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A B S T R A C T   

For decades, drug delivery scientists have been performing trial-and-error experimentation to manually sample 
parameter spaces and optimize release profiles through rational design. To enable this approach, scientists spend 
much of their career learning nuanced drug-material interactions that drive system behavior. In relatively simple 
systems, rational design criteria allow us to fine tune release profiles and enable efficacious therapies. However, 
as materials and drugs become increasingly sophisticated and their interactions have non-linear and com
pounding effects, the field is suffering the Curse of Dimensionality which prevents us from comprehending 
complex structure-function relationships. In the past, we have embraced this complexity by implementing high- 
throughput screens to increase the probability of finding ideal compositions. However, this brute force method 
was inefficient and led many to abandon these fishing expeditions. Fortunately, methods in data science 
including artificial intelligence / machine learning (AI/ML) are providing ideal analytical tools to model this 
complex data and ascertain quantitative structure-function relationships. In this Oration, I speak to the potential 
value of data science in drug delivery with particular focus on polymeric delivery systems. Here, I do not suggest 
that AI/ML will simply replace mechanistic understanding of complex systems. Rather, I propose that AI/ML 
should be yet another useful tool in the lab to navigate complex parameter spaces. The recent hype around AI/ 
ML is breathtaking and potentially over inflated, but the value of these methods is poised to revolutionize how 
we perform science. Therefore, I encourage readers to consider adopting these skills and applying data science 
methods to their own problems. If done successfully, I believe we will all realize a paradigm shift in our approach 
to drug delivery.   

1. The rise of artificial intelligence in drug delivery 

The recent publication of ChatGPT has suddenly brought the power 
of artificial intelligence (AI) to mainstream attention. Experts and media 
outlets are almost universally proclaiming a revolutionary future driven 
by AI that will touch upon every aspect of our lives. However, many 
rightfully ask if the hype will ultimately translate to the redefined future 
many are predicting. Such skepticism is valid as the Gartner hype cycle 
suggests that we may be within an exponential explosion of inflated 
expectations that is classically followed by troughs of disillusionment 
(Fig. 1). I remember observing these trends in the field of drug delivery 
during my PhD in the late-2000’s when nanomedicine and gene delivery 
experienced similarly inflated expectations. In hindsight, my own thesis 
combining gold nanorods and polymer-drug conjugates for photo
thermal cancer therapy seems to almost epitomize the unrealistic ex
pectations we placed on these technologies to transform medicine. 
Fortunately, the field experienced a dramatic renaissance of 

enlightenment when mRNA lipid nanoparticle (LNP) vaccines drove 
immunity through the COVID-19 pandemic. 

This history leads us to an important question about the current 
exponential rise of AI and its short- and long-term impact on drug de
livery. While many scientists with long careers in drug delivery may 
view this as just another hype cycle, I see a much more durable future for 
this emerging technology. This optimism stems from my own experience 
using these tools to solve research problems. I do not have a training 
background in data science and only started playing with these tools 
when my lab started drowning in complex data following years of 
automation and high-throughput process development. My department 
chair suggested I try machine learning (ML) to deconstruct the data, but 
I was initially skeptical due to the hype around AI even in 2019. How
ever, I will never forget the day my student trained our first model and 
observed its powerful ability to model complex material behavior. 
Subsequent studies in collaboration with Michael Webb at Princeton 
University correlating polymer designs to protein stabilizing behavior 
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revealed the true potential of AI in the fields of drug delivery and bio
materials science. From these experiences, I became convinced that the 
future was bright for AI in materials science. 

Utilization of big data is already revolutionizing how we develop and 
interact with smart technologies. While massive data sets may appear 
noisy, a deeper dive into this nuanced information can extract remark
able value. Indeed, the devices we interact with now depend on this 
repository of information to make predictions and increase our browsing 
productivity. Clearly, these techniques were developed with electronic 
devices in mind, but it is widely expected that big data may also be 
useful to a wider variety of disciplines. For example, the problem of 
predicating protein folding from an amino acid sequence has long been 
considered a grand challenge in structural biology. With this in mind, a 
biennial competition called Critical Assessment of Protein Structure 
Prediction (CASP) was launched in 1994 to encourage efforts around the 
protein folding problem [1]. The challenging nature of this exciting and 
impactful concept attracted many to participate including DeepMind, a 
UK based AI company now part of Alphabet Inc. Their team developed a 
neural network model named AlphaFold which was trained on known 
protein structures in the protein data bank (PDB). With this model, 
DeepMind participated in the 14th CASP competition and achieved 
remarkably accurate predictions within error of experiments [2]. As a 
result, many are claiming that the protein folding problem has been 
solved nearly 50 years after it was first introduced by Nobel Laureate 
Christian Anfinsen in 1972. Enter scene: intrinsically disordered 
proteins. 

Proteins are polymers whose primary sequence ultimately de
termines their structure and therefore function. Materials chemistry, like 
biology, has grown a great appreciation for the available diversity in 
polymer designs. By simply substituting minor changes in monomer 
sequence and chemistry, we can attain new materials with remarkably 
unique characteristics. Over the last 50 years, we have leveraged these 
highly tailorable properties to create high performance materials for 
drug delivery. While polymer diversity enables complexity for biology 
and materials science, it also presents overarching challenges. Biology 
patiently addressed this issue by evolving new designs over billions of 
years. Chemists and engineers, on the other hand, are not that patient. 
Instead, we spend years at school training in polymer science followed 
by decades in industry or academia to perfect our rationally designed 
new materials. As a result, our most accomplished polymer scientists are 
also the ones with the most experience. In effect, they were trained 

through experience to be excellent at their craft. 
Like experts, computational models can also be trained to accom

plish difficult tasks. We have seen this done at the 2020 CASP14 
competition, and no doubt will see this in synthetic polymer chemistry 
and drug delivery. However, we do not yet have a repository of infor
mation from which we can trained advanced models. As we will discuss 
in the proceeding sections, new advances in high-throughput automa
tion when combined with ML may provide the needed opportunity to 
adequately explore vast and fruitful structure-function landscapes in 
drug delivery. 

2. Machine learning introduction 

AI and ML are terms that are often used interchangeably and are in 
fact closely related. AI is a broad concept for using a machine to mimic 
the cognitive functions of human intelligence. Meanwhile, ML specif
ically refers to models that are trained on data to predict system 
behavior and inform decision making. Therefore, AI is the overarching 
term that includes major subfields such as ML and natural language 
processing. Because it is accurate to refer to either AI or ML in most data 
science applications, my habit is to simply combine the terms into AI/ 
ML which I will use for the remainder of this article. 

The power of AI/ML to model and predict complex relationships in 
seemingly disorganized data provides fundamental value to all fields of 
science and engineering. As intelligent organisms, we take for granted 
how past experiences (i.e., data) have trained our cognitive ability to 
detect patterns and make decisions. In science, we also collect data and 
use that data to make predictions with degrees of certainty. This sta
tistical analysis is taught at a very early age in our education where 
simple tools such as linear regression provide our first exposure to AI/ 
ML. Therefore, most people have been using AI/ML to understand data 
without even knowing it! Linear regression is of course the simplest 
example of AI/ML where more complex functions quickly develop 
polynomial expressions. The challenge, however, is that variable de
pendencies are difficult to rationalize the moment functions develop 
non-linear behavior. Exponential, quadratic, and sinusoidal relation
ships can have simple dependencies, but may require careful study to 
correlate these relationships in a rational way. Therefore, most scientists 
develop and apply simple models to quantitatively represent informa
tion with degrees of confidence for hypothesis testing. Unfortunately, 
while these modeling exercises are appropriate and usually accurate, it 

Fig. 1. Gartner hype cycle. Dramatic innovations often follow a characteristic cycle of inflated expectations followed by troughs of disillusionment. Indeed, the field 
of nanomedicine and gene delivery experienced this cycle until the mRNA lipid nanoparticle vaccines demonstrated the true potential of these technologies. Now, we 
may be experiencing a similar cycle in artificial intelligence / machine learning (AI/ML). However, I do not think the depth of the trough will be quite so pronounced 
and I imagine near boundless potential for Al/ML in drug delivery in the long-term. 

A.J. Gormley                                                                                                                                                                                                                                     



Journal of Controlled Release 373 (2024) 23–30

25

is not always true that this furthers our general understanding of com
plex structure-function relationships. 

The problem of understanding complex structure-function relation
ships is further compounded the moment we add multiple interacting 
variables. Students early in their training often make the mistake of 
testing too many conditions at once without appropriate controls and 
then face complex data without obvious dependencies. The truth is that 
dependencies do exist, we just have a hard time deconstructing data 
with high dimensionality. Therefore, it is better to perform multiple 
small experiments that learn from each other rather than perform one 
large experiment where all conditions are tested at once. If you are 
lucky, simple linear relationships exist between one dependent and one 
independent variable. Unfortunately, structure-function relationships 
are rarely that simple and subtle material properties can compound to 
create very complex behavior. In data science, we call this the Curse of 
Dimensionality. 

The Curse of Dimensionality is particularly apparent in the field of 
drug delivery where many parameters can have subtle and compound
ing effects on drug-material interactions. In one excellent example 
highlighted by Axelsson et al., delivery systems made from poly(D,L- 
lactic-co-glycolic acid) (PLGA) are very common and well-studied, but 
suffer from many interacting parameters that complicate the design 
process (Fig. 2) [3]. For example, many polymer-drug material systems 
are characterized in a solid state to understand drug-material misci
bility, drug crystallization, porosity, and more. However, the moment 
these systems contact water and begin to swell and hydrolyze, a cascade 
of interactions may dramatically change the physicochemical properties 
of the drug delivery system which impacts release rate. Given the 
complexity of these compounding interactions and the challenge asso
ciated with mapping structure-to-function as a function of time, it is no 
wonder that many drug delivery scientists often rely on high-throughput 
screening or design of experiment methods to sample parameter spaces. 
Unfortunately, random sampling is very inefficient and may miss key 

interactions that drive behavior. 
Non-linear structure-function relationships with high dimensionality 

are best understood by AI/ML. Here, complex models are trained on 
known data to make accurate predictions on unseen data. If done suc
cessfully, AI/ML models can generalize even if these relationships are 
too complicated for humans to fully comprehend. Therefore, we do not 
need to rationally understand complex structure-function relationships, 
we just need to develop highly accurate AI/ML models to inform future 
designs. Neural networks, for example, are particularly configured to 
model problems with very high dimensionality. This power stems from 
their bioinspired approach to replicate our own neural connectivity 
which allows us to quickly weigh several competing information inputs 
and make approximations to inform decision making. This is why many 
image processing models use deep learning algorithms to generalize. 
However, it is likely that problems in drug delivery are not so complex 
that we require deep learning methods. Often, very simple supervised 
models such as random forests are enough to adequately model system 
behavior. 

3. Data quantity, quality, and source 

A common misconception is that AI/ML requires substantial data to 
be accurate. As a data science, it is of course true that larger quantities of 
data will generally produce more accurate models. However, drug de
livery scientists should not be overwhelmed by the amount of data that 
is common in other disciplines. The reality is that our physical experi
ments are unlikely to scale to such an extent. However, that does not 
mean that AI/ML tools are not useful to the physical sciences. Quite the 
opposite. Learning with less is an exciting topic in data science where 
multiple methods may provide valuable insight from small amounts of 
data. Also, methods for extracting and using existing data to feed models 
is an exciting area of investigation. 

Data mining represents one way of collecting enough useful data to 

Fig. 2. Curse of Dimensionality in drug delivery. Often, many interacting and compounding variables challenge the design problem. In this example, PLGA 
microparticle systems suffer the Curse of Dimensionality despite their simplified properties. Recreated with permission from Elsevier using BioRender.com [3]. 
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train models and inform future designs. It acknowledges that decades of 
publicly available experiments and data are available in the literature 
and that these investments should not be wasted. For example, Christine 
Allen et al. at the University of Toronto used the COVID-19 pandemic 
and time at home to collect an impressive dataset for self-emulsifying 
drug delivery systems and long-acting injectables from existing publi
cations [4]. As a result, they were able to train an AI/ML model on this 
data with high predictive capabilities [5]. However, the challenge they 
ran into which is true for most data mining missions is the completeness 
of the dataset and individual ways scientists represent information. For 
example, they found that many studies did not provide comprehensive 
documentation about their materials such as polymer structure, chem
istry, molecular weight, and dispersity. In some instances, material 
source was not provided which prevents data miners from finding 
associated information on their own. Also, the representation of results 
is not standardized which means that the same information can be 
presented in very different ways. For example, some studies may use % 
cumulative release or % remaining, while others may use mass (ex., μg 
or μg/mL). These inconsistencies and the process of finding the right 
studies in the first place make the process of manual data mining labo
rious and unreliable. To combat this issue, others are developing algo
rithms for the automated sourcing of data from the literature. Here, 
keywords are used to find relevant papers and downloaded into a 
database. Then, these pdfs are scraped for data using image recognition 
to identify relevant graphs, interpret the information, and synthesize 
these results into consistent tabular data. No doubt, these automated 
methods for data mining are challenging and an area of immense op
portunity to use existing information. 

The problem of data inconsistency is not just a problem for the 
mining of data from older publications, but a problem that continues to 
persist. To address this challenge, members of the materials genome 
initiative (MGI) and beyond are highlighting the need for all in
vestigators to publish data using FAIR (findable, accessible, interoper
able, and reproducible) practices. Some journals, particularly those that 
publish papers with data science, now require that all raw data be 
provided either in the supporting information, or on publicly available 
databases such as GitHub. Examples of other material databases include 
the Materials Data Facility (MDF), Community Resource for Innovation 
in Polymer Technology (CRIPT), Polymer Genome, Polymer Property 
Predictor and Database, caNanoLab, and others [6]. For a discussion on 
this topic as it relates to nanomedicines, see this excellent review by 
Daniel Heller at Memorial Sloan Kettering Cancer Center [7]. In some of 
our own recent work, data has been provided as downloadable data 
frames which are easily accessed using a few lines of code [8,9]. The 
challenge is enforcement where generations of investigators are not used 
to organizing raw data for public disclosure. Some funding agencies are 
considering mandating these practices, but this requirement is not likely 
in the near future. 

Further complicating this problem are the materials and methods 
used to create drug delivery technologies. Polymers are the most com
mon material to package drugs and modulate release, but their heter
ogenous characteristics and limited methods for accurate 
characterization challenge feature representation. In contrast, Alpha
Fold was incredibly successful at training an AI/ML model on protein 
structure-function behavior because a well described repository of in
formation was available in the PDB. Here, each protein sequence is 
easily represented using a variety of methods with their corresponding 
structure by x-ray crystallography. From this information, features that 
describe their structure are relatively straightforward to engineer. Un
fortunately, synthetic polymers neither have such a comprehensive 
database nor are there obvious methods for universal representation. To 
tackle this problem, investigators such as Brad Olsen are creating stan
dards for polymer representation and characterization. This includes 
BigSMILES, which adopts string representation of small molecules to 
macromolecules [10]. His lab also created PolyDat, which provides 
useful guidance on best practices for preparing and publishing polymer 

characterization data and allows for apples-to-applies comparisons [11]. 
Finally, he recently created CRIPT, which provides a database for these 
materials and their chemistries [12]. As the field of drug delivery relies 
heavily on synthetic polymer materials, our community needs to adopt 
these standardized methods so that data mining of new publications is 
straightforward. Also, the field of drug delivery itself needs to organize 
their own methods for data representation so that standard protocols are 
created and followed. This will likely include standard ways of repre
senting drug release profiles and providing this data using FAIR prac
tices. Only then will the drug delivery community maximize all new data 
for data mining opportunities. 

In most cases, the challenge of data availability is simply solved by 
performing new experiments (Fig. 3). However, to effectively use AI/ 
ML, it will be important to design experiments that produce more data 
than traditional. In this context, convenient labware such as well plates 
provide the best option to enable high-throughput and combinatorial 
experimentation. Fortunately, many drug delivery scientists already use 
these experimental formats to minimize sample volume. Also, the field 
of drug delivery has developed these workflows over the last few de
cades to enable high-throughput screening experiments. These large 
screens solve the Curse of Dimensionality by brute force sampling and 
are easily reengineered to enable data science. For example, typical drug 
formulations labs at major pharmaceutical companies will employ a 
suite of liquid handling robotics and high-throughput assays to quickly 
generate and assess large libraries of drug-material combinations. In 
response, suppliers of analytical instrumentation are increasingly rede
signing instruments to perform analyses in well plates and provide the 
raw data in downloaded formats. This trend is exciting and will greatly 
enable AI/ML in the physical and life sciences. However, it is important 
to note that the previously described challenges of data representation 
persist even in labs that collect their own data. Even companies that do 
not intend to make their data publicly available should still adopt FAIR 
practices for data handling to further enable and accelerate internal 
projects. Many companies such as Meta, Google, Apple, and others have 
built strong business models based on the collection and storage of 
useful data, and it is likely that diligent housekeeping of physical science 
data will provide competitive advantages as industries increasingly rely 
on AI/ML to accelerate discovery science. 

4. Explainable AI to inform designs 

It is exciting that so many people are embracing AI/ML tools such as 
ChatGPT. However, a healthy dose of skepticism is required when 
gaining information from AI/ML as these models are generalizing from 
disparate data. Just like human intelligence, AI/ML is fallible. Part of the 
problem is that many AI/ML models are black boxes which means that 
we are unable to track down source information and validate the ac
curacy of the results. Indeed, regular users of ChatGPT will routinely 
identify mistakes and hopefully put this information in context. Those 
that do not exercise this practice are at risk of digesting misinformation. 
While this problem poses great societal risk, it also poses a problem with 
using AI/ML to inform the design of drug delivery technologies. As 
scientists and engineers, we are trained to carefully plan experiments to 
elucidate structure-function behavior and establish design criteria. For 
this reason, high-throughput screens have always been appropriately 
characterized as fishing expeditions that do little to reveal mechanisms. 
As a result, high-throughput screens that became popularized in the 
1990’s and 2000’s were gradually phased out for more traditional 
experimentation and computation that do reveal mechanisms of action. 
Now, with the sudden rise and embrace of AI/ML, we are at risk of 
repeating history. 

Fortunately, not all AI/ML models are black boxes and some are 
highly interpretable. Often called Explainable AI, a variety of methods 
are being developed to specifically probe existing models and decon
struct how features are collaborating to drive system behavior. One 
popular example is Shapley Additive Explanation Values or SHAP which 
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uses game theory to individually test the importance of features [13]. 
From this information, feature importance maps are generated including 
radar plots that weight their contributions. This information is very 
valuable and can help provide mechanistic insight. Also, quantitative 
structure-function maps can be generated from this information to 
provide detailed understandings. Often, these maps are far too complex 
for any human to manually generate and rationally comprehend using 
traditional approaches. Therefore, Explainable AI provides the right set 
of tools to alleviate concerns that AI/ML has the same pitfalls associated 
with high-throughput screens. However, since not all AI/ML models are 
currently interpretable including most deep learning methods, it is 
important to judiciously select and test models that do provide options 
for later interpretation. For more information, see our User’s Guide to 
Machine Learning [9]. 

While Explainable AI methods provide excellent tools to unravel the 
Curse of Dimensionality, they do not substitute traditional experiments 
to determine mechanism of action. In our recent study using AI/ML to 
design protein-specific polymer excipients, we used SHAP analysis to 
probe feature importance [8]. The results were very interesting and 
confirmed our hypothesis that each protein requires a specialized set of 
polymer material properties to achieve thermal stability above their 
melting temperature. However, those analyses do not reveal the mech
anism of action. Therefore, we used a combination of small-angle x-ray 
scattering (SAXS), dynamic light scattering (DLS), circular dichroism 
(CD) spectroscopy, and quartz crystal microbalance (QCM) to probe 
protein-polymer interactions [14]. Through these careful studies, we 
learned that our original hypothesis was incorrect and that an unex
pected mechanism of interaction was responsible for protein 
stabilization. 

This example simply illustrates the need to still perform mechanistic 
studies despite the powerful outputs of these new tools. It is risky to 
abandon traditional characterizations as was seen during the movement 
towards high-throughput screening. Even with very advanced physics- 
informed learning, supervised AI/ML models do not accomplish 
rational design. They are only intended to optimize defined properties. 
How the AI/ML model came to a solution is only revealed through 
traditional mechanistic studies. 

5. Autonomous explorations via self-driving labs 

The connection between AI/ML and automation is obvious given the 
requirement for data with sufficient quantity and quality. As discussed 
earlier, high-throughput screening with the help of automation has been 
widely embraced in the drug delivery community for decades. Hope
fully, these high-throughput experiments will be complemented with 
AI/ML to utilize the value of all collected data as recently done by Daniel 
Reker et al. now at Duke University [15]. Looking to the future, how
ever, draws further excitement about the potential of connecting AI/ML 
and automation. Humans learn by continuously experimenting within 
their physical world to establish best practices and make decisions. 
Meanwhile, traditional AI/ML collects a large amount of data, trains a 
model, then uses this model to make predictions and decisions. In many 
ways, traditional AI/ML methods do not learn over time like humans do. 
Therefore, to make AI/ML more intelligent and better at characterizing 
material systems, it is better to use active learning. 

Active learning (also known as ‘selective sampling’) utilizes a closed- 
loop Design-Build-Test-Learn cycle of experimentation to iteratively 
improve AI/ML models with new data and inform next experiments 
(Fig. 4) [16]. Just like human-based learning, it provides an improvable 
model with feedback to guide decision making. Typically, it will use 
Bayesian optimization to strategically map a design space by scoring the 
potential value of many new experiments. This acquisition function is 
central to active learning’s ability to efficiently map structure-function 
relationships with the fewest possible experiments [17]. Essentially, it 
is a statistical tool to design new experiments and maximize learning 
towards a specific outcome or set of outcomes in data scarce projects. 
Most importantly, active learning provides a framework for AI/ML 
guided decision-making and autonomous exploration of structure- 
function relationships. 

To maximize the value and efficiency of active learning, the Build- 
Test portion of the workflow should be done using reliable assays with 
high-throughput automation. This provides the essential data quality 
and quantity to feed these models. As we have done in previous work, 
the Build-Test portion of the workflow can be performed with automa
tion while the Learn-Design is performed offline by a human at their 

Fig. 3. Machine learning on physical experiments in drug delivery. Methods for data curation, feature engineering, and model training drive the discovery process 
and enable structure-function modeling. 
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personal computer between each cycle. Then, new designs are uploaded 
to the automation for the next round of experimentation. However, the 
seamless integration of each portion of the Design-Build-Test-Learn 
workflow lends itself towards the design of a self-driving lab (SDL) 
[18–20]. Here, automation still performs the experiments while the 
Learn-Design steps are done automatically by the computer. Then, new 
instrumentation commands are sent to the automation to restart the 
workflow. While the required automation has been used for decades, 
autonomy for SDLs is much more difficult [21]. When achieved, systems 
can be programmed to autonomously attempt design optimization 
campaigns with unparalleled efficiency while leaving the scientist with 
more time to read, ask questions, and innovate. Drug delivery SDLs can 
also alleviate the laboratory burden of release profile timepoint sam
pling which is often not conducive to a reasonable work schedule (i.e., 
12-h timepoints). Indeed, there is a very bright future for SDLs in drug 
delivery and more broadly across all disciplines. Some even believe in a 
Nobel Turing Challenge where a highly autonomous SDL can accomplish 
excellent science and win a Nobel Prize for its discoveries [22,23]. For 
more information about the future of SDLs in drug delivery, see two 
perspectives written by myself and Christine Allen [24,25]. 

6. How to get started 

It is not uncommon for trainees to ask how I learned AI/ML. Afterall, 
I did not have any data science training prior to 2019. While younger 
generations are hungry to try these tools, many lack the computer sci
ence background to apply AI/ML to their own problems. Perhaps the 
main answer is obvious; find an AI/ML expert and collaborate. This was 
our approach when getting started and have worked with Michael 
Webb’s lab at Princeton University for the last several years. Their 
specialized expertise in AI/ML and feature engineering has been 
invaluable to many of our collaborative projects. In the meantime, our 
lab began to learn AI/ML on our own. To do this, the whole lab enrolled 
in data science courses at DataCamp (www.datacamp.com) and spent an 
entire summer learning to program in Python and train models. We 
enjoyed their interface because coursework outcomes generate XP 
points that we turned into a lab competition. Ultimately, this was a fun 

exercise that resulted in organized learning of new topics. Because of 
this, as well as my mandate that all data is graphed in Python, all lab 
members have experience in programming and AI/ML which greatly 
improves their job marketability. DataCamp is a paid resource, however, 
other free/open-source options exist including LearnPython (www. 
learnpython.org) and CodeCademy (www.codecademy.com), among 
others. Online course repositories such as Udemy (www.udemy.com) 
and Coursera (www.coursera.org) also have units on Python and AI/ML. 

To complement these learning tools, my lab recently published A 
User’s Guide to Machine Learning for Polymeric Biomaterials [9]. Here, we 
describe many important concepts in AI/ML to a community with little 
exposure to data science in programming. Our intention with this user’s 
guide is to help bridge the current divide in skills and enable biomaterial 
and drug delivery scientists to adopt and apply these tools. In the Sup
porting Information, we have provided a comprehensive list of defini
tions for reference. Most importantly, we have provided example syntax 
within the publication and a Google Colab notebook so that readers can 
learn by example rather than theory alone. In the Colab notebook, we 
provided significant commentary to guide readers through each step 
from exploratory data analysis through explainable AI. Readers are 
welcome to make a copy of this notebook and import their own data to 
begin playing with Python and data science. 

The automation of experiments is yet another technical skill that may 
feel prohibitive. Fortunately, many new and affordable instruments are 
being sold with Python application programming interfaces (API). For 
example, some liquid handlers like those by Opentrons can be obtained 
for less than $20,000 with a Python API for customized programming 
and remote control. The same is also true for many syringe pumps. 
Unfortunately, APIs are not standardized, and some older equipment use 
outdated RS232 serial interfaces to enable remote control. Other in
strument suppliers do not offer open access which greatly limits their 
ability to be easily integrated. This topic was recently discussed at a 
Future Labs workshop at NC State where a call to action for industry to 
standardize APIs was discussed. Unfortunately, it is very unlikely that 
such standardization will be achieved soon. Therefore, automation en
gineers may be required for some labs looking to develop sophisticated 
SDLs. However, not all workflows require comprehensive remote 

Fig. 4. Design-Build-Test-Learn for autonomous workflows. Through the strategic integration of automation, high-throughput characterization, model training, and 
Bayesian optimization, active learning enables iterative experimentation and efficient learning of complex relationships. 
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control, and some simple systems provide excellent platforms for users 
to get started with automation. 

7. Perspectives on the future 

As Richard Feynman used to say, it is fun to imagine. Personally, my 
imagination was set fire by Richard Jones through his book ‘Soft Ma
chines: Nanotechnology and Life’ [26]. Here, I realized that biology has 
taken a fascinating materials science approach to ‘machinery’ that we 
should be able to replicate. Obviously, we have been making proteins 
recombinantly for decades, but that is not what I am talking about. 
Instead, I am referring to mimicking biology’s machinery of proteins 
using synthetic materials without a DNA/RNA template or ribosomes. 
However, even if we did have sequence-level control of synthetic poly
mers, the structure-function landscape would be too impossibly large to 
navigate one experiment at a time. Biology solves this challenge using 
natural selection to guide material evolution through high dimensional 
parameter spaces in very high throughput. No doubt, we need to do the 
same. If possible, we will have the opportunity to design sophisticated 
nanomedicines or larger assemblies that may proactively repair or 
replace damaged tissue. Such imaginations have long been the focus of 
science fiction, but I do believe are possible if we sufficiently embrace 
AI/ML-guided automation to evolve nanomaterial designs. To quote 
Richard Feynman again, there is plenty of room at the bottom. 

In the shorter term, I believe it is inevitable that AI/ML will become 
as common a tool as the HPLC. It is easy to disagree with this opinion, 
particularly those who remain skeptical by the hype. However, most 
people are already using AI/ML in their daily lives without realizing it. 
Type something into a search algorithm, and you have likely used AI/ML 
to find relevant content. Therefore, some seamless implementations of 
AI/ML in drug delivery may eventually be automatic. 

The key to enabling AI/ML in drug delivery is data. Here, data can 
either come from experiments performed in house or from a database 
populated by the drug delivery community. As discussed earlier, the 
high-throughput generation of data is something the drug delivery 
community already has experience with. Therefore, the best approach is 
to simply apply AI/ML analyses to existing high-throughput screens. 
Moving forward, as individual labs gain experience, experimental 
workflows will naturally evolve to better feed these models and even
tually embrace active learning to inform individual design campaigns. 
Meanwhile, the drug delivery community needs to plan for the longer- 
term and develop repositories of broad data such as caNanoLab that 
will allow us to mine information for specific projects and create AI/ML 
models with high generalizability like ChatGPT [7]. The creation of such 
a database was tried recently by Christine Allen at the University of 
Toronto whose results point to a bright future for collated datasets [4]. 
Furthermore, the community needs a dedicated focus on the appropriate 
feature engineering of our modeled systems. For many problems, simple 
descriptors representing the presence or absence of certain elements 
along a continuum via one-hot encoding may suffice. However, such 
approaches do not allow for physics-informed learning and reduce the 
generalizability of these models. Therefore, domain-specific descriptors, 
molecular fingerprints, and string- or graph-based descriptors are 
generally more appropriate. The menu of options is very large, which 
poses both a problem and opportunity for the standardization of data 
and how we represent this data to AI/ML models. For more information, 
see a recent perspective by Frank Gu et al. on this subject [27]. 

The discussed challenges are not meant to overwhelm, but rather 
point to tremendous opportunity and room for research and develop
ment. I started this Oration describing my opinion that the hype around 
AI/ML should be taken seriously and not disregarded as just another 
Gartner hype cycle. Yes, it is inevitable that some degree of sobriety will 
occur once the craze around AI/ML has burned out. However, I do not 
think that the depth of the trough of disillusionment will be as deep as 
that experienced with nanomedicine and gene delivery. We did see a 
spectacular conclusion to that story with the mRNA LNPs for COVID-19, 

and I expect that AI/ML will also experience a similarly productive 
resting place. Meanwhile, there is some concern that these tools will 
begin to replace a segment of the STEM workforce, where automation 
has notoriously displaced jobs since the industrial revolution. Let’s 
remember, however, that scientists are trained and employed to think, 
design, and solve problems, not just to do lab work. If we can outsource 
much of this physical work as well as the very complex challenge of 
correlating structure-function behavior, we will be allowed more time to 
perform the very human task of creative design. 

We are experiencing a renaissance moment in science and technol
ogy towards AI/ML and data science. In fact, many now predict that we 
have entered a new paradigm of data-intensive scientific discovery [28]. 
To prepare our community, we need to focus on training and education 
as these computational tools may intimidate those with experimental 
backgrounds. However, science evolves, and good scientists and edu
cators evolve with it. To do my part, my lab plans to continue publishing 
similarly themed User’s Guides to support our community [9]. Professors 
and educators also need to keep up with their students who are already 
using AI/ML tools such as ChatGPT for their education and assignments. 
We also need to establish FAIR practices for standardized data handling, 
publishing, and representation. If we can achieve these ambitious goals, 
the field of drug delivery will be ready for tremendous gains in pro
ductivity. Therefore, I encourage readers to try these tools and test their 
functional utility, being of course mindful that all techniques have pit
falls and weaknesses. Do what you do best: experiment. 
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