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ARTICLE INFO ABSTRACT

Keywords: This work addresses differences in predicted elastic fields created by dislocations either by the Phase Field
Dislocations Crystal (PFC) model, or by static Field Dislocation Mechanics (FDM). The PFC order parameter describes the
ElaStiCi_ty topological content of the lattice, but it fails to correctly capture the elastic distortion. In contrast, static FDM
lsﬁrase field correctly captures the latter but requires input about defect cores. The case of a dislocation dipole in two
Dirsizsriisons dimensional, isotropic, elastic medium is studied, and a weak coupling is introduced between the two models.

The PFC model produces compact and stable dislocation cores, free of any singularity, i.e., diffuse. The PFC
predicted dislocation density field (a measure of the topological defect content) is used as the source (input) for
the static FDM problem. This coupling allows a critical analysis of the relative role played by configurational
(from PFC) and elastic (from static FDM) fields in the theory, and of the consequences of the lack of elastic
relaxation in the diffusive evolution of the PFC order parameter.

1. Introduction FDM is a continuum theory (Acharya, 2001, 2003, 2004; Acharya
and Roy, 2006; Acharya, 2011; Zhang et al.,, 2015; Zhang, 2017;
Arora et al., 2020b; Arora and Acharya, 2020) in which thermal lat-
tice vibration is not considered. Rather, the theory focuses on the
longer time scale of dislocation motion and chooses as a primary
field the polar dislocation density tensor and its associated conserva-
tion law of topological charge (Kosevich, 1979; Rickman and Vinals,
1997; Acharya, 2011; Perreault et al., 2016). The theory also includes
nonlinear, anisotropic elastic fields, and therefore it can account for
topological defects in atomic configurations of nonlinear elastic media.
The fundamental equations of the theory are directly derived from
classical balances of mass and momentum, an elastic incompatibility
equation linking the finite elastic distortion to the dislocation den-

Research on the motion of individual or a small number of dislo-
cations at the nanoscale is motivated by ongoing advances in diag-
nostic techniques, for example, high energy X-ray and Bragg coherent
diffractive imaging, that have opened the door to detailed nanoscale
observation of crystalline defects such as dislocations (line-type de-
fects) (Ulvestad et al.,, 2015; Yau et al., 2017; Shen et al., 2020;
Wilkin et al., 2021; Dresselhaus-Marais et al., 2021) and of emergent,
collective mesoscale phenomena (Suter, 2017; Hanson et al., 2018;
Bhattacharya et al., 2019). Combining this information with nanoscale
theory and computation is key to understanding materials response,
performance, and evolution across different length scales.

Field dislocation mechanics (FDM) (Acharya, 2001, 2003, 2004;
Roy and Acharya, 2005; Acharya and Roy, 2006; Acharya, 2011; Zhang
et al., 2015; Arora et al., 2020a, 2023) and phase field crystal models
(PFC) (Haataja et al., 2002; Elder et al., 2002; Elder and Grant, 2004)
are two widely used approaches to study the nanoscale response of
crystals containing dislocations (Salvalaglio et al., 2019; Zhao, 2023;
Skogvoll et al., 2023). Since fast temporal scales associated with lattice
vibration are eliminated in both theories, their computational imple-

sity tensor, and a conservation law for Burgers vector in the body.
An energy dissipation inequality based on the Second Law leads to
the equations for the various fields (Arora et al., 2020b; Arora and
Acharya, 2020). Recently, the theory was extended to account for the
role of thermal strain incompatibilities on the conservation of Burgers
vector and temperature evolution due to dislocation activity through
the first law of thermodynamics (Upadhyay, 2020; Lima-Chaves and

mentation can efficiently access long time phenomena that are difficult
to describe by other methods operating at similar length scales such as
molecular dynamics (Emmerich et al., 2012; Momeni et al., 2018).
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elasticity and appropriate generalized stacking fault energies (Vitek,
1968, 1998; Vitek and Paidar, 2008)). Nevertheless, the theory does
not require slip systems to be known a priori in order to define an
energy density. Importantly, the dissipation inequality yields the proper
nonlinear generalization of the Peach-Koehler force field acting on a
dislocation segment.

The PFC model introduces a phase field that describes the tempo-
rally coarse grained atomic density of the crystal, and a phenomenolog-
ically specified free energy functional determined by lattice symmetry.
By construction, the minimizer of the free energy is a spatially periodic
phase field of the required symmetry (Elder and Grant, 2004). Dissipa-
tive evolution of the phase field is assumed as a gradient flow driven
by the same free energy functional. Prior research has considered both
equilibrium properties, such as elastic constants (Elder et al., 2007a), as
well as many features of inhomogeneous systems such as, for example,
dislocation motion (Berry et al., 2006; Skaugen et al., 2018a,b; Skogvoll
et al.,, 2022) and grain boundary structure and motion (Elder et al.,
2007a; Mellenthin et al., 2008; Wu and Voorhees, 2012). Since the
configuration of the system is described by a single scalar field, the
simultaneous description of mass density and crystalline lattice with the
same order parameter constitutes an overspecified problem. This has
been addressed by the introduction of a dissipative current associated
with an independent vacancy diffusion mode in Heinonen et al. (2016)
(see, also, Acharya et al. (2022) for further discussion). This sepa-
ration, however, is insufficient to describe the motion of topological
defects in which the difference between mass and lattice velocities
has topological content (Mura, 1963; Kosevich, 1979; Acharya et al.,
2022). Such a separation has been recently introduced in the PFC by
assuming that the phase field order parameter determines only the
transverse/incompatible part of the elastic distortion tensor, with the
longitudinal/compatible part remaining free to capture compatible lat-
tice distortion, and satisfy elastic equilibrium (Skaugen et al., 2018a,b).
However, the evolution equation for the phase field was modified in
an ad hoc fashion to include an affine distortion derived from the
compatible distortion.

A theory that is free of the limitations described above, and that
couples FDM and the PFC, was proposed in Acharya and Vinals (2020).
The general approach is motivated by the great success of the Peierls
model in elucidating basic dislocation physics, while the theory adds a
consistent scheme for regularizing stress fields near dislocation cores. It
borrows from the PFC model its definition of the order parameter and
the associated free energy functional. This field naturally incorporates
defect cores, which are kept localized and compact by its free energy,
and features dissipative motion while preserving topological charge.
All topological features of defects are maintained by the phase field
evolution, which in the pure PFC model are solely dictated by the
symmetry of the lattice. In the coupled PFC and FDM model, the
topological content of the PFC is then coupled to an elastic material
described within finite deformation FDM theory. Elasticity is coupled
back to the evolution of the phase field through consideration of a
dissipation inequality for the full model.

However, a computational implementation of the coupled PFC and
FDM model is lacking. As a first step, in this work, we propose an
algorithm for a weakly coupled version of this theory within a small
deformation framework. The numerical implementation is used to de-
termine the equilibrium configuration of a dislocation dipole in two
dimensions and in an elastically isotropic system. The aim of this study
is to determine to what extent the PFC and FDM predicted distortions
and stresses agree in equilibrium.

2. Coupled phase field crystal and static field dislocation mechan-
ics

We focus on an analysis of the equilibrium configuration of a dislo-
cation dipole in a two dimensional hexagonal lattice, in the small de-
formation approximation, starting from a weakly coupled formulation
of the theory proposed in Acharya and Vinals (2020).
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2.1. Phase field crystal

The PFC model is described by a single scalar order parameter
w(x,t), which is a function of position x and time ¢. The governing
phenomenological free energy functional (in dimensionless form) is
given by Elder et al. (2007b)

Fon = / f (v Vo) d’x =/ (224wt [a+ vl @
s s L2 4 2

where r is a dimensionless parameter. For r > 0, the minimizer is y = 0.

For r < 0 there is a continuum band of periodic solutions with either

uniaxial or hexagonal symmetry of characteristic wavenumber ¢ ~ 1.

The amplitude of y is proportional to 1/r for small r. The symmetry of

the minimizer depends on the value of

Yy = é/ﬂy/(x,t) d*x 2

where € is the surface area of the system. We focus here on r < 0 and
values of y;, that correspond to a stable hexagonal phase (Elder et al.,
2007b). To lowest order in r (the “single mode approximation"), the
minimizer is approximately given by,

2N
v =yy+A4p ), e ®)

n=1

with N = 3, q] = éz,qz = —\/gél - é?z,q3 = ——\/gél - %, q4 = —ql,

2
@’ = —q%, q¢° = —¢° and Elder and Grant (2004)

1 1 5
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The vectors {e;} are the Cartesian unit vectors. This solution is
approximate up to O(r!/?), with the next order being O(>/2). However,
it is common practice in numerical work involving the PFC model to
consider values of r that are O(1). Higher order terms in r missing in
Eq. (3) do not seem to appreciably modify long wavelength modulation
of w. Indeed, the numerical solution for y used below does contain
the entire sequence of perturbative terms, though the decomposition
involving complex amplitudes A in Egs. (3) and (6) is only approximate.
In the small deformation limit, the energy of an elastic distortion of
Eq. (1) is isotropic, with the Lamé coefficients given by 1 = u =
3A(2) (Skaugen et al., 2018a).

The temporal evolution of y is defined as a (nonconserved) L,-
gradient flow

oF
aty/ = ——5 =—ry — l[/3 -1+ Vz)zl[/. )
%

In order to maintain the value of y, fixed during the evolution of y,
we explicitly impose Eq. (2) as a global constraint. This procedure dif-
fers from the more conventional approach of rewriting Eq. (5) as a flow
locally conserving yw (“conserved order parameter”). The variational
analysis of Acharya and Vinals (2020) applies only to the nonconserved
case, Eq. (5). It would have to be generalized to the locally conserved
case if a conserved order parameter model were to be chosen. However,
in that case the evolution equation for the order parameter contains two
additional orders in derivatives of y, and we see no physical reason to
justify the added complexity.

A key tenet of the theory in Acharya and Vinals (2020) is that
the coupling between order parameter configurational distortion and
material elastic distortion takes place only over scales that are large
compared with the (microscopic) order parameter wavelength. There
is no reason to believe that elastic distortion and elastic energies could
be meaningfully defined at the microscopic scale of the PFC model. As
a first step a slowly varying configurational distortion is introduced
in a standard way thorough a multiple scale expansion of the order
parameter (Cross and Hohenberg, 1993) as follows:

2N
v =y + Y AN, ®)

n=1
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where it is understood that the variation of A on its arguments is slow
in a multiple scale expansion sense. From a numerical perspective,
the slowly varying amplitudes will be computed below by a local
demodulation of the phase field as

AMx, 1) = (u/(x, t)e_iqn'x> % g ()

obtained through the convolution with a two-dimensional Gaussian
kernel g of width on the order of the lattice parameter q;, of the phase
field,

. 2
a2
g = —e 0. ®
27mO

With this definition, the configurational distortion tensor of the phase
field, Q, is defined as (Skaugen et al., 2018a)

N
0w =-4 % qom(LL), ©
n=1

where d = 2 is the dimension of the system, Im(z) is the imaginary
part of the complex number z, and N = 3 for a hexagonal lattice in
two dimensions (Skogvoll et al., 2022). The tensor Q has the same
symmetry properties under rotation as the elastic distortion U (from
FDM), is a functional at each point of the phase field v, and is defined
so as to capture the slowly varying distortion of surfaces of constant y.
Therefore this tensor describes a local configurational distortion of the
phase field, without endowing it with any elastic properties.

In analogy with linear elasticity, a configurational stress tensor can
be defined as

s?=C: 0, 10)

where C plays the role of a stiffness tensor. In the isotropic elastic case
it is given as Cyj; = 46;;6 + p (8.8;; + 68,1 )-

It is also possible to define a configurational stress by directly
computing the variation of the phase field free energy to an affine
distortion AF,, = F,[w(x)] — Fy[w(x)], with X’ = x + n(x) as (Skaugen
et al., 2018a)

o _ 54w

Yo 6(0;m;)
where the free energy density f is defined in Eq. (1), and I is the
rank two identity tensor. A slowly varying configurational stress can
be defined by demodulation as ¢¥ = s¥ = g. While both ¢¥ and
6Q are linearly related to the configurational distortion, the former
is a variation relative to a possibly distorted reference configuration
whereas the latter is a variation relative to the undistorted ground state.
Therefore, they are expected to coincide in weakly distorted regions
such as far from dislocation cores, but are expected to differ in the
vicinity of defects.

The PFC order parameter supports not only smooth distortions but
also isolated, topologically stable, dislocations. They have been exten-
sively studied for two dimensional uniaxial and hexagonal patterns of
fluid convection (Siggia and Zippelius, 1981; Cross and Hohenberg,
1993; Tsimring, 1996; Boyer and Vifals, 2002). For defected crystalline
materials, they have been analyzed in Skaugen et al. (2018a) in two
dimensions, and in Skogvoll et al. (2022) in three dimensions. A dislo-
cation in a configuration of y at x, corresponds to a nonzero ¢ dn=b
around a contour containing only that dislocation. The corresponding
distortion of the phase field leads to A"(x) = |A"|e~/4" ¢ with ¢(x)
non singular and § d(arg A") = —q" - b. Defining a topological charge

¥ =Vy @V [(1+ V) w]-[(1+V?)w] VVy+ I, A1)

as s" = iq" - b, 55 d(arg A") = —2zs", so that a dislocation at

x, corresponds to vortices in the complex amplitude A”, of winding
N 1 N

number s = 0,+1. Note that 3}~ s" = b, - 3,_, q" = 0. Therefore,

in two dimensions, a phase field dislocation comprises vortices in two
of the complex amplitudes (s” = +1), whereas the third is non singular
(s" =0).
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This nonzero circulation can be transformed into an area integral,
leading to the definition of the phase field dislocation density tensor,

a=VxQ0 (12)

Although the tensor « can be explicitly written in terms of y (Skogvoll
et al., 2022), in our calculations below we will first determine Q from
the phase field amplitudes, Eq. (9), and then « directly from Eq. (12).

2.2. Field dislocation mechanics

In the static setting within a small deformation framework, FDM
takes as input a polar dislocation density field «, and mechanical
boundary conditions, and yields the elastic distortion field U and the
stress field o. The latter is related to the former through the Hooke’s
law as

c=C:U 13)

In a simply connected domain with no dislocations, the elastic
distortion field U is compatible, such that V x U = 0 (see Appendix
for notation). If a simply connected domain has a distribution of ‘p’
point dislocations of Burgers vectors b, the elastic distortion is related
to the Burgers vector as b, = y§ U - dx’ # 0, where the contour
over which the integral is taken encloses only the pth dislocation.
The inequality holds only when the elastic distortion field U has
an incompatible/transverse component i.e., a component with a non-
zero curl. The static FDM model starts from a Stokes-Helmholtz type
decomposition of a tensor to uniquely express the elastic distortion
field U into compatible/longitudinal U!l (curl free) and incompati-
ble/transverse U+ (divergence free) components as U = Ul +U*, such
that VxU! =0 and V-U! = 0. In small deformation, the polar
dislocation density field « is defined as & := VxU = VxU™. Then, for a
given « field, U+ can be obtained by solving the following Poisson-type
equation

VUt =-Vxa. 14

The compatible part can be obtained by using the elastic con-
stitutive relationship (13), the Stokes—Helmholtz decomposition, Ut
obtained from Eq. (14), and the static equilibrium condition V - ¢ = 0.
One finds,

v-(C:uM=-v-(C:U"). (15)

Following the computation of U+ and U, ¢ can be obtained by using
Eq. (13).

An equivalent approach to obtain ¢ from the dislocation density
tensor in an isotropic medium is (de Wit, 1960; Kroner, 1981)

o =2u [sz + % (VV - v21) tr(x)] (16)

where m = @

and y is a stress function that is related to a as
V2V2y = sym(a x V) a7

where the operator “sym” extracts the symmetric part of a second order
tensor.

2.3. Weak coupling

We want to examine the equilibrium configuration of a defected
medium comprising a stationary dislocation dipole under periodic
boundary conditions. An initial configuration comprising a dislocation
dipole is considered in a climb configuration. For values of r ~ 1,
the order parameter relaxes everywhere according to Eq. (5), but the
location of the dislocation cores remains constant for very long times
due to Periels barriers to motion (Boyer and Vinals, 2002). Therefore,
at long times, the field y is a constrained minimizer of 7, given the
location and Burgers vectors of the two dislocations. The phase field
is used to compute a (Eq. (12)). Next we set « = a and solve the
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resulting static FDM problem for an elastic medium under periodic
boundary conditions. The restricted assumption that the static FDM
and the PFC only couple through the dislocation density tensor implies
that the incompatible part U is equal to the incompatible part of Q.
However, importantly, the compatible part of U i.e., U, is not equal to
the compatible part of Q. Determination of Ul requires the resolution
of Eq. (15).

3. Algorithm and numerical implementation

A uniform spatial grid is introduced in a rectangular domain with
N, points along x; and N, along x,. The grid spacing is 4x;, =
ay/7,4x, = \/§a0 /12, with ay = 4z/ \/E as dictated by the hexagonal
ground state of the free energy in Eq. (1). The lateral size of the
domain along x; and x, is w = N;4x; and h = N,Ax,, respectively
(Fig. 1a). Periodic boundary conditions are assumed along both di-
rections. Given these boundary conditions, Fourier transforms of the
variables are introduced. Spatial derivatives are computed by either
their spectral representation or by central finite differences, whereas
time discretization is performed using a forward Euler scheme.

The initial condition for the order parameter y includes p = 2
dislocations at (x 1ps X2,

2N

Xy — X
y/’=° :1//0+A02exp ilq" x+ Zs""”tan’1 <ﬁ> (18)
n=1 P X1 = xlwl’
with A, computed using Eq. (4). For the current time step ¢ + 4¢, with
all the quantities known at the previous time step ¢, the PFC problem
is iterated first according to,

W = (1 - ALy y' — Mry')? 19

where £ = ((r+1)+2V?+ V2V?2) is the linear operator of Eq. (5)
acting on y, At is the time step, and quantities with superscript ¢
refer to the previous time step. The first term on the right hand side
of Eq. (19), v/ = (1 — AtL)y' can be rewritten as an approxima-
tion of F~! (e—MJ/’ ~ FH(1-al) '] = (I - AL)y', where
L = ((r+1)=2|k|* + |k|*), and k is the wavevector in Fourier space.
The symbol J stands for Fourier transform, and a tilde over a vari-
able denotes its Fourier transform. For better accuracy, the expres-
sion involving the exponential function in Fourier space is used. Only
wavenumbers |k| < 2 are considered so that the first term in Eq. (19)
is computed as,

y' = (e’AtElI/'/i) (20)
with
1 for |k| <k,
A= % for k; < |k| < k;, @21
0 for |k| > k,

where k; = 1.4 and k;, = 2 are user-defined constants.
Finally, y'*4" is computed as

y =y - ayy’ 22)
Once w'*4" has been obtained, it is used to compute A™**4" using,
Ami+AL _ g1 [3- (WH-Are—iq"»x) g] i (23)

which in turn is used to compute Q'*4' using the central difference
approximation to Eq. (9). Then, ¢Q™+4' is straightforwardly obtained
using Eq. (10). The stress ¢¥'+4' is obtained by first computing s¥-'+4!
and then computing

oVl — g-1 (gu/,x+Arg) 24)

Next, &'t is computed using Q"*4 and Eq. (12). The result is assigned
to a'*4', and the elastic problem under periodic boundary conditions is
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solved as follows: We obtain U' from (14) using the Fourier transform
as

;@X)k
Ut =g Ikf?
0

where X is the third order Levi-Civita permutation tensor defined in the
Appendix. Then

for |k 0
or |k| # ) 25

for |k| =0

ul =g [G :C: f/L] (26)

where G is the fourth order modified Green’s tensor with components
in Fourier space given by

—C;l. for any component of k equal to 0
ikl = m -1 .
Y = Kk Cromin] kik; otherwise

(]

27)

The stress ¢+ is then straightforwardly obtained from (13) using
Ut+Ar — U||,t+At + UJ_,t+Ar.

Finally, 6’4" is computed from (16) using the Fourier transform,
oA — -1 [2M (_|k|2}~(t+At + m”f ltr(}?wm) (|k|2H —k® k))] (28)
with

X,d1+Ar+&T,z+A1 X)-k
St+A i

¥ _ T for |k| #0
0 for |k| =0

(29

obtained from Eq. (17).

Note that the mean values of both ¢4 and ¢’/*4' are undefined.
We set their Fourier amplitudes at |k| = 0 to be zero as appropriate
for a system with periodic boundary conditions. In order to facilitate
comparison of these stresses with 62/*4 and ¢¥'+4/, we also set the
mean values of the configurational stresses (¢Q/+4') and (¢¥*4') to be
zero.

The step by step algorithm is summarized in Algorithm 1, which
has been implemented in Fortran90. The FFTW 3 (Frigo and Johnson,
2005) C++ library is used to perform forward and inverse Fourier trans-
forms. In Fourier space, derivatives (in real space) are approximated
using the central difference approach (Berbenni et al., 2014; Upadhyay
et al., 2016).

Algorithm 1: PFC-FDM weak coupling
Data: x, x,, y, 7, s;,q",dx, dy,N,, Ny,At,T,(C, ky, hy,
Result: Q, U, 69, o¥, 6™M, KD

Ay < Eq. (4);

t<0;

=0 « R.H.S. of Eq. (18) ;

while t < T do

w4 « R.H.S. of Eq. (22) ;

oV *+4  R.H.S. of Eq. (24) ;
GVAITAl Gt _ <o.w,t+Ar> ;

AMHA R H.S. of Eq. (23) ;

04 — R.H.S. of Eq. (9) ;

6Q*4"  R.H.S. of Eq. (10) ;
oQitat  GQu+ar _ <O.Q,r+At> ;

@™ < RHS. of Eq. (12) ;

—t+At
aI+At —a ;

U4  RH.S. of Eq. (25) ;
U+  RH.S. of Eq. (26) ;
o'+t4 « R.H.S. of Eq. (13) ;
o’ 4 « RH.S. of Eq. (28) ;
lI/T - WtJrAt ;

t—t+ A4t

end
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Fig. 1. Time evolution of the order parameter y and dislocation density component «,;. (a) Initial y field in the domain along with the basis and domain dimensions. (b) Close
up views (from the highlighted region in (a)) of v and a,; showing the two dislocations in the domain at ¢ = 0. The insets zoom into the dislocation core. Snapshots of y and a3
(in the same zones as those shown in (b)) at (¢) r =35, (d) r = 10000 and (e) + = 20000. All the y plots share the same scale. The dotted lines in the a,; plots in (c), (d) and (e)

are the lines along which the lineplots shown in Figs. 3 and 4 have been made.

4. Results

We have used N, = 602 points along x; and N, = 900 along x,, and
the parameter values r = —1.2,y, = —0.5, well inside the hexagonal
region of the phase diagram of the phase field. As initial condition, two
dislocations are introduced along the line y = /2 according to Eq. (18)
with Burgers vectors by = ay(1,0) at (x;;.x,,) = («/2,34/8) (top), and
b, = ag(=1,0) at (x,,x,,) = (w/2,5/8) (bottom), as shown in Fig. 1b.

With this initial configuration, the only non zero component of the
polar dislocation density is ;3. This can be deduced from Algorithm
1 and Eq. (12). The initial y (y'=°) is computed, Q is evaluated
and Eq. (12) is used to obtain a. Next, a is set equal to @. The
top and bottom dislocations should respectively exhibit a;3 > 0 and
a;3 < 0. Fig. 1 shows the temporal evolution of y and a;; as the
system relaxes from the initial condition. The simulation was run up
to 1 = 50000. However, the order parameter y reaches a steady state
around 7 = 20000 and neither the free energy of the system nor the
stresses exhibit any quantitative change after this time. Therefore, only
results up to this time are shown. As expected from the diffusive nature
of the relaxation of the order parameter, a5 reaches a time independent
distribution much earlier (t ~ 5 in the figure). As a consequence, the
contour lines of U do not change or move significantly from this time
until the end of the integration (Fig. 2) despite the fact that Q continues
to evolve. Indeed, after relaxation, the top and bottom dislocations
respectively exhibit a;; > 0 and a3 < 0.

Even though «,; becomes time independent as early as ¢ = 5, there
are clear qualitative and quantitative differences between the spatial
distributions of the corresponding components of Q and U (Fig. 2).
These differences are most pronounced in the case of U;; and Q,,. The

former shows fourfold symmetry, which is the expected symmetry of
this component of the elastic distortion for an edge dislocation with
a3 as the only non zero component. Meanwhile, Q;; shows a twofold
geometry, which does not conform with the predictions of the elasto-
static theory of dislocations i.e., static FDM. The differences are less
pronounced in the case of O, and U,,, nevertheless, they do exist, as
evidenced in Fig. 2.

Next, a comparison is performed between the static FDM and PFC
stress measures. Note that following Algorithm 1, and in order to
facilitate comparison between the individual components of all the
stress measures, their values have been normalized in such a way that
their average over the computational domain is equal to zero. In other
words, their zeroth wavenumber (k = 0) component in Fourier space
have been set to 0. We show comparisons of elastic and configurational
stresses along two orthogonal lines in the system in Figs. 3 and 4.
The various quantities plotted are along the vertical and horizontal
lines shown in Fig. 1, passing through the two dislocations and the top
dislocation, respectively. Analogous plots comparing U and Q lead to
the same conclusions and are not been shown here.

Both figures show that the stress fields o and ¢’ are identical to
numerical accuracy, as expected. This agreement serves as validation
of the numerical algorithm and the numerical scheme based on the
dislocation density as a source (input) in static FDM.

Fig. 3 shows all the components of all the stress measures along
x,. Along this line, the only non negligible components are the normal
stress components; the shear stress is very small, and we do not attach
any significance to any discrepancies in Fig. 3. At early times (+ =
5), a‘l”l and O'1Q do not agree with o;; anywhere along the line. The
components o,, and 0';/2 show better agreement with ¢,,. Of course,
the components of o do not change significantly after = 5 (negligible
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0.05

o
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Fig. 2. Time evolution of Q,,, U,,, Q,, and U,,. U,; and U,, have not been presented at r =0 due to the instability of dislocation cores in the initial state.

changes occur due to slight movement of the dislocation cores), while
the configurational stresses continue to relax. At long times (r =
20000 and beyond), the system has reached a steady state. The far
field configurational and elastic stresses coincide, however, they do
not coincide in the region in between dislocations. This agreement
and disagreement is to be expected and has already been demon-
strated elsewhere (e.g., see Salvalaglio et al. (2020)). The near-field
discrepancy is to be expected for several reasons. First, the core size
in dimensionless units is on the order of 74y (Fig. 1) which is not
much smaller than the distance between dislocations (1444y). Second,
the phase field free energy is fully nonlinear, while the elastic stress
has been obtained under the assumption of linear elasticity. Regions
of large distortion will therefore have different stress distributions at

equilibrium. Nevertheless, all stresses coincide far from the defect core
region, thus validating the use of the PFC method to provide physically
correct equilibrium values of elastic fields.

Similar conclusions can be drawn from an analysis of the stresses
6, 62 and 6V along x, (shown in Fig. 4). The shear stress o, is not
negligible along this direction, with the figure showing good agreement
between configurational and elastic stresses. There is some disagree-
ment at early times (see t = 5) because the elastic field is in equilibrium
after the dislocation core has stabilized, but the phase field requires
a much longer time to relax since it is doing so diffusively. At later
times, however, the agreement between all the stresses is excellent.
In addition to the origin of any discrepancies indicated above, the
results along this direction are further affected by tensile strains at the
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Fig. 3. Line plots of different stress components as a function of the shifted (with respect to the center of the domain along x,) and normalized (with respect to the Burgers
vector magnitude b that is equal to lattice constant a,) distance along x, passing through the two dislocations at times 7 = 50, r = 10000 and ¢ = 20000. Stress measures associated

with KD correspond to ¢’.
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Fig. 4. Line plots of different stress components as a function of the shifted (with respect to the center of the domain along x,;) and normalized (with respect to the Burgers
vector magnitude b that is equal to lattice constant a,) distance along x, passing through the top dislocation at times ¢ = 50, 10000 and 20000. Stress measures associated with

KD correspond to ¢’.

edges of the domain; aﬁ and ngz deviate significantly from the far field
equilibrium solution ¢}, at all times. This is a consequence of the choice
of periodic boundary conditions in a system with a small number of
defects, and on the initial condition for the order parameter chosen
to include two dislocations. The arctangent operator in Eq. (18) is
clearly not compatible with periodic boundary conditions. Both effects
would not be so prominent in a more complex calculation involving

an ensemble of defects. In addition, since the values at k = 0 of the
various stress fields have been set to zero, their magnitudes in the core
region affect the large distance asymptotic values when enforcing this
constraint. This problem manifests in the results along x; but it does
not manifest in the results along x, due to the different symmetry of
the stress field.
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5. Discussion and conclusions

A (weakly) coupled model involving the PFC (Phase Field Crystal)
and the static FDM (Field Dislocation Mechanics) approaches has been
introduced to obtain the constrained equilibrium state of a prototypical
configuration involving a dislocation dipole. This configuration allows
a critical analysis of the relative role played by configurational (from
PFC) and elastic (from static FDM) fields in the coupled theory, the
study of the consequences of introducing a consistent separation be-
tween diffusive and elastic time scales, and consideration of singularity
regularization at defect cores.

The ulterior goal of this study is to endow the PFC model with
material elasticity in a way that consistently respects the required
independence between the order parameter and lattice distortion. We
have adopted the view that the PFC order parameter only describes the
topological content of the lattice, and that therefore, in equilibrium,
it only determines the transverse/incompatible part of the distortion
(as required by lattice incompatibility in the elastic problem). This
choice leverages the fact that the PFC produces a compact and stable
defect core, free of any singularity. We then use the resulting (diffuse)
dislocation density in the core region as the source for the elastic
problem.

Our results show that local relaxation of the order parameter at
the defect core is fast, and therefore elastic equilibrium establishes
rather quickly over the entire system, as shown by the resolution of
the elastostatic problem. However, the configurational stresses have
not been equilibrated in the early stages of the numerical calculation.
It takes a long time for them to reach equilibrium because the phase
field order parameter relaxes diffusively everywhere. This diffusive
relaxation is unphysical for an elastic medium, and it has hindered the
applicability of the PFC model to realistic elastic materials.

At much later times, the configurational stresses converge to the
elasto-static solution at far field, indicating attainment of equilibrium.
Any discrepancies remaining are due to the finite size of the compu-
tational domain and periodic boundary conditions. Near dislocation
cores, deviations are found between the elastic and configurational
stresses, which are related to the fact that the PFC model is defined
by a nonlinear free energy, whereas linear elasticity has been assumed
for the static FDM response.

In summary, the PFC provides a consistent method to introduce
lattice incompatibility into a classical elasticity calculation in a defected
medium. It remains to be investigated whether the same coupled theory
provides a proper and efficient description of plastic defect motion
as described in Acharya and Vifals (2020). The algorithm presented
in this work will provide the starting point to such an analysis. In
addition to the proper separation of order parameter and elastic time
scales, attention has to be paid to a proper separation of dissipative
contributions to dislocation motion of phase field and mechanical
origin.
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Appendix. Definitions and notation

Scalars are denoted with an italic font (e.g., r or 6). Vectors are
denoted by a lowercase bold and italic font (e.g., g). Unit vectors are
identified by an additional overhead hat symbol e.g., . Second-order
tensors are denoted by an uppercase bold and italic font or by bold and
italic Greek letters (e.g., U or a). The second-order identity tensor is
written as I, whose components are §; ; (the Kronecker delta). The third-
order Levi-Civita permutation tensor is denoted by X, with components
e;j (the permutation symbol). Fourth-order tensors are denoted by
double-stroke letters (e.g., C). The null tensor is denoted 0 for any
tensor order. Consider a scalar y, two vectors u and v, two second-order
tensors a and B, a fourth order tensor C and a fixed 2-dimensional (2D)
Cartesian reference frame with orthonormal basis {&;}, i=1-d (d =2)
in the x and y directions, respectively. Adopting Einstein notation, the
following operations are used in this work:

Tensor product: u @ v = uv; ¢ ®¢;

Inner product: u - v = u;v;

a:B=q;B;

Cross product: u X v = e;;,u;v; &

axu=e;j a;u e ®e;

Dot and double-dot product: a - B = o;;B;; &; ® &
a-u=a;u;é
v-B=u;B;e
X o= eja8;

Cra=Cjya e, ®¢;

Differential operators: Vy = grady = y; ¢,
Vu=gradu=u;;é ®e,
Va=grada=0a;,,¢ ®8& ®¢&,
Vou=divu =y,

Vea=diva=ga;;
Vxu=curlu=e;u e
Vxa=curla=e;; ;& ®E
axV=curl'a= ek € ®;

2

Viy =V.-Vy =y

Via=V-Va=0;,2®8

VVy =y, ¢ Qe
where the comma indicates differentiation with respect to a given
coordinate. Time derivatives are indicated by a superposed dot.

Overhead tilde signifies a variable in Fourier space. J is the Fourier

transform operator, ! is the inverse Fourier transform operator and

k is the angular wavevector in Fourier space.
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