
Cerberus: Enabling Efficient and Effective In-Network Monitoring on

Programmable Switches

Huancheng Zhou, Guofei Gu
SUCCESS Lab, Texas A&M University

Abstract—With the increasing volume of network traffic and

the emergence of new types of attacks, traditional network

monitoring is facing significant challenges in ensuring network

security and performance. In-network monitoring (INM) sys-

tems based on programmable switches, e.g., P4-based INM

systems, have emerged as a more promising approach for

high-performance and real-time network monitoring. However,

existing P4-based INM systems have resource limitations in

handling diverse and high-volume INM tasks such as multi-

vector DDoS defenses. Worse still, attackers may try to dynam-

ically change attack vectors to disrupt inadaptable systems and

even lead to denial-of-service (DoS) attacks against INM.

To address these challenges, we present Cerberus, an effi-

cient and effective in-network security monitoring system. To

support various INM tasks, we abstract them into key-feature

(K-F) pairs and design a novel memory slicing mechanism to

share memory among multiple K-F pairs. To handle high-

volume traffic, we propose a new co-monitoring mechanism

that complements the data and control planes, thereby greatly

enhancing the efficiency of Cerberus. To adapt to changing

network conditions, we design a new resource manager that

dynamically reallocates resources for INM tasks and adjusts

loads for the data and control planes without interrupting

running services. We design a series of INM modules, including

DDoS defenses, and develop a prototype of Cerberus. We

conduct extensive evaluations to demonstrate that Cerberus

can enhance the concurrency and capacity of programmable

switches by an order of magnitude. Moreover, Cerberus is more

adaptable in handling various INM tasks.

1. Introduction

Traditional network monitoring has been used for a
long time to ensure network security and performance. It
mainly involves analyzing network traffic at different loca-
tions, such as routers and centralized servers, to identify
potential threats or performance issues [1]–[5]. However,
coping with diverse and high-volume traffic is becoming
increasingly challenging, particularly with the surge of attack
traffic such as massive DDoS traffic [6]–[12]. In contrast,
in-network monitoring (INM) involves analyzing network
activities within the network infrastructures, making it a
more efficient and effective approach to realizing a series of
real-time network functions such as load balancing [13]–
[15], distributed denial-of-service (DDoS) defenses [16]–

[23], and so on. In particular, recent programmable switch
ASICs have emerged as a promising approach to facilitate
INM systems, e.g., P4-based INM systems [24]–[34].

As shown in Figure 1, a programmable switch ASIC en-
ables programmers to design highly efficient and customized
packet processing pipelines. This makes them suitable for
collecting, maintaining, and further analyzing various states
of passing packets based on customized policies. Traditional
analyzers in the control plane can delegate most tasks to the
data plane and query a few sketches containing concise infor-
mation. Such a cooperative architecture significantly reduces
the overhead of the control plane and the communication
load between collectors and analyzers, especially in large-
scale network monitoring scenarios.

Despite the promised high performance and flexibility,
existing P4-based INM systems can either serve only a very
small number of concurrent INM tasks or only handle a
certain volume of traffic, making it challenging to defend
against diverse and volumetric attacks. For example, P4-
based DDoS defense systems [24], [25] only run several
types of defenses at the same time. When network adminis-
trators detect new attacks, they need to reload new programs
to the switches. Unfortunately, this can cause non-negligible
downtime (e.g., a few tens of seconds). An advanced attacker
can exploit the downtime to disrupt P4-based INM systems
and even lead to denial-of-service (DoS) attacks against INM
by quickly changing attack vectors.

The bottleneck of current P4-based INM systems is
mainly due to the resource limitations of programmable
switches. First, to maintain line-rate speed, programmable
switches restrict the number of memory accesses per packet,
making them infeasible to perform multiple INM tasks,
which access memory to store stateful information. Second,
programmable switches have limited on-chip memory (e.g.,
SRAM). A single INM task (e.g., SYN flood defender) that
deals with a large amount of traffic (e.g., all TCP flows)
can consume a significant portion of available memory,
leading to insufficient memory for running other INM tasks.
Some researchers have attempted to alleviate the bottleneck
through sophisticated designs [25], [29], [35]. However,
these designs may not be effective when faced with tricky
attackers who deliberately generate a large number of ab-
normal flows or frequently change attack/packet types.

To address the bottleneck, we propose Cerberus, an
efficient, effective, and high-performance in-network secu-
rity monitoring system against diverse, high-volume, and

dynamic attacks. First, we observe that there are various
network monitoring tasks. Thus, we abstract each INM task
into one or multiple key-feature (K-F) pairs, so we can merge
K-F pairs involving similar features. We further propose a
novel memory slicing mechanism to share memory among
multiple K-F pairs. Therefore, multiple INM tasks can access
different states with a small amount of memory access
units (i.e., arithmetic logic units). Second, to support INM
tasks with high memory requirements, we design a new co-
monitoring mechanism to complement the data and control
planes. We utilize the on-chip memory in the data plane to
store the most frequently updated bits, and the large memory
in the control plane to store the less frequently updated bits.
With appropriate collaboration, we enhance efficiency by an
order of magnitude with minimal impact on performance.
Third, to adapt to the changing network conditions and
dynamic attacks, we design a new resource manager to
dynamically reallocate resources for different K-F pairs at
runtime. Moreover, the resource manager can adjust the
workload distribution of the data and control planes. There-
fore, Cerberus can not only provide uninterrupted service
but also consistently maintain high performance.

To sum up, we make the following contributions:
• To support diverse INM tasks effectively, we abstract

INM tasks into K-F pairs and design a novel memory
slicing mechanism.

• To handle high-volume traffic, we design a new co-
monitoring mechanism that enhances the efficiency of
P4-based INM systems.

• To meet dynamic requirements, we develop a new
resource management mechanism to reallocate the re-
source and workload distribution without interrupting
running services.

• We implement a prototype of Cerberus (code release at
[36]) and conduct extensive evaluations, which demon-
strate that Cerberus is more effective, efficient, and
adaptable in handling a series of INM tasks.

2. Background and Motivation

Nowadays, network operators are concerned with a lot of
types of network traffic states, such as flow speed, number
of connections, and even inter-packet delay. With detailed
states, network operators can manage networks efficiently,
detect anomalies precisely, or mitigate attacks timely. A
network monitoring system usually needs to collect network
states from forwarding devices. Since forwarding devices
such as routers only provide simple functionalities, passing
packets need to be mirrored to external systems with sophis-
ticated applications for further analysis [1]–[5]. However, the
increasing volume of network traffic makes it more and more
costly for external systems to pull a precise network view.
As a result, most systems have to set a low sampling rate
to reduce overhead [17], [37]–[40]. Recently, programmable
switches provide opportunities for collecting, storing, and
analyzing states locally, i.e., in-network monitoring (INM).
Compared to traditional network monitoring, INM systems

based on programmable switches (e.g., P4-based INM sys-
tems) are high-performance and flexible.

2.1. Programmable Switch ASICs

Today’s data centers and networks have higher through-
put and diverse demands, so programmable switch ASICs
become competitive compared to fixed-function switch
ASICs. With domain-specific languages such as P4 [41],
programmers can define an efficient and customized packet
processing pipeline. Without sacrificing performance, pro-
grammable switch ASICs support a lot of new or customized
network functions [13], [24]–[27], [42]–[46].

P
a
rs

e
r

D
e
p

a
rs

e
r

Ingress pipeline Egress pipeline

Stage 0 Stage 1 Stage n-1 Stage n

bufferMemory ALU

CounterIf ICMP If res > T Mitigation

If ICMP If res > T MitigationCounter Counter2

Exceeded stage

Figure 1: Protocol Independent Switch Architecture.

Pipeline of programmable switch ASICs. As shown in
Figure 1, programmers can define the packet processing
pipeline as they need. More specifically, programmers first
allocate resources (e.g., memory, ALUs) in each stage,
which own individual resources. For example, allocating
memory to stateful memory object (registers) to cache
runtime states. Second, programmers specify the processing
logic of packets (e.g., add headers) in each stage, e.g.,
defining the match-action tables and table actions. Besides,
programmers can customize the register actions to determine
the operations of registers. One important thing is that all
stages perform the defined operations at the same CPU
cycle. Thus, most resources (e.g., register and table) can
only be accessed by their owner stage. Otherwise, there will
be race conditions. Moreover, as the resources of stages, all
actions must be as simple as possible to execute within one
stage (one CPU cycle). To maintain line rate speed, most
programmable switches only support simple operations. For
example, addition, subtraction, and logical operations (e.g.,
and/or).

2.2. Challenges in P4-based INM systems

Although programmable switches provide a high-
performance and customized pipeline to realize in-network
monitoring, there are several challenges due to their features.
C1. Limited resource. Some resources of programmable
switches are relatively limited. For example, a pro-
grammable switch pipeline usually has a few tens of stages
to ensure high speed. Each stage only owns a few arith-
metic logic units (ALUs) for memory access. Therefore, the

number of INM tasks is restricted. Second, a programmable
switch only owns tens of megabytes of on-chip memory
(e.g., SRAM), which is insufficient for large-scale and hybrid
INM scenarios.
C2. Exclusiveness. Worse still, most resources of pro-
grammable switches are exclusive, which means that they
can only be accessed by their owners. For example, if an
ALU or a register is assigned to a table object, then other
tables cannot access it. Even if some registers are idle, they
cannot be reassigned to other tables to store other states.
C3. Slow adaption. Given C1 and C2, a straightforward
solution is to generate new configuration files and programs
when there are new requirements. However, even if we
ignore the time of generating a new program, the subse-
quent recompiling and reinstalling processes may still take
a few tens of seconds, resulting in non-negligible downtime.
Furthermore, a tricky attacker could exploit this vulnerabil-
ity and force the programmable switch to keep resetting,
causing a denial-of-service (DoS) attack.

2.3. Approximate data structures in INM

Approximate data structures, e.g., sketches, are widely
used in INM to reduce the amount of data that needs to
be processed and stored. Sketches can quickly provide an
approximate estimate of large and real-time data streaming
for tasks such as traffic monitoring, anomaly detection, and
attack mitigation. Typically, sketches use a compact repre-
sentation of the data through counters or hash tables that
summarize key characteristics of traffic (e.g., packet count).
Popular sketches include Bloom Filter (BF) [47], Counting
Bloom Filter (CBF) [48], Count-min Sketch (CMS) [49],
and so on. Collisions may occur in sketches, but the colli-
sion rate is negligible unless it is overfilled. Before using
sketches, we need to estimate the amount of data = to be
stored approximately. For example, given a BF with the size
of <, we can calculate the collision rate using the formula:
? ≈ (1− 4−

:=

<)
<

:= , where : is the number of hash functions.

3. Overview

In this section, we first define the scope of our research
problem, then we indicate our design goals. Finally, we
provide an overview of Cerberus.

3.1. Problem Scope

In-network monitoring (INM). In this paper, we concern
with INM on programmable switches, which collect and
process various states of passing packets. For example, the
number of packets sent by a host, the number of special
types of packets, the inter-packet delays of a flow, and so on.
We define two types of INM tasks, sketch-based INM and
non-sketch-based INM. We mainly focus on sketch-based
INM tasks, which leverage diverse sketches to store concise
information (e.g., packet count, connection existence). These
sketches are widely used due to their lightweight overhead.

Unfortunately, this lightweight structure with limited mem-
ory can lead to a high collision rate in large-scale monitoring
scenarios (e.g., handling hundreds of thousands of flows).
Besides, there could be multiple concurrent sketch-based
INM tasks, which further reduce the available memory of
each INM task. For non-sketch-based INM tasks based on
other data structures such as key-value stores, they usually
focus on small-scale traffic sets due to high memory cost.
Thus, we do not target them in this paper.
Security goals. Our focus is on addressing the limitations of
programmable switches from a security perspective. Specif-
ically, traditional INM tasks are often assumed to be well-
planned and predictable, with resource allocation based on
expected traffic loads. However, in a security scenario such
as DDoS defenses, the specific type, volume, and target
victims cannot be accurately predicted. Thus, we must be
prepared to handle dynamic and adaptive adversaries.
Threat model. Cerberus is deployed on programmable
switches within network infrastructures to perform con-
figured INM tasks and collect traffic states. However, the
presence of attackers who control botnets may disrupt the
availability of protected servers or networks, such as launch-
ing denial of service (DoS) attacks. These attackers are
well aware that the victims are protected by various INM
tasks, prompting them to devise strategies to bypass these
defenses. One approach is to launch hybrid attacks, exploit-
ing resource-constrained systems with a partial deployment
of INM tasks. Additionally, attackers may rapidly change
the postures of their attacks to trigger frequent reconfig-
urations of programmable switches, leading to disruptive
interruptions or DoS attacks. Cerberus aims to mitigate the
impact of hybrid and dynamic attacks and safeguard network
availability and performance.

3.2. INM Abstraction

�✁✂✄☎✆✝✂✞✟✠✡✠✟ ✄✝☛☞✝✌✆☎✆✝✂ ✍✠✌✝✁✎✄✠✞✟✠✡✠✟ ✄✝☛☞✝✌✆☎✆✝✂

✏✑✒✑✓✔✕✑✖

✗✘✙✚ ✗✘✙✛ ✗✘✙✜

✕✖✔✢✖✣✤
✕✖✔✢✖✣✤

✗✘✙✚

✗✘✙✛

✗✘✙✜

✥✔✤✕✦✓✑✖

✧

✧

✧

✧

Figure 2: The abstraction of INM tasks.

Traditionally, developers face the challenge of manu-
ally composing multiple INM tasks (functions), which is
a time-consuming and error-prone process due to limited
and exclusive resources. Function-level composition often
requires careful resource allocation to avoid excess usage or
race conditions. To simplify the programming process, we
introduce a resource-level composition approach. That is,
each INM task is represented by several key-feature (K-F)

pairs. A K-F pair means recording a specific feature corre-
sponding to a given key, which occupies a part of resources.
This approach simplifies the programmer’s role, as they only
need to focus on selecting INM tasks by combining various
K-F pairs. Leveraging a modular programming style, our
compiler intelligently assesses and automatically combines
different K-F pairs, reducing manual effort and enhancing
efficiency.

3.3. Design Goals

To meet various requirements of INM tasks, our system
should realize the following features:

• High concurrency. Each packet stream may have mul-
tiple keys, and there could be dozens of features associ-
ated with a specific key. In many cases, such as hybrid
DDoS defenses, defenders need to define different keys
and query multiple features simultaneously. Therefore,
Cerberus should be able to deploy and run many INM
tasks concurrently.

• High capacity. Current networks are capable of han-
dling billions of packets and millions of flows per
second. During attacks, the number and volume of
flows can remain at a high level for an extended period.
Hence, Cerberus must be equipped to handle large-
scale INM tasks effectively.

• Run-time adaptability. The conditions of a real-
world network can change unpredictably due to burst
traffic, malicious events, and so on. Different time
windows may also require different INM tasks, such
as large-scale performance monitoring or multi-vector
DDoS defenses. Unfortunately, current programmable
switches take a while (e.g., a few tens of seconds)
to recompile and reinstall new programs with updated
configurations. An advanced attacker may exploit this
feature to force programmable switches to keep re-
setting, leading to a DoS attack. Therefore, Cerberus
needs to quickly adapt to different strategies without
introducing any downtime.

3.4. Workflow

To achieve these goals, we design Cerberus as shown
in Figure 3. Developers first configure the data and control
planes by setting K-F pairs. When network traffic passes
through switches, the data plane can collect and process the
state locally. To perform multiple INM tasks concurrently
with constrained resources, we design a memory slicing
mechanism, which allows multiple INM tasks to use the
same ALUs and registers. In addition, we design a co-
monitoring mechanism to store overflowed bits, which are
carry flags generated during state aggregation. Therefore,
the data plane always records the low bits (i.e., least signifi-
cant bits) and the control plane maintains the remaining bits
(i.e., most significant bits). The complete states can be re-
covered as needed. During this process, a resource manager
will automatically allocate resources to functions according
to real-time network conditions. For example, when there

is a lot of malicious traffic (indicated by the red arrow)
passing through the protected network, the running detectors
can identify the types of attacks and activate corresponding
defense functions. Meanwhile, the data plane will report the
events to the control plane. Cerberus also allows manual
configuration for strategy adjustment. Network managers can
easily notice the reported events and adjust their policies.
Finally, most malicious traffic is expected to be filtered.

Programmable switch ASICs

Carry flags
Resource Allocation

Control plane

Co-monitoring
Resource

Manager

Memory Slicing

Developer

P4 code

P4 compiler

Network traffic
Network traffic

Least significant bits

Most significant bits

P4 switch

Malicious

Python code

Figure 3: The workflow of Cerberus.

4. Cerberus’s Design

4.1. Memory Slicing

One requirement of P4-based INM systems is to support
many types of INM tasks concurrently. Generally, there
can be tens of keys and hundreds of features for passing
traffic (e.g., tens of packet types and hundreds of headers).
It is common for a network to monitor tens of K-F pairs
concurrently [37], [38]. However, existing P4-based INM
systems can hardly support them due to resource limitations.

To address this issue, we propose a memory slicing
mechanism to share the same registers among multiple

K-F pairs. The key idea is to concatenate multiple K-F
pairs so that different functions can access their K-F pairs
in a register at the same time. As shown in Figure 4, a
packet may trigger multiple conditions, so the data plane
needs to update multiple features in the same register using
different actions or parameters. When a packet triggers the
preconditions of multiple applications (1), the table outputs
the triggering flags (2). Then, a memory slicing table is
used to determine the current K-F pairs (3). The multiple
K-F pairs are merged to create a concatenated K-F pair (4).
Finally, the concatenated K-F pair is used to update multiple
features within one register access (5).

One challenge of the memory slicing mechanism is to
perform different actions with a single ALU. For example, a
K-F pair may require incrementing by the length of a packet
(e.g., byte counter), while another K-F pair may need to
record the latest timestamp of a flow. We observe that most
INM tasks mainly involve a few types of operators, such

8 bits10 bits

8 bits10 bits

8 bits10 bits

8 bits10 bits

App4App2

Register Action Table

(Register)

ActionMatch

flag1_1condition1

flag1_2condition2

……

ActionMatch

flag2_1condition1

flag2_2condition2

……

App1

App2

ActionMatch

flag4_1condition1

……

App4

ActionMatch

op_all1flag_all1

op_all2flag_all2

……

op1_1 || op2_1 || 0 || op4_1

7 bits

7 bits

7 bits

7 bits

App1
7 bits

7 bits

7 bits

7 bits

App3

…

Trigger tables

Memory Slicing

Table

flag1_1 || flag2_1 || flag4_1

Packet

Concatenate operand

Figure 4: The workflow of the memory slicing mechanism.

as addition, subtraction, and assignment1. Although their
operands may be different, we can concatenate K-F pairs
with the same operators.
Addition/subtraction. Many counters involve addition op-
erators that aggregate the states of all passing packets. For
example, a byte counter aggregates the number of bytes of
given keys, and a SYN flood detector needs to record the
number of SYN packets. In some cases, such as removing
an entry in CMS, subtraction is also necessary. To merge
multiple addition/subtraction operations, we first collect the
operands of triggered K-F pairs in 3 . Given the offset of
each K-F pair (e.g., app2’s offset is 15), we can calculate the
concatenated operand. Finally, we execute the register action
with the concatenated operand. It is worth noting that we
take the inverse of operands for subtractions. For example,
to subtract X, we can add inverse(X), where inverse(X) is
equal to 2= − - and = is the length of the register.
Assignment. Some K-F pairs involve assignment operators
such as inter-packet delay recorder (i.e., recording the times-
tamp of packets). Cerberus’s resource manager first chooses
to merge K-F pairs with unconditional assignments. For con-
ditional assignments, the resource manager estimates their
frequency and available resources, then decides whether to
merge them or split them into distinct registers. For example,
a duration byte counter performs addition during a window
and is set to 0 (i.e., assignment) at the end of the window.
Since it performs only one assignment per window, the
assignment frequency is relatively low, and it can be merged
with other addition operators.
Carry flag. When we add multiple features concurrently, the
carry bit of features may be lost or poison other features.
Take Figure 4 as an example, when the feature of App1 is
larger than 27, its carry bit (8-th bit) will be lost. Besides,
when we increment the feature of App4 to a value larger than
28, the carry bit will be added in the 9-th bit, which belongs
to App3. To achieve state isolation, we tag the highest bit
of each feature as a secure bit (carry flag). Whenever the
data plane detects the carry flag of any slice is set to 1, it
subtracts the carry flag by recirculating a mirror packet and
re-accessing the same item. In a nutshell, we constrain each
feature to its own slice, preventing features from crossing
their boundary and poisoning other features. To avoid data

1. To maintain high performance, programmable switches only allow
simple operators.

loss, the data plane uploads the carry flags to the control
plane, as shown in the next subsection “Co-monitoring”.

4.2. Co-monitoring

Another requirement of P4-based INM systems is to
handle high-volume traffic. Unfortunately, due to limited
resources and static resource allocation, it is infeasible to
configure resources properly for multiple K-F pairs under
changing network conditions. More specifically, the con-
sumed space of a register is determined by its size and
length, which are fixed once the program is run. In most
cases, developers have to define a “safe” length for registers
to prevent overflow. This typically means setting the length
of registers to match the length of the maximal value. How-
ever, having long register lengths often imposes restrictions
on the size of the registers.

We observe that most items in registers are much less
than the maximum value, which is intuitive due to the fact
that most network flows are mice flows. For example, a
real-world online trace dataset [50] contains hundreds of
thousands of IP addresses. Their average rate is about 13
packets per second (pps), but only 4.6% of IP addresses
exceed the average rate. Therefore, for most IP addresses
or flows, a short length is enough for a packet counter. To
support various lengths in the same register, we propose
a co-monitoring mechanism. The key idea is that the data
plane stores the least significant bits that are updated most
frequently while the control plane only stores the most
significant bits that are updated least frequently. As a result,
we avoid introducing heavy overhead to the control plane.

28 bits 4 bits

func B func A

s

reset to 0 and upload

Slow path (Control plane)

Larger memory

Limited bandwidth
carry bit

128 bits

Most significant bits

func A

Least significant bits

Real state

128 bits 3 bits

Fast path (data plane)

Smaller memory

Fast processing speed

Low High
update frequency

Traffic rate distribution

Figure 5: Co-monitoring Mechanism

As shown in Fig. 5, when the highest bit (bit B) of feature
A is set to 1 (carry flag = 1), the data plane recirculates
a mirror packet to clear the carry flag. Subsequently, the
mirror packet is uploaded to the control plane to retain the
carry flag. The carry flag is added to the lowest bit for the
same K-F pair. By doing so, we improve the available length
of each state. We assume !� and !� are the lengths of K-F
pair in the data and control planes, respectively. Then the
actual length of the K-F pair is !� + !� . In other words,
the available memory for this K-F pair is !�+!�

!�
times the

original memory.
Overhead estimation. An obvious question of the co-
monitoring mechanism is that the communication overhead
between the data and control planes can be high. Here,
we formally estimate the overhead. Assume that there are

" individual flows and # slices to store # types of fea-
tures. The length of the 8-th slice in the data plane is !�8

(0 ≤ 8 ≤ # − 1). Within a refresh cycle 2, the final value
of the 8-th feature of 9-th flow is +8, 9 (0 ≤ 9 ≤ " − 1). We
define a metric called hit per second (HPS), then we can
calculate the HPS of the 8-th feature and the 9-th flow by
Eq. 2, where '4!* is a rectified linear activation function
that ignores small values, and *8, 9 is the incremental value
of the 8-th state of the 9-th flow2. For the 8-th slice, we
can get �%(8 using Eq. 3. Furthermore, we can calculate
the recirculation times per second (RTPS) and consuming
bandwidth (CB) using Eq. 4 and Eq. 5, where < is the size
of each uploaded packet.

'4!* (G) =

{

0, if G ≤ 0

G, otherwise
(1)

�%(8, 9 = '4!* (⌊+8, 9/2
!�8

−1⌋)/2*8, 9 (2)

�%(8 =

"−1
∑

9=0

�%(8, 9 (3)

')%(=

#−1
∑

8=0

�%(8 (4)

�� = ')%(× < (5)

To avoid overwhelming the control plane, we should
ensure that CB is less than the predefined thresholds. Obvi-
ously, a longer slice (larger !�8

) can reduce HPS and CB,
but it also occupies more memory in the data plane. By
measuring the real-time HPS and CB, the control plane can
adjust the length of each slice to keep CB less than the
predefined thresholds without consuming unnecessary space
in the data plane.

4.3. Resource Manager

As mentioned in §3.3, developers usually need to re-
configure programmable switches by reinstalling programs,
which leads to non-negligible downtime. In this part, we
show how Cerberus’s resource manager can adapt to chang-
ing network conditions.
Pipeline Optimization. When developers assign multiple K-
F pairs, the resource manager will analyze their triggering
conditions and involved actions to arrange them properly.

First, the resource manager examines the mutual ex-
clusivity among all K-F pairs. Since mutually exclusive
K-F pairs will not be triggered at the same time, the
resource manager can allocate them to the same register
with different index offsets. For example, App1 can access
the range from [0, B8I41), App2 can access the range from
[> 5 5 B4C2, > 5 5 B4C2 + B8I42), and so on.

2. For example, the incremental value of a packet counter is 1 for any
flows, while the incremental value of a byte counter is decided by the packet
length of each flow.

Register 1

K-F1

K-F2

Mutually

exclusive

size1

size2

K-F3

part1

K-F4

K-F3

part2

K-F5 K-F6

dynamic Register 3

Register 2

Figure 6: Resource allocation strategy.

Second, the resource manager tries to allocate K-F pairs
with the same key to the same registers. The resource man-
ager labels K-F pairs with three levels, i.e., green, yellow,
and red. K-F pairs involving compare operations in register
actions are labeled as red. K-F pairs involving inconstant
operands or multiple operators are labeled as yellow. K-
F pairs involving constant operands and a single operator
are labeled as green. As shown in Figure 6, the resource
manager first allocates distinct registers for K-F pairs with
red labels3. Then, the resource manager allocates registers
for K-F pairs with yellow labels. When there are not enough
registers, the resource manager will share registers among
them. Finally, the K-F pairs with green labels are unrestricted
to share registers with other K-F pairs.
Adaptable Memory Space. An application may want to use
its memory in different ways under different situations. For
example, when the application handles a few connections,
it tends to perform high-precision monitoring, so it declares
a long register (e.g., width = 32). However, when there are
more network connections, it may want to declare a large
register (e.g., size = 262144). Since we cannot predict the
network conditions, it seems impossible to define a “perfect”
register to fit different cases.

Fortunately, we can dynamically change the length and
position of slices. As shown in Figure 7, we can shorten
the length of the original state state1 from 32 bits to 8
bits and create three mirrored slices for the same state. As
a result, we use the same register to meet different types
of requirements. The cost is that the length of the original
states might be too short to record large values. However,
we can upload the high bits to the control plane by using
the co-monitoring mechanism. Besides, we can reduce the
precision of INM tasks, so they will use shorter states4.
Finally, we indicate that the demanding INM tasks can also
temporarily “borrow” memory from other idle INM tasks.
That is, we can reduce the length or the size of other slices
and assign them to the demanding INM tasks.
Filtration. When Cerberus performs the co-monitoring
mechanism, there could be some elephant flows with large

3. If there are not enough registers, the resource manager generates an
alert asking the developers to adjust the programs (e.g., refactoring codes
to use compare operations outside registers).

4. For non-increasing states such as saving the timestamp of packets,
we can reduce the precision such as saving an 8-bit timestamp instead of
32-bit timestamp [28].

Register<32> A [65536]
Space = 2 Mb Space = 2 Mb

Register<8> B [262144]

Register

state1

32 bits
32 bits
32 bits
32 bits

Register

state1_1||state1_2||state1_3||state1_4

8 bits 8 bits 8 bits 8 bits

Long

register

Large

register

change slices

2 Mb 2 Mb

8 bits 8 bits 8 bits 8 bits
8 bits 8 bits 8 bits 8 bits
8 bits 8 bits 8 bits 8 bits

Figure 7: Adaptable register

states. In the worst case, the elephant flows may trig-
ger multiple INM tasks and occupy multiple slices re-
quiring a length that is longer than the available length.
Given the predefined threshold)��, there is no solution
if
∑#−1

8=0 <0G(�%(8) × < >)��, where <0G(�%(8) is the
maximal value of given flow sets for the 8− th state.

To address this issue, we propose a filtration method
that involves segregating elephant flows from the remaining
flows. Specifically, by analyzing the �%(8, 9 values for the
8-th slice and 9-th flow, the control plane can easily identify
the elephant flows that trigger recirculation most frequently.
Subsequently, the control plane can establish flow rules to
store these elephant flows in a separate region (elephant
region) with longer slices and a smaller size. As depicted in
Figure 8, we can utilize the remaining space to create this
elephant region. Since only the top-k (e.g., 8192) heaviest
flows need to be stored, a smaller space is sufficient. Given
resource limitations, an attacker cannot generate an excessive
number of elephant flows simultaneously. In the worst cases,
we can also expand the elephant region by reallocating space
from the main region using virtual addressing.

0

packet Stage i Stage i+1

If flowkey in

elephant_table

2^17-1

2^17+2^13-1

No

Yes

state1

state3

Main region: size = 262144 (2^18)

Elephant region: size = 8192 (2^13)

state2

0
state1

state2

state3

state1 state3state2

Register i Register i+1

2^17-1

2^17+2^13-1

Figure 8: Special region for elephant flows.

Dynamic eviction. As the network conditions change, the
top-k heaviest flows can also change. Moreover, an advanced
attacker may intentionally change flow speeds to evade
the capture of the elephant region. Therefore, we need to
dynamically evict stale elephant flows from the elephant
region. Typically, attackers need a few seconds to reach the
:-th highest value. Meanwhile, the values (e.g., speed) of
old flows will be cleared accordingly. Therefore, the control
plane can periodically query the values in the elephant
region and proactively kicks out the flows with lower values.

Since the instructions from the control plane are not atomic,
we first disable the match action rules so that the evicted
flows will be recorded in the main region. Then the control
plane reads and clears their states in the elephant region.
Finally, the control plane saves the higher bits locally and
sends the remaining bits to the data plane. In general, the
change of top-k heaviest flows may not be significant. Oth-
erwise, the dramatic change in speed can serve as a useful
pattern to detect potential attacks or network anomalies.

5. Implementation

We have implemented a prototype in P4 [41] on Barefoot
Tofino [51] switch with P4 Studio [52]. We will open-source
our prototype.
Data plane. In regards to the memory slicing mechanism,
we utilize a memory slicing table to map various appli-
cations to their corresponding slices. After each register
access, we check whether the highest bit of any slice is
set to 1. If so, the data plane sets the mirror flag to copy the
packet. After the packet has been mirrored, it is recirculated
to the beginning of the pipeline. When detecting a mirrored
packet, the data plane can extract the position of the highest
bits, which can then be reset to 0 by subtracting the value
embedded in the mirror header. In terms of storage data
structures, we use approximate data structures such as BF
[47] and CMS [49] for most INM tasks. In comparison
to direct mapping, they can store much more items with
a controllable collision rate.
Control plane. We implement the control plane program in
Python. It mainly receives carry flags from the data plane
and dynamically adjusts the length of slices to meet real-
time requirements. Besides, the control plane can insert
flow rules into the data plane based on the collected states.
For instance, the control plane can assign a flow to the
elephant region by inserting a flow rule to a trigger table.
In cases where INM tasks require the most significant bits,
the control plane can directly read local states. For INM
tasks requiring full bits of states, the control plane first filters
irrelevant items by analyzing the most significant bits. Then,
it queries the least significant bits from the data plane.
Programming INM with Cerberus. We design various
modules as a library, as shown in Table 1. Developers can
input a configuration file containing the required modules in
our library. Cerberus’s compiler will automatically generate
the required codes related to resource allocation. Developers
only need to focus on the actions and conditions (e.g., tables
and actions), which are simple to compose.

As shown in Table 1, Cerberus supports various keys
such as source/destination IP address (srcIP/dstIP), host pair
(2-tuple [srcIP | dstIP]), host pair with layer 4 ports (4-tuple
[srcIP | dstIP | sport | dport]), and so on. It also provides a
wide range of features, including byte count, packet count,
existence, and so on. Developers can configure a (srcIP, UDP
count) pair to record the number of UDP packets of source
IP addresses (UDP flood defense). If the UDP count exceeds
a predefined threshold, the corresponding mitigation module
is triggered. Similarly, to defend against DNS amplification

TABLE 1: Examples of K-F definition of INM tasks

INM tasks Key Feature
ICMP (F1) 2-tuple ICMP count

Smurf attack (F2) 2-tuple ICMP count
Coremelt (F3) 2-tuple Byte count

DNS amplification (F4) 4-tuple Query existence
UDP flood (F5) 2-tuple UDP count
DNS flood (F6) 2-tuple DNS count

NTP amplification (F7) 4-tuple Query existence
SSDP amplification (F8) 4-tuple Query existence

Memcached amplification (F9) 4-tuple Query existence
QUIC amplification (F10) 4-tuple Query existence

HTTP flood (F11) 4-tuple HTTP count
Slowloris (F12) 2-tuple Connection count

SYN flood (F13) 2-tuple SYN count
ACK flood (F14) 5-tuple SYN existence

RST/FIN flood (F15) 5-tuple SYN existence
Rate counter (F16) 2-tuple Packet count

NetWarden (F17)
5-tuple
5-tuple

Timestamp
Inter-packet delay

attacks, developers can also configure a (2-tuple, Query
existence) pair. If a source IP address does not send a DNS
query (Query existence = 0) to a destination IP address
but receives its DNS replies, the DNS replies will either
be dropped or rerouted to a honeypot based on predefined
policies.

6. Evaluation

In this section, we evaluate Cerberus with respect to four
key questions:

• Can Cerberus efficiently handle large-scale INM tasks?
• Can Cerberus efficiently perform dozens of concurrent

INM tasks?
• Can Cerberus effectively defend against hybrid and

dynamic attacks?
• Does Cerberus introduce a small impact on throughput,

available bandwidth, and process latency?
• Is Cerberus robust under various attacks?

Testbed. Our testbed includes two Wedge100BF-32X pro-
grammable switches with Tofino chips [51]. We use two
servers to generate malicious traffic and background traffic.
The maximum volume of malicious traffic is 10Gbps.
Traffic generation. The background traffic is sourced from
an online trace dataset [50]. When generating malicious
traffic, we utilize some tools such as scapy and hping3. To
send packets at a high rate, we first save malicious packets
and then replay them by using tcpreplay.
Estimated metrics. When performing classification tasks
such as DDoS defenses, we may set certain policies to de-
termine whether a flow is malicious or benign. For instance,
we can set thresholds and compare the measured values with
them, or we can set a BF and verify the existence of a key.
However, a flow can be misclassified due to collisions, which
can be estimated by various metrics, including relative error
(RE), false positive rate (FPR), false negative rate (FNR),
and malicious traffic ratio. Since we have the ground truth,
it is easy to get the real values. When calculating RE,
we use the equation '� =

A40;−<40BDA4
<40BDA4

with real values

(A40;) and measured values (<40BDA4). When calculating
FPR and FNR, we use the equation �%' =

�%
)#+�%

and
�#' =

�#
)%+�#

.

6.1. Cerberus’s Capacity

Settings. In this section, we compare Cerberus with a host
rate counter that analyzes the behaviors of each host. We
employ multiple count-min sketches (CMS) counters to store
the rate of each host, which follows the implementation
approach used in Ripple [26]. We set three baselines. The
first one uses four CMS arrays with a size of 216, the second
one uses four CMS arrays with a size of 217, and the last one
uses four CMS arrays with a size of 218, respectively. All
CMS arrays have a width of 32 bits. Therefore, they totally
use 1MB, 2MB, and 4MB memory. For Cerberus, we create
four CMS arrays with a size of 216 and a width of 32 bits
(1MB memory), but we support the memory-slicing and co-
monitoring mechanisms. We replay four real-world datasets
(a small-scale, a medium-scale, and two large-scale traffic
sets) [50] at different rates (from 100Mbps to 5Gbps). On av-
erage, the traffic sets 1, 2, 3, and 4 contain ∼8,000, ∼30,000,
∼43,000, and ∼60,000 unique IP addresses, respectively.
Since the host rate counter does not involve classification,
we estimate the RE of different solutions.

As shown in Figure 9a, all CMS counters achieve low
RE (RE of over 98% of hosts is less than 5%) when there are
a small number of hosts. However, the RE of baselines using
less memory (e.g., 1MB and 2MB) increases greatly when
there are more hosts, as shown in Figure 9b, 9c, and 9d. The
baseline using 4MB achieves low RE (RE of over 99.3% of
hosts is less than 5%), but the cost is using multiple times
the memory. On the contrary, Cerberus uses less memory
while maintaining the lowest RE in all cases (RE of over
99.3% of hosts is less than 5%). This is because Cerberus
assign a short slice for the host rate counter (slice length
is 4 bits in our settings). Meanwhile, Cerberus utilizes the
co-monitoring mechanism to record the remaining bits of
long states. The cost is that the data plane may need to
upload some packets to the control plane. However, the
estimated results in section 6.4 show the proportion of
uploaded packets is negligible and reducible.

Takeaway: Cerberus can enlarge the capacity of a UDP
packet rate counter by 8 times5.

6.2. Cerberus’s Concurrency

Settings. In this section, we demonstrate that Cerberus can
deploy multiple concurrent INM tasks efficiently. To esti-
mate the FPR, we evaluate three scenarios for multi-vector
DDoS defenses. The first one contains a UDP flood defense,
a Coremelt defense, and a DNS amplification defense. The
second one includes a Smurf defense, an HTTP flood de-
fense, an SSDP amplification defense, a Slowloris defense,

5. We only use 1MB memory (width = 4 bits) in the data plane, but the
control plane keeps remaining bits (width = 28 bits), so the total available
memory is 8MB.

0 20 40 60 80 100

Relative Error (%)

0.99

0.995

1

C
D

F CMS(2
16

)

CMS(2
17

)

CMS(2
18

)

Cerberus

(a) RE on traffic set1 (100Mbps)

0 20 40 60 80 100

Relative Error (%)

0.9

0.95

1

C
D

F CMS(2
16

)

CMS(2
17

)

CMS(2
18

)

Cerberus

(b) RE on traffic set2 (1Gbps)

0 20 40 60 80 100

Relative Error (%)

0.8

0.85

0.9

0.95

1

C
D

F CMS(2
16

)

CMS(2
17

)

CMS(2
18

)

Cerberus

(c) RE on traffic set3 (2Gbps)

0 20 40 60 80 100

Relative Error (%)

0.7

0.8

0.9

1

C
D

F CMS(2
16

)

CMS(2
17

)

CMS(2
18

)

Cerberus

(d) RE on traffic set4 (5Gbps)

Figure 9: Relative error (RE) of different CMS settings on different traffic sets.

0

1

2

F
P

R
 (

%
) Cerberus

Baseline

12.5 25 50 100

Attack Volume (%)

0

1

2

F
N

R
 (

%
)

(a) Mitigation FPR/FNR on 3 attacks

0

1

2

F
P

R
 (

%
) Cerberus

Baseline

12.5 25 50 100

Attack Volume (%)

0

1

2

F
N

R
 (

%
)

(b) Mitigation FPR/FNR on 5 attacks

0

1

2

F
P

R
 (

%
) Cerberus

Baseline

12.5 25 50 100

Attack Volume (%)

0

1

2

F
N

R
 (

%
)

(c) Mitigation FPR/FNR on 8 attacks

Figure 10: Multi-vector DDoS defenses, where the maximal attack volume is 10Gbps.

and a QUIC amplification defense. The third one contains
the F1 - F8 functions, as shown in Table 1. We utilize real-
world datasets [50] to replay background traffic at a speed
of 1Gbps. Then we generate malicious traffic with a total
speed of 10Gbps. To evaluate the efficiency of Cerberus,
we compare it with a baseline that deploys corresponding
defenses with individual resources for each function. The
baseline solution aligns with the implementation of existing
solutions such as Jaqen [25]. In contrast, Cerberus supports
the memory slicing mechanism, enabling resource sharing
among multiple functions. To demonstrate that Cerberus can
identify malicious traffic and benign traffic, we estimate the
FPR and FNR of different solutions.

As shown in Figure 10, both Cerberus and the baseline
achieve low FPR and FNR. However, Cerberus only uses a
few registers and ALUs. This is because Cerberus’s memory
slicing mechanism can share memory and ALUs among
multiple defenses. Moreover, when there are more attacks
or a higher volume of traffic, Cerberus’s resource manager
can adjust the workload distribution of the data and control
planes. Therefore, the control plane can store a part of bits
that are updated least frequently. We further compare the
resource usage of the baseline and Cerberus. As shown in
Figure 11, the resource usage of the baseline increases as the
variety of INM tasks increases. When we deploy three types
of INM tasks, the stage resource usage exceeds the limit,
so we have to use more programmable switches to deploy
them. When we add more INM tasks (e.g., F1-8), other

resources such as SRAM or ALUs also exceed the available
value6. On the contrary, Cerberus (8 types) occupies much
less resources with the help of the memory slicing and co-
monitoring mechanism.

3-vector 5-vector 8-vector Cerberus

Program

0

50

100

150

200

250

300

R
es

o
u
rc

e
u
sa

g
e

ra
te

 (
%

)

Stage

SRAM

Hash bit

ALU

Maximum

Figure 11: Resource usage of different programs (Cerb. contains
8 types of INM tasks), where the red line is the resource limit. For
programs exceeding the red line, we have to manually split them
and deploy them on multiple switches.

Takeaway: Cerberus can enhance the concurrency of
the multi-vector DDoS defense system by 8 times. Cerberus

6. For some functions such as DDoS defenses, the actual available
SRAM or ALUs are lower than 100%. This is because their monitoring
modules are usually deployed in later stages.

0 50 100 150 200 250

Time (second)

0

0.2

0.4

0.6

0.8

1

M
al

ic
io

u
s

tr
af

fi
c

ra
ti

o Cerberus Baseline ISP-centric

(a) Hybrid attack (Period = 15s)

0 200 400 600 800
Time (second)

0

0.2

0.4

0.6

0.8

1

M
al

ic
io

u
s

tr
af

fi
c

ra
ti

o Cerberus Baseline ISP-centric

(b) Hybrid attack (Period = 60s)

0 10 20 30
Time (minute)

0

0.2

0.4

0.6

0.8

1

M
al

ic
io

u
s

p
ac

k
et

 r
at

io Cerberus Baseline ISP-centric

(c) Hybrid attack (Period = 120s)

Figure 12: Dynamic attack evaluation. Single attack picks an attack each time, and Hybrid attack picks multiple attacks each time.

can run 8 types of defenses concurrently in a switch, while
the baseline requires 8 times the resources (e.g., ALUs) to
achieve the same level of concurrency.

6.3. Cerberus’s Adaptability

In this section, we evaluate the effectiveness of Cerberus
in defending against hybrid and dynamic attacks. We also
demonstrate that Cerberus provides adaptability to other
existing INM systems, such as NetWarden, which defends
against covert channel attacks [28].

6.3.1. Hybrid and dynamic attacks. We have 16 types of
candidate attacks (and 15 types of defenses), as shown in
Table 1. We select 6 types of attacks for each period and
vary their proportion from 10% to 40% of the available
bandwidth (10 Gbps). We utilize real-world datasets [50] to
replay background traffic at a speed of 1Gbps. To evaluate
the fast adaptability, we choose three periods: 15 seconds,
60 seconds, and 120 seconds. Since some defenses (e.g.,
based on limiters) do not completely drop malicious packets,
we use the remaining malicious traffic ratio to estimate the
effectiveness of defenses.

We set a baseline that deploys at most 4 types of defense
each time. Otherwise, the deployed defenses may not have
enough space to achieve high accuracy. We also adopt an
ISP-centric strategy in Jaqen [25], which leverages multiple
switches to counter dynamic attacks. When the posture of
attacks changes, Jaqen reconfigures a part of the switches at
a time to meet the new requirements. To avoid introducing
high false positives, all filters of activated switches are tem-
porarily disabled during the reconfiguration process. In our
settings, we use two programmable switches with multiple
defense programs (Jaqen only uses one switch).

As shown in Figure 12, Cerberus can effectively counter
hybrid and dynamic attacks and limit malicious traffic to
a safe level. In contrast, the baseline cannot counter all
types of attacks at the same time due to resource limita-
tions. Therefore, the malicious traffic ratio is always high
(0.2∼0.3). The ISP-centric defense also faces challenges
when the changing period is shorter than the reconfiguration
time. This is because the attack types may have already

changed before the ISP-centric defense completes its recon-
figuration. As the changing period increases, the ISP-centric
defense is able to follow the hybrid attack after a while, but
the baseline still misses a portion of the malicious flows.
Since the ISP-centric defense uses more switches than the
baseline and Cerberus (Cerberus only uses one switch), this
is reasonable. Unfortunately, both the baseline and the ISP-
centric defense have a downtime window (with malicious
traffic ratio = 1) during the reconfiguration process, as shown
in Figures 12b and 12c. A tricky attacker may exploit it
to disrupt the service of the defense systems. In contrast,
Cerberus can reallocate memory within a few milliseconds
without terminating the switches. When new attack types are
detected, the control plane will allocate slices to correspond-
ing functions and recycle idle slices, ensuring continuous
and adaptive defense against attacks.

0 0.5 1 1.5 2

Number of monitoring flows 10
4

0.6

0.8

1

A
cc

u
ra

cy

NW(k=16) NW(k=8) NW(k=4)

Cerberus w/o CM Cerberus w/ CM

Figure 13: The accuracy of the estimation of IPD distributions.

6.3.2. Adaptable Netwarden. We develop a covert chan-
nel defender of Netwarden [28], which detects suspicious
packets leaking secrets from a compromised host to out-
side networks. Due to existing firewalls, these packets may
leverage covert channels such as covert timing channels. To
detect covert timing channel attacks, the data plane records
the distribution of the inter-packet delays (IPDs) of each
flow. Then, the control plane can collect them for further
analysis. To save memory, Netwarden uses : CMS counters

to record the distribution of IPD of connections. That is,
[0, C1), [C1, C2), · · · , [C:−1,∞).
Settings. In our experiment, we allocate a fixed memory
space (2MB) to compare the accuracy of different kinds of
strategies. We allocate two arrays with a width of 32-bit for
each CMS counter (i.e., 3 = 2, F83Cℎ = 32). We set dif-
ferent : for the baseline (Netwarden), i.e., : = 4, 8, 16. For
Cerberus, the : is adaptable and we set the initial value to
16. A larger : means a finer-grained distribution. However,
a larger : also requires more CMS counters, which results
in smaller counter sizes. We utilize real-world datasets [50]
to replay background traffic at a speed of 1Gbps, which
may intersect with the malicious flows and impact the final
accuracy. Additionally, we generate a substantial volume of
malicious flows that embed secrets using the timing channel.

As shown in Figure 13, most strategies perform well
when the number of monitored flows is less than 3,000.
However, as the number of monitored flows further in-
creases, NetWarden (NW) with higher : (e.g., : = 8, 16)
produces low accuracy. On the other hand, NW (k=4) pro-
duces high accuracy, but it only contains 4 CMS counters,
which provide a coarse-grained view of the IPD distribution.
As for Cerberus without applying the co-monitoring mech-
anism (Cerberus w/o CM), we do not change the length
of states. We simply change the size of each register. For
example, we set the size of each register to 214 and : to 16
when there are a small amount of monitored flows. When
the number of monitored flows increases, we increase the
size to 215 (: = 8) and 216 (: = 4). Therefore, Cerberus
w/o CM always outperforms a fixed NetWarden strategy.
Moreover, we estimate the accuracy of Cerberus with the
co-monitoring mechanism (i.e., Cerberus w/ CM). When we
need to monitor more flows, the control plane will shorten
the length of each state (e.g., from 32-bit to 8-bit). As a
result, Cerberus does not need to reduce the number of
counters (i.e., :) while still producing high accuracy. In our
experiment, Cerberus always provides a fine-grained view
(: = 16) of the IPD distributions of each flow.

Takeaway: Cerberus can enhance the adaptability of ex-
isting P4-based INM systems to cope with changing network
conditions.

6.4. Cerberus’s Overhead

In this part, we estimate the overhead of Cerberus,
including the packet recirculation rate, the bandwidth uti-
lization, and processing latency. The recirculation packet
rate can affect the throughput of the programmable switch.
Basically, if a packet is recirculated, it will create a new
packet, and they totally go through the pipeline three times.
That is, if the packet recirculation rate is 100%, the through-
put will drop to 1/3. Besides, the bandwidth of the data-to-
control channel is 10Gbps. As for the processing latency, it
is mainly affected by the pipeline length. It is worth noting
that Cerberus does not delay any packets, even if the packets
are recirculated. The original packet is forwarded immedi-
ately, and the mirror packet is recirculated. Therefore, the
recirculation does not increase client latency.

set1 set2 set3 set4

Traffic set

0

2

4

6

8

10

R
at

io
 (

%
)

Bandwidth Recirculation

Figure 14: The Overhead of the co-monitoring mechanism on the
host rate counter.

0

5

10

B
an

d
w

id
th

u
ti

li
za

ti
o
n
 (

%
)

0 50 100 150

Time (second)

0

5

10
R

ec
ir

cu
la

ti
n
g

p
ac

k
et

 (
%

)

UDP flood DNS flood

Elephant flow flood

(less but larger packet)

Figure 15: The Overhead of the co-monitoring mechanism on
hybrid and dynamic attacks.

Host rate counter. We first evaluate the overhead of the host
rate counter. To enlarge the available memory, the data plane
uses the co-monitoring mechanism to share the workload
with the control plane. When Cerberus runs the host rate
counter, it dynamically adjusts the workload distribution. For
example, when there are fewer hosts and lower throughput
(e.g., traffic set 1), Cerberus allocates a long length (6 bits)
for the host rate counter. When the number of hosts and
the throughput increase, Cerberus also enlarge the size by
reducing the length in the data plane (e.g., from 6 bits
to 4 bits). Therefore, the consumed bandwidth increase as
the size of the replayed traffic set increase, as shown in
Figure 14. Interestingly, we obverse that the recirculation
ratio decreases when we replay the largest traffic set (set 4).
Since the replaying speed is higher, there are more passing
packets. Meanwhile, the number of recirculated packets is
always below a threshold due to the adjustment of Cerberus’s
resource manager.
Adaptable DDoS defenses. We further evaluate the over-
head of hybrid and dynamic defenses. In our experiments,
we choose six types of attacks, including ICMP flood, UDP
flood, Slowloris attack, HTTP flood, elephant flow, and DNS

flood. All of them require defenders to count the number
of related packets, so the length of these states can be
very high. Therefore, it is a suitable scenario to show the
overhead of the co-monitoring mechanism. In each period
(e.g., 15s), we randomly choose one to three attacks from
six types of attacks, and their proportions vary from 10%
to 100%. We do not launch more attacks at a time because
the volume of each attack can become too low to cause
a negative consequence. When detecting occurring attacks,
Cerberus will allocate memory for corresponding functions.
By default, we set the length of states of 5 defenses to 8,
except for the elephant flow defense, which has a length of
16.

Overall, the consumed bandwidth of the data-to-control
channel is quite low, as shown in Figure 15. We notice that
the UDP flood and DNS flood attacks cause the highest
bandwidth overhead, i.e., 1% (0.1Gbps/10Gbps). This is
because the default length of their states is too short to
record the states of high-rate flows. Thus, many carry flags
are sent to the control plane. However, the control plane
immediately adjusts the length of slices, and the bandwidth
utilization rate reduces quickly (within 1 second). Besides,
the peak value of recirculating packets is 1.6% when attack-
ers launch a single elephant flow flood attack. We further
analyze the number of recirculating packets during this time
window. We find that the recirculating packets are less than
the recirculating packets during UDP flood and DNS flood
attacks. This is because the elephant flow flood prefers to
generate large packets to consume the bandwidth. At the
same time, the attack does not necessarily generate too many
malicious packets and can escape from a high pps filter
(e.g., UDP flood filter). With a much lower total number of
passing packets7, its recirculating packet ratio becomes the
highest. Finally, Cerberus reduces the overhead by recording
the elephant flows on an elephant region with a full length
(i.e., 32-bit). Since the number of elephant flows is relatively
small, a region with a size of 8192 and a length of 32 bits
is enough.

RC NW HB(5) HB(15)

Program

0

200

400

600

L
at

en
cy

 (
n
s)

Figure 16: The processing latency of different programs.

Latency. We evaluate the processing latency of Cerberus
for different programs. Based on programmable switches,

7. In this case, most passing packets are benign, although they consume
less bandwidth

Cerberus can run INM functions with extremely low pro-
cessing latency, as shown in Figure 16. Here, RC means a
host rate counter, NW means NetWarden, HB (5) means a
hybrid DDoS defense program containing 5 types of defense
(SYN flood, ACK flood, ICMP flood, elephant flow, and
UDP flood), and HB (15) contains 15 types of defenses.

6.5. Cerberus’s Robustness

To demonstrate Cerberus’s robustness, we conduct ex-
periments where attackers launched various attacks to dis-
rupt the functionalities of Cerberus. By deliberately causing
overflows, packets are uploaded to the control plane and
recirculated to switches. The main goal of these attacks is
to increase the frequency of overflows. Consequently, the
attackers are able to exhaust the bandwidth resources of the
data-to-control plane channel and significantly reduce the
throughput of the data plane.
Settings. Unlike previous DDoS attacks, we avoid send-
ing low-rate flows that are ineffective in triggering over-
flow, as well as elephant flows due to their limited num-
bers and susceptibility to filtration by Cerberus’s filtra-
tion region. Instead, we enable attackers to generate flows
with moderate rates. Specifically, TCP flows are generated
at 1Mbps/128pps per flow, UDP flows at 1Mbps/256pps
per flow, ICMP flows at 512Kbps/1Kpps per flow, HTTP
flows at 512Kbps/128pps per flow, and DNS packets at
512Kbps/128pps per flow. Moreover, we allow attackers to
dynamically change the types and proportions of malicious
flows, with a maximal throughput of 10Gbps for malicious
flows. To represent realistic scenarios, we utilize real-world
datasets for background traffic, replayed at 1Gbps. To min-
imize the impact on the elephant region, we ensure an
even distribution of the flow rate. Additionally, the attacker
changes the proportion of malicious traffic every 10 seconds.
In our evaluation, we employ two solutions. The first one is
Cerberus without Filtration, where we do not utilize the
elephant region to filter top-K elephant flows. The second
solution, Cerberus (Full), incorporates an elephant region
with a size of 8192 (approximately 256Kb memory) to
effectively filter and handle top-K elephant flows.

0 20 40 60

Time (Second)

0

1

2

3

4

5

B
a
n
d
w

id
th

 u
s
a
g
e
 (

%
)

Cerberus w/o Filtration

Cerberus (Full)

(a) Bandwidth usage

0 20 40 60

Time (Second)

0

10

20

30

R
e
c
ir
c
u
la

ti
o
n
 r

a
ti
o
 (

%
)

Cerberus w/o Filtration

Cerberus (Full)

(b) Recirculation rate

Figure 17: Cerberus’s overhead under attacks

As shown in Figure 17, the bandwidth usage and recir-
culation rate experience a significant surge (>3%, >20%) at
the beginning of the attacks. However, thanks to the resource
manager in Cerberus, the length of slices is adjusted to

mitigate overflow occurrences. Notably, we observe that the
overhead reduces to a low level after one second. Compared
to Cerberus without Filtration, Cerberus (Full) demon-
strates a greater reduction in overhead. This improvement
is attributed to the ability of Cerberus (Full) to capture
a portion of malicious flows using the elephant region,
effectively preventing them from triggering the overflow.
We also observe that the overhead exhibits fluctuations
every 10 seconds. As the proportion of packets changes, the
original settings may deviate from the optimal configuration.
Therefore, Cerberus requires a brief period of time (about
1s) to calculate and apply new settings. This explains why
we observe constant fluctuations in the values of overhead
metrics. Despite the fluctuations, the overhead consistently
remains at a relatively safe level, with values below 1.5% for
bandwidth usage and below 7% for the recirculation ratio.

7. Related work

Traditional network monitoring systems. Traditional net-
work monitoring systems are either based on centralized
collection information or rely on proprietary hardware to
analyze passing flows locally. For the first type of network
monitoring system [16]–[23], they usually leverage software-
defined networking (SDN) technology. However, their per-
formance is too poor to handle large-scale traffic sets. On the
other hand, some network monitoring systems are based on
proprietary hardware. For example, many switches support
firewall rules and access control lists (ACLs). Network op-
erators can define customized rules to analyze the fields or
types of packets [53], [54]. However, these approaches may
not be accurate when hosts or applications use non-standard
values (e.g., do not use port 80 for HTTP). Moreover, some
packets may contain new protocols or new packet headers
that cannot be recognized by switches. Therefore, they are
too inflexible to handle various and changing network traffic.
INM systems based on programmable ASIC. Emerging
programmable switches are becoming desirable choices for
large-volume stream processing due to their advantages of
flexibility, performance, and cost-efficiency. There are a
lot of industrial and academic efforts to implement pro-
grammable switches for better QoS [13], [42]–[45] and
safety guarantee [25]–[27].

Unfortunately, the memory of current programmable
switches is insufficient to handle large-scale INM tasks
concurrently. Most systems hence design a series of mecha-
nisms to reduce memory usage or provide adaptability. For
example, when faced with new requirements, Poseidon [24]
reroutes all network flows to servers with lower through-
put during reconfiguration of the programmable switches.
The performance degradation makes it unsuitable for high-
performance INM systems. Jaqen [25] tries to build an ISP-
centric programmable DDoS defense system. With more
programmable switches, network managers can reconfigure
switches for new requirements. To avoid introducing high
false positive rates, Jaqen has to disable filters during the
reconfiguration process, which might be exploited by an ad-
vanced attacker to trigger the reconfiguration of all switches.

Omnimon [29] is a distributed system that assigns multiple
switches to track flows cooperatively. However, Omnimon is
not transparent to hosts because it requires end-hosts to par-
ticipate in the flow-tracking process. Moreover, the efficiency
of Omnimon depends on the number of switches on the path.
If too many flows are on a short path, the accuracy can drop
to a low level. Bedrock [55] provides a secure foundation for
RDMA systems by using programmable switches. Bedrock
designs CPU-bypassing defense primitives to analyze the
passing flows and counter a series of RDMA attacks. Due
to resource limitations, Bedrock runs different defenses sep-
arately instead of concurrently. BeauCoup [35] leverages the
coupon collector that randomly updates one of the queried
features. With a small constant of memory accesses, it can
support multiple distinct counting queries simultaneously.
However, BeauCoup introduces relatively high error rates.
Therefore, BeauCoup is not suitable for INM tasks requiring
high precision.

8. Discussion

Possible attacks. An adversary may try to increase the
overhead of the co-monitoring mechanism. In Section 6.5,
we show that the resource manager of Cerberus can adjust
the lengths of the slices and the filtration rules to reduce
overhead. On the other hand, attackers may fail to launch
many DDoS attacks due to conflicting settings. For exam-
ple, the Slowloris attack aims to exhaust the resource of
connection pool resources by employing numerous unique
low-rate flows. However, this conflicts with the requirement
of generating medium-rate flows due to resource constraints.
Various operations. The memory slicing mechanism can
merge different features into one register, but their operators
need to be converted to the same one. Although some
operators, such as addition and subtraction, can be converted
into each other, we cannot merge all types of operations
into a single operation. In the worst cases, all INM tasks
require unique operations, then Cerberus cannot enhance
the concurrency. Even so, Cerberus can still enhance the
capacity and adaptability for INM tasks.
Recirculation and uplink bandwidth. The co-monitoring
mechanism introduces recirculation, which can affect the
throughput of the data plane and increases the communica-
tion overhead between the data and control planes. However,
we argue that these effects are acceptable. First, the impact
is short-term, because Cerberus’s resource manager can
mitigate it after a while (e.g., several seconds). Second, when
there is heavy overhead due to the co-monitoring mecha-
nism, it may indicate that the load of the current network is
too high. In such cases, we can sacrifice a small part of the
performance to maintain good functionality. Besides, we can
actively reroute a part of the traffic to mitigate the impact.

9. Conclusion

In this paper, we design Cerberus, an efficient and ef-
fective INM system based on programmable switches. We

abstract INM tasks into K-F pairs and design a novel mem-
ory slicing mechanism to share resources between multiple
K-F pairs. We further improve the capacity of Cerberus by
proposing a co-monitoring mechanism. We design a novel
resource manager to support resource reallocation for dy-
namic requirements. We implement a prototype of Cerberus
and conduct comprehensive evaluations to demonstrate that
Cerberus can handle INM tasks efficiently and effectively.
Moreover, Cerberus can adapt to new or fast-changing re-
quirements without interrupting programmable switches.

Acknowledgements

We want to thank the anonymous reviewers for their
valuable comments. This material is based upon work sup-
ported in part by the National Science Foundation (NSF)
under Grant No. 1700544, 2148374, and 2226339, DHS
Grant No. 518700-00001, and ONR Grant No. N00014-
20-1-2734. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
authors and do not necessarily reflect the views of NSF,
DHS, and ONR.

References

[1] N. L. Van Adrichem, C. Doerr, and F. A. Kuipers, “Opennetmon:
Network monitoring in openflow software-defined networks,” in 2014

IEEE Network Operations and Management Symposium (NOMS).
IEEE, 2014, pp. 1–8.

[2] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with opensketch.” in NSDI, vol. 13, 2013, pp. 29–42.

[3] S. A. Mehdi, J. Khalid, and S. A. Khayam, “Revisiting traffic anomaly
detection using software defined networking,” in Recent Advances

in Intrusion Detection: 14th International Symposium, RAID 2011,

Menlo Park, CA, USA, September 20-21, 2011. Proceedings 14.
Springer, 2011, pp. 161–180.

[4] Y. Zhang, “An adaptive flow counting method for anomaly detection
in sdn,” in Proceedings of the ninth ACM conference on Emerging

networking experiments and technologies, 2013, pp. 25–30.

[5] J. R. Ballard, I. Rae, and A. Akella, “Extensible and scalable network
monitoring using opensafe.” Inm/wren, vol. 10, 2010.

[6] (2022) Internet traffic volume. [Online]. Available: https://www.
ibisworld.com/us/bed/internet-traffic-volume/88089/

[7] P. Nicholson. (2018) 5 most famous ddos attacks. [On-
line]. Available: https://www.a10networks.com/resources/articles/
5-most-famous-ddos-attacks

[8] S. Moss. (2016) Major ddos attack on dyn
disrupts aws, twitter, spotify and more. [On-
line]. Available: https://www.datacenterdynamics.com/en/news/
major-ddos-attack-on-dyn-disrupts-aws-twitter-spotify-and-more/

[9] A. Scroxton. (2016) Dyn reveals details of com-
plex and sophisticated iot botnet attack. [Online].
Available: http://book.itep.ru/depository/ddos/Dyn_reveals_details_
of_complex_and_sophisticated_IoT_botnet_attack.htm

[10] D. Pauli. (2016) Chinese gambling site served near record-breaking
complex ddos. [Online]. Available: https://www.theregister.com/
2016/07/01/470_gbps_multivector_chinese_gambling/

[11] C. Security. (2018) Ddos attacks 2018: New records and
trends. [Online]. Available: https://www.calyptix.com/research/
ddos-attacks-2018-new-records-and-trends/

[12] W. Turton. (2014) An interview with lizard squad, the hackers who
took down xbox live. [Online]. Available: https://www.dailydot.com/
debug/lizard-squad-hackers/

[13] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making
stateful layer-4 load balancing fast and cheap using switching asics,”
in SIGCOMM ’17.

[14] N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown, and R. Jo-
hari, “Plug-n-serve: Load-balancing web traffic using openflow,” ACM

Sigcomm Demo, vol. 4, no. 5, p. 6, 2009.

[15] N. Kang, M. Ghobadi, J. Reumann, A. Shraer, and J. Rexford,
“Efficient traffic splitting on commodity switches,” in Proceedings

of the 11th ACM Conference on Emerging Networking Experiments

and Technologies, 2015, pp. 1–13.

[16] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey, “Bohatei: Flexible
and elastic DDoS defense,” in USENIX Security ’15).

[17] J. Zheng, Q. Li, G. Gu, J. Cao, D. K. Yau, and J. Wu, “Realtime
DDoS defense using COTS SDN switches via adaptive correlation
analysis,” in TIFS ’18.

[18] M. Zhang, J. Bi, J. Bai, Z. Dong, Y. Li, and Z. Li, “Ftguard: A
priority-aware strategy against the flow table overflow attack in sdn,”
in Proceedings of the SIGCOMM Posters and Demos, 2017, pp. 141–
143.

[19] G. Shang, P. Zhe, X. Bin, H. Aiqun, and R. Kui, “Flooddefender:
Protecting data and control plane resources under sdn-aimed dos
attacks,” in IEEE INFOCOM 2017-IEEE Conference on Computer

Communications. IEEE, 2017, pp. 1–9.

[20] T. Xu, D. Gao, P. Dong, C. H. Foh, and H. Zhang, “Mitigating the
table-overflow attack in software-defined networking,” IEEE Transac-

tions on Network and Service Management, vol. 14, no. 4, pp. 1086–
1097, 2017.

[21] M. Zhang, J. Bi, J. Bai, and G. Li, “Floodshield: Securing the sdn
infrastructure against denial-of-service attacks,” in 2018 17th IEEE

International Conference On Trust, Security And Privacy In Com-

puting And Communications/12th IEEE International Conference On

Big Data Science And Engineering (TrustCom/BigDataSE). IEEE,
2018, pp. 687–698.

[22] H. Wang, L. Xu, and G. Gu, “Floodguard: A dos attack prevention
extension in software-defined networks,” in 2015 45th Annual IEEE/I-

FIP International Conference on Dependable Systems and Networks.
IEEE, 2015, pp. 239–250.

[23] Y. Xu and Y. Liu, “Ddos attack detection under sdn context,” in IEEE

INFOCOM 2016-the 35th annual IEEE international conference on

computer communications. IEEE, 2016, pp. 1–9.

[24] M. Zhang, G. Li, S. Wang, C. Liu, A. Chen, H. Hu, G. Gu, Q. Li,
M. Xu, and J. Wu, “Poseidon: Mitigating volumetric DDoS attacks
with programmable switches,” in NDSS ’20.

[25] Z. Liu, H. Namkung, G. Nikolaidis, J. Lee, C. Kim, X. Jin, V. Braver-
man, M. Yu, and V. Sekar, “Jaqen: A high-performance switch-native
approach for detecting and mitigating volumetric DDoS attacks with
programmable switches,” in USENIX Security ’21.

[26] J. Xing, W. Wu, and A. Chen, “Ripple: A programmable, decentral-
ized link-flooding defense against adaptive adversaries,” in USENIX

Security ’21.

[27] Y. Zhou, C. Sun, H. H. Liu, R. Miao, S. Bai, B. Li, Z. Zheng, L. Zhu,
Z. Shen, Y. Xi et al., “Flow event telemetry on programmable data
plane,” in SIGCOMM ’20.

[28] J. Xing, Q. Kang, and A. Chen, “Netwarden: Mitigating network
covert channels while preserving performance,” in USENIX Security,
2020.

[29] Q. Huang, H. Sun, P. P. Lee, W. Bai, F. Zhu, and Y. Bao, “Omnimon:
Re-architecting network telemetry with resource efficiency and full
accuracy,” in SIGCOMM ’20.

[30] Y. Afek, A. Bremler-Barr, and L. Shafir, “Network anti-spoofing
with sdn data plane,” in IEEE INFOCOM 2017-IEEE conference on

computer communications. IEEE, 2017, pp. 1–9.

[31] G. Li, M. Zhang, C. Liu, X. Kong, A. Chen, G. Gu, and H. Duan,
“Nethcf: Enabling line-rate and adaptive spoofed ip traffic filtering,”
in 2019 IEEE 27th international conference on network protocols

(ICNP). IEEE, 2019, pp. 1–12.

[32] J. Bai, J. Bi, M. Zhang, and G. Li, “Filtering spoofed ip traffic
using switching asics,” in Proceedings of the ACM SIGCOMM 2018

Conference on Posters and Demos, 2018, pp. 51–53.

[33] G. Grigoryan and Y. Liu, “Lamp: Prompt layer 7 attack mitigation
with programmable data planes,” in Proceedings of the 2018 Sympo-

sium on Architectures for Networking and Communications Systems,
2018, pp. 158–159.

[34] Â. C. Lapolli, J. A. Marques, and L. P. Gaspary, “Offloading real-
time ddos attack detection to programmable data planes,” in 2019

IFIP/IEEE Symposium on Integrated Network and Service Manage-

ment (IM). IEEE, 2019, pp. 19–27.

[35] X. Chen, S. Landau-Feibish, M. Braverman, and J. Rexford, “Beau-
coup: Answering many network traffic queries, one memory update at
a time,” in Proceedings of the Annual conference of the ACM Special

Interest Group on Data Communication on the applications, tech-

nologies, architectures, and protocols for computer communication,
2020, pp. 226–239.

[36] (2023) Cerberus. [Online]. Available: https://github.com/successlab/
Cerberus

[37] B. Claise, “Cisco systems netflow services export version 9,” Tech.
Rep., 2004.

[38] C. Estan, K. Keys, D. Moore, and G. Varghese, “Building a better
netflow,” ACM SIGCOMM Computer Communication Review, vol. 34,
no. 4, pp. 245–256, 2004.

[39] K. C. Claffy, G. C. Polyzos, and H.-W. Braun, “Application of
sampling methodologies to network traffic characterization,” in Con-

ference proceedings on Communications architectures, protocols and

applications, 1993, pp. 194–203.

[40] M. Wang, B. Li, and Z. Li, “sflow: Towards resource-efficient and
agile service federation in service overlay networks,” in 24th In-

ternational Conference on Distributed Computing Systems, 2004.

Proceedings. IEEE, 2004, pp. 628–635.

[41] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors.”

[42] N. K. Sharma, M. Liu, K. Atreya, and A. Krishnamurthy, “Approxi-
mating fair queueing on reconfigurable switches,” in NSDI ’18.

[43] K.-F. Hsu, R. Beckett, A. Chen, J. Rexford, and D. Walker, “Contra: A
programmable system for performance-aware routing,” in NSDI ’20.

[44] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and
I. Stoica, “Netcache: Balancing key-value stores with fast in-network
caching,” in SOSP ’17.

[45] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé, C. Kim, and
I. Stoica, “Netchain: Scale-free sub-RTT coordination,” in NSDI ’18,
2018, pp. 35–49.

[46] M. Zhang, G. Li, X. Kong, C. Liu, M. Xu, G. Gu, and J. Wu,
“Nethcf: Filtering spoofed ip traffic with programmable switches,”
IEEE Transactions on Dependable and Secure Computing, 2022.

[47] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426,
1970.

[48] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a
scalable wide-area web cache sharing protocol,” IEEE/ACM transac-

tions on networking, vol. 8, no. 3, pp. 281–293, 2000.

[49] G. Cormode and S. Muthukrishnan, “An improved data stream sum-
mary: the count-min sketch and its applications,” Journal of Algo-

rithms, vol. 55, no. 1, pp. 58–75, 2005.

[50] W. Project. Mawi working group traffic archive. [Online]. Available:
http://mawi.wide.ad.jp/mawi/

[51] “Barefoot® TofinoTM ”. https://www.barefootnetworks.com/
technology/#tofino.

[52] (2022) 2018. barefoot p4 studio. [Online]. Available: https:
//www.barefootnetworks.com/products/brief-p4-studio/

[53] Y. Qi, L. Xu, B. Yang, Y. Xue, and J. Li, “Packet classification
algorithms: From theory to practice,” in IEEE INFOCOM 2009.
IEEE, 2009, pp. 648–656.

[54] W. Jiang and V. K. Prasanna, “A fpga-based parallel architecture for
scalable high-speed packet classification,” in 2009 20th IEEE Interna-

tional Conference on Application-specific Systems, Architectures and

Processors. IEEE, 2009, pp. 24–31.

[55] J. Xing, K.-F. Hsu, Y. Qiu, Z. Yang, H. Liu, and A. Chen, “Bedrock:
Programmable network support for secure {RDMA} systems,” in 31st

USENIX Security Symposium (USENIX Security 22), 2022, pp. 2585–
2600.

Appendix A.

Meta-Review

A.1. Summary

This paper proposes an in-network security monitoring
(INM) system for programmable networks that mitigates
challenges with high-volume DDoS attacks. The authors use
memory slicing and resource management mechanisms to
dynamically handle high-volume traffic, and they implement
and evaluate their solution using P4 switches.

A.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Addresses a Long-Known Issue
• Provides a Valuable Step Forward in an Established

Field

A.3. Reasons for Acceptance

1) This paper creates a new tool, Cerberus, that enables
the implementation of multiple in-networking monitor-
ing tasks over high-volume traffic with programmable
data planes.

2) This paper shows how the control and data plane can
collaboratively and dynamically support INM tasks that
may require different resources based on the network
traffic in question. Prior approaches have only focused
on improving certain INM tasks through sketching.

3) The proposed tool provides a valuable step forward.
Cerberus allows for an efficient and adaptable INM
solution, with no down time, which is a clear step
forward in the domain of INM.

A.4. Noteworthy Concerns

The authors position the proposed solution as a gen-
eral approach towards optimizing memory constraints in
programmable networks with dynamic scalability, which
generalizes to a broader problem in networking problem
rather than specifically a security problem. The proposed
approach does, however, fall within scope of security be-
cause performance issues can very quickly become security
(availability) issues.

