the same set of synapses, those

going from the excitatory to the VIP population. When multiple sets of FMSs are present on the same synapses, we still enforce the

cell-type bounds of Equation 6. The three distinct modulation correspond to the three novelty responses we aim to model. They are

respectively subject to the following update expressions,

FMSA : M
ðAÞ
t+1 = lðAÞMðAÞ

t + hðAÞyVt
�
yEt
�T
; (Equation 15a)

FMSP : M
ðPÞ
t+1 = lðPÞMðPÞ

t + hðPÞ1
�
yEt
�T. ffiffiffiffiffi

nE
p

; (Equation 15b)

FMSAH : M
ðAHÞ
t+1 = lðAHÞMðAHÞ

t + hðAHÞyVt
�
xhist
t

�T
: (Equation 15c)

Note that the updates are distinct, but are all of the same fundamental form we have used throughout this work, see Equation 2.

That is, the associative updates are dependent upon both the pre- and postsynaptic firing rates of the populations they connect, while

the pre-only is only dependent on the presynaptic firing rates since we want it to represent STSP-like modulations that occur at time-

scales on the order of seconds. The three FMS mechanisms are subject to the corresponding bounds motivated from experiment

discussed below Equation 7. In practice, during training, the FMSA and FMSP modulations rarely come close to saturating the bounds

imposed by experiment, while themodulations of FMSAH come close to their bounds at amuch higher rate. For the exemplar network

shown in Figure 5, for the modulation matrix terms corresponding to nonzero synapses ofMðAÞ,MðPÞ, andMðAHÞ, only 1:5%, 0:09%,

and 42% come within 50% of their bound and 0%, 0%, and 23% come within 10% of their bound, respectively. Note for the slower

modulation mechanisms, these rates were only calculated during roughly the last quarter of training time.

To adjust the parameters of the three FMSs shown above, we scan over learning rates of all three FMSmechanisms and determine

which of these yields the best mean response fits, see below for additional details. We take t
ðAÞ
decay = 105 seconds, t

ðPÞ
decay = 1 second,

and t
ðAHÞ
decay = 106 seconds based on the timescale of the corresponding biological mechanisms we wish to match onto and experi-

mental observations (though see STAR Methods for how these may change to expedite training).
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Cortical microcircuit connectivity
In our model, the total strength of the collection of synapses from a given presynaptic population into a given postsynaptic neuron

depends on three major factors.

(1) Connection probability: The probability for a given synapse to exist between any two cells of the given pre- and postsynaptic

type (Figure S4D).

(2) Relative cell counts: Along with the mean connection probability, the number of presynaptic cells in a given population af-

fects the mean number of inputs a given postsynaptic neuron receives. Since our network does not explicitly model true cell

counts found in the visual cortex, this enters as a relative value that we can then normalize by some baseline number (Fig-

ure S4E).

(3) Synapse strength: The strength per synapse, which we measure by the mean time-integrated postsynaptic potential (PSP),

see below (Figures S4B and S4C).

When layer-specific experimental observations are available, we take the values given for L2/3 of the visual cortex. The three fac-

tors above directly affect both the population count in our microcircuit model as well as the explicit form of the Wp;p0
. It can also be

helpful to track the mean population strength, a product of the three factors above

rp)p0 =
np

nbaseline

3Pconn:
p)p0 3ZPSP

p)p0 : (Equation 16)

In practice, we take nbaseline = nS, which gives us the inter-population connection strengths shown in Table 1 and Figure S4A.

Although they are not explicitly included in our microcircuit model, we include data for PV neurons here as well (see discussion

for further details).

(1) Connection probability: The connection probabilities between pre- and postysnaptic populations are computed from the

fully adjusted connection propabilities of ref. 20 (Figure S4D). In said work, it was found that connection strength was indepen-

dent of connection probability. Additionally, excitatory connections most strongly distinguished by postsynaptic connection,

while inhibitory by presynaptic connection.20

The adjusted connection probabilities of ref. 20 are reported as fits that are dependent upon the distance between cells in addition

to the dependence on pre- and postsynaptic neuron type. Since we do not explicitly simulate the spatial distribution of cells in our

model, we use length scales from the experimental measurements to set distance-dependent connection probabilities. Specifically,

since the imaging field of the two-photon experiment was 400 mm3 400 mm24, we randomly generated cell locations within a two-

dimensional box of this size and then computed the average connection probability between all possible pairs. The connection prob-

ability decay lengths were taken to be 100 mm for E/ I or I/ E and 125 mm for E/ E or I/ I.20 From the randomly generated

cell locations, this resulted in a reduction of pmax, i.e., the connection probability if the cells were right on top of one another,20 by 0.25

for E / I or I / E and 0.34 for E / E or I / I. Taking into account this distance-dependent reduction yields the connection prob-

abilities shown in Figure S4D.

(1) Relative cell counts:We assume the microcircuit has a ratio of cell counts of Excitatory : VIP : SST found in the investigation

of L2/3 of the visual cortex of mice from ref. 18 (reproduced in Table 1, Figure S4E). However, in order to maintain a reasonable

cell counts for numerical simulation, we instead use the ratio nE : nS : nV = 2 : 1 : 1, and adjust each population’s outgoing

synapses to account for any discrepancy in their simulated cell count relative to their experimental cell count. For example,

since in simulation there are only twice as many excitatory to SST cells, but from experimental data their ratio is closer to

27:35 : 1, we strengthen each excitatory synapse by a factor of 27:35=2 = 13:675 to account for the missing simulated cells.

From Figure 4G, we see this scaling of synaptic strengths to account for the differences in cell counts in our microcircuit main-

tains the relative population strengths.

(2) Synapse strength: We take the time-integrated voltage over a typical postsynpatic potential (PSP) pulse fit as a measure of

the synaptic strength, where

ZPSP = PSP0
unmod 3Teff (Equation 17)

where PSP0
unmod is the adjusted PSP amplitude when the neuron is not being facilitated or depressed from STSP effects20 and Teff is

the effective time of the PSP pulse.

We compute an adjusted PSP amplitude that accounts for potential differences of the in vitro measurements versus what we as-

sume to be a cell’s in vivo operating potential.20 These differences are distinct across cell types, and thus can affect the relative

strengths of excitation and inhibition within the cortical circuit. To arrive at the adjustment factor, we assume the experimental current

is proportional to the difference in the experimental reversal potential and the resting potential. Furthermore, we assume the in vivo

current is proportional to the difference in reversal potential and the potential where we presume neurons are generally close to
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operating, which we take to be the threshold potential. The constant of proportionality in both cases is taken to be the neuron’s

conductance, and thus the ratio of these differences gives the adjustment factor of the PSP value, namely

PSP0
unmod =

 
Vrev � Vthresh

V
ðexpÞ
rev � V

ðexpÞ
rest

!
3PSPunmod (Equation 18)

where Vrev is the estimated reversal potential of relevant channels in the presynaptic neuron, Vthresh is the estimated threshold poten-

tial of the postsynpatic neuron, V
ðexpÞ
rev is the experimentally measured reversal potential that is dependent on neurotransmitters of the

presynaptic neuron, and V
ðexpÞ
rest is the experimentally targeted resting potential that is presynaptic dependent.

From the literature, we use Vrev = 0 mV for excitatory66 and Vrev = � 82 mV for inhibitory presynaptic populations.67,68 We deter-

mine Vthresh from electrophysiology data from the Allen Cell Types Database, found at https://celltypes.brain-map.org/data.19 Spe-

cifically, the Vthresh for each sweep and averaging over all sweeps for a given specimen identification, then averaging these values

across the Cre-line. We only vary Vthresh by postsynaptic cell identity. The Cre-lines, total cell count, and computed Vthresh are shown

in Table 2.

Since only a small subset of synapses have experimentally measured V
ðexpÞ
rev , we take the median value across synapses of a given

pre- and postsynaptic neuron type and use this across all cells. We do not find this impacts the resulting V 0
rest significantly. Finally, for

V
ðexpÞ
rest , we use the targeted holding potential from experiment, which are � 70 mV for excitatory presynaptic cells and � 55 mV for

inhibitory presynaptic cells. Junction potential corrections of � 14 mV are accounted for at all steps of this calculation.19 Altogether,

these above computation yields the PSP0
unmod=PSPunmod ratios shown in Figure S4H.

The effective time of the PSP pulse is computed by integrating the PSP fits over time.20 Up to an amplitude correction, synapse

PSPs were fit using the following function

FPSPðtÞ =

8><>:
1

Anorm

�
1 � e� t=trise

�2
e� t=tfall tR0;

0 t <0;

(Equation 19)

where Anorm = FPSPðTmaxÞ with Tmax = trise lnð1 + tfall =triseÞ is a normalization factor to ensure the maximum of FPSP is equal to 1.0.20

Integrating this expression over time, we find the effective time of the PSP fit,

Teff: =

Z
FPSPðtÞdt =

1

Anorm

2t3fall
ðtrise+tfallÞðtrise+2tfallÞ : (Equation 20)

This procedure yields the values shown in Figure S4I.

We computed ZPSP for each synapse and then averaged across all synapses of the given pre- and postsynaptic cell type (see Fig-

ure S4F for count). For certain pre- and postsynaptic populations, we found the fits of tfall were exceedingly high, and so any synapse

with a tfall > 300 ms was omitted. In practice, this only resulted in a small decrease in the number of synapses for each pre- and post-

synaptic cell combination (Figure S4F).

Response sparsity adjustment
Similar to the FMSN, the biases/threshold of the various populations are adjusted in order to set baseline response sparsity at initial-

ization. Since we consider 3 primary populations of neurons in this work, this procedure amounts to the fitting the 3 parameters of the

network at initialization, namely bE, bS, and bV that determine the biases in Equation (12). Again like the FMSN, since our model ne-

glectsmany influences that affect the firing rates of the various populations, e.g., from inputs from other layers or fromPV neurons, we

assume that this bias adjustment partially accounts for the mean activity of other possible inputs. In particular, since some popula-

tions receive fairly unbalanced inputs from excitatory or inhibitory populations (i.e., the VIP population), this threshold adjustment is

assumed to at least partially account for excitatory-inhibitory balance. Unlike the FMSN, our microcircuit model has recurrent con-

nections, and so any adjustment to response sparsity at one time step affects the inputs and thus the response sparsity of subse-

quent time steps. This leads us to a different bias fitting procedure to account for this additional complication. Finally, note this entire

procedure is performed at the network’s initialization, prior to any unsupervised training, and is thus insensitive to FMS mechanism

placement or parameters.

The neuron population thresholds (bS , bS, and bV) are adjusted using supervised training to reach a certain population response

sparsity over a validation set prior to training. The validation set consists of the 8 familiar input vectors as well as 504 additional vec-

tors (for a total of 512) drawn from the same distribution. In this work, all neurons of the same population share the same firing

threshold parameter, meaning particular neurons within a given population may fire more/less over the given validation set.

In particular, the response rate is adjusted with respect to the loss function

LMSEðg; bgÞ =
X

p = E;V;S

	
gp � bgp

gp+e


2

; (Equation 21)
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where g = ðgE ;gV ; gSÞ are the experimental response rates to bematched, bg = ðbgE ; bgV ; bgSÞ are the network’s approximate response

rates, and e = 10� 4 provides numerical stability. Note here we use a weighted mean squared error loss so that populations with

smaller response rates are treated on even footing. See Figure S5M for exemplar fit results. For a given network population p, the

approximate response sparsity is computed as

bgp =
1

np

Xnp
i = 1

sðg~ypi Þ; (Equation 22)

where sð $Þ is the sigmoid function and serves as smoothed version of the step-function to enable backpropagation, g = 100 controls

the rate of smoothing, and ~ypi is the preactiviation of neuron i, see STAR Methods.

As mentioned above, since the microcircuit we investigate is recurrently connected, adjusting the response rate of one population

influences the response rate of the other populations, so a self-consistent solution across all neurons must be met. To do so, the

validation set is repeatedly passed to the network and the thresholds of all neuron populations are adjusted simultaneously until a

self-consistent solution is found. To best resemble the stimulus sequence the network will be exposed to during the stimulus change

detection task, the validation sequence is smoothed with a ramping function that matches the deconvolved signal. Response rates

are computed for the populations at the peak of the ramping function, and the thresholds of the various populations are adjusted

using backpropagation through time. Backpropagation is truncated to 10 time steps backwards.We used ADAMwith default param-

eters, a batch size of 128, and shuffled the validation set every 10 network steps. Note we neglect the effect of the time-correlated

noise that is injected into all neuron populations in adjusting the firing rates. Additionally, we assume the stimulus history information

during images changes will be strongly suppressed, so within the validation set the corresponding part of the input is just noise.

We use g = ð0:05;0:4;0:2Þ throughout this work to represent target firing rates during an image response in the novel session. We

do not observe a large difference of the parameters bE, bV, and bS values across different microcircuit initializations.

Response rates and variance explained
We note that we do not aim to exactly reproduce response rates or variance explained across cells that are observed in experiment

due to the significantly smaller neuron populations used throughout this work. As mentioned above, for the parameters used in our

cortical circuit model, individual cells receive synaptic input from on order 10 to 100 other cells. Simulating larger populations of neu-

rons would allow significantly more noise to be injected into each individual cell since each cell, on average, has a smaller effect on

output behavior of other neurons.

Noise injection and matching baseline responses
From the experimental data, we see that all neuron populations exhibit a nonzero baseline mean response between image stimuli

(Figure S6). Said baseline responses carry almost no information about image identity or task information except within a small win-

dow after the image stimulus turns off, indicating they may represent neuronal activity unrelated to the image change detection

task.24 To model the effects of these baseline responses, we inject time-correlated noise directly into each neuron population.

We adjust the variance of this time-correlated noise to match the baseline response values observed in each population using su-

pervised training. Similar to the firing rate adjustment considered above, this again corresponds to only one number per population,

so this procedure fits a total of 3 parameters at the network’s initialization (and occurs after the firing rate adjustment). Once again,

since this procedure occurs at network initialization, it is completely independent of FMS placement or parameterization.

We define the experimental baseline responses to be the mean population response halfway between the pre-change image and

the change image. With this definition, for a given population, the mean population response doesn’t change much between the

familiar and novel sessions, so we average across the two sessions. Taking the novel session values yields baseline targets of

1:53 10� 3, 6:13 10� 3, and 3:4310� 3 for the excitatory, VIP, and SST populations, respectively. Once again, we weight how

well our model fits the experimental data using a weighted MSE loss,

LMSEðd; bdÞ =
X

p = E;V;S

	
dp � bdp
dp+e


2

; (Equation 23)

where now d = ðdE ; dV ; dSÞ are the experimental baseline mean responses to be matched, bd = ðbdE ; bdV ; bdSÞ are the network’s baseline

mean responses. The network’s baseline responses are simply the mean over each population response,

dp =
1

np

Xnp
i = 1

ypi : (Equation 24)

For simplicity, to initially fit the amount of noise injected into each population, we inject uncorrelated noise with standard deviation

sp. In practice, we find the addition of time-correlation causes a negligible change in the networks’ baseline responses (and the kernel

used to generate uncorrelated noise is chosen such that it has approximately the same variance as its uncorrelated counterpart). See

Figure S5N for exemplar fit results.
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Similar to the above firing rate adjustment, we pass uncorrelated to the network as the input stimulus repeatedly until it reaches a

self-consistent solution. We once again use ADAMwith default parameters and truncate backpropagation through time to 3 network

passes backward. Both the present stimulus and stimulus history information parts of the input are assumed to be just noise for the

validation set. Due to additional contributions from the stimulus history input during gray screen times, the VIP baseline was found to

overestimate the noise needed to fit the data, so the noise injection was reduced after fitting by a fixed percentage across all

initializations.

Response smoothing
To get the raw cell responses, we convolve the output function with the same half-normal function to match the responses of ref. 24.

Explicitly,

gðtÞ =

8><>:
ffiffiffiffiffiffiffiffi
2

ps2

r
exp

	
� t2

2s2



tR 0;

0 t < 0:

(Equation 25)

with s = 60ms (Figure S5A).We discretize the kernel long time steps separated byDt and normalize such that the summed amplitude

is equal to 1.0.

Familiarity-novelty task
The familiarity-novelty task is used to train the FMSN discussed in the main text. The neuronal encoding of different stimuli are rep-

resented by distinct random binary vectors, xa ˛Rd, where a indexes the distinct stimuli. The random binary vectors are chosen to be

sparse, i.e., the elements of stimuli a are given by

xaI = Aba
I ;b

a
I � BernoulliðpstimÞ; (Equation 26)

whereA is some normalization factor. Since we generally use small pstim, we also ensure that there are aminimum number of nonzero

elements for each xa.

Prior to training,NF stimuli are generated and defined to be the familiar set,SF = fx1;.;xNFg. The unsupervised training consists of

passing the network a sequence whose elements are randomly drawn from the set SF (with replacement). After each sequence step,

the network’s modulations are updated according to Equation (2). Random Gaussian noise (iid to each element/sequence step)(Re-

sults do not differ significantly from bit-flipped noise, both methods increase the dot product between two randomly drawn stimuli,

making the familiar stimuli harder to distinguish from the novel stimuli.), e � N ð0;se1Þ, is added to the inputs before each element is

passed through a ReLU function to ensure all elements are positive,

xt = ReLUðxa + eÞ: (Equation 27)

Asmentioned in themain text, the sequence of familiar stimuli is ordered such that each element of the familiar set is seen everyNF

sequence steps. The order of the familiar set is shuffled within every NF window.

Implicit in this training is that the time difference between successive stimuli is constant, a feature we relax in stimulus change

detection task. The parameter l that controls the decay can be thought of as corresponding to a decay length relative to number

of examples.

During and after training, we test the network’s response to both the familiar set of stimuli as well as a novel set of stimuli, SN =

fx01;.;x0NFg, where xasx0b for all a and b. For these test responses, the network’s modulations are not updated after being passed

through the network, so they do not affect the network’s response to future inputs. Measuring the network’s response at these steps

is simply done for the sake of comparison and is not a necessary step in training.

Experimental image change detection task
The image change detection stimulus sequence consists of image presentations in quick, regular succession. Stimuli are presented

for 250 ms and then followed by a gray screen for 500 ms (see ref. 24 for significantly more details on this task). The same image is

presented several times in a row before a new image is chosen and the process repeats (Figure 4B). In the experiment, mice are

tasked with licking in response to an image change. The number of times an image is presented in a row is between 4 and 11,

with the count being drawn from a truncated exponential distribution so that 4 image presentations in a row is the most likely. Addi-

tionally, there is a 3 s grace period after an image presentation before the trial restarts. Note the image after an image change is drawn

from the entire set of possible images and as such there is a 1=8 chance that the same image is drawn again. These cases are not

included when measuring the network response to image changes.

Themice are first exposed to static grating and trained on a grating change detection task, which was found to improve the training

time on the subsequent image change detection task.Mice are trained on the image change detection task from a set of 8 images that

gradually become the familiar set (Figure 4C). During these training sessionsmice learn to perform the task. Oncemice reach a partic-

ular performance threshold on the image change detection task using the familiar set, their neuronal responses are recorded over

several familiar imaging sessions that are separated by at least one night of rest. Generally, the second of these sessions is a
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‘‘passive’’ imaging session where they do not need to perform the task to obtain rewards (see ref. 24 for exact training sequences).

Afterward, a novel set of 8 images are introduced into the same image change task. Without any additional training, the mices’

neuronal responses while performing the task are recorded over several novel imaging sessions. Once again, generally the second

of these is a ‘‘passive’’ session and is omitted from this analysis. After at least one session of exposure to the novel imaging set, the

mice’s responses while performing the same task on the novel imaging set are gathered in what is called a novel-plus imaging

session.

During only the imaging sessions, i.e., not included in the training sessions, each image has a 5% chance of being omitted. For an

omission, the gray screen continues to be displayed for the 250 ms where the image would have been presented (Figure 4A, middle).

There is no limit on the number of omissions that can occur in a row, though longer chains become increasingly rare. Omissions

cannot occur for the image presentation that would be a change or the pre-change image. This means that all omissions, including

sequences of multiple omissions, are surrounded on either side by the same image.

Model stimulus change task
The task we train our cortical circuit model upon is meant to imitate the image change task used in the experimental data we are

modeling.23,24 At any given time, the input to the network consists of three distinct parts.

(1) Present stimulus: A stimulus input vector, xstimt , representing a neuronal encoding of the current visual input at time t (see

Figures S5A and S5 for examples).

(2) Stimulus history information: Information about the recent history of the stimulus sequence, specifically an encoding of the

amount of time that has elapsed since the last stimulus presentation, xhistt (see Figure S5C for example).

(3) Time-correlated noise: Additional noise input into each population representing contributions to the neuronal activity from

factors neglected in our model (e.g., behavioral effects), np
t for p = E;S;V (Figure S5D).

All input sequences are discretized to a time length of Dt = 1=32 s, or 31.25 ms. This time difference is chosen to match the exper-

imental sampling rate.

Present stimulus
The present stimulus sequence is constructed to represent a neuronal encoding of the equivalent visual stimulus of the experiment. It

is constructed to closely match the statistics of the image change detection task the mice are trained upon. Since image presenta-

tions last 250ms and are separated by 500ms of gray screen (ignoring the possibility of omissions for themoment), there are 250 ms=

Dt = 8 time steps of the neuron encoding of the image followed by 500 ms=Dt = 16 time steps of the neuronal encoding of gray

screen (though see below for additional details). This sequence then repeats, with the image identity of each 750 ms window being

chosen so that image changes and omissions occur at frequencies described above. Different images encodings are represented by

distinct random binary vectors drawn in an identical manner to that described in familiarity-novelty task above. Similar to experiment,

the familiar and novel sets are chosen to have 8 distinct stimuli in them. All inputs have random Gaussian noise added to them. As

observed in the experimental data, neuronal activity is low during stimulus times where the gray screen is displayed, so the present

stimulus inputs representing gray screen encodings only consist of the added Gaussian noise discussed above. When an image

omissions occurs, the image input is simply replaced by additional gray screen input. We allow for at most two omissions to occur

in a row.

During the time steps representing an image presentation, there are three additional contributions to the stimulus sequence used to

mimic the responses of experimental studies. First, to best match mice response data, we delay the mean onset of the image pre-

sentation stimulus by two time steps, corresponding to 2Dtz62 ms, relative to when we consider the image stimulus has begun

display. This has the net effect of shifting the neuronal responses later in time relative to the image presentation time period (for

example, see Figure 5) and approximately matches known delays of the visual cortex to visual stimuli69 as well as the experimental

data.23,24,69 Second, we also smooth the input stimulus with a smoothing kernel to represent the ramping and decay of the image

response to the input sequence.69 The smoothing kernel is the normalized experimental mean excitatory response, deconvolved

with the experimental stimulus smoothing function (see above for details). (In practice, smoothing the present stimulus signal

from the L4 excitatory responsewould have beenmore realistic. However, the depth differences between L2/3 and L4 did not change

the excitatory response significantly, so we have just used L2/3 for simplicity.) The resulting smoothing kernel from this process is

shown in Figure S5F. Third, for each cell we allow the onset of the image stimulus to vary by ±Dt so that not all cells receive input

representing the image presentation at the same time step. This incorporates effects of lag times of stimulus responses across a

population and is also useful for numerical stability so that all cells do not respond in unison. We incorporate all three of the above

effects on a cell-by-cell basis into a stimulus kernel kstim
t . If xt is the random binary vector representing the current image being pre-

sented, then the full raw stimulus stimulus input is given by

xstim
t = ReLU

�
kstim
t 1 xt + e

�
; (Equation 28)
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where ReLUð $Þ = maxð$;0Þ and e � N ð0;se1Þ Z ðHTML translation failedÞ. See Figures S5A and S5B for exemplar present stimulus

input for an image change and image omission.

Unless otherwise stated, the present stimulus inputs are taken to have average sparsity p = 0:05 with a minimum sparsity of 0.025

for any given stimulus. The input normalization was chosen so that nonzero elements had size 0.2. Since time-correlated noise is

already injected into each population (see below), the present stimulus noise was taken to only be se = 0:033 0:02.

Since mice can lick mid-sequence and this can reset the task mid-trial, the experimental distribution of number of presentations

between a given image is thus fairly heavy tailed. Across the entire experimental dataset, we find there to be on average 20.4 image

presentations between changes. To ensure shorter trial times, we truncate the maximum number of image presentations between a

change to 75. This only omits the 2:3% of image changes on the tail, and shifts the average number of images between a change to

18.4. See Figures S5G and S5H for a plot of the true number of image presentations until the next presentation. We do not find using

the experimental image-change-distribution versus the idealized one that assumes no licks affects the mean response results signif-

icantly. However, in the cell subpopulation analysis the fitting metrics are dependent upon the global distribution of change occur-

rences and so the truncated experimental distribution was used in said analysis.

Stimulus history information
As mentioned above, we also pass the network information about the recent history of the stimulus, in particular the time that has

elapsed since the last image presentation. This information is assumed to be encoded in a subset of the top-down input to the cortical

circuit. This additional input into the network is necessary to observe responses that are dependent on the relative time between im-

age presentations, e.g., the omission ramps. The top-down inputs could be produced from the present stimulus sequence described

above using, say, a simple recurrent network that counts the time steps since the last stimulus and encodes said information in output

neuron responses that match known stimulus tuning properties. As our goal for this study is the effects for FMS in the local circuit, we

avoid an explicit implementation of such history encoding and simply input it directly into the network.

In this section, we denote the time that has elapsed since the last image presentation at time t by s, which is measured in seconds.

For example, with no omissions, s = 500 ms immediately before the onset of the next image presentation. For times when the stim-

ulus is currently being presented, s = 0. The time since the last image presentation is maximized after omissions, and since at most

we allow for two successive omissions, 0% s%2 seconds.

We denote the neuronal encoding of the time s by rðsÞ. We assume that encodings of times that are close together are more similar

than times further apart, as measured the dot product between the two representations. That is, if js � s0j< js � s00j, then rðsÞ$ rðs0Þ>
rðsÞ$rðs00Þ.

The temporal encoding input is generated by creating a population of neurons that are each tuned to a particular s. For simplicity,

we take the neuronal tuning curves to take the shape of aGaussian, though our results easily generalize to other tuning curves such as

cosine bumps. To match experimental results, we assume the population of neurons’ tuning curves are centered at times that are

logarithmically distributed and that thewidth of each tuning curves is proportional to their center.70–72 Specifically, we take the neuron

tuning centers to be logarithmically distributed between 10� 2 to 101 seconds. For neuron I centered at time sI, its width is directly

proportional to the size of the center of its tuning, sI = 1
3sI. Altogether, the tuning curve of neuron I is

rIðsÞ = exp

 
� ðs � sIÞ2

2s2
I

!
: (Equation 29)

See Figure S5I for exmplar raw turning curves. In practice, the longest delay time between images is at most 2 s, so those neurons

tuned to higher times are almost always silent in our setup. The resulting neural population responses are then each individual neu-

ron’s response to the corresponding s (Figure S5J). Due to the higher density of neurons centered to small s, the relativemagnitude of

the population response vectors decreases gradually for larger times (Figure S5K). Notably the trend in magnitude is the opposite to

that of the ramping response, i.e., smaller s have the largest magnitude. A verification of the decrease in similarity for times further

apart is shown in Figure S5L. Sincewe assume this history stimulus represents some unknown subset of the total top-down input into

the VIP population, we simply set themagnitude of the cell activity to be comparable to the present stimulus input so that the omission

ramping has a similar response to image presentations.

Similar to the present stimulus input, noise is added to the stimulus history stimuli and thresholded to be positive definite,

xhist
t = ReLUðrðsÞ + eÞ: (Equation 30)

We note that this encoding of the history of what themouse viewed is purposely simplistic and likely misses other effects that could

be observed experimentally. For instance, an image that lasts longer or a shorter delay would not elicit a large response from the VIP

cells despite these being outside of the the normal rhythm of the task. Amore thorough encoding of the history of the task would allow

the model to react to additional disruptions to the regular task flow, but we leave such exploration for future work.
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Time-correlated noise
To account for contributions from neurons not included in the circuit, as well as contributions from other task-relevant effects (e.g.,

behavior), the excitatory, SST, and VIP populations are injected with additional time-correlated noise (in addition to the noise added

to the present stimulus and stimulus history inputs described above).

Specifically, the noise is generated by convolving white noise with a Gaussian smoothing kernel over time, and then weighting the

noise injected into each neuron to account for any variance the population may have from such effects. The continuous Gaussian

smoothing kernel is given by kðtÞ = 1=ðps2Þ1=4 expð� t2 =2s2Þ with s = 125 ms. The discrete smoothing kernel, kt, is found by eval-

uating the above at kt = kðtDtÞ for t = � ðs=DtÞ2;.;ðs=DtÞ2. Note the normalization of kðtÞ is chosen such that the convolution does

not change the variance of the uncorrelated noise, e.g.,
P
s
k2t z1. Theweight accounting for howmuch noise is injected into neuron i is

wi � U ð0;1Þ. Thus we have

np
t = w1ðk � ~npÞt; (Equation 31)

where ~np
t is the uncorrelated noise with ~np

t � N ð0;spÞ. As shown above, this noise is added to the preactivations of all neurons for

each population. The variance of the noise for each population, sp = sp1, is adjusted to match experimental baselines, see STAR

Methods for details.

Training schedule details
As discussed in the main text, the mices’ training schedule consists of many sessions that each last on the order of one to two

hours.24 Several sessions are required for the mice to learn the task completely, meaning often they have been exposed to on the

order of 10 hours of the image change task to achieve the task performance threshold needed to progress onto imaging. Since

neuronal responses are only collected after this performance threshold is achieved, it is not yet known how many sessions are

required for the neuronal responses to the familiar image change task to stabilize.

For numerical tractability, we do not explicitly simulate the full tens of hours of the training sequences for the microcircuit model.

Instead, we expose the model cortical circuit to a shorter version of the task and increase its learning rates so that it achieves sta-

bilized responses to the familiar data over a shorter simulated time. As we saw in the FMSN, higher learning rates are capable of

becoming familiarized with responses at a quicker rate, at the cost of fitting the noise to a greater degree. Thus, explicitly simulating

full training/imaging times at equivalent lower learning rates should only improve the results we have shown throughout this work.

Additionally, as we mentioned above, we did not find that using that exact distribution of image change times affected any results

outside of the cell subpopulation analysis, and thus to further expedite training we reduced the number of repeated presentations

that are between each image change to between 4 and 9.

An explicit demonstration of the training time equivalence is explored in the FMSN in Figures S2O and S2P. There, the FMSN is

trained on sequences that vary in length over two orders of magnitude and it is shown that, by correctly adjusting l and h, the net-

works essentially develop almost identical responses despite the large differences in training time. For two training sequence lengths

T and T 0, the equivalence is given by

T /T 0;h/
T

T 0h
0 l/ðl0ÞT=T 0

: (Equation 32)

Thus, if T 0 >T, this corresponds to a reduction in the learning rate and decay rate for the longer train sequence. Note the last relation

is equivalent to tdecay/
T 0
T t

0
decay.

Specifically, we train our cortical circuit models on 2000 s of change detection, which consists of approximately 2660 total image

presentations or 330 presentations of each familiar image. With the expedited image change time, the training session consists of

roughly 400 image change events.

To gather responses in cortical circuit model’s ‘imaging’ sessions, we monitor the network’s responses while it continues to train.

We measure the network’s responses on 250 s of change detection, but we take advantage of batch training to allow us to gather

responses to several distinct input streams simultaneously. However, since the cell coding analysis is dependent on statistics over an

entire session, we use the actual image change distribution when collecting data for said analysis.

Since we would like to simulate the gradual familiarization of the novel set during the novel imaging session, but we have used a

larger learning rate to expedite the training procedure, we reduce the learning rate of both FMSA and FMSAH during imaging sessions.

There is evidence the mices’ response changes between sessions even without explicit exposure to the stimuli.24 This may be due to

replay. To simulate this additional familiarization that occurs between sessions, as well as additional stimulus exposure during the

passive session, we train the networks on the novel images for an additional session equal in length to the imaging sessions, but

at a higher learning rate, similar to training.
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Analytical intuition and additive modulations
Additive modulations

An alternative form of modulations that has also recently been considered has the modulations directly added to the fixed weights

rather than themultiplicative formwe consider throughout this work.35,36 Explicitly, rather than the transformation of the formof Equa-

tion 1, these modulations affect the fixed weights via

W/W+Mt: (Equation 33)

The same modulation update expressions continue to be used: for the associative case, Equation 2a, and pre-only, Equation 2b.

Equivalent modulation bounds to those in Equation (7) are enforced such that the associative and pre-only modulations do not

exceed biological bounds of LTP/D and STSP, respectively. Many equivalent FMSN results to those in the main text and Methods

using this additive modulation are shown in Figure S11.

Analytical intuition

Here we discuss some analytic properties of FMSs that help us understand them better. Throughout this section, we will investigate

both themultiplicative modulations considered in themain text as well as the additive modulations that were introduced n above. The

analytical approximations for the additive modulations and their connection to Hopfield networks is more straightforward to under-

stand, but similar qualitative results hold for the multiplicative modulations. Like the analysis here, feedforward version of Hopfield

networks as familiarity discriminators were explored in ref. 32, though their setup requires specialized weights that take on the value

of the input neurons to compute the energy function used for familiarity discrimination.

Like the main text, let M be the modulation matrix and W be the fixed matrix of synaptic connecting the input and the output. Let

x1;.; xm be the set of familiar inputs we would like the network to memorize. Additionally, let ~xa for a = 1;.;m be novel inputs, that

also obey ~xa$~xb = dab and E~xa = 1 for all a;b = 1;.;m, but also xa$~xb = 0 for all a and b. Here we assume the novel and familiar sets

are of the same size, but it is straightforward to generalize what we show here for different size sets. Note since we consider inputs

that are positive definite, in practice the dot product between any two inputs is finite, but it can approach zero as the size of the input

space gets large and the sparsity is small.

To begin with, we establish some properties of the element-wise product that will be useful for the multiplicative form of the mod-

ulations. We will often make use of the identity that shows how an outer product of vectors (e.g., the modulations) act through matrix

multiplication, ��
yxT
�
1W

�
x0 = y1½Wðx1 x0Þ�; (Equation 34)

from ref. 36. Additionally, it will be useful to compare the (L2) magnitudes of the element-wise product between two stimulus vec-

tors. Let nonzero values of the vectors be A with probability p. If the two vectors are different we have

Ekx1 x0k22 =
Xd
I = 1

E
�
xIx

0
I

�2
=
Xd
I = 1

p2ðAÞ4 = dp2A4; (Equation 35)

where we have used the fact that the only nonzero element of the element-wise product occurs when the Meanwhile, if the two stim-

ulus vectors are the same, instead we have

Ekx1 xk22 =
Xd
I = 1

EðxIxIÞ2 =
Xd
I = 1

pðAÞ4 = dpA4; (Equation 36)

which is larger by a factor of p. Note a similar property holds for the dot product between two vectors, where EkxTx0k22 = d2p4A4 and

EkxTx0k22 = d2p2A4, but now the same vector result is larger by a factor of p2. Thus, in the limit that p/0 and proper normalization of

A, we make the analogous approximations

xa 1 xbzdabx
2
a; xa1~xbz0; ðmultiplicativeÞ (Equation 37a)

xa $ xbzdab; xa1~xbz0; ðadditiveÞ (Equation 37b)

where we use the shorthand x2a = xa1xa.

Let us start with an approximate setting that will serve as a rough representation for the function of the FMSN. We assume that the

modulations are not involved in the the feedforward pass of our network but are still updated as we have described in the main text.

That is, the output activity is given by y = 4ðWx +bÞ but we still update Mt via Equation 2a even though it has no effect on the net-

work’s behavior. We also presume themodulations do not decay, i.e., l = 1, and that modulation are small enough such that they do

not encounter the biological bounds or violate the bounds of Equation (5).
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Over a training time where the familiar inputs are each shownN times, the associative update will lead to an expectedM given by a

sum of m outer products

M = hN
Xm
a = 1

yax
T
a : (Equation 38)

Notably, ifW = I and ya = xa, i.e., if 4ðxÞ = x, this would be the same form of the updates to the lateral connections in a Hopfield

network with an associative learning rule. Now consider how thismodulation matrix acts on a given familiar input (for next three equa-

tions, top: multiplicative, bottom: additive),

ðW1MÞxa = hN
Xm
b = 1

yb 1
�
W
�
xb 1 xa

��
zhN

Xm
b = 1

dabyb 1Wx2
b = hNya1Wx2

a; (Equation 39a)

Mxa = hN
Xm
b = 1

ybx
T
bxazhN

Xm
b = 1

ybdab = hNya; (Equation 39b)

where for themultiplicative case (top) we have used Equation 34 for the first equality and in both lineswe have used the approximation

of Equation 37. Now compare this to a novel input

ðW1MÞ~xa = hN
Xm
b = 1

yb 1
�
W
�
xb 1 ~xa

��
zhN

Xm
b = 1

dabyb 1W0 = 0; (Equation 40a)

M~xa = hN
Xm
b = 1

ybx
T
b
~xazhN

Xm
b = 1

xbð0Þ = 0: (Equation 40b)

Thus a familiar input yields a non-zero modulation but a novel input simply yields zero. From the above results, we have

ðW + W1MÞxa z ~ya + hNya1Wx2
a; ðW + W1MÞ~xaz~ya; (Equation 41a)

ðW + MÞxa z ~ya + hNya; ðW + MÞ~xaz~ya; (Equation 41b)

Thus we see that if h> 0 (or h< 0) the familiar preactivations grow (shrink) in size from the effects of themodulations, while the novel

preactivations are left approximately unchanged.

Let the familiar subspace be the subspace of the input stimulus space spanned by the familiar stimuli. Then, since any stimulus can

be decomposed into parts that lie within the familiar subspace and perpendicular to it, a generalization of the above arguments shows

that the modulation matrixMwill yield a nonzero result for any vector that has components in the familiar subspace. Since for a large

input stimulus space the novel inputs are close to perpendicular to the familiar subspace (so long as m � d), they yield approxi-

mately zero output.

For the additive case, we can see Equation (41) is similar to checking the energy function of a Hopfield network (up to the vector ~ya),

which has been used previously as a method of familiarity detection.32 Indeed, since the activity in our network is positive definite,

taking the L1 normalization of this output is equivalent to taking the dot product with 1, so it is similar to a Hopfield energy measure-

ment with one occurrence of the stimulus replaced by 1.

Now in practice, themodulations are involved in the forward pass, so as themodulations get updated during training they affect the

output. For the FMSN, y = 4½ðM1WÞx +Wx +b� and thus the modulations affect its own update. Notably, it is only the output ac-

tivity that is affected by our approximation above, and sowhat will change are the ya dependence of Equations 38–41. However, what

causes the significantly different behavior between Equations 39 and 40 is the input activity dependence ofM, and this is unchanged

when we include modulations in the forward pass.

QUANTIFICATION AND STATISTICAL ANALYSIS

Fitting FMS learning rates
To determine the learning rates of the three FMSmechanismswe add to themicrocircuit network, we perform a brute-force scan over

grids of learning rates and evaluate howwell the resulting modulation effects fit the novelty data. Note that procedure still amounts to

fitting only three numbers: hðAÞ, hðPÞ, and hðAHÞ. We evaluate the parameters by seeing how well their mean image change and omis-

sion responses match the experimental data. Specifically, we compute the MSE loss of the mean fit to the experimental data over all

three cell populations,

LMSEðzc; zo; bzc; bzoÞ =
X

s = F;N

X
p = E;V;S

X
t

lp
h�
zp;st;c � bzp;st;c

�2
+ ds;F

�
zp;st;o � bzp;st;o

�2i
(Equation 42)
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where zp;st;c is the experimental mean image change response of population p in session s at time t relative to the image change, bzp;st;c is

the cortical circuit model equivalent, zp;st;o is the omission equivalent, lp is a population-dependent weight, and ds;F is a Kronecker delta

function ensuring omission loss is only computed during the familiar session (sincewe do not try tomodel the suppressed omission of

novel sessions). We take lV = 5 and lE = lS = 1, so that fitting the VIP response is more important than the excitatory or SST pop-

ulations. The sumover s represents a sum over the familiar and novel sessions. The sumover t represents a sum over the relative time

to the change/omission for a given mean response. We take the relative time window to be 25 time steps before and after the cor-

responding image change/omission event, which is roughly ± 800 ms.

Cell subpopulation analysis
We reproduce the functional cell subtype analysis pipeline of ref. 24 to compare our model to experimental results on equal footing.

Here we give a summary of said pipeline for completeness, additional details and justification for certain parameters wematch to the

experimental analysis can be found in ref. 24. Throughout this section, we suppress indices that indicate the population and session of

a given cell unless needed.

Experimental data
We take the computed coding scores directly from ref. 24. The codings scores are for cells collected across several different brain

areas and layers. Although our cortical circuit model specifically takes cell counts and connection data for L2/3, we note that the vast

majority of VIP cells were found in upper cortical layers and there does not appear to be a significant difference in coding scores with

brain area.24

The experimental coding score analysis focuses on four primary input feature categories (also called ‘components’): images, omis-

sions, behavioral, and task. These feature categories are further subdivided into various features that each have their own kernel and

input data. For example, the image feature category contains one feature for each of the eight possible images in the corresponding

image set. When a feature category is removed to compute its coding score (see details below), all feature kernels within that cate-

gory are removed. See ref. 24 for additional details.

Model fitting
To understand how the various features coded in the task explain individual cell activity across the VIP, SST, and excitatory popu-

lations, we fit each cell’s activity using a linear regressionmodel with time-dependent kernels. The feature categories we consider are

image presentations, omitted images, and image changes. With the exception of behavioral feature category, these are the same

categories considered in ref. 24. Also note that the image change feature category can no longer be divided into behavior-dependent

features representing hits and misses.

We thus define the ten time-dependent features vectors; fgt for g = image1, image2,., image8, omission, change; to have value 1

at the onset of a given feature and to be 0 otherwise (Figure 6A, top). These features each belong to one of three feature categories;

a = image;omission;change; with the eight image features belonging to the ‘image’ feature category, and the omission and change

features belonging to the category of the same name.

For each cell i in each ‘imaging’ session, we fit its full session response (post smoothing, see above), yi;t, using time-dependent

feature kernels, kgi;t, such that an estimate of its response is given by the convolution

byi;t =
X
g

ðfg � kgi Þt + ci; (Equation 43)

where ci is bias term. Each kernel’s width in time ismatched to that used in ref. 24: the image, omission, and change kernels persist for

0.75, 3.0, and 2.25 s after the corresponding feature onset, respectively.

The kernels kgi;t and bias terms ci are fit using ordinary least squares regression with an L2 penalty (i.e., ridge regression, see ref. 24

for additional details). We evaluate the fit of the models by computing their variance explained on a test set,

VEi = 1 � VarT ðyi � byiÞ
VarT ðyiÞ ;VarT ðyiÞ =

1

jT j
X
t˛T

�
yi;t � yi

�2
; (Equation 44)

where yi is the cell’s mean activity over the entire imaging session. Here, the T subscript on VarT indicates the subset of sequence

times over which the variance is computed and jT j represents the number of time steps (see below). To find the optimal L2 regula-

rization, we scan over regularization coefficients, evaluate said fits, and choose the regularization that yielded the highest mean vari-

ance explained across the entire cell population. Train/test splits are computed over distinct batches.

Since certain feature categories are quite sparse across the full input sequence (e.g., omissions and changes), their corresponding

feature kernels influence only a small subset of sequence time steps. To account for the different possible kernel coverage over the

entire sequence, below it will be useful to compute the variance explained over only the subset of sequence time steps where a given

feature category’s kernel(s) could have possibly had an influence. Let T a be the set of time steps a feature category’s kernel(s) could
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have possibly influenced the response given the sequence’s feature vectors fgt and the kernel widths in time. We define the adjusted

variance explained as

VEa
i = 1 � VarT a

�
yi;t � byi;t

�
VarT a

�
yi;t
� ; (Equation 45)

where the variance is now only computed on the subset of sequence times T a. Since jT aj is the number of time steps in T a and jT j is
the total number of sequence time steps in the session, jT aj< jT j, for all three feature categories we consider. Specifically, jT aj<
jT jz0:95;0:19, and 0.16 for the image, omission, and change categories, respectively. Lastly, note that from our definition in Equa-

tion 44, the adjusted variance is always computed relative to the mean cell activity over the entire session.

Coding scores
For each cell in each session, we compute its coding scorewith respect to each of the three feature categories we introduced above.

Intuitively, a category’s coding score represents how important its feature(s) are for fitting the cell’s response. To compute coding

score, we compare the cell’s adjusted variance explained of a model fit without a given feature category’s kernel(s) to the model

fit with all kernels. Explicitly, the raw coding score is defined as

ca
i =

VEa
i;full � VEa

i;sans a

VEa
i;full

; (Equation 46)

where VEa
i;full and VEa

i;sans a are the adjusted variance explained of themodels fit with all kernels and all kernels except those belonging

to category a, respectively.

Finally, it will sometimes be useful to compare coding scores across sessions, in which casewewant to normalize all coding scores

on equal footing. The across-session coding score of session s is defined as

ca;s
i =

 

T a;S




jT a;sj

!
VEa;s

i;full � VEa;s
i;sans a

VEa;S
i;full

;where S = argmax
s

VEa;s
i;full: (Equation 47)

Since we have three feature categories a and three sessions s, each cell will have a 9-dimensional across-session coding score

vector.

In the experiment, a minimum variance explained is required for a nonzero coding score. Specifically, VEa;s
i;full > 0:005. Relative to the

full fit variance explained, approximately 54:5%, 34:7%, and 52:1% of VIP cell fits fall under this threshold in the familiar, novel, and

novel-plus sessions, respectively. Since the cortical microcircuit model has overall higher variance explained for all cell populations,

we adjust this minimum coding score threshold to compensate for the different distribution. Setting a threshold of VEa;s
i;full > 0:075 re-

sults in similar rates as the experiment, namely 56%, 20%, and 54% of VIP cells across initializations fall under this value.

Cell clustering
We use spectral clustering to cluster the set of ca;si for each population. In this subsection, we use ci to denote the 9-dimensional

coding score vector of cell i.

To compute the ideal number of clusters for cell population, we use two measures: the gap statistic and the eigengap. For the gap

statistic, we scan over cluster sizes from k = 2 to 15. We use the SpectralClusteringmethod from scikit-learnwith default

parameters and a given k to fit the data and compute the pairwise Euclidian distance within each cluster. Let the n th cluster contain

the set of cells indexed by in. Then,

DðkÞ =
1

k

Xk
n = 1

X
insjn

din ;jn di;j = kci � cjk2: (Equation 48)

Thismetric is computed for the actual clusters and compared to a baseline of shuffled data. The shuffled data is the across-session

coding scores shuffled across experience-level and feature categories. For themetric over the shuffled dataDsðkÞ, the gap statistic is

then DsðkÞ � DðkÞ, and the optimal k is the one that maximizes this metric (Figure S8E).

To compute the eigengap, we compute differences in consecutive (ordered) eigenvalues of the Laplacian of the coding score’s

affinity matrix. Specifically, the affinity matrix has elements e�gd2
a;b , with da;b the Euclidean distance computed above. The eigengap

is then the difference in eigenvalues of the Laplacian, where large gaps are associated with sudden changes of the amount of sim-

ilarity explained by additional cluster partitions (Figure S8D).

Once the optimal number of clusters is computed, we perform spectral clustering on the set of coding score vectors of a given

population for 150 different initial seeds. Across all these fits, we compute the symmetric matrix of co-cluster probabilities for all

cell pairs. This co-clustering matrix is then passed through scikit-learn’s AgglomerativeClustering method, again with
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the optimal number of clusters as determined above, with default parameters except for affinity=‘euclidean’ and linka-

ge=‘average’. Finally, cell clustered are ordered by mean across-session coding scores, with the clusters with the smallest

mean being ordered first.

Additional Figure details
The equivalent of Figure 1 for the pre-only dependent update rules is given in Figure S1A.

The equivalent of Figure 2c for strengthened modulations is shown in Figure S1B.

For Figures 2D–2G], an exemplar FMSN was trained using a set of 8 familiar stimuli. To ensure an equal distribution of the familiar

stimuli over the training time, a training schedule where each of the 8 familiar stimuli is shown every 8 inputs is used. Note the order of

the 8 examples is shuffled within every 8 inputs. The FMSN has a population size of 300 input and 500 output neurons. As mentioned

in the main text, we take all input neurons to be excitatory. The distribution ofW elements is taken to havew = 1=300 and pW = 0:2,

see Equation 8. For the stimuli, the sparse random binary vector population has pstim = 0:05, with a minimum number of nonzero

inputs of 1, and nonzero elements of size 0.15.(Any two vectors drawn from the sparse random binary vector distribution we consider

in this example have cosine similarity of 0.14. Cosine similarity of stimuli decreases with increased sparsity and larger input dimen-

sion.) The standard deviation of the Gaussian noise added to the inputs is taken to be 0.1 times the size of the nonzero elements. We

threshold is adjusted at initialization such that the output population has a firing rate of 30%. The associative modulations obey the

bounds discussed below Equation (7). We take h = � 53102 and tdecay=Dt = 23104 so that the modulations undergo practically no

decay during the stimulus learning period. These parameters are used in FMSNs throughout this work unless otherwise stated.

Note in order to track both the familiar and novel output activity throughout training, we treat them as ‘‘test sets’’ when we

pass them to the network, which distinguishes them from the sequential training set we use to change the modulations of a

network. For any input that belongs to the test set, we do not update the synapses. In this way, we can understand what

the network’s response to these various stimuli without would be actually updating the network’s modulations as if it truly

‘‘saw’’ the stimuli during training. The full familiar and novel sets were treated as test sets in order to track their output activity

over training shown in Figure 2E.

In Figure 2G we introduce the idea of an important synapse. An important synapse is stimulus dependent, and as such a given

synapse can be important for multiple stimuli. Important synapses are also defined before any modulations in the network occur,

and are thus independent of the FMS mechanism. We define important synapses in our model as those synapses that satisfy two

requirements: (1) there must be a synapse there and (2) the synapse’s pre- and postsynaptic neurons both fire when the stimulus

is input into the network (without modulations). Formally, for a given stimulus input x, let y be the corresponding activity of the

output layer without any synapse modulations from FMSs. For example, for the FMSN, y = 4ðWx +bÞ, but this generalizes to

other possible postsynaptic expressions. The mask S that defines the important synapses contained within W for stimulus x is

given by

SIi =

�
1 WIiyixIs0;
0 otherwise:

(Equation 49)

Intuitively, whether or not a synapse is important tells us whether or not said synapsewould bemodulated from an associative FMS

mechanism. In practice, since we add noise to all stimuli being passed through the FMSN, many synapses that are not important are

also modulated.

Figure 3A quantifies how a vector’s distance from the familiar subspace influences its output magnitude. The familiar subspace is

defined as the subspace spanned by the familiar set of vectors. To measure the distance of any random vector v˛Rd to this sub-

space, we orthonormalized the familiar set to obtain the matrix ~F˛R83d and then formed the projection matrix onto the familiar sub-

space via PF = ~Fð~FT ~FÞ� 1~F˛Rd3d. A given vector’s distance from the familiar subspace is then measured by calculating the cosine

similarity of the vector and its projection onto the familiar subspace,

dFðvÞ =
v$PFv

kvk2kPFvk2
: (Equation 50)

By this definition, any vector from the familiar set or any linear combination thereof has dF = 1:0. Note that noise is added to all

vectors before being passed through the network, and this noisy vector was used to compute dF in Figure 3A. Hence, even the noisy

familiar vectors do not lie exactly in the familiar subspace.

Since simply drawing from the same distribution that generated the familiar and novel sets almost always generates stimuli that are

far from the familiar subspace, we generated inputs as follows.We first drew a vector v0 from said distribution and also for each vector

drew f � U ð0;1Þ and a random vector from the familiar set f. Then, each element of the final vector v has probability f to be the same

as f, and is otherwise equal to the corresponding element of v0. In this way, as f varies from 0 to 1, we interpolate between vectors that

are drawn from the original distribution (i.e., the novel set) to those in the familiar set. Finally, to generate random vectors in the familiar

subspace, 8 binary weights were drawn, their sum was normalized to 1, and these weights determined the linear combination of

familiar vectors that formed the new vector within its subspace.
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Figures 3B and 3C show how the evolution of the modulation matrix can change with different learning rates, h, and decay rates, l.

Both setups use a more specialized learning schedule than those in Figure 2. Figure 3B consists of a single input vector passed over

and over again to observe how quickly modulations can grow and when they saturate. Figure 3C consists of a single input vector

passed on the first time step and then only noise afterward. The goal of this plot is to observe how quickly the modulations created

by a single input can shrink over time.

Figure 3D shows the average result of several KS tests on a network as we scan over number of exposures and the learning rate, h.

With the exception of the parameters scanned over, the network and training parameters used in this setup are identical to that in

Figures 2D–2G. KS test results are averaged of log10ðpÞ over 10 distinct network/stimuli initializations. Figures 3E–3F are the

same as Figure 3D, but now scan over the FMS’s decay time constant and learning rate.

In Figure 4, additional details of the experimental training procedure can be found in ref. 24. Details of themodel network (Figure 2C)

and task (Figure 2D) can be found in the STAR Methods.

In Figure 4G, for synaptic matrix Wp;p0
between presynaptic population p and postsynaptic p0, the model connection strength

values were computed via

1

Np

X
i;I

Wp;p0
iI : (Equation 51)

Note here p and p0 are treated on unequal footing to account for the fact that, for a given postsynaptic cell, the relative count of

presynaptic inputs contributes to its total activity. The theoretical values were computed via Equation 16.

In Figure 5, unless otherwise stated, we take the cortical circuit model to have 400 excitatory, 200 VIP, and 200 SST neurons,

though see STAR Methods for how synaptic strength is adjusted to compensate for deviations from realistic cell counts. Weights

are initialized as described in the STAR Methods, with multiplicative constant c = 0:18. The three FMS learning rates are scanned

over to determine the best fit to experimental responses, see STAR Methods.

Figures 5A and 5H show comparisons of themean responses of our cortical microcircuit model and responsesmeasured in exper-

iment. We match event traces that are smoothed by a half-normal filter, see above. See Ref. 24 for significantly more details on the

experimental details including details about the event extraction.

To extract the mean responses of the model, let the set of all times of interest (e.g., for image changes or omissions) be denoted by

T . We denote the mean response as

zpt =
X
s˛ T

XN
i = 1

ypi;t+s (Equation 52)

The full familiar and novel set responses of Figure 5B are gathered similarly to the test sets of the FMSN. That is, a test set con-

sisting of the stimuli from the familiar and novel sets representing the image changes is passed to the network at particular times

during training. No temporal history or time-correlated noise input is passed to the network in these test sets so that the VIP’s change

in response to the present input from FMSA can be isolated (the temporal history response also changes during training from FMSAH).

Once again, we do not update the network’s modulations during these passes, and so the microcircuit has no memory of viewing

these stimuli that are solely used to monitor training progress. The test set is evaluated at every image change during training, spe-

cifically at the step corresponding to the peak of the smoothing kernel (see above). The modulation magnitudes of Figure 5C are

computed analogously to Figure 2F and also measured at each image change during training.

Figures 5D, 5G, and 5K all show the mean responses as a particular FMS learning rate is varied. Networks and tasks are initialized

identically to those used to produce the analogous figures in Figures 5A and 5H, the only thing that changes is the corresponding

FMS’s learning rate and thus its asymptotic modulations.

The responses in Figure 5E show the VIP response of a test set, evaluated in an identical manner to that described for Figure 5B

above. The test set now consists of all novel stimuli with the temporal history part of the input corresponding to the zero-time encod-

ing and no noise input (since the FMSAH modulations have stabilized, they no longer significantly affect the change in VIP responses

for the relevant timescales shown here). Test responses are again gathered at the step corresponding to the peak of the smoothing

kernel. The responses shown are averaged over 50 image changesmeasured during a novel session. Additionally, the responses are

normalized by the largest mean response. Figure 5F shows the modulations of FMSP during an exemplar image change of the novel

imaging period. The modulation magnitudes shown are gathered at every time step.

Figure 5I shows an exemplar mean VIP response to all the encodings of time-since-last image from the stimulus history input.

These responses are once again gathered as a test set (see above), where now the present stimulus and time-correlated noise inputs

are taken to be zero so that the VIP’s change in response from FMSAH can be isolated. Responses are gathered before and after

training on the familiar image set. The modulation magnitudes shown in Figure 5J are gathered analogously to those in Figure 5C.

Figure 6A shows exemplar input features and fits over time. The top subfigure dots correspond to when the corresponding input

features is on, see STAR Methods for additional details. The bottom subfigure shows exemplar raw cell data, full kernel fit, and fit

without the image kernels. Figure 6B shows the clustered VIP across-session coding scores from experiment.24 The middle plot

shows cluster-average coding scores and the right plot shows average coding scores across all VIP cells. Figure 6C shows the clus-

tered VIP coding score from themodel, see STARMethods for details of how these are computed. Clustered are ordered by smallest
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mean coding score to largest. Figure 6D shows image kernel fits from the full kernel regression model. Image kernel fits are averaged

across all 8 image kernels, all VIP cells, and all initializations. Figure 6E shows fits and raw data of the cluster-aveeraged novel image

(across-session) coding score as a function of a cluster-averaged network property, see details of Figures S9 and S10 for full details

of this network property and all others. Fits are done using linear regression and we use the resulting correlation to measure how

much a network property influences the value of a given across-session coding score. This plot shows only one exemplar network

property and one coding score, the resulting correlations across all 16 network properties we investigate and all 9 coding scores can

be found in Figure S9. In Figure 6F we show themedian correlation for the familiar and novel image coding scores as a function of two

network properties for both the cluster-averaged values and the raw cell data. Figure 6G shows the amount of familiar and novel input

cells belonging to a particular cluster receive. Each point represents a single cluster for a given initialization. Points are colored by

whether they are familiar-coded (cluster 3), novel coded (clusters 2, 5, 7), both familiar and novel coded (clusters 6, 8), or not image

coded (clusters 1, 4). Figure 6H is generated similarly, with clusters colored by whether they are omission-coded (clusters 4, 7, 8) or

not (all other clusters).
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