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Kilonovae are the electromagnetic transients created by the radioactive decay of freshly synthe-
sized elements in the environment surrounding a neutron star merger. To study the fundamental
physics in these complex environments, kilonova modeling requires, in part, the use of radiative
transfer simulations. The microphysics involved in these simulations results in high computational
cost, prompting the use of emulators for parameter inference applications. Utilizing a training set
of 22248 high-fidelity simulations, we use a neural network to efficiently train on existing radiative
transfer simulations and predict light curves for new parameters in a fast and computationally ef-
ficient manner. Our neural network can generate millions of new light curves in under a minute.
We discuss our emulator’s degree of off-sample reliability and parameter inference of the AT2017gfo
observational data. Finally, we discuss tension introduced by multi-band inference in the parameter
inference results, particularly with regard to the neural network’s recovery of viewing angle.

I. INTRODUCTION

On August 18, 2017, prompt observations identi-
fied gravitational wave emission (GW170817; [1, 2]),
shortly followed by a gamma-ray burst (short-GRB
GRB170817A [3]). Extensive followup observations
identified a long-duration optical/near-infrared counter-
part, AT2017gfo, later identified as a “kilonova” [4–21].
A kilonova [22] is characterized by thermal emission
from rapidly expanding, radioactively-powered, heavy-
element material ejected from the associated progeni-
tor merger. The detection of the joint gravitational-
and electromagnetic-wave emission from GW170817 and
AT2017gfo has initiated an era of precision kilonova ob-
servations.

Most interpretations of kilonova observations have re-
lied on broadband photometry, in part owing to the rela-
tive sparsity of available spectra for AT2017gfo (and lack
of spectral observations of other kilonovae; although see
e.g. [23–25]) [26–43]. A comprehensive review of kilonova
broadband photometry has recently been compiled and
presented in Ref. [44]. Many studies interpreted their
observations of AT2017gfo shortly after detection princi-
pally by comparison to simplified models for kilonovae [4–
10, 12, 14–21, 45, 46] consisting of one or more groups of
non-accelerating (homologous) expanding material. Mo-
tivated both by binary merger simulations and the inabil-
ity to fit observations with one component [8], at least
two components are customarily employed [10, 12, 15–
17, 20], with properties loosely associated with two ex-
pected features of merger simulations: promptly ejected

material (the “dynamical” ejecta), associated with tidal
tails or shocked material at contact; and material driven
out on longer timescales by properties of the remnant
system (the “wind” ejecta) [47].

Radiative transfer models of two-component kilonovae,
whilst more physically accurate and informative, come
with a significantly higher computational cost compared
to semi-analytical or one-component models. As a re-
sult of this cost, many groups have resorted to surrogate
models, or emulators, for the kilonova outflow, to reduce
the computational impact associated with inference using
these more complex models [48–55].

In this paper, we use a neural network emulator for
light-curve interpolation and parameter inference. We
train on a previously-generated library of ∼ 400 two-
component kilonova light-curve simulations. Our method
can be easily applied to any modestly-sized archive
of adaptively-learned astrophysical transient light-curve
simulations.

This paper is organized as follows. In Sec. II we discuss
our simulation training library, the interpolation model
and its architecture, and the associated light-curve in-
terpolation methodology. In Sec. III we compare our
emulator’s performance with others employed in the lit-
erature and report inference results for observations of
AT2017gfo. In Sec. IV, we summarize our findings.
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II. INTERPOLATION METHODOLOGY

A. Simulation Description

Our two-component kilonova model consists of a
lanthanide-rich equatorial dynamical ejecta component
and a lanthanide-poor axial wind ejecta component as
described in [56, 57] and motivated by numerical sim-
ulations [47, 58]. Each component is homologously ex-
panding and parameterized by a mass and velocity such
that Md, vd and Mw, vw describe the dynamical and
wind components’ masses and averaged velocities, re-
spectively. The morphology for the dynamical compo-
nent is an equatorially-centered torus, whereas the wind
component is represented by an axially-centered peanut
component; Figure 1 of [56] displays the torus-peanut,
or “TP,” schematic corresponding to the morphologies
employed in this work [see 57, for detailed definition].
The lanthanide-rich dynamical ejecta is a result of the
r-process nucleosynthesis from a neutron-rich material
with a low electron fraction (Ye ≡ np/(np + nn)) of
Ye = 0.04 with elements reaching the third r-process peak
(A ∼ 195), while the wind ejecta originates from higher
Ye = 0.27 which encapsulates elements between the first
(A ∼ 80) and second (A ∼ 130) r-process peaks. The
detailed breakdown of the elements in each component
can be found in Table 2 of Ref. [56].

We use SuperNu [59], a Monte Carlo code for simu-
lation of time-dependent radiation transport with mat-
ter in local thermodynamic equilibrium, to create sim-
ulated kilonova spectra Fλ,sim assuming the aforemen-
tioned two-component model. Both components are as-
sumed to have fixed composition and morphology for
the duration of each simulation. SuperNu uses radioac-
tive power sources calculated from decaying the r-process
composition from the WinNet nuclear reaction network
[60–63]. These radioactive heating contributions are
also weighted by thermalization efficiencies introduced
in Ref. [64] (see Ref. [65] for a detailed description of the
adopted nuclear heating). We use detailed opacity cal-
culations via the tabulated, binned opacities generated
with the Los Alamos suite of atomic physics codes [66–
68]. In the database that we use, the tabulated, binned
opacities are not calculated for all elements; therefore,
we produce opacities for representative proxy elements
by combining pure-element opacities of nuclei with simi-
lar atomic properties [67]. Specifics of the representative
elements for our composition are given in Ref. [56].

The SuperNu outputs are observing-angle-dependent,
simulated spectra Fλ,sim, post-processed to a source dis-

tance of 10 pc, in units of erg s−1 cm−2 Å−1. The spectra
are binned into 1024 equally log-spaced wavelength bins
spanning 0.1 ≤ λ ≤ 12.8 microns.

For the purposes of this work, we consider the light
curves for the 2MASS grizy and Rubin Observatory
JHK broadband filters. As we only consider anisotropic
simulations in this study, unless otherwise noted, we ex-
tract simulated light curves using 54 angular bins, uni-

formly spaced in cos θ over the range −1 ≤ cos θ ≤ 1,
where the angle θ is taken between the line of sight and
the symmetry axis as defined in Equation 2. Specifically,
simulations in our database cover all observing angles
with a resolution ranging from ∆θ = arcsin (2/54) ≃ 2.1◦

at the equator, to ∆θ = arccos (1− 2/54) ≃ 15.6◦ near
the axes. This limiting angular resolution near the axes
is comparable to the angles inferred from long-term ra-
dio observations of the gamma ray burst jet afterglow
[10, 16, 17, 69–71].
SuperNu Monte Carlo radiative transport results have

modest but nonzero Monte Carlo error. The impact of
this Monte Carlo error can be estimated both by resolu-
tion studies as well as by simple smoothness diagnostics
(e.g., versus angle and time). For example, in a previous
study [50] we performed Gaussian process interpolation
over this same training set, inferring both an estimate of
the light curve and a conservative estimate of its vari-
ance. The Monte Carlo error inherent in the underlying
SuperNu simulations can be seen for example in Figure 6
of Ref. [50] as short-angular-scale roughness on top of the
overall smooth trend, with at most ∼ 3% deviation at the
1σ level. Later, in Section III C, we describe a targeted
resolution study. Based on these investigations, we ex-
pect that the statistical error of the underlying SuperNu
simulations is smaller than the systematic errors intro-
duced by interpolating between these simulations as de-
scribed below.

B. Training Data Generation

Below we describe the approach taken to generate the
simulation library in Ref. [50], hereafter R22. Our train-
ing library of 22248 kilonova light-curve simulations was
constructed using iterative simulation placement guided
by Gaussian process variance minimization. New sim-
ulations were placed with parameter combinations that
were identified as having the largest bolometric luminos-
ity variance by our Gaussian process regression approach.
In other words, we placed new simulations in regions of
parameter space where our bolometric luminosity inter-
polation root-mean-square uncertainty was largest. The
Gaussian process variance s(x⃗)2 is defined as

s(x⃗)2 = k(x⃗, x⃗)− k(x⃗, x⃗a)k(x⃗a, x⃗a′)−1
aa′k(x⃗a′ , x⃗) , (1)

where x⃗ is the vector of input parameters, x⃗a is the
training data vector, the function k(x⃗, x⃗′) is the ker-
nel of the Gaussian process, and the indices a, a′ are
used to calculate the covariance between inputs x⃗ and
training data x⃗a, x⃗a′ such that if a = a′, the variance
is 0. In building the simulation library, we only con-
sidered the four-dimensional space of ejecta parameters
x⃗ = [Md, vd,Mw, vw]. Each ejecta parameter combina-
tion yields simulations calculated for 54 equally-spaced
viewing angles; as such, our training set of 22248 light



3

curves corresponds to a core set of 412 unique ejecta pa-
rameter combinations.

For this work, we use the aforementioned light curves
in the original simulation library as our training set. The
light curves used in this work have the same parameters
as those used for our light-curve interpolation approach
in R22. No additional simulations were produced for the
purposes of this work; all training data came from the
simulation library presented in R22.

The original training data library consists of 22248 to-
tal light-curve simulations calculated at 264 times and
54 angular bins each. We do not perform any coordi-
nate transformations, but rather interpolate directly in
our ejecta parameter space and angle.

C. Data Processing

The entirety of our 22248 simulations is represented
by a tensor, Mabc, containing the AB magnitudes across
the bands described in Section IIA, which correspond
to a set of input parameters x⃗. Mabc has dimensions of
412×264×54, corresponding to 412 simulations evaluated
at 264 log-spaced times between 0.125 and 37.24 days for
54 viewing angles equally spaced in cos θ for θ ranging
from 0 to 180◦. We do not perform any normalization
of our inputs or outputs, with ejecta parameters ranging
from −3 ≤ logm/M⊙ ≤ −1 and 0.05 ≤ v/c ≤ 0.3 and
light-curves ranging from -18 to 8 AB magnitudes.

We split our four-dimensional ejecta parameter vector
x⃗ into training, validation, and test sets. We use 60% of
the data for the training set, which contains information
that the neural network uses to learn. Of the remaining
40%, 20% is used for the validation check, which tracks
how well the network generalizes to off-sample inputs
during training, and 20% goes into the test set, which
is used to evaluate the network’s predictions compared
to known simulation data. Neither the validation set nor
the test set data is used by the neural network for learn-
ing; therefore, we only use ∼ 247 simulations for training,
while the rest are used in various steps of verifying gener-
alization (i.e. avoiding overfitting to the training data).

After splitting the data into training, validation, and
test sets, we incorporate viewing angle as a fifth input
parameter. As mentioned above, the viewing angles in
our simulations are equally-spaced in cos θ space across
54 angular bins, as presented in the following equation:

θ = arccos

(
1− 2(i− 1)

54

)
for i in 1, 2, . . . , 54 (2)

Temporarily ignoring training, validation, or test sets,
our training library consists of a total of 22248×5 inputs,
as illustrated in the following schematic matrix:

x⃗θ =



md,1 vd,1 mw,1 vw,1 θ1
md,1 vd,1 mw,1 vw,1 θ2
md,1 vd,1 mw,1 vw,1 θ3
...

...
...

...
...

md,1 vd,1 mw,1 vw,1 θ54
md,2 vd,2 mw,2 vw,2 θ1
md,2 vd,2 mw,2 vw,2 θ2
...

...
...

...
...

md,412 vd,412 mw,412 vw,412 θ54



D. Neural Network Architecture and Training

We use a standard feed-forward neural network called
a multi-layer perceptron (MLP). Figure 1 shows our MLP
architecture. The input data of dimension 5 (blue block)
is propagated through the hidden layers of the MLP (pink
blocks). These hidden layers apply a sequence of linear
and non-linear transformations (black arrows) to progres-
sively map the input to a higher-dimensional space. The
network has six fully-connected layers (pink blocks) of
dimension 128, 256, 64, 256, 128, and 264, respectively,
which are followed by Rectified Linear Unit (ReLU) ac-
tivation functions, except for the middle two layers. The
final layer reduces the dimension to a 264 × 1 vector,
which matches the length of our light curves.
For each observing band, we train a separate neural

network and compare its predictions with the simulation
results. During training, the neural network’s predic-
tions for the inputs in the validation set are compared to
the simulation data for those same inputs. The residual,
or difference, between the two is evaluated by the mean
squared error (MSE) loss function, which we use to mea-
sure the average squared difference between simulation
data and the neural network prediction. We calculate
the MSE according to

MSE =
1

264

264∑
i=1

(yi − ŷi)
2 (3)

where yi is the corresponding simulation data at time i
and ŷi is the predicted value from the MLP model at the
same time. We show the evolution of the training and
validation losses in Figure 2 for the g-band network.
We train a separate neural network for each of the

broadband filters described in Section IIA. Each network
is trained for 1000 epochs, as this is enough time for the
validation loss to convincingly stabilize at a floor value
without beginning to increase, indicating overfitting.

E. Neural Network Performance

Figure 2 indicates that our training loss undershoots
the validation loss starting at ∼ 100 epochs, but the
nearly perfect recovery of the test-set light curves shown
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FIG. 1. A visual representation of the neural network architecture. The blue block represents our five-dimensional inputs x⃗θ.
The pink blocks represent hidden layers, with labels under each block representing the input and output dimensions of each.
Unlabeled right arrows indicate a linear mapping between layers, while those labeled “ReLU” have a Rectified Linear Unit
activation function applied to their outputs. The orange block represents the neural network prediction in the form of a 264×1
vector matching the length of our broadband light curves.

in Figure 3 shows no indication of overfitting to the train-
ing data. For inference applications, our neural networks
can generate the outcomes corresponding to five million
five-dimensional inputs in about one minute. Training
each neural network takes 20 minutes on a 2022-edition
Macbook Pro with an M2 chip using the CPU. Since
all the bands are independent and can be trained simul-
taneously in parallel, training all the emulators can be
completed in this same 20 minute interval. Our train-
ing time is half the value reported in Ref. [49], though
it is unclear whether their reported time assumes train-
ing in parallel or in serial. Training time of networks in
parallel is expected to decrease appreciably on a high-
performance computing cluster.

The top left plot in Figure 3 shows a histogram of
the MSE values when evaluating the simulation library
parameters using the neural network. We evaluate only
the 412 unique ejecta parameter combinations, fixing the
viewing angle to θ = 0◦ in each case. In containing sim-
ulations from the training, validation, and test sets, this
histogram represents the neural network’s on- and off-
sample fidelity. The light-curve plots in Figure 3 show
random draws from the MSE histogram for MSE < 0.01
(top right), 0.01 ≤ MSE ≤ 0.1 (bottom left), and
MSE > 0.1 (bottom right).

We note that, as with the emulators presented in
Ref. [50], predictions for inputs with low-mass (log(M) ∼
−3) components or viewing angles θ ∼ 90◦ may deviate
substantially from expectations. In Monte Carlo radia-
tive transfer simulations of a kilonova, the representa-

0 200 400 600 800 1000
Epochs

10 1

100

101

Lo
ss

Training loss
Validation loss

FIG. 2. Training (red) and validation (blue) loss curves as
a function of training epoch for the g band. The loss values
reported here are mean squared error (MSE) as defined in
Equation 3. Decreasing values of loss indicate better agree-
ment between the model and the training data. Our training
and validation loss decreases over the course of the 1000 epoch
training period. The validation loss appears to converge at
around 500 epochs, although we continue to 1000 epochs as
we do not implement an explicit convergence criterion.

tion of very low-mass components and viewing angles in
the plane of the binary present a significant challenge.
In order to study the dynamics of the energy distribu-
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FIG. 3. Top left : A histogram of MSE values, averaged across all bands by the number of observations, which characterize
the deviation of the MLP’s predictions from the true simulation library light curves. For simplicity, we assume a fixed viewing
angle of θ = 0◦ for each light curve and evaluate the MSE only for the 412 unique ejecta parameter combinations. Top right :
True (points) and predicted (lines) light curves for a randomly drawn set of parameters with MSE < 0.01. Bottom left : Same
as top right, but for 0.01 ≤ MSE ≤ 0.1. Bottom right : Same as top right, but for MSE > 0.1.

tion, a finite number of particles are employed to repre-
sent photons escaping from the system, forming “pack-
ets” of energy. The system’s luminosity is intrinsically
linked with, among other physical parameters, the ejecta
mass. Consequently, when dealing with extremely low-
mass components or viewing angles that look into the
high-opacity dynamical ejecta, the simulations become
particularly sensitive to Poisson noise due to reduced
photon count. This effect, particularly with respect to
low-mass ejecta, likely arises from our SuperNu simula-
tions preferably sampling photon packets from higher-
energy regions of the ejecta. In future studies, we hope
to enhance the simulation interpretation under these con-
ditions by way of an increase in photon packet count.

III. BAYESIAN INFERENCES WITH THE
NEURAL INTERPOLATOR

A. Parameter Inference Methodology

As in R22, we infer the parameters of the kilonova
AT2017gfo using our interpolated light curves and the
AT2017gfo photometric data. The AT2017gfo data is
originally presented in [4–18, 20, 21]. We use the RIFT
framework [72] to adaptively perform the Monte Carlo
integral and generate samples using a reduced χ2 statis-
tic. The parameter priors are the same as in R22, with
uniform ejecta parameter priors of −3 ≤ logm/M⊙ ≤ −1
and 0.05 ≤ v/c ≤ 0.3 and a Gaussian angle prior with
µ = 20 and σ = 5 degrees. Unlike before, in this work
we employ an adaptive volume Monte Carlo integrator,
following closely the approach outlined in Ref. [73]. The
adaptive volume integrator allows for more efficient sam-
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pling given the higher-dimensional space being explored
in this work.

Each sample x⃗θ is evaluated by the MLP to produce
a light-curve prediction ŷ for every one of the grizy JHK
broadband filters. We calculate the residual between the
MLP prediction ŷ and the AT2017gfo observed data d
for every band B by way of the reduced-χ2 statistic

χ2 =
∑
B,i

(ŷi,B − di,B)
2

σ2
i + σ2

sys

. (4)

In our χ2 residual calculation, we include observational
uncertainties from the AT2017gfo data σd, as well as sys-
tematic uncertainties σsys which we use as a catch-all
term to encompass all uncertainties, quantifiable or oth-
erwise, associated with the neural network interpolation
process. As outlined above and as discussed in greater
quantitative detail in Section III C, we adopt a system-
atic modeling uncertainty, σsys, of 0.5 magnitudes for our
inference analysis.

For inference, we adopt a purely Gaussian likelihood
based on these residuals

lnL = −χ2

2
− 1

2
ln(2π)N

∑
k

(σ2
d + σ2

sys) (5)

where N is the number of observations. As our inference
is performed via adaptive Monte Carlo integration, the
reliability of our posterior can be expressed in terms of a
number of effective samples neff . [Several different con-
ventions exist for this number; see the appendix of [74]
for discussion.] For this study, we terminate our analyses
when neff ≃ 103.
To validate our inference strategy, we constructed ran-

dom synthetic sources, with kilonova model parame-
ters drawn from our prior (albeit adopting a uniform
rather than gaussian angular prior) and using observa-
tional times and uncertainties precisely matching the
AT2017gfo cadence and instruments. For our synthetic
sources, the expected light curve is generated using our
neural network. As demonstrated with one example in
Figure 4, our inferences are always consistent with the
injected kilonova parameters. To demonstrate that our
implementation retains statistical purity, we also used
100 random synthetic sources to perform a conventional
probability-probability (PP) test, available in an Ap-
pendix.

While we employ the fixed σsys = 0.5 for most of our
studies, in order to validate our results we also perform
a few selected analyses with different choices, on the one
hand adopting different discrete choices and on the other
treating σsys as a continuous unknown model parameter.

The analysis in Figure 4 demonstrates that, if the un-
derlying model is correct, comparison with AT2017gfo-
like observations should very tightly constrain each of
this model’s parameters. This fiducial result thus has
qualitatively different behavior than our and others’ prior
analyses of AT2017gfo, where posterior inferences arrive
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FIG. 4. Posteriors derived from a single randomly-generated
synthetic kilonova source are consistent with its assumed
model parameters. For this analysis, we have adopted the
“zero noise” realization, where the kilonova light curve is pre-
cisely equal to its expected value.

at much broader posterior intervals, as discussed below.
That said, the posterior shown above is consistent with
the standard Fisher matrix estimate of the inverse co-
variance matrix Γ = Σ−1, derived for example by taking
(the expected value over noise realizations of) a second-
order Taylor series expansion of the log-likelihood as
lnL = lnLo − 2−1Γab(x − x∗)a(x − x∗)b where x∗ are
the true synthetic parameters:

Γab =
∑
B,i

1

σ2
i + σ2

sys

∂ŷB
∂xa

∂ŷB
∂xb x=x∗,t=ti

(6)

In this expression, only first-order derivatives appear be-
cause we assume that the model has no systematic bias
such that ⟨d⟩ = ŷ; however, this simple estimate also
arises inevitably using the large-amplitude “linear sig-
nal approximation” [75]. This Fisher matrix can be esti-
mated to order of magnitude by replacing the derivatives
∂ŷB/∂xa by the ratio ∆yB/∆xa, which for the mass pa-
rameters we approximate as 2/2 = 1, so the Fisher ma-
trix is approximately Γ ≃ N/σ2

sys and the posterior in
each mass hyperparameter should have a one-standard-
deviation scale of order 1/

√
Γ ≃ σsys/

√
N ≃ 0.5/

√
333 ≃

0.027.

B. AT2017gfo Parameter Inference

The posterior distributions for our input parameters x⃗θ

are plotted in Figure 5. The black posteriors represent
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FIG. 5. In black are shown the posterior distributions for the
ejecta parameters and viewing angle that most closely recon-
struct the AT2017gfo observational data using the MLP. In
red, we overlay the posterior distributions for the same pa-
rameters when using predictions generated by the Gaussian
process presented in R22. The values at the top of each col-
umn represent the median posterior values for the inference
performed in this paper using the MLP.
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FIG. 6. Light curves generated by the MLP for the me-
dian parameters presented in Figure 5 (lines with shaded re-
gions) with AT2017gfo observational data overplotted (scatter
points). Despite the different values recovered between this
analysis and that of R22, especially for the wind ejecta pa-
rameters and θ, the MLP prediction is able to replicate the
observations surprisingly well.

the parameters identified in this study. As a direct com-
parison to the results of R22, we overplot the posterior
distributions from that study in red. Despite using the
same training data and comparing to the same observa-
tional data, the Gaussian process emulator and the MLP
emulator recover posterior distributions with substan-

tially different median values and distribution widths.
The dynamical ejecta parameters logmd and vd are sim-
ilar between the two emulators, but the wind ejecta pa-
rameters logmw and vd, as well as the viewing angle θ,
are quite different, with two of the three parameters in-
ferred by the MLP residing outside of the GP inference
1σ limits.
We verify the fidelity of the MLP inference results

by generating light curves corresponding to the param-
eter values identified at the top of each column in Fig-
ure 5. These light curves are shown in Figure 6 and in-
dicate that, assuming a 0.5 magnitude systematic uncer-
tainty, the inferred MLP parameters do indeed replicate
the AT2017gfo data to a reasonable degree of accuracy.
While the majority of data is well replicated, the early-
time g and r bands and the late-time J and H bands
deviate slightly outside of our uncertainty bands.
The recovery of θ ≈ 6◦ is surprising for several rea-

sons. First, the recovered angle was modestly offset from
the Gaussian adopted as our inclination prior. Although
different studies find a variety of viewing angles associ-
ated with AT2017gfo [10, 16, 17, 69–71, 76], none indicate
that the viewing angle is as low as our inference suggests.
Second, and more importantly, for angular binning de-
scribed by Equation 2, the first angular bin encompasses
all emitted photons for viewing angles ∼ 0− 16◦. There-
fore, by recovering a narrowly-peaked posterior around
θ ≈ 6◦, the MLP seems to indicate that it can identify
angular variations within a single angular bin at a reso-
lution much finer than what is provided by training data.
In other words, these inference results are either overly
constrained, or the MLP is able to identify fine angular
variations in the light curves when trained on radiative
transfer simulations using a coarser angular grid.
One conceivable explanation for the narrow posterior

distribution seen in Figure 5 is an underestimate of the
underlying systematic error. To investigate this possibil-
ity, Figure 7 shows the results of inferences performed
when adopting dfferent choices for the white-noise sys-
tematic error parameter σsys, adopting both discrete and
continuously-distributed choices for this parameter. In
all scenarios, we infer similar parameters for AT2017gfo,
even though we allow for several magnitudes of potential
systematic uncertainty. Conversely, this direct compar-
ison between our models and the data directly infers a
value for our systematic uncertainty parameter consistent
with our fiducial choice.

C. Investigating MLP Predictions Near Inferred
AT2017gfo Parameters

The extremely narrow posterior distribution in kilo-
nova parameters and angle motivates a focused investi-
gation of our training simulations and MLP model in
the neighborhood of that posterior. As a first step, we
performed followup SuperNu simulations at the inferred
parameters using a higher angular resolution. Specifi-
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gesting underestimation of systematic error.. Bottom panel :
Posterior distributions inferred if σsys is treated as an un-
known parameter, a priori uniformly distributed.

cally, we increased the resolution by a factor of four to
get a total of 216 angular bins. By reducing the num-
ber of photon packets in each angular bin by a factor
of four, we also increase statistical noise by a factor of
two. To ensure that our finer angular resolution anal-
ysis is not affected by this increase in statistical noise,
we compare three separate simulations in Figure 8. The
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FIG. 8. Plots of SuperNu y-band light curves for a simulation
like the ones described in Section II A (θ54), a simulation like
θ54, but with one-quarter as many photon packets (n1/4), and
a simulation like θ54, but with four times greater angular reso-
lution (θ216). The top panel indicates that, on a macroscopic
scale, the simulations are identical. The bottom plot indi-
cates that deviations do exist, likely attributed to statistical
noise from the increase in angular bins, or matching reduction
in packet count. The ejecta parameters used to create these
simulations are those presented in Figure 5.

blue curve, labeled θ54, shows a SuperNu simulation us-
ing the parameters from Figure 5, hereafter xMLP and
a standard 54-bin angular grid, as used in the training
data simulations. The orange curve, labeled n1/4, shows
a SuperNu simulation with the same exact parameters as
θ54, except it uses one-quarter as many photon packets
in the simulation. If the statistical noise described above
were significant, the noise in n1/4 should be much more
pronounced than in θ54. Finally, the green curve, labeled
θ216, shows a SuperNu simulation using the same parame-
ters as θ54, but with a 216-bin angular grid, representing
a factor of four increase in resolution. All three light
curves show AB magnitude in the y-band as a function
of time in days. As seen in Figure 8, our followup simu-
lations agree with one another, with small Monte Carlo
error comparable to our initial estimate and small com-
pared to our adopted systematic uncertainty (σsys = 0.5).

We then compare our high angular resolution simula-
tion θ216 to the predictions of the MLP, computing the
difference between model and prediction at all times and
simulation angles. Figure 9 shows the residual ∆MAB in
the y-band when we take the absolute difference between
ŷMLP and ysim, capped at a maximum difference of 1 mag-
nitude. The residual values ∆MAB are initially evaluated
for the 216 discrete angular bins; for visual clarity and
diagnostic power, we linearly interpolate ∆MAB across
time t and angle θ using the RegularGridInterpolator
function from the scipy.interpolate library [77]. Fig-
ure 9 exhibits both expected and unexpected behaviors.
The large mismatch at early times when photon count is
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FIG. 9. Deviations in y-band AB magnitude (∆MAB) be-
tween a SuperNu simulation with four times the usual angular
resolution (ysim) and the MLP prediction for the parameters
reported in Figure 5 (yMLP) as a function of time t and angle
θ. Notably, this comparison between our MLP (trained at low
angular resolution) and the followup simulation (performed at
high angular resolution) does not exhibit strong small-scale
variation along the θ direction (i.e., between adjacent angu-
lar bins in the original training set and outside the original
training resolution), suggesting that the MLP correctly inter-
polates to smaller angular scales.

low, particularly as θ approaches 90◦ where the higher
opacity dynamical ejecta further reduces photon count,
is to be expected. The MLP is not fitting the light curves
in this region well as there are too few photons available
in the training data. However, the low mismatch (i.e.
good fitting) dark blue regions in the plot indicate some
sort of structure in the MLP’s underlying ability to repro-
duce light curves at different times and angles. While we
only include the plot of ∆MAB for the y-band in Figure
9, it is worth noting that the same behavior can be ob-
served in these plots for all bands; predictable, low pho-
ton count systematics are identified in expected regions,
but other, unexpected regions of increased systematic er-
ror manifest in different regions of the parameter space.
Overall, however, the systematic uncertainties illustrated
here are consistent with our expectations from the re-
ported validation loss: a conservative systematic error of√
MSEval ≃ 0.5 reflects our overall uncertainty. For this

reason, we adopted this systematic uncertainty in our
parameter inferences above. This systematic uncertainty
is substantially more conservative than the uncertainties
adopted in R22.

D. Inference Using Broadband Data Subsets

The investigations in Section III C have introduced a
surprise. On the one hand, our neural network reliably
reproduces its training and validation data, including fol-

lowup off-sample simulations performed at higher resolu-
tion. Though not shown here, we have also confirmed
that the neural network agrees well with the surrogate
provided in R22, using a small sample of randomly-
selected ejecta parameters. On the other hand, the
inferences obtained in Section III C by comparing all
AT2017gfo kilonova observations to our MLP produce
strikingly different results than R22. However, as noted
in R22 and other works, most investigations have some
tension between their models and the data, particularly
in the bluer bands. In this section, motivated by this dis-
crepancy, we also examine the effects on our AT2017gfo
parameter inference when we use only specific subsets
of the observational data. We perform two additional
parameter inference runs using two categories of broad-
band data subsets: blue bands represented by the griz
data and red bands represented by the yJHK data.
The posteriors in Figure 10 show how these band-

limited results compare with each other, the results of
R22, and the all-band analysis presented in Section III C.
The most apparent result is that the angle prior is recov-
ered in both sets of posteriors, and both cases match the
R22 results well. The other interesting feature is that
the red yJHK posterior matches the R22 results much
more closely than the blue posterior. Even when using
a smaller subset of the observational data, the blue pos-
teriors remain narrowly peaked in the parameter space,
while the red posteriors become broader. The narrowness
of the blue posteriors indicates that the blue broadband
data determines the overall shape of the posteriors in the
full broadband data inference.
The seemingly disproportionate effect of the blue

broadband data on the posteriors could be attributed to
the rapid evolution of the bluer bands compared to the
red bands. As can be seen in Figure 6, the evolution of
the griz light curves is more rapid than the yJHK bands,
with the griz light curves dimming by ∼ 4 magnitudes
compared to the yJHK bands dimming by two magni-
tudes during the first 10 days of observations. As such,
the griz light curves will be more restrictive regarding
which model parameters fit the data, which is evident
from the Figure 10 posteriors.

E. Discussion

To summarize, following R22 we fit the same simula-
tions and performed comparable inference of AT2017gfo.
After assessing our training data and fit systematics, we
adopted more conservative systematic uncertainties than
R22. We nonetheless find dramatically narrower posteri-
ors than R22, with inferred light curves consistent with
observational predictions.
Several possible reasons for the qualitative discrepan-

cies arise, primarily pertaining to our systematic uncer-
tainty estimate. In R22, the Gaussian process interpola-
tion provided a pointwise and parameter-dependent error
estimate, which we qualitatively verified across the pa-
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FIG. 10. Two separate parameter inference runs, with the
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second (in red) using data from only the yJHK bands. The
red posteriors match the R22 posteriors (in black) much more
closely. Parameter values at the top of each column represent
the median yJHK posterior values.

rameter space. Also, the fitting strategy adopted in R22
independently fit each timestep. As a result, we expect
that R22’s models are unlikely to have correlated sys-
tematics in time, angle, and wavelength. For example,
the R22 light curves occasionally have small but notable
random discontinuities, consistent with their reported fit-
ting uncertainty. By contrast, in this work, we fit all
times and angles together within the same training set
to generate a vector prediction. Our approach does not
presently provide a pointwise error estimate. Therefore,
for the method adopted in this work, we expect corre-
lated errors in time and angle, but lack a method to
characterize them versus those parameters or even the
intrinsic kilonova parameters. Our MLP’s vector light-
curve prediction necessitates fitting the entire light curve
for a certain band given a single set of parameters. In
addition, as mentioned in Section IIID, the blue bands
are particularly constraining due to their more signifi-
cant evolution over the observation period. Combining
both of these effects results in only an extremely narrow
region of the parameter space fitting all broadband data
consistently. We did not encounter such narrow poste-
riors in R22 as each prediction was made for a specific
time point; as such, many samples could reasonably fit
an observation at any given time, resulting in broader
posteriors when all times were stitched together to form
the light curve.

We use the validation loss value to roughly estimate

the systematic fitting error associated with our neural
network outcomes: the validation curve in Figure 2 sug-
gests that differences of order

√
MSE ≃

√
0.2 magni-

tudes should occur in our predictions. In practice, as
illustrated in Figure 7 below, we find that the average
squared systematic error suggests a larger value than the
validation MSE. We therefore anticipate that our naive
estimate of σsys = 0.5, though well motivated by our de-
tailed followup study, may still understate the systematic
uncertainty inherent in our fitting approach, resulting in
narrow posterior distributions. We also emphasize that
the differences are not simply a matter of scale: the in-
vestigations performed in Figure 7 suggest that larger
white-noise systematic error cannot reconcile differences
between our current analysis and previous results.
We note that we have experienced similar systematic

uncertainty associated with observations in blue bands
in R22 and an associated inference using simulations of
spectra [54]. The systematics in those works were re-
lated to our inability to reproduce the observed blue flux
at times past ∼ 2 days using our best-fit simulations.
The systematics in this work, though similar in their
connection to blue observations, introduce slightly dif-
ferent effects in our resultant inference. As we solve the
bigger problem of matching our simulations to late-time
blue observations, we anticipate that a more sophisti-
cated treatment of our emulator systematics will allow
us to better understand the effects of blue-band data on
our inferences.
A thorough investigation of suitable fit systematics for

this neural network is well beyond the scope of our study.
In the meantime, the neural network is suitable for inves-
tigations such as the one presented in Figure 10, where
we can examine our models’ ability to fit certain subsets
of the data. In the griz case, we see that our models re-
quire over 0.1 M⊙ of slow-moving dynamical ejecta to fit
the blue data. But, we expect dynamical ejecta to be less
massive and faster, thus potentially suggesting a missing
modeling component.

IV. CONCLUSIONS

We present a neural network architecture that is useful
for the interpolation of kilonova light curves. We report
on the network’s training and validation loss as a met-
ric of successful training, as well as present examples of
off-sample light-curve recovery. We use the neural net-
work to infer the parameters of the AT2017gfo kilonova
and compare to previous inference performed in Ref. [50].
We find that the inference results are quite different from
those previously obtained, but the light curves generated
by the recovered parameters align well with the obser-
vational data. In particular, we investigate the neural
network’s ability to seemingly infer narrow regions of
the angle space despite being trained on light-curve data
that should not allow for such specific inference. Given
a detailed analysis of the mismatch between the neu-
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ral network’s predictions and a simulation with higher-
resolution angular data, we find that the network’s point-
wise systematic errors are consistent with our error es-
timate. However, our investigations also suggest that
the systematic errors are correlated, not independent, in
time and angle, in a way that is not captured by our
model for systematic uncertainties. In other words, we
have discovered that the neural network’s goodness-of-
fit varies appreciably across the time-angle space. While
some of these variations are expected, others form inter-
esting features that we cannot readily explain. We leave
the analysis of the interpretability of these features for a
future investigation.

We also show that the systematic uncertainty may be
more complex than assumed in our simple uncorrelated
(white noise) error model. This was not the case in
R22 due to the interpolation uncertainty, which natu-
rally stemmed from the Gaussian process methodology.
In recovering different parameters for AT2017gfo using
two emulators trained on the same library of simulations,
we highlight the importance of quantifiable uncertainty
analysis in using emulators for robust inference. As we
do not present a way to handle correlated uncertainties
in this work, a detailed uncertainty analysis, along with
the resultant effects on parameter inference, will be nec-
essary in future work.
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Appendix A: Validating inference method

To validate the statistical purity of our brute-force
inference technique and our understanding of the noise
model, we constructed a standard probability-probability
(PP) plot test [78, 79]. Our description follows the no-
tation and narrative used in [74]. For each source k,
with true parameters λk, we calculate the fraction of its
posterior distribution with parameter λα below the true
source value λk,α [P̂k,α(< λk,α)]. After reindexing the

sources so that P̂k,α(λk,α) increases with k for some fixed
α, a plot of k/N versus P̂k(λk,α) can be compared with
the expected diagonal result (P (< p) = p) and bino-
mial uncertainty interval. Figure 11 shows the PP plot
derived using kilonova light curves generated with our
neural network interpolator. In these analyses, we adopt
precisely the same observation cadence and uncertainties
as AT2017gfo. As in our fiducial analysis of AT2017gfo,
we adopt σsys = 0.5. Each synthetic observation incor-
porates both observational and (white noise) systematic
uncertainty, added in quadrature consistent with our as-
sumed likelihood.
The PP plot in Figure 11, being sufficiently consis-

tent with the binomial credible interval, suggests that
the brute-force Monte Carlo inference strategy adopted
in this work suffices for our purposes: in short, that the
qualitative extent and character of the posteriors shown
in our figures are reasonably correct, such that the con-
siderable tension between our analysis and previous in-
ferences accurately reflects the posterior. We have specif-
ically chosen to present results from a brute-force infer-
ence technique to circumvent debates about our choice of
implementation or our method of assessing convergence.
With AT2017gfo, we have confirmed that the choice of
integrator also doesn’t qualitatively change our answer:
alternative brute-force Monte Carlo integrator implemen-
tations produce similar results. That said, the PP plot
above is clearly not as diagonal as would expected for
a well-developed and calibrated Bayesian inference algo-
rithm applied to this problem: its S-shape features sug-
gests either modest overdispersion in our synthetic error
model or modest underdispersion in our posterior distri-
butions.
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