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A computational study of nematic core structure
and disclination interactions in elastically
anisotropic nematics

Lucas Myers, (2 *@ Carter Swift,” Jonas Renning, (2 ¢ Luiza Angheluta® and

Jorge Vifials®™

A singular potential method in the Q tensor order parameter representation of a nematic liquid crystal is
used to study the equilibrium configuration of a disclination dipole. Unlike the well studied isotropic limit
(the so called one constant approximation), we focus on the case of anisotropic Frank elasticity (bend/
splay elastic constant contrast). Prior research has established that the singular potential method
provides an accurate description of the tensor order parameter profile in the vicinity of a disclination
core of a highly anisotropic lyotropic chromonic liquid crystal. This research is extended here to two
interacting disclinations forming a dipole configuration. The director angle is shown to decay in the far
field inversely with distance to the dipole as is the case in the isotropic limit, but with a different angular
dependence. Therefore elastic constant anisotropy modifies the elastic screening between disclinations,
with implications for the study of ensembles of defects as seen, for example, in active matter in the

rsc.li/soft-matter-journal extended system limit.

1 Introduction

In nematic liquid crystals, the four distortion modes — splay,
bend, twist, and saddle splay - can each contribute differently
to the elastic distortion energy,"”” a phenomenon hereafter
referred to as “anisotropic elasticity”. Even though the origin
of this anisotropic elasticity can be traced to the relative
alignment of elongated nematogens, and it is well documented,
there still remain many open questions related to the effects of
anisotropic elasticity on the equilibrium and nonequilibrium
properties of defected nematics. A better understanding of the
role of anisotropy on the motion and interaction of disclina-
tions is fundamental to modeling biologically inspired and
synthetic active matter systems.

In common thermotropic liquid crystals comprising small
rod like molecules, the contrast between splay, twist, and bend
elastic constants is small, and the so called one constant
(“isotropic elasticity’’) approximation has been successful in a
wide variety of applications. More recently, however, attention
has shifted to systems comprised of more complex nematogens
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which exhibit large elastic anisotropy. Chief among them, we
mention lyotropic chromonic liquid crystals®” and nematic
micellar systems.®° Novel behavior has been uncovered which
is a direct result of elastic anisotropy, such as spontaneously
broken chiral symmetry due to confinement,®"* or the exis-
tence and motion of topological solitons.***> Complex aniso-
tropic effects have also been observed recently in studies of
disclination line reconnection in three dimensions.'® In con-
trast with two dimensions, disclination lines in three dimen-
sions only have a topological charge of 1/2, and can annihilate
despite having the same charge sign. An apparent asymmetry in
the motion of wedge disclination segments (of effective charge
+1/2) seems to be eliminated through twist in anisotropic
media, thus restoring the implied topological symmetry.

The topology of defected configurations in two and three
dimensional nematic phases is well understood, including the
case of biaxial ground states."” In two dimensions, the orienta-
tion 0(x) (see Fig. 1) of the nematic director i is a harmonic
function of position x in the one constant (isotropic) approxi-
mation. Well known singular solutions are associated with
disclination point sources.>"® Configurations comprising many
disclinations can be described by linear superposition, and
results have been given for a number of cases of interest,
including, for example, binding-unbinding transitions in
active matter,'® or defect interactions in complex twisted con-
figurations obtained by conformal mapping techniques.*® In
contrast, little is known about nematic director n or tensor
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Fig. 1 Illustration of a +1/2 disclination to show the definition of the
director angle 0, as a function of the polar coordinates (r,¢).

order parameter Q configurations corresponding to defected
configurations in elastically anisotropic media, both in two and
three dimensions. A key result in two dimensions was obtained
by Dzyaloshinskii.”"*> When the splay K; and bend Kj; elastic
constants are different, he found an analytic-albeit only
implicit-solution for the equilibrium nematic orientation 0
corresponding to an isolated disclination. The solution is
independent of distance from the core, but depends on the
azimuthal angle around the disclination. More generally, the
Euler-Lagrange equations that follow from the Frank free
energy are nonlinear and challenging to solve analytically.

While it is possible to study both equilibrium and transient
configurations of nematics containing disclinations in the
director representation, with the Frank free energy governing
elastic distortion, and Leslie-Ericksen hydrodynamics, it is
often the case that a Q tensor order parameter representation
and the Landau-de Gennes theory are used instead. Virtually all
studies of nematic active and biological matter use this repre-
sentation as it eliminates the need for defect core regulariza-
tion (especially in three dimensions), and hence it permits a
more convenient computational treatment of disclinations and
their motion. Unfortunately, this choice has the effect in
practice of restricting these studies to the one constant approxi-
mation. Elasticity in the tensor order parameter representation
is incorporated in a phenomenological series expansion in
powers of order parameter gradients, eqn (14) below. For small
distortions, Frank elastic constants can be related to the
coefficients of the expansion as shown in eqn (15). In order
to capture splay-bend anisotropy, one must resort to at least
cubic terms in gradients of the order parameter. At this order,
however, the Landau-de Gennes energy is known to become
unbounded for any choice of parameters.>*>* In principle, the
requirement of a bounded free energy could be accomplished
by consideration in the expansion defining F,; of terms at least
of fourth order in Q.>> However, it is also possible to have a
bounded free energy, only third order in Q, by constraining the
eigenvalues of Q to lie within their physically admissible
range.”® The resulting singular potential method sidesteps
the need to choose between fourteen possible fourth order
invariants®® (in addition to choosing among six possible third
order invariants).

Building into the theory the constraint that the eigenvalues
of Q must remain within the physically admissible range can be
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accomplished by an appropriately defined singular poten-
tial.>**”73° The drawback of this theory is that the determina-
tion of the energy needs to be done entirely numerically at a
significant computational cost relative to simple evaluations of
the Landau-de Gennes energy. Two complementary issues are
investigated below in relation to elastically anistropic nematic
phases, both in the tensor order parameter representation.
First, we build on the singular potential method analysis of
ref. 29 to quantitatively describe both bialixiality and aniso-
tropy of disclination cores. We use the method to compute the
optical retardance, I' = S — P, near a disclination core, where S
and P are the uniaxial and biaxial order parameters respec-
tively. Exactly at the disclination core, S = P, in agreement with
experiments®' and earlier calculations.>® We then consider a
Fourier decomposition of the optical retardance I'(r,¢p) =

> I'y(r)cos(ne) and show that as the core is approached

I'y ~ r, as happens in elastically isotropic systems. We also
show that I'y for a +1/2 disclination and I'; for a —1/2 disclina-
tion are nonzero in the region of r ~ 1. However, they vanish as
r? as the core is approached. Hence, the uniaxial and aniso-
tropic far field leads to an anisotropic and biaxial region as the
core is approached. At even smaller distances, the configu-
ration becomes both uniaxial and isotropic, as judged from the
azimuthal Fourier transform of I'.

Second, we focus on the interaction of a pair of disclinations
of opposite sign (a disclination dipole), and examine the nature
of their screening at distances much larger than their separa-
tion. For isotropic elasticity, the orientation angle far from the
disclination pair behaves as 0 = ¢; + g, — d(q1 — ¢»)sin ¢/(2r)
where g, , = £1/2 are the charges of the disclinations separated
by distance d, r is the radial distance from the pair, and ¢ is the
azimuthal angle measured relative to the separation distance
vector. For two disclinations of opposite charge, the distortion
is screened and decays algebraically as 1/r, modulated by
sing in angular dependence. In the anisotropic case, the far
field dependence contains an additional term of the form
+dsin(3¢)/r which has the same decay with distance, but
a different angular dependence. As a consequence, disclination
interactions in elastically anisotropic nematics are qualita-
tively different than their isotropic counterparts, and the
implications of these findings on current phenomenology
involving multiple defect interactions and motion need to be
reexamined.

2 Nematic director and Q tensor
representations

In the director representation, local order in the nematic phase
is described by a director field, the unit vector n(x). This field
corresponds to the local average orientation direction of the
constituent molecules, with configurations being invariant
under the transformation n — —n. The Frank free energy
considers distortions away from a uniform ground state, and
contains all scalar combinations of gradients of n to second
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F,(n,Vn) = J BKI(V.n)2 +%K2[n~ (V xn)?
Q

1 1
+§K3|n x (V x n)\2+§Kz4V Jm-V)n—n(V-n)]|dV

1)
with K;, K,, K3, K,4 the elastic constants that correspond to
splay, twist, bend, and saddle splay distortion modes respec-
tively. In two dimensions, the twist and saddle-splay terms
are manifestly zero. We introduce an anisotropy parameter
¢ = (K3 — Ky)/(K; + K;), dimensionless lengths X = x/¢ where ¢
is a characteristic length scale defined in eqn (18) in relation to
the Q-tensor representation, and a dimensionless free energy
F,=2F,/(K;+K3). Dropping the overlines for simplicity
one finds,

F,,(n,Vn):J [(178)(V-n)2+(1+8)\n><(V><n)|2 v (2)

Q

The minimizer of eqn (2) for a single point disclination in an
infinite medium and for arbitrary ¢ has been given by Dzya-
loshinskii, though only implicitly as an integral equation.>>*
The nematic director n = (cos0, sin6) is determined by the
orientation field 0, which is found to be independent of the
distance r from the point defect, and depends only the azimuth
¢, i.e. 0(p) (see Fig. 1). The Euler-Lagrange equation for the
minimizer of the Frank free energy (2) is

d20 d20 do  /doN?\ .
3)

In the isotropic limit of ¢ = 0, the director orientation is
multivalued 60i50(@) = g, where g = +1/2 is the disclination
charge.®® A perturbative solution in ¢ can be found by expanding,

0(p) = Oiso () + 20 () + O (&%), (4)

where the first order correction is nonlinear in ¢*'

0 = 4= Dhsin21 — )0 ©)
This expression also follows directly from Dzyaloshinskii’s
solution - see Appendix D for details.

In order to capture both the magnitude of local order and
biaxiality, a tensor order parameter representation is com-
monly introduced. It is a coarse-grained, statistical measure
of nematic alignment. In three dimensions it is defined as

Q= Lz (p ®p- %I)p(p)da- (6)

Here p(p) is the probability density function of molecular
orientation p defined on S?, the unit sphere, and do is the
surface measure on the sphere. We have denoted by I the rank
three identity tensor. Because of nematic symmetry, one has
o(p) = p(—p)- By definition, Q is traceless and symmetric.
Its three eigenvectors n, m, 1 form an orthonormal basis,
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so that Q may be written as,
1
Q=S n®n—§l +Pmem—-1c]1). (7)

S and P can be written in terms of the three eigenvalues, 1, >
. 3 1 .
Jp = —(l4+7y)as S = 5/11 and P = Eﬂul + 4. The eigenvectors

corresponding to 4, and 4, are n and m respectively. The scalar
order parameter S describes the degree to which molecules are
aligned along the director n, while P describes biaxiality, or the
difference in alignment along the two remaining axes.

A Landau-de Gennes free energy expansion is introduced in
terms of scalar contractions of Q (the “bulk” terms), supple-
mented by terms in gradients of Q (the “elastic” terms). For
small distortion and fixed S, the elastic terms in the Landau-de
Gennes free energy may be mapped onto the Frank elastic free
energy exactly. In order to include bend-splay anisotropy, one
must expand the elastic energy at least to third order in
gradients of Q. It is well known, however, that at this order
the free energy is unbounded below.>*** A possible remedy
involves consideration of gradient terms of fourth order in Q.>
It is also possible to maintain a third order theory, and avoid
choosing among fourteen possible fourth order terms allowed
by symmetry, by introducing the Ball-Majumdar singular bulk
potential method.**?*° A bulk free energy Fyp[Q] = E[Q] —
TAS[Q] is defined where E is the bulk energy, T is the
temperature, and AS is the entropy relative to the isotropic
phase. The energy is chosen to be of the Maier-Saupe form
E[Q] = —«[,tr[Q(x)?]dV where « is a positive constant that
characterizes alignment strength. The entropy may be written
in terms of the molecular probability distribution function,

AS = —nkBL)sz(p, x) In[4np(p, x)|dadV (8)

where 7 is the number density of nematogens, kg is Boltz-
mann’s constant, and the probability density function of mole-
cular orientation p is allowed to be a function of position for an
inhomogeneous configuration. In order to find an explicit
expression of AS in terms of Q, p is determined so that it
maximizes AS subject to the constraint (6). The solution is,

_exp(p”4p)
) = Tz 9)

with partition function Z given by:

Z[A] :J 2exp(pTAp)do7 (10)

N

where A is a tensor of Lagrange multipliers arising from the
constraint (6). By substituting eqn (9) into eqn (6) we may relate
the multipliers 4 to Q as a mean field consistency condition,

_ohnz 1y (11)

Q o4 3

This journal is © The Royal Society of Chemistry 2024
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Substituting eqn (9) into eqn (8) and using eqn (11) to simplify,
the entropy may be written in terms of Q as,

AS = —nkBL {m 4n — In Z[Q] + A[Q]: (Q + %I)} ar (12)

where: is a double index contraction.

For the elastic free energy in our present study, we include
only one term of third order in Q to allow for bend-splay
anisotropy,

Fy= Lz {L1|VQ|2+L2|V QI +L3(VQ)(Q-V)Q]|dV (13)

where  is a triple index contraction from inner indices to outer
indices, and L; are the elastic constants. Written in index
notation this equation reads,

FalQ.VQ| = JQ | L1 (0:0y) +L2(9,05) +LaQu (9124) (9:Q5) | AV

(14)

We recall that the mapping to the Frank free energy coefficients
in the case of a uniaxial and constant S nematic phase is given
by:32

4

K, =4L,S*+20,5* — §L3S3
2 4 3

Ky, =4L,S —§L3S

Ky = 40,5 +20,5% + §L3S3

4
Koy = 4L1S* = 2L 8°

The total free energy in the singular potential method is the

sum F = F, + Fg.

Rotational relaxation dynamics of the nematogens is con-
sidered through

9Q  oF

with y a rotational diffusion constant. We introduce dimension-
less variables,

where the length and time scales are,
[ 2L, 1
Y = S 18
c nkgT’ ! ynkg T (18)
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Dropping the overlines for simplicity, the dimensionless equa-
tion of motion for Q is,

00

_ _ 2
% =xQ-4+V-Q

(v VT QI v (v )

%(N (Q-VQ) - (VQ):(VQ)T%WQFI)
(19)

with the transpose of a rank-3 tensor being defined as (VQ)i; =
0;Qu- Hereafter, all distances and times will be dimensionless.

The partition function defined on the unit sphere (10) must
be evaluated numerically, as well as the self consistency condi-
tion (11) to find 4 = A(Q). Stationary solutions of eqn (19) are
found by using the Newton-Rhapson relaxation method for the
case of configurations with one isolated disclination. For the
case of a disclination pair, however, the Newton-Rhapson
method is not computationally efficient due it to its slow
convergence for large systems. Instead we discretize eqn (19)
in time by using a Crank-Nicolson method. We then use the
same Newton-Rhapson method to solve for each subsequent
time step, and iterate in time until 0,Q is sufficiently small. We
have implemented this singular potential method in a new
finite element formulation, based on the framework deal.ii,
that allows for efficient paralellization. Large three dimen-
sional configurations can be efficiently studied at high resolu-
tion (in the scale of £). The Appendices provide additional
numerical details.

Boundary conditions in a finite domain need to be dis-
cussed separately. Given the variational derivative of the energy
S—(I; = g—{) — -%, we impose Neumann boundary condi-
tions by requiring that the normal component at the outer
boundary N-0f/0(VQ) = 0, where N is the outward pointing
normal. This reduces to the familiar Neumann boundary con-
dition on Q in the isotropic limit, but more generally, it is the
natural boundary condition to use for a fully anisotropic
system.

3 A single disclination in the Q tensor
representation

We present first the results of a high resolution numerical
study of Q for a single disclination in an elastically anisotropic
medium (L3 # 0). We show that the singular potential method
can quantitatively describe the biaxial core region around the
disclination, and that the stationary configuration reduces to
the Dzyaloshinskii solution away from the core where the
nematic configuration becomes uniaxial.

The thin film approximation for Q is used (Qy; = Qy; = Qi =
Qy = 0) so that the tensor is described by three independent
components, not just two as in a strictly two dimensional case,
and hence biaxiality can be accommodated. The xz, yz, zx, and

Soft Matter, 2024, 20, 2900-2914 | 2903
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zy components of the right-hand side of eqn (19) are manifestly
zero because A and Q can be simultaneously diagonalized,*
and 0,Q = 0. Hence, any configuration initialized in the thin
film approximation will remain as such without further con-
straint on the equation of motion. Additionally, the thin film
approximation restricts all eigenvectors to lie in the x-y plane
or along the z-axis. For a configuration with directors initialized
in the x-y plane, the only way for the director to escape into the
z-direction is for Q,, to become equal to the larger of the other
two eigenvalues, creating the so-called ‘“pancake” configu-
ration. This does not happen in our configurations, though a
clarifying visualization for how this manifests in the x—y plane
for disclinations can be found in ref. 33 Fig. 4.7.

The biaxial core region has been extensively studied in the
one constant approximation,*** and in a more general case
that included all possible terms in gradients up to second order
in Q.*® Strong biaxiality develops in the core region of the
disclination. For a Landau-de Gennes bulk energy, a purely
uniaxial configuration is shown not to be stable; although
uniaxial far from the core, the three eigenvalues of Q become
distinct as the core region is approached, and two of them
eventually cross at the disclination line.*® The core structure of
Q has also been recently characterized experimentally in lyo-
tropic chromonics,*" enabled by a large size of their core (tens
of microns). A biaxial region has been confirmed in the optical
retardance, albeit with a strong angular dependence due to
elastic anisotropy. This angular dependence of the retardance
has been shown to be in agreement with results of the singular
potential method.?

A stationary solution of eqn (19) in the thin film approxi-
mation has been obtained in a two dimensional circular

domain of radius R =20/v/2, with an isolated +1/2 discli-
nation near its center maintained by appropriate Dirichlet
boundary conditions on the outer boundary. We choose dimen-
sionless values of the parameters « = 8.0, L, = 4.58, Ly = 4.5. K
has been chosen so that the system is below the supercooling
limit as in the experiments of ref. 31 and simulations of ref. 29,
which corresponds to an equilibrium value of S to be S, =
0.6751. L; is chosen to be as large as possible while maintaining
numerical stability, while L, is chosen to maintain ¢ = 0.4
through eqn (15), consistent with ref. 29 and 31. The most
notable effect of taking a different ¢ value would be to change
the director profile far from the disclination core, as can be
seen from eqn (5). The effect of taking L, larger while keeping a
fixed ¢ value is to increase the higher Fourier mode amplitude.
The computational domain is discretized with quadrilateral
elements, initially with 12 cells. It is then globally refined 5 times,
1111
124816
the disclination center. Every refinement operation divides each
quadilateral cell into four children cells. Dirichlet boundary
conditions on Q assumed uniaxial are imposed on the outer
boundary with S = S,, and a director angle equal to the numerical
solution to eqn (3), with ¢ obtained from S,, L,, and Lj, via
eqn (15), and polar angle ¢ centered at the computational domain
origin.

and further refined at distances R =8, 4, 2, 1 from
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The director n and scalar order parameters S and P are
determined by calculating the eigenvalues and corresponding
eigenvectors of the Q tensor at each point in the computational
domain. This is done with the eigh method from the Numpy
numerical package, which calculates the eigensystem of a
symmetric matrix.>” We find that the stationary disclination
cores are located at (Xqisc, Yaisc) = (0, 0) and (0.868, 0) for the
—1/2 and +1/2 disclinations respectively. The quantity I'(i', ¢') =
(S — P) is computed as it is proportional to the optical retardance
in the experiments.>" Primed variables are polar coordinates
referred not to the center of the computational domain, but to
the actual disclination center (Xgjsc, Yaisc) defined as the location
where S = P. To probe the effect of anisotropy, an angular Fourier
transform is introduced,

ri, o) = Zl‘n(r’)cos(n(p’) (20)

The Fourier coefficients are calculated with the rfft real Fourier
transform method from the Numpy numerical package. The
cosine coefficients in eqn (20) are 2/N times the real part of the
discrete transform modes, where N is the number of grid points at
each r.%’

Fig. 2a and c¢ show the director angle 6 vs. the azimuth ¢’
plotted at several fixed distances from the disclination centers.
At large distances, the director angle approaches the Dzya-
loshinskii perturbative solution of eqn (3) calculated relative
to the domain center (as is appropriate for the boundary
conditions), but plotted as a function of ¢’ at several values
of r'. Explicitly, if 0p,(¢) is the solution to eqn (3), the solid line
in Fig. 2a is given by Opz(atan2(r' sin ¢’ + ygise, 1 €08 @' + Xdisc))
for r' = 10. For small values of ’ the director angle approaches a

1
straight line in the diagram, the isotropic solution 0 :§<p’ .

As 1’ increases, however, the angle tends towards the Dzya-
loshinskii uniaxial solution. In order to further probe the
biaxial core region, Fig. 2b and d show the two dominant
angular Fourier modes I',(r'). The figures also show a fit to a
power law with distance. The zeroth Fourier modes goes to zero
linearly, while the higher Fourier modes appear to decrease
quadratically as the disclination center is approached. The
determination of this dependence has been made possible by
the high spatial resolution of our numerical method. Neither
prior research nor the experimental work could make this
determination.

The singular potential method with L; # 0 predicts a
compact biaxial core, with amplitudes of the angular Fourier
components of I' vanishing faster with distance to the defect
center than the zeroth order component. Therefore the director
angle approaches g¢’ as is the case for an elastically isotropic
medium. Furthermore, the dominant dependence of the eigen-
values is also linear as the core center is approached, in
agreement with earlier isotropic results. Both results suggest
that the isotropic and linear core approximation is a reasonable
approximation even in anisotropic media.

This journal is © The Royal Society of Chemistry 2024
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Fig. 2 (a) and (c) Director angle 0 as a function of the azymuth ¢’ at various distances from the core for +1/2 and —1/2 disclinations respectively,

computed from the equilibrium Q tensor. The solid line is Opz(atan2 (i’ sin @' + yaisc, I’ €08 ¢’ + Xdise)) With Opz(@) the solution to egn (3) and (Xgisc, Yaisc) the
disclination centers. (b), (d) Angular Fourier decomposition of I' as a function of distance from the defect core for +1/2 and —1/2 disclinations
respectively. The insets shows the asymptotic behavior as the disclination core is approached. Pluses (I'g) and dots (I'y, I's) are points obtained from the
numerical solutions, dashed horizontal lines represent the long distance equilibrium values of S = Sg (and P = 0), and solid lines are fits of the form A(r')” +
B. Fit coefficients for the +1/2 disclination are A = 0.733, n = 0.996, B = —8.69 x 107> and A = 0.0392, n = 1.986, B = —4.23 x 107> for I'y and
I'y respectively. Fit values for the —1/2 disclination are A = 0.644, n = 0.998, B = —3.95 x 10> and A = 0.0253, n = 1.990, B = —3.26 x 10~/ for I'; and

I's respectively. We note that the data points shown in the figure are only a small subset as our numerical solution has a resolution of r & 0.002.

4 A disclination dipole

The complicating factor that remains, and to which we turn
next, is that in two or multi defect configurations, the tensor
field is not a superposition of configurations corresponding to
isolated single defects. Therefore it remains to be seen whether
interaction leads to a more complicated core structure in multi
disclination systems.

The Euler-Lagrange equations corresponding to the Frank
energy (2) in Cartesian coordinates read,

V20 = ¢[sin(20)(0,> — 0,> — 20,) + c0s(20)(0,, — O — 20,6,)]
(21)

Consider now a pair of disclinations a distance d from each
other, which are mutually aligned or anti aligned. We seek a
perturbative solution for the director field to first order in &.>%3°
The solution in the isotropic limit of ¢ = 0 can be written as

n
Oiso = q191(x,9) + 0295(x,¥) + 5 (22)
where ¢4, g, are the corresponding disclination charges, and we

have introduced polar coordinates (r;, ¢;) centered at each

This journal is © The Royal Society of Chemistry 2024

Fig. 3 Diagram showing a disclination pair in polar coordinates. Here
(ri, ;) are polar coordinates centered on the disclination with charge g;
and (r, ) are polar coordinates centered on the midpoint between the two
disclinations.

defect position (x;, ;) (see Fig. 3 for a diagram of the relevant
coordinates). The constant term rotates the director everywhere by
n/2, a transformation under which eqn (2) is invariant. For g, and
q, half integers of opposite sign, this solution and the corres-
ponding one without the constant term are so-called “isomorphs”,
characterized by whether the line connecting the two defects is
parallel or perpendicular to the far-field director. For example, with
¢1 = +1/2 and g, = —1/2, eqn (22) is the perpendicular isomorph.
By expanding 0(x, y) = Oiso(x, y) + €0c(x, ) + €O (¢*), and sub-
stituting into Eq. (21) we find a Poisson equation for the first

Soft Matter, 2024, 20, 2900-2914 | 2905
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order correction 0.:

2 — .
V20, = %sm&(l - 1)1 — 2q20,)

27
+_q2( . q2)

. sin(2(1 — q2), — 2q19;) (23)
2

=208 nf(1 — 21)00 + (1 - 202)0)

We point out that the other isomorph merely changes the right-
hand side - and therefore the solution - by a sign. In what
follows, we find an approximate solution to eqn (23) in various
regions which can then be compared against numerical results.

For concreteness, we choose g¢; = +1/2 and g, = —1/2. Near
one of the disclinations, (x4, ¥1), one may rewrite ¢, and r, in
terms of ¢, and r;. In this region, r1/d « 1 so that we Taylor
expand the right-hand side to find,

3 3 r
2 _ . . (1
V-0, s sing, + 8ar, sin2¢; + O (—d) (24)

A particular solution 02 can be found as given by

ry

3.
9{:" =—sin g, ~%d

) sin2¢, (25)

By comparing it with eqn (5), we note that the term indepen-
dent of r; corresponds to the correction for an isolated dis-
clination in an anisotropically elastic medium, while the term
due to pairwise disclination interaction is new and goes linearly
in ry close to g;. A similar calculation for the region close to ¢,
yields a particular solution,

r

5 .
0% = —sin3¢p, + 24d

36 (sin2¢, — sin4¢,) (26)

Again we obtain a term independent of r, which is identical to
eqn (5), and an interaction term which is linear in r,.

Finally, in the far-field, one may rewrite the equation to first
order in polar coordinates whose origin is midway between
the two defects (r, ¢). Expanding the inhomogeneous term in
dir « 1yields,

2
V20, = —i—f sin3¢ + ¢ <<,i) > (27)

A particular solution to second order is given by,
- d .
» = z,5in 3 (28)
,

The dependence on 3¢ and proportional to d/r at long distances
is unexpected. Consider the isotropic solution eqn (22), and
express it in terms of the midpoint polar coordinates,

ne o sin ¢
+ ¢p arctan 14

cosp — 5
’

d(q — q2) . d\?
= ((Ilzr(h)Sln(<ﬂ)+q1¢+q2w+0((r) )

0iso = ¢ arctan
cosp +=—
2r
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If g, + g, = 0 the constant terms identically vanishes (charges
mutually screen), and the dipolar term has the expected depen-
dence in d/rsing from a multipolar expansion. However,
anisotropic elasticity changes charge screening, and it intro-
duces a new term that, while also decaying as d/r at long
distances, has a different angular dependence.

A general solution which matches the particular solutions in
the inner and far field regions would also require the general
solution to Laplace’s equation. Far from the disclination pair,
one would have,

0 =% f’; sin(ng) (29)
n

The inner solutions include the components n=1,n=2,n = 3,
and (although much smaller in magnitude as we will argue
below) n = 4 components. Hence, we would expect those Fourier
modes to be present in the far field in order to match at the
near-field far-field boundary, giving an approximate far-field
solution of:

0 ~ 4 3 B

¢ g sin ¢+21Fs1nngo (30)
n=

We will not pursue this analytic expansion further. Rather we

will argue that this dependence is consistent with our numer-

ical solutions for weak elastic anisotropy shown below.

5 Numerical solutions for a
disclination pair
5.1 Director representation

Eqn (23) is a Poisson equation in which the source term is
singular at the location of the two disclinations. We have
modified a preexisting deal.Il library program to solve it.***!
The actual linear system is solved with the conjugate gradi-
ent method with Trilinos ML algebraic multigrid as a
preconditioner.”” As was the case with the Q tensor, we take
as outer boundary condition a zero normal component of the
configurational force, where here the configurational force is
0f,/0(V0) with f,, the Frank elastic energy density. Because the
solution is found perturbatively, the boundary conditions must
be specified order by order (see Appendix C, eqn (64) for
details). We solve on a circular domain radius R = 5500 and
defect spacing d = 60. These dimensions have been chosen to
correspond with the Q-tensor configuration solution shown later.

We also solve eqn (23) inside a modified circular domain
that excludes the singular points in its right hand side. We cut
out two small discs around each disclination, and impose
Dirichlet boundary conditions on the circumference of each
discs. For simplicity, we prescribe 0. = 0 on these internal
boundaries which corresponds to 6 = 6;, from eqn (22). We
choose the cutout radius r.ou: = 10 because, as evidenced in
Fig. 2c and a, an isolated disclination in the Q-tensor formula-
tion becomes uniaxial with approximately constant-S at
approximately r = 10. The choice of domain is motivated by
the comparison carried out below with a full numerical

This journal is © The Royal Society of Chemistry 2024
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solution in the Q representation with the same value of the
anisotropy parameter ¢. In the Q-tensor formulation, the
configuration with two disclinations is not stationary, and
hence allowing an unconstrained configuration relax leads to
disclination annihilation. This would prevent us from deter-
mining the constrained equilibrium configuration corres-
ponding to two immobile disclinations.

Fig. 4a shows a colormap of 0., both in the far field and near
field limits. Near the disclination cores one may clearly see the
n =1 and n = 3 mode contributions from eqn (25) and (26)
around the +1/2 and —1/2 disclinations respectively. The far
field appears to have six fold symmetry, consistent with a
contribution from n = 3. In order to quantify the contribution
from the various Fourier components to 6., we decompose the
far field numerical solution into angular Fourier modes,

0L(r, @) = Ay(r) sin(ng) (31)

and fit each mode A,(r) by a polynomial in 1/r, with a degree
consistent with eqn (30). For example, A4; is allowed to have
degree 1 and 3 in 1/r, while 4, is only allowed to have degree 2.
Fig. 4b shows the angular Fourier coefficients and the corres-
ponding fits. Both the n = 1 and n = 3 Fourier modes are
consistent with the prediction, while the n = 2 and n = 4 modes

—0.01

View Article Online
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deviate somewhat from the expected quadratic and quartic
behavior. The linear dependence of the n = 3 mode matches
the prediction from eqn (30) in both magnitude and sign.

The effect of adding cutouts to the integration domain
around disclination cores is to suppress the near field n = 1
and n = 3 mode contributions, as can be seen in Fig. 4d. This
reduction translates in the far field into a small reduction in the
magnitude of the n = 3 mode, and a noticeable reduction in the
amplitude of the n = 1 mode.

In agreement with the perturbative calculation of Section 4,
these numerical results show a different angular dependence of
the director angle that arises from disclination interactions in
an anisotropic medium. The n = 3 Fourier mode decays at the
same rate with distance as the n = 1 mode arising from the
isotropic solution, although it is a factor of ¢/2 in magnitude
smaller. Depending on the value of the anisotropy parameter,
this term could introduce a significant deviation relative to the
isotropic interaction terms, and must therefore be considered
in, for example, disclination ensemble dynamics in elastically
anisotropic media. Note also that the sign of the n = 3 far field
term changes under the transformation to a different disclina-
tion pair isomorph. Hence, it is possible that the effective
contribution from elastic anisotropy could be smaller in an
ensemble of defects containing a distribution of isomorphs.

() ' ' ‘ ' —
0.1r ‘_‘_‘;.'.-,-:"—"-" -
/.-‘"—“
s . . g
S 00“‘Lh~;~- i 2 . )
< ~~~~~\
T ~~~~ ]
—01f 0 "= S
—_—— =
—02p -+ n=4 1
0.0000 0.0025 0.0050 0.0075 0.0100
1/r
@ g1} | o
-/‘/-_T.‘.T-----------""
0.0 T < .
< ~~~~
< ===
...... n = \\Ns\
_01 S—-— N.= ~\~ 1
—_——— =
n =
0.0000 0.0025 0.0050 0.0075 0.0100

Loy

Fig. 4 Perturbation director contribution 6. corresponding to a disclination pair in an elastically anisotropic medium. (a) and (c) Colormap of 0. in the far
field (center) and magnified near field (left). The outer domain radius is 5500, while near field magnified region width is 125. Figure (c) has cut outs in the
solution domain of radius 10 around each disclination, with 6. = 0 fixed on their boundaries. (b) and (d) Corresponding lowest Fourier modes of 0. as a
function of 1/r in the far field. Curve fits are polynomials with degrees suggested by eqn (30), and are represented by solid lines.
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5.2 Q Tensor representation

With our choice of elastic terms, eqn (13), elastic anisotropy is
determined by the coefficients L, and L; while the Frank
elastic anisotropy is solely determined by ¢. Given eqn (14),
we focus on L, = 0 and find that L; = 0.3065 for ¢ = 0.1, a regime
in which eqn (23) should hold. We note that the results
are essentially identical for any other L, value, supposing
that L; is chosen to maintain ¢ = 0.1. This is because the L,
term in eqn (14) may be decomposed into gradients of the
scalar order parameters and director. Since the disclinations
are cut out, the scalar order parameter remains constant and
uniform. The contribution from L, to the director is to
introduce twist anisotropy which, in two dimensions, is mani-
festly zero. We consider a disc of radius R = 5500, defect
spacing d = 60, and defect cutout radius rcyeour = 10. The
Maier-Saupe constant x = 8.0, which corresponds to an
equilibrium value of S, = 0.6751.

Because of the large size of the computational domain, a
direct solution of the minimization problem (eqn (19) with
0,Q = 0) is difficult. We instead iterate eqn (19) in time until
a stationary configuration is reached. As initial condition we
choose,

Q(t = 0) = R(Gc)QisoRT(Gc) (32)

where R is a rotation matrix about the Z axis by angle 0.,
which is the numerical solution to eqn (23) with disclina-
tion cutouts fixed at zero. We define Q, = S(ri,r2)

1 2 2
Ais‘o Ai%o -1 ith ) = T -
(nA ® 1 3 ) with S(ry,r2) = So (1 o + g 3)

and n = [cos b5, sin B O}T. Fig. 5 shows 6. as calculated
from the Q tensor representation compared to 0. from eqn (23)
within the cutout domain. 0. is well-defined in this case
because the director remains in the x-y-plane, as has been
verified.

0.1

n
@
s}

T

=1
—-——n=2
=] Femsise g3,—3

n=4
0.0025

0.0050 0.0075  0.0100

1/r

Fig. 5 Dotted and dashed lines: far field angular Fourier components of
the eigenvector angle of Q for the largest eigenvalue (the uniaxial director
from Q). For the purposes of the comparison, the isotropic solution (22)
has been subtracted. Solid lines: numerical solution of egn (23) (in the
director representation).
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6 Isolated disclination motion far from
a dipole

To give a suggestion for a potential experimental avenue which
may be explored to verify the far-field dipole director profile, we
derive the equation of motion of an isolated disclination under
the influence of a dipole using the Halperin-Mazenko formal-
ism developed in ref. 43. The calculation is done in 2D, though
the results are similar to a previous calculation done in 3D.**
For this, we assume a disclination director profile of g¢p, and a
scalar order parameter which decreases linearly to zero at the
disclination core. Further, we assume that the director field of
the isolated disclination superposes with the ambient director
field created by the dipole, and neglect distortions to the dipole
profile that would arise from interactions with the isolated
disclination.

For a given ambient director angle field 6 produced by the
dipole, the velocity of a test disclination is determined by the
disclination density current which is derived in Appendix E.
For a +1/2 disclination, the defect velocity is

V' = (4 + 2L,)V 0 — 2Ls[cos(20)%+ sin(20)y]  (33)
with v+ = )X — O,¥, while for a —1/2 disclination, it is
Vo= —(4+2L,)V50 (34)

Because 0 is small in the far field, the contribution from the
L; term in eqn (33) gives a nearly uniform contribution to
the velocity in the —X direction for both the isotropic and
anisotropic parts of the dipole director profile. By contrast,
the first term in eqn (33) gives qualitatively different behavior
from these two parts. To see this, we calculate the following
explicitly:

vt (} sin(no)) = rlz(n cos(ng)f + sin(ngp)j) (35)

This field is plotted in Fig. 6 with n = 1 for the isotropic
contribution and n = 3 for the anisotropic contribution. For
an isotropic dipole profile, one would expect a disclination in
the upper half plane to move mostly in the azimuthal direction,
while the anisotropic dipole profile would tend to cause the
disclination’s path to fluctuate in the radial direction. We
speculate that this fluctuation is measurable, and should vary
linearly with ¢. A material for which ¢ is tunable, such as the
biopolymer suspension in ref. 44, could give a quantitative
measure of the magnitude of this fluctuation in e.

7 Conclusions

We have presented an analysis of the radial and angular
dependencies of the orientation order parameter around both
an isolated disclination and a disclination dipole in an elasti-
cally anisotropic nematic. In the former case, a singular
potential theory in the Q tensor order parameter representation
of the nematic shows that the order parameter approaches
isotropy near the core: the eigenvalues of the Q tensor become

This journal is © The Royal Society of Chemistry 2024
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\

1 1
Fig. 6 V0 calculated for 0 = ~sin(¢) (left) and 0 = ;sin(?)(p) (right). Color plot is normalized.

I

axisymmetric, in agreement with the elastically isotropic case.
We provide a scaling law which shows that the zeroth order
angular Fourier of the retardance goes to zero linearly with the
radial distance r/, while the next order Fourier mode decreases
quadratically.

For the case of a disclination dipole, we have presented
analytical perturbative solutions in the director representation
in the limit of weak anisotropy (small elastic constant ¢).
Solutions are given for the nematic orientation angle both near
one of the disclinations in the dipole, and in the far field.
Particularly noteworthy is the far field dependence in which the
n = 1 angular Fourier mode of the isotropic limit is supple-
mented by an n = 3 mode as a leading order term due to
anisotropy. The predictions agree very well with numerical
calculations in both the director field and Q-tensor representa-
tions of the nematic. We speculate that the difference in the
dipole director profile due to anisotropy can be experimentally
observed through the motion of a test disclination under the
influence of the dipole.
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Appendices

A Numerical method for an isolated disclination in the
director representation

The numerical solution of eqn (3), the one dimensional profile
of the director 6, as a function of polar angle ¢ is computed by
using the finite element framework deal.IL***' The equation
is solved by iteration with a Newton-Rhapson method on the
domain ¢ € [0,2n]. The endpoints are fixed at 0 and 2ng
to maintain azimuth continuity. The equation residual is

This journal is © The Royal Society of Chemistry 2024

defined as,
a0 |d% do  /do\?\ .
(36)
A Gateaux derivative is introduced,
dR(0)30 = ;,R(OJrASB)
A I
' (37)
d dso d
s (PO + (001 + ot o0
with
ple) =1—zcos2(0—¢)
do\* do
41((0) = |:(@) —4£+2 280082(0—(/)) (38)
do, .
9:(9) = a0 sin2(6—¢)
Also define:
2
43(¢) = [(%) —2] sin2(0— ) (39)
so that we may write the residual as:
d
R(0) ~dg (¢) = (a2(0) +43(0)) (40)
An iteration in Newton-Rhapson method then reads:
dR(07)50" = ~R(0")
(41)

O+l — o) 4500

with damping parameter o < 1. To solve with the finite element
method, we take the inner product with a test function # and

Soft Matter, 2024, 20, 2900-2914 | 2909



Published on 04 March 2024. Downloaded by University of Minnesota - Twin Cities on 9/16/2024 6:16:04 PM.

Soft Matter

integrate by parts:
(n,dR(0)30) = —(n,R

(0))
< ( (31_) i >+<’wl50>
- *< dl> (n,q2+43)
<§Z>pi—éf+%69> <§—Z,qzi—if>+<n,q159>
= <§_Z7p> — (M, g2+ q3)

The test functions are zero on the boundaries so that the
surface integrals vanish. Approximating 660 = 30;1; with test
- ;

(42)

functions #; given by piecewise polynomial Lagrange elements,
and enforcing eqn (42) for each test function y; gives a linear
system in 30;. We iterate until the L, norm of the residual is less
than some desired threshold. For the simulations run in this
paper, the domain is broken into 2'° evenly-spaced segments,
we use first degree Lagrange elements, and the residual L,
norm tolerance is set to 10~ '°. We use the UMFPACK direct
sparse matrix solver since, in one dimension at this size,
performance is not an issue.

B Numerical method in the Q-tensor representation

In order to solve eqn (19) numerically we also use the deal.Il
finite element framework.’>*! This library has the benefit of
implementing adaptive mesh refinement, as well as being
massively paralellization via MPI, allowing for very large scale
computations. To solve all linear systems in our implementa-
tion, we use the Trilinos linear algebra library via deal.IL.*> The
code developed is available in the GitHub repository.*® To
integrate eqn (16), consider that the variation of the free energy
is given explicitly by:

3F(Q,VQ) = dTF(Q+18Q7VQ+rV6Q)

de =0
:J {— 0+ )VSQ}dV
J 6 s )iedr <] aeg)sess
(13)

where fis the free energy density. Here we take v-9f/0(VQ) = 0
as a boundary condition which corresponds to zero normal
configuration force at the boundary. Additionally, to ensure
that 0,F < 0 always, we must take:

0 9 0

90U g T (44)

ot 90 o(VQ)
One may understand this as taking the time evolution in the
direction of the variation 8Q where the variation is chosen
to make OF negative definite. To simplify the exposition, take

2910 | Soft Matter, 2024, 20, 2900-2914
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79 = —9f/0Q and T ° = 9f/0(VQ). Finally, 7 = 7° + V-TV?. These
are given explicitly by:

L 1
T,? =xQ;— Ay — 73 ((&'Qu) (0,01) — g\akQ/mlzéij) (45)
2
k,j =00y + (&'ij + 0,0 — §31Q1k5fj) +L3010,0;
(46)

We note that the divergence is contracted over the k index.
To discretize eqn (19) in time, we use a Crank-Nicolson
method:

0-0 1
51 E(T+ To) (47)

where Q, and Q are the Q-configurations at the previous and
current timesteps respectively, 6t is the timestep, and 7 and T,
are evaluated at Q and Q, respectively. Because T is nonlinear,
we define a residual:

R=0Q~ 0y~ 3pi(Ty +T) (48)

To solve for the configuration when R = 0, we use a Newton-
Rhapson method. The Gateaux derivative then reads:

dR3Q = %R(Q +180,V0 +1V50)

=0 (49)

=80 —%dT Y

Explicitly, this yields:

(dTQSQ)U- = k8Qy; — dAy — L3((8:30k1) (8, Q1)

) (50)
+(aiQk1) (G/BQA’[) - g(alem)(ak8le)(Si/)

(dTvQSQ)k,-/- = 8k8QU + L, (&'Sij + @SQ,k) ( )
51
+2L3 (8010104 + 0r0150;)
where d4;; is given by:
d4; = i/l~-(Q+ 30)
=gl T Y

d 04 .
_4d 52
Lo +Ssore@] e

USQ/(
~ 90,

The Taylor series expansion of A about Q involves the directional
derivative in the direction of 6Q. Since Q and dQ are restricted to
the submanifold of traceless, symmetric tensors, this directional
derivative can be accomplished by differentiating A with respect
to the degrees of freedom of Q and dotting into the degrees of
freedom of 6Q. This set of degrees of freedom is arbitrary, but
we note that the space of traceless, symmetric tensors is five-

This journal is © The Royal Society of Chemistry 2024
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dimensional. Newton’s method then reads:
dR6Q = —R
0 — Q+adQ

where we indicate that the next iteration is updated by adding «86Q
with 0 < o < 1 some stabilization constant.

To discretize in space, we find the weak form of this
equation by taking the inner product with some symmetric,

traceless tensorial test function @:

(53)

<¢ydR SQ> = _<(D’R> (54)
Approximating 4Q in our space of test functions gives:

50 =) 80,%; (55)
7

where 6Q; are a set of scalars, and @; are a finite element basis.
Asserting that eq. (54) be true for a finite number of test
functions @; yields a finite linear system in 6Q;:

S [(#.47%,) - (V,.4T700,)]a0, = (#,7%) — (Y0, T°)

| (56)

Note that we have integrated by parts and taken the boundary
terms to zero, due to the zero configurational force condition.

In our actual simulations, we take the finite element basis
functions @ to be piecewise scalar Lagrange polynomials ¢(x)
multiplied by constant tensor basis elements X:

1 0 0 0 1 0 0 0 1
Xi=10 0 0 Xo=11 0 0 X3=10 0 0
0 0 -1 0 00 1 00
00 O 0 00
Xy=10 1 0 Xs=10 0 1
0 0 -1 010
(57)

In Section 5.2 we use this method with 8¢ = 0.1, and iterate
for 50000 time steps. The tolerance for the residual is an L,
norm of the finite element vector of 1e — 10. In Section 3 we
instead solve for 0Q/0t = 0 to find the equilibrium state. For
this, the zeros of T are found using a Newton-Rhapson
method, and the L, norm tolerance of the residual is 1e — 10.

C Numerical method for a disclination pair in the director
representation

Eqn (23) is a straightforward Poisson equation, so taking the
right-hand side to be g(x, y) we may write the weak form as:

<v¢yvgc> - <¢7n'vec>69 = _<¢r > (58)

where here ¢ is a test function, (,) is the L? inner product over
the domain, and {,)sq is the L* inner product over the boundary.

Because we cannot solve numerically on an infinite domain,
we seek a finite domain and boundary conditions which

This journal is © The Royal Society of Chemistry 2024
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correspond most closely with our infinite-domain analytic
solution. For both the Q-tensor and director model, we enforce
zero normal configurational stress:

of
NG =° (59)

where f'is the Frank free energy density. Explicitly, the config-
urational stress in an anisotropic medium is:

% = V0 +£C(0) (60)

where we have defined:

sin 20(0,0) + cos 20(,0)
C(0) = (61)
sin 20(0,0) — cos 20(,0)

To first order, the zero-configurational stress condition reads:
Vigo + VO, + 80(9150) =0 (62)
Order by order, we note:

0050 _ q12d sin(o) B q22d sin(o)
Or |,_p d*+4dRcos(p) +4R> d? — 4dRcos(¢p) + 4R?
(63)

where R is the radius of the circular domain. This goes as d/R?,
and so goes to zero in the limit that d/R « 1. The first order
anisotropic correction boundary term then goes as:

N-V0, = —N-C(0;s0) (64)

Given these two conditions, the zero configurational stress is
met up to first order.

For the finite element simulation, we use first order
Lagrange elements as test and shape functions, and solve
iteratively with the Conjugate gradient method with conver-
gence tolerance 10 ">, As a preconditioner, we use the Trilinos
ML Algebraic Multigrid method.

D Proof of perturbative solution for isolated disclination from
Dzyaloshinskii solution

The Dzyaloshinskii solution is given by:
0=¢ | 1 +gcos2x

= ——d> 65
\4 pL Vlerzacost v (65)

with p®> < 1/|¢| and is defined so that 0 is single-valued:

™ | 1+ ecos2x

=(q¢-Dp| /-—5 —5dx 66
m=(g )pJO 1 + p2ecos2x }y (66)

We will show that eqn (5) follows from eqn (65) given a
perturbative expansion eqn (4).
Taking u = 0 — ¢, (65) becomes:

o] 1 +ecos2x
= —_— 67
¢ pL\/l—i—pzscosbc * (67)
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Then the fundamental theorem of calculus gives:

do 1 +¢ecos2u
g - = 68
du p V 1 + p2ecos2u (68)

d Lo
For |¢| < 1 we have that d—(p;éO. If |¢| = 1 the solution is a step
u

function which is well-known and may be handled separately,
so we take |¢| < 1. Then the inverse function theorem gives us:

ol e
We may perturbatively expand 6 as:

0=qp+ el + (9‘(82) (70)
so that p is given by:

u=me+ 0, + @(62) (71)

with m = ¢ — 1. Then we may substitute into (69) and expand
to get:
do. 1 —mpipz—l
do e 2p

cos2ma¢ (72)

The solution is then:

l—mp  p*—
= ® 1

1
0. sin 2m¢ (73)
ep p

To find p we enforce that 0.(0) = 0.(2n) = 0. This yields:

r= (74)

Plugging this back in for 0. yields:

_q2-1)
BT

sin2(1 — q)o (75)
E Calculation of disclination velocity in the dipole far-field

For simplicity, we derive the disclination velocity using the 2D

Q-tensor:
Oun  On
0- { } 76
On —0n

A similar calculation was done in ref. 33 in 3D which reduces to
this result for the quasi-2D case.

The elastic free energy is as in eqn (13). Because Q only has 2
degrees of freedom, we may introduce a complex phase-field
defined as:

W = Quq + iQy, = Se™! (77)

with S the scalar order parameter and 0 the director angle.
Additionally we introduce a complex derivative:

0: = 5(0x — i0,) (78)

as well as iy and 9; the complex conjugates of the phase field
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and complex derivatives respectively. The elastic free energy
may then be written as:

For = 2Ly | V| + 4L, |0 | + 4L3[y(04)(@4)) + v(B2h)(O))]
(79)
with |-|* the complex square and |Vy/|* = 0,40,y + d,yd,). The
time evolution is given by the negative of the variational
derivative of the free energy. To determine the disclination
velocity, we only need the contribution from the elastic part of
the free energy:
8Fel
Sy

= (44 2L2)0.000 + 2L [ (029) + ¥ (024) + (0’|
(80)

where we have nondimensionalized according to eqn (18).
The disclination velocity as calculated in ref. 43 is given by:

V=

(81)

X=X(
with J the disclination current defined to be:
J= atl/;az‘// - @,lﬁazlp, (82)

q the disclination charge, and x, the disclination position.
A test defect of charge g = +1/2 which is embedded in nematic
orientation field 6(z,Z), the  field near the disclination center
at z = 0 may be parameterized as follows:

V=) e, (83)

in the assumptions that: (i) || decays linearly to zero at the
defect core, (ii) the test disclination director profile is as in
the isotropic case (i.e. g¢), and (iii) the director profile of the
disclination superposes with the ambient orientation field.
Under the first assumption, terms which involve only gradients
of Y survive, while terms involving ¥ alone - such as the bulk
free energy - vanish at the disclination core. This calculation
reveals the leading order effect of anisotropy on the disclina-
tion motion. In general, the disclination current is given by:

J = (4 + 2L2) [(6585’;)65[# - (azaflp)a_?&]
., B (84)
121, [(afz//) O — (azlp)zafl//]

Evaluating the parameterisation for g = + 1/2 from eqn (85), we
find that  ~ ze*”, such that the corresponding disclination
current becomes:

Jz=0) =[—i(8 + 4L,)0:0 — 2L;e™%),-, (85)
which, in real coordinates, is equivalent to

JO @ =0)= (4 +2L,)V*0 — 2L5[cos(20)&+ sin(20)§]| o

(86)
with V* = 0% — 0. In polar coordinates it reads:
1
V40 = ;%f ,%@ Similarly, for ¢ = —1/2, eqn (83) reduces
to  ~ ze*”, which leads to the disclination current:
Je=0)= (4 +2L5)V " 0o, (87)

This journal is © The Royal Society of Chemistry 2024
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Changing coordinates to correspond with Fig. 3 the first term of
the disclination current may be represented as:

1
1 ~ . A
V=0 ~ r—z(n cos(ne)r + sin(ne)p) (88)
with n = 1 for the isotropic contribution and n = 3 for the
anisotropic contribution.
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