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A computational study of nematic core structure
and disclination interactions in elastically
anisotropic nematics

Lucas Myers, *a Carter Swift,b Jonas Rønning, c Luiza Anghelutad and
Jorge Viñalsad

A singular potential method in the Q tensor order parameter representation of a nematic liquid crystal is

used to study the equilibrium configuration of a disclination dipole. Unlike the well studied isotropic limit

(the so called one constant approximation), we focus on the case of anisotropic Frank elasticity (bend/

splay elastic constant contrast). Prior research has established that the singular potential method

provides an accurate description of the tensor order parameter profile in the vicinity of a disclination

core of a highly anisotropic lyotropic chromonic liquid crystal. This research is extended here to two

interacting disclinations forming a dipole configuration. The director angle is shown to decay in the far

field inversely with distance to the dipole as is the case in the isotropic limit, but with a different angular

dependence. Therefore elastic constant anisotropy modifies the elastic screening between disclinations,

with implications for the study of ensembles of defects as seen, for example, in active matter in the

extended system limit.

1 Introduction

In nematic liquid crystals, the four distortion modes – splay,

bend, twist, and saddle splay – can each contribute differently

to the elastic distortion energy,1,2 a phenomenon hereafter

referred to as ‘‘anisotropic elasticity’’. Even though the origin

of this anisotropic elasticity can be traced to the relative

alignment of elongated nematogens, and it is well documented,

there still remain many open questions related to the effects of

anisotropic elasticity on the equilibrium and nonequilibrium

properties of defected nematics. A better understanding of the

role of anisotropy on the motion and interaction of disclina-

tions is fundamental to modeling biologically inspired and

synthetic active matter systems.

In common thermotropic liquid crystals comprising small

rod like molecules, the contrast between splay, twist, and bend

elastic constants is small, and the so called one constant

(‘‘isotropic elasticity’’) approximation has been successful in a

wide variety of applications. More recently, however, attention

has shifted to systems comprised of more complex nematogens

which exhibit large elastic anisotropy. Chief among them, we

mention lyotropic chromonic liquid crystals3–7 and nematic

micellar systems.8,9 Novel behavior has been uncovered which

is a direct result of elastic anisotropy, such as spontaneously

broken chiral symmetry due to confinement,8–12 or the exis-

tence and motion of topological solitons.13–15 Complex aniso-

tropic effects have also been observed recently in studies of

disclination line reconnection in three dimensions.16 In con-

trast with two dimensions, disclination lines in three dimen-

sions only have a topological charge of 1/2, and can annihilate

despite having the same charge sign. An apparent asymmetry in

the motion of wedge disclination segments (of effective charge

�1/2) seems to be eliminated through twist in anisotropic

media, thus restoring the implied topological symmetry.

The topology of defected configurations in two and three

dimensional nematic phases is well understood, including the

case of biaxial ground states.17 In two dimensions, the orienta-

tion y(x) (see Fig. 1) of the nematic director n̂ is a harmonic

function of position x in the one constant (isotropic) approxi-

mation. Well known singular solutions are associated with

disclination point sources.2,18 Configurations comprising many

disclinations can be described by linear superposition, and

results have been given for a number of cases of interest,

including, for example, binding–unbinding transitions in

active matter,19 or defect interactions in complex twisted con-

figurations obtained by conformal mapping techniques.20 In

contrast, little is known about nematic director n̂ or tensor
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order parameter Q configurations corresponding to defected

configurations in elastically anisotropic media, both in two and

three dimensions. A key result in two dimensions was obtained

by Dzyaloshinskii.21,22 When the splay K1 and bend K3 elastic

constants are different, he found an analytic-albeit only

implicit-solution for the equilibrium nematic orientation y

corresponding to an isolated disclination. The solution is

independent of distance from the core, but depends on the

azimuthal angle around the disclination. More generally, the

Euler–Lagrange equations that follow from the Frank free

energy are nonlinear and challenging to solve analytically.

While it is possible to study both equilibrium and transient

configurations of nematics containing disclinations in the

director representation, with the Frank free energy governing

elastic distortion, and Leslie–Ericksen hydrodynamics, it is

often the case that a Q tensor order parameter representation

and the Landau–de Gennes theory are used instead. Virtually all

studies of nematic active and biological matter use this repre-

sentation as it eliminates the need for defect core regulariza-

tion (especially in three dimensions), and hence it permits a

more convenient computational treatment of disclinations and

their motion. Unfortunately, this choice has the effect in

practice of restricting these studies to the one constant approxi-

mation. Elasticity in the tensor order parameter representation

is incorporated in a phenomenological series expansion in

powers of order parameter gradients, eqn (14) below. For small

distortions, Frank elastic constants can be related to the

coefficients of the expansion as shown in eqn (15). In order

to capture splay-bend anisotropy, one must resort to at least

cubic terms in gradients of the order parameter. At this order,

however, the Landau–de Gennes energy is known to become

unbounded for any choice of parameters.23,24 In principle, the

requirement of a bounded free energy could be accomplished

by consideration in the expansion defining Fel of terms at least

of fourth order in Q.25 However, it is also possible to have a

bounded free energy, only third order in Q, by constraining the

eigenvalues of Q to lie within their physically admissible

range.23 The resulting singular potential method sidesteps

the need to choose between fourteen possible fourth order

invariants26 (in addition to choosing among six possible third

order invariants).

Building into the theory the constraint that the eigenvalues

of Qmust remain within the physically admissible range can be

accomplished by an appropriately defined singular poten-

tial.23,27–30 The drawback of this theory is that the determina-

tion of the energy needs to be done entirely numerically at a

significant computational cost relative to simple evaluations of

the Landau–de Gennes energy. Two complementary issues are

investigated below in relation to elastically anistropic nematic

phases, both in the tensor order parameter representation.

First, we build on the singular potential method analysis of

ref. 29 to quantitatively describe both bialixiality and aniso-

tropy of disclination cores. We use the method to compute the

optical retardance, G = S � P, near a disclination core, where S

and P are the uniaxial and biaxial order parameters respec-

tively. Exactly at the disclination core, S = P, in agreement with

experiments31 and earlier calculations.29 We then consider a

Fourier decomposition of the optical retardance Gðr;jÞ ¼
P

n

GnðrÞ cosðnjÞ and show that as the core is approached

G0 B r, as happens in elastically isotropic systems. We also

show that G1 for a +1/2 disclination and G3 for a �1/2 disclina-

tion are nonzero in the region of rB 1. However, they vanish as

r2 as the core is approached. Hence, the uniaxial and aniso-

tropic far field leads to an anisotropic and biaxial region as the

core is approached. At even smaller distances, the configu-

ration becomes both uniaxial and isotropic, as judged from the

azimuthal Fourier transform of G.

Second, we focus on the interaction of a pair of disclinations

of opposite sign (a disclination dipole), and examine the nature

of their screening at distances much larger than their separa-

tion. For isotropic elasticity, the orientation angle far from the

disclination pair behaves as y = q1 + q2 � d(q1 � q2)sinj/(2r)

where q1,2 = �1/2 are the charges of the disclinations separated

by distance d, r is the radial distance from the pair, and j is the

azimuthal angle measured relative to the separation distance

vector. For two disclinations of opposite charge, the distortion

is screened and decays algebraically as 1/r, modulated by

sinj in angular dependence. In the anisotropic case, the far

field dependence contains an additional term of the form

�d sin(3j)/r which has the same decay with distance, but

a different angular dependence. As a consequence, disclination

interactions in elastically anisotropic nematics are qualita-

tively different than their isotropic counterparts, and the

implications of these findings on current phenomenology

involving multiple defect interactions and motion need to be

reexamined.

2 Nematic director and Q tensor
representations

In the director representation, local order in the nematic phase

is described by a director field, the unit vector n(x). This field

corresponds to the local average orientation direction of the

constituent molecules, with configurations being invariant

under the transformation n - �n. The Frank free energy

considers distortions away from a uniform ground state, and

contains all scalar combinations of gradients of n to second

Fig. 1 Illustration of a +1/2 disclination to show the definition of the
director angle y, as a function of the polar coordinates (r,j).
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order that respect n- �n2,

Fnðn;rnÞ ¼
ð

O

1

2
K1ðr �nÞ2þ1

2
K2 n � ðr�nÞ½ �2

�

þ1

2
K3 n�ðr�nÞj j2þ1

2
K24r� ðn �rÞn�nðr �nÞ½ �

�

dV

(1)

with K1, K2, K3, K24 the elastic constants that correspond to

splay, twist, bend, and saddle splay distortion modes respec-

tively. In two dimensions, the twist and saddle-splay terms

are manifestly zero. We introduce an anisotropy parameter

e = (K3 � K1)/(K3 + K1), dimensionless lengths %x = x/x where x

is a characteristic length scale defined in eqn (18) in relation to

the Q-tensor representation, and a dimensionless free energy

Fn ¼ 2Fn= K1þK3ð Þ. Dropping the overlines for simplicity

one finds,

Fnðn;rnÞ¼
ð

O

ð1� eÞðr �nÞ2þð1þ eÞ n�ðr�nÞj j2
h i

dV (2)

The minimizer of eqn (2) for a single point disclination in an

infinite medium and for arbitrary e has been given by Dzya-

loshinskii, though only implicitly as an integral equation.21,22

The nematic director n = (cos y, sin y) is determined by the

orientation field y, which is found to be independent of the

distance r from the point defect, and depends only the azimuth

j, i.e. y(j) (see Fig. 1). The Euler–Lagrange equation for the

minimizer of the Frank free energy (2) is

d2y

dj2
¼ e

d2y

dj2
cos 2ðy� jÞ þ 2

dy

dj
� dy

dj

� �2
 !

sin 2ðy� jÞ
" #

:

(3)

In the isotropic limit of e = 0, the director orientation is

multivalued yiso(j) = qj, where q = �1/2 is the disclination

charge.31 A perturbative solution in e can be found by expanding,

yðjÞ ¼ yisoðjÞ þ eycðjÞ þ O e2
� �

; (4)

where the first order correction is nonlinear in j31

yc ¼
qð2� qÞ
4ð1� qÞ2 sinð2ð1� qÞjÞ: (5)

This expression also follows directly from Dzyaloshinskii’s

solution – see Appendix D for details.

In order to capture both the magnitude of local order and

biaxiality, a tensor order parameter representation is com-

monly introduced. It is a coarse-grained, statistical measure

of nematic alignment. In three dimensions it is defined as

Q ¼
ð

S2

p� p� 1

3
I

� �

rðpÞds: (6)

Here r(p) is the probability density function of molecular

orientation p defined on S2, the unit sphere, and ds is the

surface measure on the sphere. We have denoted by I the rank

three identity tensor. Because of nematic symmetry, one has

r(p) = r(�p). By definition, Q is traceless and symmetric.

Its three eigenvectors n, m, l form an orthonormal basis,

so that Q may be written as,

Q ¼ S n� n� 1

3
I

� �

þ P m�m� l� lð Þ: (7)

S and P can be written in terms of the three eigenvalues, l1 Z

l2 Z �(l1 + l2) as S ¼ 3

2
l1 and P ¼ 1

2
l1 þ l2. The eigenvectors

corresponding to l1 and l2 are n and m respectively. The scalar

order parameter S describes the degree to which molecules are

aligned along the director n, while P describes biaxiality, or the

difference in alignment along the two remaining axes.

A Landau–de Gennes free energy expansion is introduced in

terms of scalar contractions of Q (the ‘‘bulk’’ terms), supple-

mented by terms in gradients of Q (the ‘‘elastic’’ terms). For

small distortion and fixed S, the elastic terms in the Landau–de

Gennes free energy may be mapped onto the Frank elastic free

energy exactly. In order to include bend-splay anisotropy, one

must expand the elastic energy at least to third order in

gradients of Q. It is well known, however, that at this order

the free energy is unbounded below.23,24 A possible remedy

involves consideration of gradient terms of fourth order in Q.25

It is also possible to maintain a third order theory, and avoid

choosing among fourteen possible fourth order terms allowed

by symmetry, by introducing the Ball–Majumdar singular bulk

potential method.23,30 A bulk free energy Fb½Q� ¼ E½Q� �
TDS½Q� is defined where E is the bulk energy, T is the

temperature, and DS is the entropy relative to the isotropic

phase. The energy is chosen to be of the Maier–Saupe form

E½Q� ¼ �k
Ð

O
tr QðxÞ2
� 	

dV where k is a positive constant that

characterizes alignment strength. The entropy may be written

in terms of the molecular probability distribution function,

DS ¼ �nkB

ð

O

ð

S2

rðp; xÞ ln 4prðp; xÞ½ �ds dV (8)

where n is the number density of nematogens, kB is Boltz-

mann’s constant, and the probability density function of mole-

cular orientation r is allowed to be a function of position for an

inhomogeneous configuration. In order to find an explicit

expression of DS in terms of Q, r is determined so that it

maximizes DS subject to the constraint (6). The solution is,

rðpÞ ¼ exp pTKpð Þ
Z½K� (9)

with partition function Z given by:

Z½K� ¼
ð

S2

exp pTKp
� �

ds; (10)

where K is a tensor of Lagrange multipliers arising from the

constraint (6). By substituting eqn (9) into eqn (6) we may relate

the multipliers K to Q as a mean field consistency condition,

Q ¼ @ lnZ

@K
� 1

3
I: (11)
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Substituting eqn (9) into eqn (8) and using eqn (11) to simplify,

the entropy may be written in terms of Q as,

DS ¼ �nkB

ð

O

ln 4p� lnZ½Q� þ K½Q�: Qþ 1

3
I

� �� �

dV (12)

where: is a double index contraction.

For the elastic free energy in our present study, we include

only one term of third order in Q to allow for bend-splay

anisotropy,

Fel ¼
ð

O

L1 rQj j2þL2 r �Qj j2þL3 rQð Þ..
.
Q � rð ÞQ½ �

� �

dV (13)

where ..
.
is a triple index contraction from inner indices to outer

indices, and Li are the elastic constants. Written in index

notation this equation reads,

Fel½Q;rQ� ¼
ð

O

L1 @kQij

� �2þL2 @jQij

� �2þL3Qlk @lQij

� �

@kQij

� �

h i

dV

(14)

We recall that the mapping to the Frank free energy coefficients

in the case of a uniaxial and constant S nematic phase is given

by:32

K1 ¼ 4L1S
2 þ 2L2S

2 � 4

3
L3S

3

K2 ¼ 4L1S
2 � 4

3
L3S

3

K3 ¼ 4L1S
2 þ 2L2S

2 þ 8

3
L3S

3

K24 ¼ 4L1S
2 � 4

3
L3S

3

(15)

The total free energy in the singular potential method is the

sum F = Fb + Fel.

Rotational relaxation dynamics of the nematogens is con-

sidered through

@Q

@t
¼ �g

dF

dQ
: (16)

with g a rotational diffusion constant. We introduce dimension-

less variables,

�x ¼ x=x; �t ¼ t=t; �k ¼ 2k

nkBT
; L2 ¼

L2

L1

; L3 ¼
L3

L1

(17)

where the length and time scales are,

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

2L1

nkBT

r

; t ¼ 1

gnkBT
(18)

Dropping the overlines for simplicity, the dimensionless equa-

tion of motion for Q is,

@Q

@t
¼ kQ� Kþr2Q

þ L2

2
r r �Qð Þ þ r r �Qð Þ½ �T�2

3
r � r �Qð Þð ÞI

� �

þ L3

2
2r � Q � rQð Þ � rQð Þ: rQð ÞTþ1

3
rQj j2I

� �

(19)

with the transpose of a rank-3 tensor being defined as (rQ)Tklj =

qjQkl. Hereafter, all distances and times will be dimensionless.

The partition function defined on the unit sphere (10) must

be evaluated numerically, as well as the self consistency condi-

tion (11) to find K = K(Q). Stationary solutions of eqn (19) are

found by using the Newton–Rhapson relaxation method for the

case of configurations with one isolated disclination. For the

case of a disclination pair, however, the Newton–Rhapson

method is not computationally efficient due it to its slow

convergence for large systems. Instead we discretize eqn (19)

in time by using a Crank–Nicolson method. We then use the

same Newton–Rhapson method to solve for each subsequent

time step, and iterate in time until qtQ is sufficiently small. We

have implemented this singular potential method in a new

finite element formulation, based on the framework deal.ii,

that allows for efficient paralellization. Large three dimen-

sional configurations can be efficiently studied at high resolu-

tion (in the scale of x). The Appendices provide additional

numerical details.

Boundary conditions in a finite domain need to be dis-

cussed separately. Given the variational derivative of the energy

dF

dQ
¼ @f

@Q
�r � @f

@ rQð Þ; we impose Neumann boundary condi-

tions by requiring that the normal component at the outer

boundary N�qf/q(rQ) = 0, where N is the outward pointing

normal. This reduces to the familiar Neumann boundary con-

dition on Q in the isotropic limit, but more generally, it is the

natural boundary condition to use for a fully anisotropic

system.

3 A single disclination in the Q tensor
representation

We present first the results of a high resolution numerical

study of Q for a single disclination in an elastically anisotropic

medium (L3 a 0). We show that the singular potential method

can quantitatively describe the biaxial core region around the

disclination, and that the stationary configuration reduces to

the Dzyaloshinskii solution away from the core where the

nematic configuration becomes uniaxial.

The thin film approximation for Q is used (Qxz = Qyz = Qzx =

Qzy = 0) so that the tensor is described by three independent

components, not just two as in a strictly two dimensional case,

and hence biaxiality can be accommodated. The xz, yz, zx, and
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zy components of the right-hand side of eqn (19) are manifestly

zero because K and Q can be simultaneously diagonalized,30

and qzQ = 0. Hence, any configuration initialized in the thin

film approximation will remain as such without further con-

straint on the equation of motion. Additionally, the thin film

approximation restricts all eigenvectors to lie in the x–y plane

or along the z-axis. For a configuration with directors initialized

in the x–y plane, the only way for the director to escape into the

z-direction is for Qzz to become equal to the larger of the other

two eigenvalues, creating the so-called ‘‘pancake’’ configu-

ration. This does not happen in our configurations, though a

clarifying visualization for how this manifests in the x–y plane

for disclinations can be found in ref. 33 Fig. 4.7.

The biaxial core region has been extensively studied in the

one constant approximation,34,35 and in a more general case

that included all possible terms in gradients up to second order

in Q.36 Strong biaxiality develops in the core region of the

disclination. For a Landau–de Gennes bulk energy, a purely

uniaxial configuration is shown not to be stable; although

uniaxial far from the core, the three eigenvalues of Q become

distinct as the core region is approached, and two of them

eventually cross at the disclination line.36 The core structure of

Q has also been recently characterized experimentally in lyo-

tropic chromonics,31 enabled by a large size of their core (tens

of microns). A biaxial region has been confirmed in the optical

retardance, albeit with a strong angular dependence due to

elastic anisotropy. This angular dependence of the retardance

has been shown to be in agreement with results of the singular

potential method.29

A stationary solution of eqn (19) in the thin film approxi-

mation has been obtained in a two dimensional circular

domain of radius R ¼ 20=
ffiffiffi

2
p

; with an isolated �1/2 discli-

nation near its center maintained by appropriate Dirichlet

boundary conditions on the outer boundary. We choose dimen-

sionless values of the parameters k = 8.0, L2 = 4.58, L3 = 4.5. k

has been chosen so that the system is below the supercooling

limit as in the experiments of ref. 31 and simulations of ref. 29,

which corresponds to an equilibrium value of S to be S0 =

0.6751. L3 is chosen to be as large as possible while maintaining

numerical stability, while L2 is chosen to maintain e = 0.4

through eqn (15), consistent with ref. 29 and 31. The most

notable effect of taking a different e value would be to change

the director profile far from the disclination core, as can be

seen from eqn (5). The effect of taking L3 larger while keeping a

fixed e value is to increase the higher Fourier mode amplitude.

The computational domain is discretized with quadrilateral

elements, initially with 12 cells. It is then globally refined 5 times,

and further refined at distances R ¼ 8; 4; 2; 1;
1

2
;
1

4
;
1

8
;
1

16
from

the disclination center. Every refinement operation divides each

quadilateral cell into four children cells. Dirichlet boundary

conditions on Q assumed uniaxial are imposed on the outer

boundary with S = S0, and a director angle equal to the numerical

solution to eqn (3), with e obtained from S0, L2, and L3, via

eqn (15), and polar angle j centered at the computational domain

origin.

The director n and scalar order parameters S and P are

determined by calculating the eigenvalues and corresponding

eigenvectors of the Q tensor at each point in the computational

domain. This is done with the eigh method from the Numpy

numerical package, which calculates the eigensystem of a

symmetric matrix.37 We find that the stationary disclination

cores are located at (xdisc, ydisc) = (0, 0) and (0.868, 0) for the

�1/2 and +1/2 disclinations respectively. The quantity Gðr0;j0Þ ¼
ðS � PÞ is computed as it is proportional to the optical retardance

in the experiments.31 Primed variables are polar coordinates

referred not to the center of the computational domain, but to

the actual disclination center (xdisc, ydisc) defined as the location

where S = P. To probe the effect of anisotropy, an angular Fourier

transform is introduced,

Gðr0;j0Þ ¼
X

n

Gnðr0Þ cosðnj0Þ (20)

The Fourier coefficients are calculated with the rfft real Fourier

transform method from the Numpy numerical package. The

cosine coefficients in eqn (20) are 2/N times the real part of the

discrete transformmodes, where N is the number of grid points at

each r0.37

Fig. 2a and c show the director angle y vs. the azimuth j0

plotted at several fixed distances from the disclination centers.

At large distances, the director angle approaches the Dzya-

loshinskii perturbative solution of eqn (3) calculated relative

to the domain center (as is appropriate for the boundary

conditions), but plotted as a function of j0 at several values

of r0. Explicitly, if yDZ(j) is the solution to eqn (3), the solid line

in Fig. 2a is given by yDZ atan2 r0 sinj0 þ ydisc; r
0 cosj0 þ xdiscð Þð Þ

for r0 = 10. For small values of r0 the director angle approaches a

straight line in the diagram, the isotropic solution y ¼ 1

2
j0.

As r0 increases, however, the angle tends towards the Dzya-

loshinskii uniaxial solution. In order to further probe the

biaxial core region, Fig. 2b and d show the two dominant

angular Fourier modes Gn(r
0). The figures also show a fit to a

power law with distance. The zeroth Fourier modes goes to zero

linearly, while the higher Fourier modes appear to decrease

quadratically as the disclination center is approached. The

determination of this dependence has been made possible by

the high spatial resolution of our numerical method. Neither

prior research nor the experimental work could make this

determination.

The singular potential method with L3 a 0 predicts a

compact biaxial core, with amplitudes of the angular Fourier

components of G vanishing faster with distance to the defect

center than the zeroth order component. Therefore the director

angle approaches qj0 as is the case for an elastically isotropic

medium. Furthermore, the dominant dependence of the eigen-

values is also linear as the core center is approached, in

agreement with earlier isotropic results. Both results suggest

that the isotropic and linear core approximation is a reasonable

approximation even in anisotropic media.

Soft Matter Paper

P
u
b
li

sh
ed

 o
n
 0

4
 M

ar
ch

 2
0
2
4
. 
D

o
w

n
lo

ad
ed

 b
y
 U

n
iv

er
si

ty
 o

f 
M

in
n
es

o
ta

 -
 T

w
in

 C
it

ie
s 

o
n
 9

/1
6
/2

0
2
4
 6

:1
6
:0

4
 P

M
. 

View Article Online



This journal is © The Royal Society of Chemistry 2024 Soft Matter, 2024, 20, 2900–2914 |  2905

4 A disclination dipole

The complicating factor that remains, and to which we turn

next, is that in two or multi defect configurations, the tensor

field is not a superposition of configurations corresponding to

isolated single defects. Therefore it remains to be seen whether

interaction leads to a more complicated core structure in multi

disclination systems.

The Euler–Lagrange equations corresponding to the Frank

energy (2) in Cartesian coordinates read,

r2y = e[sin(2y)(yx
2 � yy

2 � 2yxy) + cos(2y)(yyy � yxx � 2yxyy)]

(21)

Consider now a pair of disclinations a distance d from each

other, which are mutually aligned or anti aligned. We seek a

perturbative solution for the director field to first order in e.38,39

The solution in the isotropic limit of e = 0 can be written as

yiso ¼ q1j1ðx; yÞ þ q2j2ðx; yÞ þ
p

2
(22)

where q1, q2 are the corresponding disclination charges, and we

have introduced polar coordinates (ri, ji) centered at each

defect position (xi, yi) (see Fig. 3 for a diagram of the relevant

coordinates). The constant term rotates the director everywhere by

p/2, a transformation under which eqn (2) is invariant. For q1 and

q2 half integers of opposite sign, this solution and the corres-

ponding one without the constant term are so-called ‘‘isomorphs’’,

characterized by whether the line connecting the two defects is

parallel or perpendicular to the far-field director. For example, with

q1 = +1/2 and q2 = �1/2, eqn (22) is the perpendicular isomorph.

By expanding yðx; yÞ ¼ yisoðx; yÞ þ eycðx; yÞ þ O e2
� �

; and sub-

stituting into Eq. (21) we find a Poisson equation for the first

Fig. 2 (a) and (c) Director angle y as a function of the azymuth j0 at various distances from the core for +1/2 and �1/2 disclinations respectively,
computed from the equilibrium Q tensor. The solid line is yDZ atan2 r0 sinj0 þ ydisc; r

0 cosj0 þ xdiscð Þð Þ with yDZ(j) the solution to eqn (3) and (xdisc, ydisc) the
disclination centers. (b), (d) Angular Fourier decomposition of G as a function of distance from the defect core for +1/2 and �1/2 disclinations
respectively. The insets shows the asymptotic behavior as the disclination core is approached. Pluses (G0) and dots (G1, G3) are points obtained from the
numerical solutions, dashed horizontal lines represent the long distance equilibrium values of S = S0 (and P = 0), and solid lines are fits of the form A(r0)n +
B. Fit coefficients for the +1/2 disclination are A = 0.733, n = 0.996, B = �8.69 � 10�5 and A = 0.0392, n = 1.986, B = �4.23 � 10�5 for G0 and
G1 respectively. Fit values for the �1/2 disclination are A = 0.644, n = 0.998, B = �3.95 � 10�5 and A = 0.0253, n = 1.990, B = �3.26 � 10�7 for G0 and
G3 respectively. We note that the data points shown in the figure are only a small subset as our numerical solution has a resolution of r E 0.002.

Fig. 3 Diagram showing a disclination pair in polar coordinates. Here
(ri, ji) are polar coordinates centered on the disclination with charge qi,
and (r, j) are polar coordinates centered on the midpoint between the two
disclinations.
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order correction yc:

r2yc ¼ q1 2� q1ð Þ
r12

sin 2 1� q1ð Þj1 � 2q2j2ð Þ

þ q2ð2� q2Þ
r22

sin 2 1� q2ð Þj2 � 2q1j1ð Þ

� 2q1q2

r1r2
sin 1� 2q1ð Þj1 þ 1� 2q2ð Þj2½ �

(23)

We point out that the other isomorph merely changes the right-

hand side – and therefore the solution – by a sign. In what

follows, we find an approximate solution to eqn (23) in various

regions which can then be compared against numerical results.

For concreteness, we choose q1 = +1/2 and q2 = �1/2. Near

one of the disclinations, (x1, y1), one may rewrite j2 and r2 in

terms of j1 and r1. In this region, r1/d { 1 so that we Taylor

expand the right-hand side to find,

r2yc ¼ � 3

4r12
sinj1 þ

3

8dr1
sin 2j1 þ O

r1

d

� �

(24)

A particular solution yp,1c can be found as given by

yp;1c ¼ 3

4
sinj1 �

r1

8d
sin 2j1 (25)

By comparing it with eqn (5), we note that the term indepen-

dent of r1 corresponds to the correction for an isolated dis-

clination in an anisotropically elastic medium, while the term

due to pairwise disclination interaction is new and goes linearly

in r1 close to q1. A similar calculation for the region close to q2
yields a particular solution,

yp;2c ¼ 5

36
sin 3j2 þ

r2

24d
sin 2j2 � sin 4j2ð Þ (26)

Again we obtain a term independent of r2 which is identical to

eqn (5), and an interaction term which is linear in r2.

Finally, in the far-field, one may rewrite the equation to first

order in polar coordinates whose origin is midway between

the two defects (r, j). Expanding the inhomogeneous term in

d/r { 1 yields,

r2yc ¼ �2d

r3
sin 3jþ O

d

r

� �2
 !

(27)

A particular solution to second order is given by,

yp;fc ¼ d

4r
sin 3j (28)

The dependence on 3j and proportional to d/r at long distances

is unexpected. Consider the isotropic solution eqn (22), and

express it in terms of the midpoint polar coordinates,

yiso ¼ q1 arctan
sinj

cosjþ 1

2

d

r

0

B

@

1

C

A
þ q2 arctan

sinj

cosj� 1

2

d

r

0

B

@

1

C

A

¼ � d q1 � q2ð Þ
2r

sin jð Þ þ q1jþ q2jþ O
d

r

� �2
 !

If q1 + q2 = 0 the constant terms identically vanishes (charges

mutually screen), and the dipolar term has the expected depen-

dence in d/r sinj from a multipolar expansion. However,

anisotropic elasticity changes charge screening, and it intro-

duces a new term that, while also decaying as d/r at long

distances, has a different angular dependence.

A general solution which matches the particular solutions in

the inner and far field regions would also require the general

solution to Laplace’s equation. Far from the disclination pair,

one would have,

ys;fc ¼
X

n

Bn

rn
sinðnjÞ (29)

The inner solutions include the components n = 1, n = 2, n = 3,

and (although much smaller in magnitude as we will argue

below) n = 4 components. Hence, we would expect those Fourier

modes to be present in the far field in order to match at the

near-field far-field boundary, giving an approximate far-field

solution of:

yfc �
d

4r
sin 3jþ

X

4

n¼1

Bn

rn
sin nj (30)

We will not pursue this analytic expansion further. Rather we

will argue that this dependence is consistent with our numer-

ical solutions for weak elastic anisotropy shown below.

5 Numerical solutions for a
disclination pair
5.1 Director representation

Eqn (23) is a Poisson equation in which the source term is

singular at the location of the two disclinations. We have

modified a preexisting deal.II library program to solve it.40,41

The actual linear system is solved with the conjugate gradi-

ent method with Trilinos ML algebraic multigrid as a

preconditioner.42 As was the case with the Q tensor, we take

as outer boundary condition a zero normal component of the

configurational force, where here the configurational force is

qfn/q(ry) with fn the Frank elastic energy density. Because the

solution is found perturbatively, the boundary conditions must

be specified order by order (see Appendix C, eqn (64) for

details). We solve on a circular domain radius R = 5500 and

defect spacing d = 60. These dimensions have been chosen to

correspond with the Q-tensor configuration solution shown later.

We also solve eqn (23) inside a modified circular domain

that excludes the singular points in its right hand side. We cut

out two small discs around each disclination, and impose

Dirichlet boundary conditions on the circumference of each

discs. For simplicity, we prescribe yc = 0 on these internal

boundaries which corresponds to y = yiso from eqn (22). We

choose the cutout radius rcutout = 10 because, as evidenced in

Fig. 2c and a, an isolated disclination in the Q-tensor formula-

tion becomes uniaxial with approximately constant-S at

approximately r = 10. The choice of domain is motivated by

the comparison carried out below with a full numerical
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solution in the Q representation with the same value of the

anisotropy parameter e. In the Q-tensor formulation, the

configuration with two disclinations is not stationary, and

hence allowing an unconstrained configuration relax leads to

disclination annihilation. This would prevent us from deter-

mining the constrained equilibrium configuration corres-

ponding to two immobile disclinations.

Fig. 4a shows a colormap of yc, both in the far field and near

field limits. Near the disclination cores one may clearly see the

n = 1 and n = 3 mode contributions from eqn (25) and (26)

around the +1/2 and �1/2 disclinations respectively. The far

field appears to have six fold symmetry, consistent with a

contribution from n = 3. In order to quantify the contribution

from the various Fourier components to yc, we decompose the

far field numerical solution into angular Fourier modes,

yfcðr;jÞ ¼
X

n

AnðrÞ sinðnjÞ (31)

and fit each mode An(r) by a polynomial in 1/r, with a degree

consistent with eqn (30). For example, A3 is allowed to have

degree 1 and 3 in 1/r, while A2 is only allowed to have degree 2.

Fig. 4b shows the angular Fourier coefficients and the corres-

ponding fits. Both the n = 1 and n = 3 Fourier modes are

consistent with the prediction, while the n = 2 and n = 4 modes

deviate somewhat from the expected quadratic and quartic

behavior. The linear dependence of the n = 3 mode matches

the prediction from eqn (30) in both magnitude and sign.

The effect of adding cutouts to the integration domain

around disclination cores is to suppress the near field n = 1

and n = 3 mode contributions, as can be seen in Fig. 4d. This

reduction translates in the far field into a small reduction in the

magnitude of the n = 3 mode, and a noticeable reduction in the

amplitude of the n = 1 mode.

In agreement with the perturbative calculation of Section 4,

these numerical results show a different angular dependence of

the director angle that arises from disclination interactions in

an anisotropic medium. The n = 3 Fourier mode decays at the

same rate with distance as the n = 1 mode arising from the

isotropic solution, although it is a factor of e/2 in magnitude

smaller. Depending on the value of the anisotropy parameter,

this term could introduce a significant deviation relative to the

isotropic interaction terms, and must therefore be considered

in, for example, disclination ensemble dynamics in elastically

anisotropic media. Note also that the sign of the n = 3 far field

term changes under the transformation to a different disclina-

tion pair isomorph. Hence, it is possible that the effective

contribution from elastic anisotropy could be smaller in an

ensemble of defects containing a distribution of isomorphs.

Fig. 4 Perturbation director contribution yc corresponding to a disclination pair in an elastically anisotropic medium. (a) and (c) Colormap of yc in the far
field (center) and magnified near field (left). The outer domain radius is 5500, while near field magnified region width is 125. Figure (c) has cut outs in the
solution domain of radius 10 around each disclination, with yc = 0 fixed on their boundaries. (b) and (d) Corresponding lowest Fourier modes of yc as a
function of 1/r in the far field. Curve fits are polynomials with degrees suggested by eqn (30), and are represented by solid lines.
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5.2 Q Tensor representation

With our choice of elastic terms, eqn (13), elastic anisotropy is

determined by the coefficients L2 and L3 while the Frank

elastic anisotropy is solely determined by e. Given eqn (14),

we focus on L2 = 0 and find that L3 = 0.3065 for e = 0.1, a regime

in which eqn (23) should hold. We note that the results

are essentially identical for any other L2 value, supposing

that L3 is chosen to maintain e = 0.1. This is because the L2
term in eqn (14) may be decomposed into gradients of the

scalar order parameters and director. Since the disclinations

are cut out, the scalar order parameter remains constant and

uniform. The contribution from L2 to the director is to

introduce twist anisotropy which, in two dimensions, is mani-

festly zero. We consider a disc of radius R = 5500, defect

spacing d = 60, and defect cutout radius rcutout = 10. The

Maier–Saupe constant k = 8.0, which corresponds to an

equilibrium value of S0 = 0.6751.

Because of the large size of the computational domain, a

direct solution of the minimization problem (eqn (19) with

qtQ = 0) is difficult. We instead iterate eqn (19) in time until

a stationary configuration is reached. As initial condition we

choose,

Q(t = 0) = R(yc)QisoR
T(yc) (32)

where R is a rotation matrix about the ẑ axis by angle yc,

which is the numerical solution to eqn (23) with disclina-

tion cutouts fixed at zero. We define Qiso ¼ S r1; r2ð Þ

n̂iso � n̂iso �
1

3
I

� �

with S r1; r2ð Þ ¼ S0

2

1þ e�r1
þ 2

1þ e�r2
� 3

� �

and n̂ ¼ cos yiso sin yiso 0½ �T . Fig. 5 shows yc as calculated

from the Q tensor representation compared to yc from eqn (23)

within the cutout domain. yc is well-defined in this case

because the director remains in the x–y-plane, as has been

verified.

6 Isolated disclination motion far from
a dipole

To give a suggestion for a potential experimental avenue which

may be explored to verify the far-field dipole director profile, we

derive the equation of motion of an isolated disclination under

the influence of a dipole using the Halperin–Mazenko formal-

ism developed in ref. 43. The calculation is done in 2D, though

the results are similar to a previous calculation done in 3D.33

For this, we assume a disclination director profile of qj, and a

scalar order parameter which decreases linearly to zero at the

disclination core. Further, we assume that the director field of

the isolated disclination superposes with the ambient director

field created by the dipole, and neglect distortions to the dipole

profile that would arise from interactions with the isolated

disclination.

For a given ambient director angle field y produced by the

dipole, the velocity of a test disclination is determined by the

disclination density current which is derived in Appendix E.

For a +1/2 disclination, the defect velocity is

v+ = (4 + 2L2)r>y � 2L3[cos(2y)x̂+ sin(2y)ŷ] (33)

with r> = qyx̂ � qxŷ, while for a �1/2 disclination, it is

v� = �(4 + 2L2)r>y (34)

Because y is small in the far field, the contribution from the

L3 term in eqn (33) gives a nearly uniform contribution to

the velocity in the �x̂ direction for both the isotropic and

anisotropic parts of the dipole director profile. By contrast,

the first term in eqn (33) gives qualitatively different behavior

from these two parts. To see this, we calculate the following

explicitly:

r? 1

r
sinðnyÞ

� �

¼ 1

r2
n cosðnjÞr̂þ sinðnjÞĵð Þ (35)

This field is plotted in Fig. 6 with n = 1 for the isotropic

contribution and n = 3 for the anisotropic contribution. For

an isotropic dipole profile, one would expect a disclination in

the upper half plane to move mostly in the azimuthal direction,

while the anisotropic dipole profile would tend to cause the

disclination’s path to fluctuate in the radial direction. We

speculate that this fluctuation is measurable, and should vary

linearly with e. A material for which e is tunable, such as the

biopolymer suspension in ref. 44, could give a quantitative

measure of the magnitude of this fluctuation in e.

7 Conclusions

We have presented an analysis of the radial and angular

dependencies of the orientation order parameter around both

an isolated disclination and a disclination dipole in an elasti-

cally anisotropic nematic. In the former case, a singular

potential theory in the Q tensor order parameter representation

of the nematic shows that the order parameter approaches

isotropy near the core: the eigenvalues of the Q tensor become

Fig. 5 Dotted and dashed lines: far field angular Fourier components of
the eigenvector angle of Q for the largest eigenvalue (the uniaxial director
from Q). For the purposes of the comparison, the isotropic solution (22)
has been subtracted. Solid lines: numerical solution of eqn (23) (in the
director representation).
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axisymmetric, in agreement with the elastically isotropic case.

We provide a scaling law which shows that the zeroth order

angular Fourier of the retardance goes to zero linearly with the

radial distance r0, while the next order Fourier mode decreases

quadratically.

For the case of a disclination dipole, we have presented

analytical perturbative solutions in the director representation

in the limit of weak anisotropy (small elastic constant e).

Solutions are given for the nematic orientation angle both near

one of the disclinations in the dipole, and in the far field.

Particularly noteworthy is the far field dependence in which the

n = 1 angular Fourier mode of the isotropic limit is supple-

mented by an n = 3 mode as a leading order term due to

anisotropy. The predictions agree very well with numerical

calculations in both the director field and Q-tensor representa-

tions of the nematic. We speculate that the difference in the

dipole director profile due to anisotropy can be experimentally

observed through the motion of a test disclination under the

influence of the dipole.
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Appendices
A Numerical method for an isolated disclination in the

director representation

The numerical solution of eqn (3), the one dimensional profile

of the director y, as a function of polar angle j is computed by

using the finite element framework deal.II.40,41 The equation

is solved by iteration with a Newton–Rhapson method on the

domain j A [0,2p]. The endpoints are fixed at 0 and 2pq

to maintain azimuth continuity. The equation residual is

defined as,

RðyÞ¼ d2y

dj
� e

d2y

dj2
cos2ðy�jÞþ 2

dy

dj
� dy

dj

� �2
 !

sin2ðy�jÞ
" #

(36)

A Gateaux derivative is introduced,

dRðyÞdy ¼ d

dl
RðyþldyÞ













l¼0

¼ d

dj
pðjÞddy

dj

� �

þ q1ðjÞþ
d

dj
q2ðjÞ

� �

dy

(37)

with

pðjÞ ¼ 1� ecos2 y�jð Þ

q1ðjÞ¼
dy

dj

� �2

�4
dy

dj
þ2

" #

2ecos2 y�jð Þ

q2ðjÞ¼
dy

dj
2esin2 y�jð Þ

(38)

Also define:

q3ðjÞ¼
dy

dj

� �2

�2

" #

sin2 y�jð Þ (39)

so that we may write the residual as:

RðyÞ¼ d

dj
pðjÞ� q2ðjÞþq3ðjÞð Þ (40)

An iteration in Newton–Rhapson method then reads:

dR yðnÞ
� �

dyðnÞ ¼�R yðnÞ
� �

yðnþ1Þ ¼ yðnÞþadyðnÞ
(41)

with damping parameter ar 1. To solve with the finite element

method, we take the inner product with a test function Z and

Fig. 6 r>y calculated for y ¼ 1

r
sinðjÞ (left) and y ¼ 1

r
sinð3jÞ (right). Color plot is normalized.
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integrate by parts:

Z;dRðyÞdyh i ¼ � Z;RðyÞh i

) Z;
d

dj
p
ddy

dj

� �

þdq2

dj
dy

� �

þ Z;q1dyh i

¼ � Z;
dp

dj

� �

� Z;q2þq3h i

)� dZ

dj
;p
ddy

dj
þq2dy

� �

� dZ

dj
;q2

ddy

dj

� �

þ Z;q1dyh i

¼ dZ

dj
;p

� �

� Z;q2þq3h i

(42)

The test functions are zero on the boundaries so that the

surface integrals vanish. Approximating dy¼P
j

dyjZj with test

functions Zj given by piecewise polynomial Lagrange elements,

and enforcing eqn (42) for each test function Zi gives a linear

system in dyj. We iterate until the L2 norm of the residual is less

than some desired threshold. For the simulations run in this

paper, the domain is broken into 210 evenly-spaced segments,

we use first degree Lagrange elements, and the residual L2
norm tolerance is set to 10�10. We use the UMFPACK direct

sparse matrix solver since, in one dimension at this size,

performance is not an issue.

B Numerical method in the Q-tensor representation

In order to solve eqn (19) numerically we also use the deal.II

finite element framework.40,41 This library has the benefit of

implementing adaptive mesh refinement, as well as being

massively paralellization via MPI, allowing for very large scale

computations. To solve all linear systems in our implementa-

tion, we use the Trilinos linear algebra library via deal.II.45 The

code developed is available in the GitHub repository.46 To

integrate eqn (16), consider that the variation of the free energy

is given explicitly by:

dFðQ;rQÞ ¼ d

dt
FðQþ tdQ;rQþ trdQÞ













t¼0

¼
ð

O

@f

@Q
dQþ @f

@ rQð ÞrdQ

� �

dV

¼
ð

O

@f

@Q
�r� @f

@ rQð Þ

� �

dQ dVþ
ð

@O

m � @f

@ rQð Þ

� �

dQ dS

(43)

where f is the free energy density. Here we take n�qf/q(rQ) = 0

as a boundary condition which corresponds to zero normal

configuration force at the boundary. Additionally, to ensure

that qtF r 0 always, we must take:

@Q

@t
¼�@f

@Q
þr� @f

@ rQð Þ (44)

One may understand this as taking the time evolution in the

direction of the variation dQ where the variation is chosen

to make dF negative definite. To simplify the exposition, take

TQ = �qf/qQ and TrQ = qf/q(rQ). Finally, T = TQ + r�TrQ. These

are given explicitly by:

T
Q
ij ¼ kQij �Lij �

L3

2
@iQklð Þ @jQkl

� �

�1

3
@kQlmj j2dij

� �

(45)

T
rQ
kij ¼ @kQij þ

L2

2
@iQjkþ@jQik�

2

3
@lQlkdij

� �

þL3Qkl@lQij

(46)

We note that the divergence is contracted over the k index.

To discretize eqn (19) in time, we use a Crank–Nicolson

method:

Q�Q0

dt
¼ 1

2
T þ T0ð Þ (47)

where Q0 and Q are the Q-configurations at the previous and

current timesteps respectively, dt is the timestep, and T and T0
are evaluated at Q and Q0 respectively. Because T is nonlinear,

we define a residual:

R ¼ Q�Q0 �
1

2
dt T0 þ Tð Þ (48)

To solve for the configuration when R = 0, we use a Newton–

Rhapson method. The Gateaux derivative then reads:

dR dQ ¼ d

dt
RðQþ tdQ;rQþ trdQÞ













t¼0

¼ dQ� 1

2
dT dQ

(49)

Explicitly, this yields:

dTQ
dQ

� �

ij
¼ kdQij � dLij � L3 @idQklð Þ @jQkl

� ��

þ @iQklð Þ @jdQkl

� �

� 2

3
@kQlmð Þ @kdQlmð Þdij

� (50)

dTrQ
dQ

� �

kij
¼ @kdQij þ L2 @idQjk þ @jdQik

� �

þ 2L3 dQkl@lQij þQkl@ldQij

� �

(51)

where dLij is given by:

dLij ¼ d

dt
LijðQþ tdQÞ













t¼0

¼ d

dt
LðQÞ þ t

@Lij

@Qk

dQk þ O t2
� �

� �

t¼0

¼ @Lij

@Qk

dQk

(52)

The Taylor series expansion of L about Q involves the directional

derivative in the direction of dQ. Since Q and dQ are restricted to

the submanifold of traceless, symmetric tensors, this directional

derivative can be accomplished by differentiating L with respect

to the degrees of freedom of Q and dotting into the degrees of

freedom of dQ. This set of degrees of freedom is arbitrary, but

we note that the space of traceless, symmetric tensors is five-
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dimensional. Newton’s method then reads:

dR dQ ¼ �R

Q ! Qþ adQ
(53)

where we indicate that the next iteration is updated by adding adQ

with 0 o a r 1 some stabilization constant.

To discretize in space, we find the weak form of this

equation by taking the inner product with some symmetric,

traceless tensorial test function F:

hF,dR dQi = �hF,Ri (54)

Approximating dQ in our space of test functions gives:

dQ ¼
X

j

dQjFj (55)

where dQj are a set of scalars, and Fj are a finite element basis.

Asserting that eq. (54) be true for a finite number of test

functions Fi yields a finite linear system in dQj:
X

j

Fi;dT
QFj

� �

� rFi;dT
rQFj

� �� 	

dQj ¼ Fi;T
Q

� �

� rFi;T
rQ

� �

(56)

Note that we have integrated by parts and taken the boundary

terms to zero, due to the zero configurational force condition.

In our actual simulations, we take the finite element basis

functions F to be piecewise scalar Lagrange polynomials f(x)

multiplied by constant tensor basis elements X:

X1 ¼

1 0 0

0 0 0

0 0 �1

0

B

B

B

@

1

C

C

C

A

X2 ¼

0 1 0

1 0 0

0 0 0

0

B

B

B

@

1

C

C

C

A

X3 ¼

0 0 1

0 0 0

1 0 0

0

B

B

B

@

1

C

C

C

A

X4 ¼

0 0 0

0 1 0

0 0 �1

0

B

B

B

@

1

C

C

C

A

X5 ¼

0 0 0

0 0 1

0 1 0

0

B

B

B

@

1

C

C

C

A

(57)

In Section 5.2 we use this method with dt = 0.1, and iterate

for 50 000 time steps. The tolerance for the residual is an L2
norm of the finite element vector of 1e � 10. In Section 3 we

instead solve for qQ/qt = 0 to find the equilibrium state. For

this, the zeros of T are found using a Newton–Rhapson

method, and the L2 norm tolerance of the residual is 1e � 10.

C Numerical method for a disclination pair in the director

representation

Eqn (23) is a straightforward Poisson equation, so taking the

right-hand side to be g(x, y) we may write the weak form as:

hrf,ryci � hf,n�ryciqO = �hf,gi (58)

where here f is a test function, h,i is the L2 inner product over

the domain, and h,iqO is the L2 inner product over the boundary.

Because we cannot solve numerically on an infinite domain,

we seek a finite domain and boundary conditions which

correspond most closely with our infinite-domain analytic

solution. For both the Q-tensor and director model, we enforce

zero normal configurational stress:

N � @f

@ðryÞ ¼ 0 (59)

where f is the Frank free energy density. Explicitly, the config-

urational stress in an anisotropic medium is:

@f

@ðryÞ ¼ ryþ eCðyÞ (60)

where we have defined:

CðyÞ ¼
sin 2y @yy

� �

þ cos 2y @xyð Þ

sin 2y @xyð Þ � cos 2y @yy
� �

2

4

3

5 (61)

To first order, the zero-configurational stress condition reads:

ryiso + eryc + eC(yiso) = 0 (62)

Order by order, we note:

@yiso
@r













r¼R

¼ q12d sinðjÞ
d2 þ 4dR cosðjÞ þ 4R2

� q22d sinðjÞ
d2 � 4dR cosðjÞ þ 4R2

(63)

where R is the radius of the circular domain. This goes as d/R2,

and so goes to zero in the limit that d/R { 1. The first order

anisotropic correction boundary term then goes as:

N�ryc = �N�C(yiso) (64)

Given these two conditions, the zero configurational stress is

met up to first order.

For the finite element simulation, we use first order

Lagrange elements as test and shape functions, and solve

iteratively with the Conjugate gradient method with conver-

gence tolerance 10�12. As a preconditioner, we use the Trilinos

ML Algebraic Multigrid method.

D Proof of perturbative solution for isolated disclination from

Dzyaloshinskii solution

The Dzyaloshinskii solution is given by:

j ¼ p

ðy�j

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e cos 2x

1þ p2e cos 2x

s

dx (65)

with p2 o 1/|e| and is defined so that y is single-valued:

p ¼ ðq� 1Þp
ð

p

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e cos 2x

1þ p2e cos 2x

s

dx (66)

We will show that eqn (5) follows from eqn (65) given a

perturbative expansion eqn (4).

Taking m = y � j, (65) becomes:

j ¼ p

ðm

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e cos 2x

1þ p2e cos 2x

s

dx (67)
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Then the fundamental theorem of calculus gives:

dj

dm
¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e cos 2m

1þ p2e cos 2m

s

(68)

For |e| o 1 we have that
dj

dm
a0. If |e| = 1 the solution is a step

function which is well-known and may be handled separately,

so we take |e| o 1. Then the inverse function theorem gives us:

dm

dj
¼ 1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ p2e cos 2m

1þ e cos 2m

s

(69)

We may perturbatively expand y as:

y ¼ qjþ eyc þ O e2
� �

(70)

so that m is given by:

m ¼ mjþ eyc þ O e2
� �

(71)

with m = q � 1. Then we may substitute into (69) and expand

to get:

dyc

dj
¼ 1�mp

ep
� p2 � 1

2p
cos 2mf (72)

The solution is then:

yc ¼
1�mp

ep
j� p2 � 1

4mp
sin 2mf (73)

To find p we enforce that yc(0) = yc(2p) = 0. This yields:

p ¼ 1

m
(74)

Plugging this back in for yc yields:

yc ¼
qð2� 1Þ
4ð1� qÞ2 sin 2ð1� qÞj (75)

E Calculation of disclination velocity in the dipole far-field

For simplicity, we derive the disclination velocity using the 2D

Q-tensor:

Q ¼
Q11 Q12

Q12 �Q11

" #

(76)

A similar calculation was done in ref. 33 in 3D which reduces to

this result for the quasi-2D case.

The elastic free energy is as in eqn (13). Because Q only has 2

degrees of freedom, we may introduce a complex phase-field c

defined as:

c = Q11 + iQ12 = Sei2y (77)

with S the scalar order parameter and y the director angle.

Additionally we introduce a complex derivative:

@z ¼
1

2
@x � i@y
� �

(78)

as well as �c and q%z the complex conjugates of the phase field

and complex derivatives respectively. The elastic free energy

may then be written as:

Fel = 2L1|rc|2 + 4L2|qzc|
2 + 4L3[c(qzc)(qz �c) + �c(q%z

�c)(q%zc)]

(79)

with |�|2 the complex square and |rc|2 = qxcqx �c + qycqy �c. The

time evolution is given by the negative of the variational

derivative of the free energy. To determine the disclination

velocity, we only need the contribution from the elastic part of

the free energy:

�dFel

d�c
¼ 4þ 2L2ð Þ@z@zcþ 2L3

�c @�z
2c

� �

þ c @z
2c

� �

þ @zcð Þ2
h i

(80)

where we have nondimensionalized according to eqn (18).

The disclination velocity as calculated in ref. 43 is given by:

v ¼ J

2q













x¼x0

(81)

with J the disclination current defined to be:

J = qt
�cq%zc � qtcq%z

�c, (82)

q the disclination charge, and x0 the disclination position.

A test defect of charge q = �1/2 which is embedded in nematic

orientation field y(z,%z), the c field near the disclination center

at z = 0 may be parameterized as follows:

c ¼ zj j z

z

� �q

ei2y; (83)

in the assumptions that: (i) |c| decays linearly to zero at the

defect core, (ii) the test disclination director profile is as in

the isotropic case (i.e. qj), and (iii) the director profile of the

disclination superposes with the ambient orientation field.

Under the first assumption, terms which involve only gradients

of c survive, while terms involving c alone – such as the bulk

free energy – vanish at the disclination core. This calculation

reveals the leading order effect of anisotropy on the disclina-

tion motion. In general, the disclination current is given by:

J ¼ 4þ 2L2ð Þ @z@�z�c
� �

@�zc� @z@�zcð Þ@�z�c
� 	

þ 2L3 @�z�c
� �2

@�zc� @zcð Þ2@�z�c
h i (84)

Evaluating the parameterisation for q = + 1/2 from eqn (85), we

find that c E ze2iy, such that the corresponding disclination

current becomes:

J(+)(z = 0) = [�i(8 + 4L2)q%zy � 2L3e
i2y]z=0 (85)

which, in real coordinates, is equivalent to

J(+)(r = 0) = (4 + 2L2)r>y � 2L3[cos(2y)x̂+ sin(2y)ŷ]|r=0
(86)

with r> = qyx̂ � qxŷ. In polar coordinates it reads:

r?y ¼ 1

r

@y

@j
r̂� @y

@r
ĵ. Similarly, for q = �1/2, eqn (83) reduces

to c E %ze2iy, which leads to the disclination current:

J(�)(r = 0) = (4 + 2L2)r>y|r=0. (87)
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Changing coordinates to correspond with Fig. 3 the first term of

the disclination current may be represented as:

r?y 	 1

r2
n cosðnjÞr̂þ sinðnjÞĵð Þ (88)

with n = 1 for the isotropic contribution and n = 3 for the

anisotropic contribution.
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