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A path-independent measure in order parameter
space is introduced such that, when integrated along
any closed contour in a three-dimensional nematic
phase, it yields the topological charge of any line
defects encircled by the contour. A related measure,
when integrated over either closed or open surfaces,
reduces to known results for the charge associated
with point defects (hedgehogs) or Skyrmions. We
further define a tensor density, the disclination
density tensor D, from which the location of a
disclination line can be determined. This tensor
density has a dyadic decomposition near the line
into its tangent and its rotation vector, allowing
a convenient determination of both. The tensor D
may be non-zero in special configurations in which
there are no defects (double-splay or double-twist
configurations), and its behaviour there is provided.
The special cases of Skyrmions and hedgehog defects
are also examined, including the computation of their
topological charge from D.

1. Introduction

The study of line defects in three-dimensional nematic
phases, known as disclinations, has gained considerable
interest recently following advances in both experi-
mental diagnostics and computational methods [1-6].
Disclinations and their motion have found applica-
tions in microfluidics, colloidal self-assembly, surface
actuation, optical control and active and biological
matter [7-16]. Recent theoretical research has also
advanced our understanding of disclinations, including
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measures of their topology and geometry, as well as analytical results for disclination kinemat-
ics [17-21].

The well-established definition of the topological charge m of a disclination in two-dimen-
sional nematics can be expressed as a function of the director angle ¢, the director 1 or the
tensor order parameter Q [22], as

1
m= ﬁﬁakcﬁ dly, (1.1)
1 AR
=5 Cs,wn# iy A, (1.2)
1
= mﬁ*gp{vQﬂaakaadEk/ (1.3)

where repeated indices are summed over, and C and C* are closed curves encircling the defect,
but the latter is restricted to a path far from the core in which the scalar order parameter S = Sy
is constant. ¢, is the Levi-Civita tensor in two dimensions. Stokes’ theorem may be applied
and the line integrals transformed to surface integrals over surfaces bounded by curves C or C*.
The integrands of these surface integrals may then be regarded as locally defined ‘densities’,
carrying information about the topological charge. For the case of the singular quantities ¢ and

n, these densities are Dirac delta functions located at cores of defects. For the case of equation
(1.3), this density is a diffuse scalar field with maxima or minima located at defect cores.
Generalizing equations (1.1)—(1.3) to three-dimensional disclination lines has not been
possible due to several added complications. First, the topology of the ground-state manifold
is different between two- and three-dimensional nematics. The ground-state manifold in three

dimensions is the two-dimensional real projective space RP?, which is not isomorphic to the
unit sphere, and is non-orientable. This space is equivalent to a hemisphere in which all
points on the equator are identified with their polar opposites [23]. This results in all line
disclinations having a topological charge of +1/2, and any two disclinations that come into
contact will annihilate [23]. This is in contrast with two dimensions. There, the ground-state

manifold is R[P’l, which is isomorphic to the unit circle S'. Disclinations in two dimensions can
have positive and negative charges, and they combine according to well-established rules. An
invariant measure of charge can be readily defined in two dimensions from closed paths on the
circle, equations (1.1)—(1.3). In three-dimensional space, two angles are needed to describe the
director orientation. With this added dimensionality, equations (1.1)—(1.3) do not have a direct
generalization as a continuum of circuits can be constructed encircling a disclination that leads
to a different length in order parameter space. An extension of these expressions to paths on

RP? has not yet been given, and it is the subject of our work below.

Second, the geometric structure of disclination lines in three dimensions is quite complex
as they can be of wedge, twist or mixed type [13,22]. Disclination interactions and motion are
governed not just by their topological charge but by their geometrical structure as well. It is well
established that the geometry of the disclination line can be characterized by a single vector,

A
the rotation vector Q: the director and its distortion in the vicinity of the disclination lie on the

plane defined by Q. Note that & itself may change along the disclination line.

Finally, three-dimensional systems allow biaxiality, and they are commonly described by
the tensor order parameter Q. Although Q relieves some of the representational issues that
the director has, it is a more complicated object with its distinct order parameter space and
topological classes. In the vicinity of a disclination core, nematic configurations become biaxial
in three dimensions, and Q does not go to zero at the core [1,24]. Results involving Q are
presented below, but restricted to paths in real space in which the order parameter remains
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uniaxial. This is the case for distances away from the defect core larger than the coherence
length of Q.

In recent work [20], we introduced a tensor density D, function of either the director n or
the tensor order parameter Q, which is non-zero near disclination cores, but also near some
non-singular textures. The formula yielding D in Ref. [20] is based on a path integral for the
arclength of the corresponding curve in order parameter space. However, the integral given
is not a topological invariant, and therefore does not generalize equations (1.1)—(1.3).! Despite
that the path integral in Ref. [20] is not an invariant, the measure D is still useful in locating
and characterizing disclination lines. It can also be related to the Jacobian of the transformation
between real space and order parameter space, and leads to an exact kinematic law relating the
velocity of a disclination line and the time derivative of the order parameter Q [21]. Therefore,
a clearer connection between D and an invariant measure of the charge is desirable both
mathematically, and for practical experimental and computational applications. Such a precise
connection is the subject matter of the present paper. Furthermore, since the density D may be
non-zero for nematic textures that do not contain disclination lines, we also investigate below
the properties of D for such textures.

In this work, an invariant measure is introduced such that, when integrated along any
closed contour in a three-dimensional nematic configuration, it yields the topological charge
of any line defects encircled by the contour. Such an invariant measure differs from previous
constructions in that either the director or Q-tensor may be used in its computation. We further
show that the tensor density D already introduced in Ref. [20] may be derived from this
invariant measure, and discuss under what conditions D may be non-zero away from disclina-
tion lines, but still yield an invariant integral. Our results generalize equations (1.1)-(1.3) to
three dimensions, and provide an expression to compute the topological charge within a region
of a three-dimensional nematic. We note that the measure presented here is different from the
one used in Ref. [20], since the integral computed there is not a topological invariant.

Additionally, we explore cases in which D is non-zero in configurations that do not contain
disclinations. For example, double-splay and double-twist nematic distortions generally give
non-zero D. We also extend our analysis to Skyrmions and point defects, both of which have
had a long history of research and are of current interest for applications involving the design
of unique meta-materials, colloidal assembly and electroosmotic control of biomaterials [25-31].
We show that D may be used to compute their topological charge, and to identify them, even as
the structure of D differs substantially depending on the topological object under consideration.

2. Aninvariant measure of disclination charge

We introduce a mathematical construction that generalizes equations (1.1)—(1.3) to three
dimensions, where the topological charge of a disclination line is always +1/2. We thus seek
to construct a path integral in order parameter space that equals either 0 or , modulo 2, for
any corresponding closed circuit in real space. To accomplish this, we construct a path integral
on the unit sphere that always gives the geodesic distance between the endpoints of the path,
and hence is independent of the path chosen. For closed curves, this calculation results in either
0 or m modulo 27t since closed curves in real space map onto either closed curves or curves with
endpoints at opposite ends of the equator in order parameter space.

Given a path in real space, we may map the director along the curve to points on the unit

hemisphere, ﬁ(s), where s is an arclength parameterization. The quantity ﬁ(s) x dﬁ(s) gives the
rotation of the director about the axis projected onto it [32]. Hence, the corresponding element

2
of length of a curve in order parameter space is ds? = Iﬁ(s) x dﬁ(s)l . However, we do not seek to

'We thank Jonathan Selinger for pointing this fact out to us, and for providing the counterexample involving double-splay
and double-twist.

Y9S06207 108k / 205 3 204g edsy/jeuinof/bio-buysyqndaapos(efos



Downloaded from https://royalsocietypublishing.org/ on 16 September 2024

compute the length of the given curve, but rather the geodesic distance between its endpoints.

We first fix a reference point along the curve defined as n(0) =n". Then, at each point along the
curve, we define the unit vector

_A(s) x Tocls)

N(s) = 270
In(s) x Tgc(s)!

(2.1)
where '/I\‘GC(S) is the tangent vector to the great circle defined by the current point ni(s) and the

fixed point n. Projecting this into n x dn gives

Toc(s) - dh(s)

A A = dg(s), 22)
In(s) x Tge(s)!

M(s) - [A(s) x dfi(s)] =

where we have introduced the notation ¢(s) to indicate the geodesic distance between n" and
n(s).
To explicitly compute [ dg, we define the unit vector

V(s) = a(s)h" + b(s)A(s), (2.3)

where a(s) and b(s) are determined by requiring that {\f(s) .0 =0. Given, n" and ﬁ(s), this can
always be achieved via the Gram-Schmidt procedure. Then, the curve

A Ak AN
W(t,s) = costn +sintV(s), (2.4)

parameterizes the great circle on the unit sphere passing through both n" and n(s) for any s. In
particular, we have that \%/(t*(s), s) = ﬁ(s) for t*(s) = —arctan[1/a(s)]. With this parameterization of

the great circle, equation (2.2) may be written as

de(s =—dVAV/d"Ad‘A‘/dS ds. 2.5
(s) 1A xdW/dtl | t=r*s) @3

Substituting the definition (2.4), and integrating over the curve, one has

_ ¢ BO)-dh/ds 5 _ . B -dn
ke ds(s) = g oramr B = eramar (2.6)
Note that
Vix =0, 2.7)

where Vj denotes a derivative in order parameter space, a result that can be proved by direct
substitution in spherical coordinates. Therefore, ds is an exact differential on the hemisphere.

If the curve C in equation (2.6) does not cross the equator of the unit sphere, the integral
is zero because ds is an exact differential and the curve starts and ends at the same point.
On the other hand, if the curve does cross the equator then, since the integral is independent
of the path, it will be equal to 7 as this is the result for the shortest path joining the two
points. In general, ™ must be added to the contour integral for each time the equator is crossed,
because this is the length of the arc of a great circle connecting the two identified points on
the equator. A subtle point here is that if the equator is passed an even number of times the
measured configuration in three dimensions is topologically equivalent to a configuration with
no disclinations. This is not represented by our measure since we are representing the ground

state manifold (RP?) with vectors, and so we must impose that the resulting calculation is valid
modulo 27t
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$c ds(s) € {0, 1} modulo 2. (2.8)

This is our central result concerning a path invariant measure on RP?. This result (which
originates from equations (2.6) and (2.7)) differs from eqn (3) in Ref. [20].

The construction is graphically illustrated in figure 1 including the cases $ dg(s) equal 0 or
7t depending on whether the curve does or does not pass through the equator. Note that the
curves in both figure 1b,c are considered closed curves in the nematic order parameter space.
Appendix A shows the analogous construction of a path integral in Euclidean space, such that
the integral gives the distance between the two endpoints of any path connecting them. This is
provided to give some context and clarity to the above mathematical construction and proof.

We may summarize our result for the charge of a disclination in the following way in terms
of the measuring circuit in real space

m = 95]\//}},Eyuvfz\u6kr/1\v dl, modulo 27, (2.9)
c

m = Sizgsc* ]\l/}},s},WQWOkQW dt, modulo 2m,
N

where we have used the identity S,zv(ﬁ x Vﬁ) =Qx VQ for a uniaxial nematic with constant
S = Sy. These results are independent of the circuit chosen.

It is interesting to note that as a measuring curve C encircling a disclination line is taken
to be smaller and smaller, the resulting curve on the ground-state manifold itself approaches

N A
a great circle. In this limit, the vector M becomes identical to the rotation vector €, which
describes the plane in which the director lies close to the disclination line in its normal plane.
Finally, we give an explicit example of computing equation (2.6). Consider a straight

AN
disclination line such that the rotation vector Q changes along the line. Since the line is straight,

the director in each normal plane is given by:

A A AL
n =nycos £ +nysin %, (2.10)

N
where {I/'\lo, ﬁl, Q} is an orthonormal triad, and ¢ is the azimuthal angle in the normal plane
to the disclination. Let the disclination lie along the z-axis and let the explicit form of

A A . A L A A A A . A .
Q(z) = ysin z + zcos z with ny = X so that n;(z) = —zsin z + ycos z. Now, consider two curves that
encircle the disclination:

71(t) = (cost,sint,0), 0<t<2m

()= (cost, sint, t), 0<t<m
n (cost,sint,2m—t), m<2m.

71 is a circle in the normal plane of the disclination, while y, is a piecewise differentiable curve
that tilts out of the normal plane. The director along y; is given by (t) xcos(t/2) +ysm(t/2)

and we choose A" = A(0) = X. Along this curve, the integral equation (2.6) is given by:

J‘Z” n dn/dt ZJ‘M sm(t/Z)

-,
0 A xnt)l sm(t/Z)

which is © modulo 2m as expected. The director along the second curve is given by

ﬁ(t) xcos(t/Z) ycost F Zsint 1sin(t/2), where the minus applies from 0<t<m and the plus
applies from 7 §lt; t < 2m. A similar calculation to the first curve yields

Tn" - dn/dt 2 " . dn/dt ™ sin(t/2) 27 sin(t/2)
I Ak A di + A A t= 2 sin(t/2) = 2 sin(t/2) !
0 |Il x Il(f) | T |n x n(t) | 0 SlIl( ) e Sll"l( )
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(@) (b) , ()

Jo I x dii| = C arclength LM . (3 x dit) = 0 LM . Gix dit) = =

J.M . (i x dit) = AB distance
Figure 1. lllustration of curves in nematic order parameter space and corresponding path integrals. (a) Curve C connecting
two points A and B | nxdnl. I Inxdnl gives the arclength of contour C, while ICIOI . (ﬁ x dﬁ) with IOI

given by equation (2.1), gives the geodesic distance between A and B. The dashed line shows the segment of great circle
defined by A and B, the length of which gives the shortest distance between the two. (b) A closed curve C which does not

pass through the equator. In this case, fClOI . (ﬁ x dﬁ) = 0. () A closed curve C which passes through the equator. In
this case, ICIOI . (ﬁ x dﬁ) =T

where the integral is split along the two differentiable pieces of the curve.

The above example illustrates two useful features of the invariant integral. First, particularly
in non-equilibrium settings such as flowing or active nematics, the rotation vector may vary
along the curve [13,14]. In this case, any curve that encircles the disclination will still meas-
ure the correct topological charge of the disclination. Second, the curve chosen need only be
piecewise differentiable, allowing potentially more convenient choices of measuring curves,
particularly if the integrals must be performed numerically.

(a) The disclination density tensor D

Equation (2.9) may be used to locate disclination lines in a configuration. In practice, however,

it is complicated to compute M for various circuits C. Additionally, many curves must be
constructed to completely locate the line. Therefore, just as is done in two dimensions, we
construct a density by applying Stokes’ theorem to equation (2.9). The curl of the integrand of
equation (2.9) is given by:

N A A AN A A A A A AN A A
zikgak(Mys},Wn #agnv) = sikgs},ﬂv|bkMyn Oy, + MyOkn Ogn, + Myh ”aka{nv], (2.11)
N N N N
61k V10 Qud Qi) = iy My Quade Qo + My Quedi Qo + My QuadidiQoc, @12)

where the derivative of M may be computed by extending its definition to a family of curves
that cover the surface of integration. In general, there are three terms that must be integrated
over the Stokes surface when computing the charge. If we consider the integrand near a
disclination line, however, the expression simplifies significantly.

AN
Near a disclination line, M — O and the director is given by equation (2.10). Direct substitu-
A
tion of equation (2.10) into equation (2.11) gives Eyﬂy;l\ﬂaz;l\v =(1/2)Q, 0,9, and so the first term
JAN JAY
on the right-hand side of equation (2.11) goes to zero, since €),0;Q, =0, while the second

term also goes to zero, since Eikgs},wbkr/z\ﬂagﬁv =0 forn given by equation (2.10). This leaves the
third term as the only non-zero term for disclinations which gives a delta function due to the
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singular nature of the director at the core of the disclination. We note that there are nematic
configurations in which the term sikgsywakﬁ u a,ﬁv is non-zero. We explore a few cases in §4.

On the other hand, if the Q tensor representation is used and equation (2.12) applies, a linear
core approximation may be used for Q near the core [19,20]:

A
Vi-r

1 1A A 1’1\0-1*(/\
2a

Q:SNEI—§Q®Q+ n0®ﬁo_ﬁl®ﬁl)+

(Ao ® 0y +1; @ )|, (2.13)

N
where {1’1\0, 1’1\1, T} are an orthonormal triad describing the orientation of the disclination line, and
a is the radius of the disclination core. Substituting equation (2.13) into equation (2.12) gives

N
€ Qa0 Qo = S%,Q},Ag, where

N A
V0 TA V1'TA

A= YV ——57p.
242 1 242 0

Thus, the first term on the left-hand side of equation (2.12) is zero when IOI - 6. for the same
reason as above. Furthermore, the third term in equation (2.12) is always zero, regardless of the
nematic configuration, since Q is a non-singular quantity. This leaves the second term on the
left-hand side of equation (2.12) as the only non-zero term.

The simplification of equations (2.11) and (2.12) near a disclination core leads to the
following definitions:

A A Ay
M - D® = M, ciid(gy,1,001,), (2.14)
v D@ . v
M-D™:= Mygyuvgiki akaoc 0 Qe - (2.15)

The tensor field D, written in terms of either n or Q, thus contains spatial information about
disclinations. Its definition here coincides with eqn (9) of Ref. [20], in which the properties of

D were explored for various disclination configurations. We note that the definition of D™ is
written to include both the second and third terms on the right-hand side of equation (2.11), so

that D('A’) may be used for both point defects and Skyrmions, as explored in §4.

It is important to point out that the first term on the right-hand side of equations (2.11) and
(2.12), while zero at disclination cores, is not zero in general. As a consequence, a non-zero
density D could point to a spurious topological singularity where there is none. Away from

defects, where it is possible IOI # ﬁ, this term may be non-zero. This is the case, for example,
in double-splay or double-twist configurations [33,34]. Since a double-splay or double-twist
configuration is not a disclination, the integral in equation (2.9) must give zero, and so this
term must also integrate to zero. That D itself is non-zero for these special configurations (and
perhaps others) is an interesting result, and more work is needed to fully understand it. It is
likely due to the fact that D is related to the Jacobian of the transformation between areas in
configuration space and areas in subspaces of order parameter space. Real space patches of
double-splay and double-twist configurations, for example, can be mapped to patches on the
unit sphere. In §4, we explore some of the properties of D for nematic configurations containing
double-splay or double-twist.

3. Properties of D at disclinations

For completeness, and to give context for the results presented in §4, we briefly review some of
the properties of D for a disclination core [20]. For a disclination core located along a curve R(s),
we assume the director near the core is given by equation (2.10). Substituting equation (2.10)
into (2.14) gives

!
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D®(r) = n[r - R] (fz ® f), G.1)

so that D™ is zero everywhere except the disclination core. On the other hand, if equation (2.13)
is inserted into equation (2.15), we may approximate D near the core as

2
DQ(r - R) = %(6 ® %) . (3.2)

Near the core where equation (2.13) holds, ID@] is constant; however, as one moves further
from the core, the linear approximation fails to hold and instead Q smoothly interpolates the
core region to the constant S = Sy region [19,24]. In this latter region, D=0 and so ID(Q)(p)I,
where p is the radial cylindrical coordinate, smoothly goes from the constant given in equation
(3.2) to zero. We show this for an equilibrium disclination line configuration in figure 2. The
disclination line configuration was computed using the finite element MartLaB/C++ package
FELICITY and a gradient descent algorithm to minimize the free energy [3,35].

Equations (3.1) and (3.2) show that the tensor D yields both the location and the geomet-
ric character of the disclination line from either n or the tensor Q. This result is useful for
both experiments and numerical computation to conveniently locate a disclination line and to

AN AN
determine its local geometric character. One may extract Q and T from D by computing the

A
non-degenerate eigenvectors of DD’ and D'D, which give Q and ’/I\‘, respectively [20].

4. Properties of D for configurations not involving disclinations
(a) Point defects

In three-dimensional nematics, point defects are also topologically allowed. These objects
manifest as point singularities in the director field, and, like disclinations, feature long-ranged
distortions of the nematic. The charge of a point defect may be measured by a surface integral:

1

N N N
- ﬁSégny(gy,wsi,daknﬂa,znv) dz, 4.1

m

where the surface of integration 9( is a closed surface, and hence a boundary of a volume Q.

The term in the parentheses is precisely D@ defined in equation (2.14), and thus we may write
the charge as

m= %f@@ﬁ\yD;,?) le . (42)

Similar to the construction of the charge for a disclination line, we may generalize equation (4.2)

to use the Q-tensor instead of ﬁ, resulting in

_ 1 A Q)
- Sns%vgéu*nyDyi ds, (4.3)

where 0Q)* denotes a surface such that the scalar order parameter remains constant, S = Sy. The
integrands of equations (4.1) and (4.2) are similar to the quantity used to identify disclinations,

N A
equations (2.14) and (2.15), except that nis projected into D instead of M. Thus, we expect p®

and D9 to be useful in identifying point defects as well.
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Figure 2. (a) Nematic profile of a cut through the normal plane of a wedge disclination, numerically computed using a

Q-tensor representation. The colour indicates the scalar order parameter, S. The white lines show the local director n
(b) Numerically computed spatial profile of IDQ] for the disclination. (c) Plot of ID(Q)(p)I extracted from (b).

The properties of D™ and D@ for point defects are different because of the director

singularity. As an example, we compute p® explicitly for an ideal ‘radial hedgehog’ point

defect with fi = F:
h_ 2 2 (A

p® = 7(? ® ’f) = —2(n ® r) (4.4)
where the second equality is written as a conjecture for a more general decomposition of
D for a point defect. Equation (4.4) shows that the tensor p® diverges at r =0, where the
director singularity occurs. More interestingly, while ID®)| decays rapidly, it does not go to
zero at some finite distance. A plot of ID('A')(r)I is given in figure 3d. This behaviour is strikingly
different than in the case of a disclination, in which ID®| d(r) [equation (3.1)].

The decomposition of D® for disclinations into tangent and rotation vectors does not hold
for point defects, as can be seen by comparing equations (3.1) and (4.4). We further probe the

suggested decomposition in equation (4.4) by computing D® for a negative hedgehog point
A
defect in which 1 = —cos 26F + sin 268. In this case,

B _ 2 . A 2 (A
D™ = F[COS 29(’15 ® ,f) —sin 26(6 ® ?)] = - —2(n ® r) (4.5)
hence the charge of the defect is reflected in the sign of D('A'), and the conjectured decomposition
holds. We note that we have used here the convention that a positive hedgehog is one such

that n =+ pointing outward. However, the sign of D(ﬁ) changes if 1 — -1 and so too will the
measured charge, as reflected by equation (4.1). This ‘local-to-global” problem is discussed in
more detail in Ref. [23].

If we instead compute D' for a point defect, there is no longer a divergence at the defect
core. This is because Q — 0 at the defect core to alleviate the diverging elastic energy, as shown
in figure 34, in which we have numerically computed the structure of a radial hedgehog defect
by using the finite element MaTLAB/C++ package FELICITY to minimize a free energy in terms

of Q [3,35]. However, asymptotically Q ~ 1 at the core of a point defect [36,37], and so DY 0.
Thus, apparently, the topological information is lost at the core of the point defect. We have

computed DY from the hedgehog profile in figure 34, which is shown in figure 3b,c. We find

IDQ| ~ 12 close to the defect core, while ID@Q| ~ 1/#2 far from the defect core, where S is
constant, as shown in the inset of figure 3c. This behaviour is a major difference from the case

of disclinations in which D'Q is finite within the core region, and largest at the disclination
core (figure 2). This apparent loss of topological information may be explained by the fact that

YOS0E707 :08% I 205y 20igedsy/eunol/BioBuiysjqndizaposyefol



Downloaded from https://royalsocietypublishing.org/ on 16 September 2024

© 04 y
_ 0.1 Nr_\
DQ| & 02 Ve |
036 Q01 s
0
0 1 2 3 4 5
@ ’
5
2 05
0

0 1 2 3 4 5

,
Figure 3. (a) Nematic profile of a cut through a radial hedgehog point defect, numerically computed using a Q-tensor
representation. The colour indicates the scalar order parameter, S, with S — 0 at the defect core. The white lines show the
local director 1. () Numerically computed spatial profile of | DQ| for the hedgehog point defect. (¢) Plot of ID(Q)(r)I

extracted from (b). Inset: Same plot on logarithmic scaling axes. (d) Plot of ID(ﬁ)(r) |, given by equation (4.4). Unlike
IDQ|, ID®)| diverges at the point defect core.

the full-order parameter space for Q is biaxial, and does not support point defects [38]. Hence,
a point defect in the Q-tensor representation may dissociate into a biaxial disclination loop.
Outside the core, when S = Sy is constant, we still have IDQ| ~ 1/¢? and so equation (4.3) still
holds, since we only consider surfaces in which S = Sy throughout the surface.

Finally, because the surface integrated over in equation (4.1) is closed, one may ask if a

topological charge density akin to D for disclinations may be defined. Applying Gauss’ law to
equations (4.2) and (4.3) yields:

1 A
m= ﬁani(ﬁyD;‘,.‘)) av, (4.6)
_ AN (0)]
s Q*ai(nypyi )dv. 4.7)

The integrands of the above equations act as effective point defect densities. For the positive
and negative hedgehogs computed above, the density is V - (ﬁ . D('A’)) x (r) as expected. On the
other hand, V - (ﬁ . D(Q)) is a diffuse scalar field that is still zero at the core of the point defect,

but non-zero in the region surrounding the core in which Q is varying.

(b) Double-splay and double-twist

The tensor D may also be non-zero in specific configurations that do not contain a topological
defect, for example, in configurations with double-splay or double-twist distortion. We can
explicitly calculate D in this case by considering n = cos kp/z\ +sin kp/’a\ in cylindrical coordinates.
This is an ideal ‘double-splay’ configuration where the director is splayed in both directions,
and k characterizes the inverse length scale of the distortion (see figure 4a for an example of
double-splay in a splay-stabilized Skyrmion). A double-twist configuration can be obtained by

A A
replacing p— ¢ in the equation for 1. The tensor D™ is:
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Figure 4. (a) Director field associated with a circular, splay-stabilized Skyrmion of radius 7t. (b) Spatial profile of | D1 for
the Skyrmion. (c) ID(p) | given by equation (4.13).

A .2 .
D(n) - 2k51,r; kp (;\’ ® 2) + 2kcosl;psmkp (% ® %) ) (48)

Since the double-splay configuration is characterized only by a director deformation,

D= SIZVD(‘A‘). This holds for any configuration in which S =Sy is constant. Thus, for double-
splay and double-twist distortions, D # 0.

On the other hand, computing the charge defined in equation (2.9) by integrating along a
curve around the double splay configuration will yield zero, since the curve does not encircle a
disclination. We may show this explicitly by computing the loop integral for a circle of radius p

with k = mt. Using n =cos np% +sin np)’é, the charge integral is

—tan mp

7

1
sin ¢ dg _0 e#
\/2 -2cos ¢ +sin’ ptan’mp |21 p=

N = |

4.9)

which is always zero modulo 27t as expected. The charge defined in equation (2.9) along
any curve C is zero in this configuration. This is because the corresponding curve in order
parameter space will either not pass through the equator, or will do so an even number of times
giving zero modulo two. As is well known, it is possible to continuously remove the distortion
of this configuration to yield an undefected configuration.

Despite the existence of regular configurations with non-zero D, the tensor as defined is still
useful to locate true singularities in both experiments and numerical computations since local
relaxation can quickly remove large but regular distortions in systems in which the free energy
penalizes them. Nevertheless, there are several liquid crystal systems that do support double-
splay and double-twist distortions energetically. These are primarily cholesterics, in which
the nematogens break chiral symmetry and in turn support spontaneous twist deformations
[22]. These systems have been shown to exhibit spontaneous double-twist regions separated
by disclinations, known as ‘blue phases” [39,40]. Additionally, and more recently, lyotropic
chromonic liquid crystals have been shown to exhibit spontaneous double-twist configurations
in confinement [41-43]. Further, topological defects other than disclinations may exhibit regions
of double-splay and double-twist. For example, in liquid crystals that have a strong response
to external fields, topological defects known as ‘Skyrmions’” may form when an external field
is introduced [27,31,34]. These defects are not disclinations, and instead share properties with
Skyrmions in magnetic systems [44] and contain double-splay or double-twist configurations.
We explicitly explore the properties of D for Skyrmions in the next section.

In systems in which elasticity or confinement promotes double-splay or double-twist
configurations, one would need to consider the director 1 or the tensor order parameter Q in
addition to D to fully characterize regions where D is non-zero. This is not a problem, however,
since D is computed from n or Q in the first place. Alternatively, formally, one may use the

contour integral methodology as laid out above to unambiguously identify the existence of a
disclination.
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(c) Skyrmions

Skyrmions are soliton-like topological defects that may occur in cholesterics or in liquid
crystals with a strong response to external fields [27,31,34]. Unlike disclinations or hedgehogs,
Skyrmions do not produce long-ranged distortions of the nematic, and, instead, the nematic
distortion is limited to a finite area, as shown in figure 4a. Furthermore, the Skyrmion nematic

texture is not associated with a singularity in n and, thus, the tensor order parameter Q is not
necessary to study the detailed structure of the defect. Despite these differences, the topological
charge for a Skyrmion may still be defined via an integral similar to that for point defects,

1
m= 8_71J‘rﬁy(€wv5iklak’/l\ua‘3;‘\1/) ax,. (410

Importantly, the surface I' that is integrated over is not closed and must ‘cover” the Skyrmion,
otherwise a partial charge will be measured. As for point defects, the quantity in parentheses

is precisely the tensor D(‘A‘), defined in equation (2.14), such that there is no singularity in the
director field. We may then rewrite equation (4.10) as:

1 A (A
m= S—WJ'rnyD;J dz, 4.11)
1 (a
- frnypg?) ds, 4.12)
N

where the second equation is a generalization of the charge integral using the Q-tensor. Since
there is no singularity, S should, in principle, be constant everywhere in the texture, so there
is no difference in using the director representation versus the Q tensor representation (i.e.
DO = SIZ\]D(IAI)).

As discussed above, for Skyrmions, D™ will be non-zero due to the double-splay or
double-twist configurations characteristic of these textures [34]; however, the decomposition
into tangent and rotation vectors, equation (3.1), will not hold for this type of distortion. We
may calculate D™ for an idealized, circular, splay-stabilized Skyrmion in which the director is

given by n = cos kp% +sin kpﬁ (0 < p < m/k). As in equation (4.8), we find
(1/'\1) _ 2ksin2kp A A 2kcoskpsinkp (A A\ _ 2ksinkp (A A
D - 22 (o @ 2) + (2@ 2) = X7 (n @ 2) (4.13)

for 0 <p<m/k and D(ﬁ) =0 for p>m/k. In this case, D('A‘) has a diffuse, non-zero magnitude
regardless of the representation of nematic. ID! is shown in figure 4b,c for an ideal, splay-
stabilized Skyrmion. Furthermore, while the decomposition equation (3.1) does not hold,

A N A
D™ (ﬁ ® N), where N is the normal vector to the plane of the Skyrmion distortion. We note

that the structure of D for Skyrmions differs significantly from that of both disclinations and
point defects. This difference should allow one to use D to distinctly characterize the unique
topological structures that exist in nematics.

5. Conclusions

We have introduced an exact expression defining the topological charge of line defects encircled

by an arbitrary path in RP? It yields 7 for configurations with net disclination charge and
zero otherwise, as required by the topology of disclinations in three-dimensional nematics.
This method may be used to unambiguously identify disclinations given any path in order
parameter space.
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While the path integral expression for topological charge introduced here is an important
mathematical result and should be a useful tool for method verification in experimental and
computational studies, it may not be as practically useful as other current methods employed
in large-scale studies due to the complicated nature of the construction. Fortunately, as we
have shown, the integral over paths can be conveniently transformed into surface integrals
involving the tensor density D. While D is a useful quantity to identify and locate disclination
lines from both the director and tensor order parameter fields, it can also be non-zero in certain
configurations that do not contain disclinations. For example, double-splay and double-twist
nematic configurations generically yield a non-zero D, which results in a non-zero D for other
topologically protected objects such as Skyrmions and point defects. For these objects, we have
shown that D has different properties than for the case of disclinations, but that it may still be
used to identify and potentially characterize them.

Elucidating the consequences of topological constraints on the properties and evolution
of non-equilibrium soft matter systems remains a very active area of research. Our results
provide the tools to diagnose the existence of disclination lines in experimentally determined
or computationally generated configurations of nematics, as well as predicting and tracking
their motion. Further research is needed to confirm the decomposition of D proposed for both
Skyrmions and point defects as our results apply to specific, idealized, configurations, but we
have not proven them for general cases. Additionally, we have focused here on D as defined for
nematic phases but it appears possible that a similar tensor may be defined for other systems
such as smectics or magnetic materials. It is already known that a similar object exists for
dislocations in solids [45,46]. Finally, as demonstrated in Ref. [21], there is a direct connection
between D and disclination dynamics. It remains to be examined whether a similar connection
could be made to understand the dynamics of Skyrmions and point defects.
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Appendix A. Distance between points in Euclidean space

The idea behind the invariant integral, equation (2.8), is that it gives the geodesic distance
between two points on the hemisphere, and hence it can only be zero or 7 for closed curves. We
prove that this is the case in equations (2.6) and (2.7). To provide extra clarity and context to that
result, we show here how a similar construction may be made in Euclidean space.

We first write the definition for the arclength of an arbitrary curve in the following way:

A= L(%(s) - %(s)) ds, (A1)

A
where T(s) is the tangent vector to the curve C, parameterized by y(s), with s an arclength
parameter. This form of the arclength is similar to the form we have for the arclength of a curve
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on the sphere in terms of f. To make an analogy with the construction in the main text, we
define

Ao Ys)—v(0)
TO=160=y01 (A2

This is the tangent vector of the straight line segment starting from y(0) and ending at y(s), and
so is the equivalent of '/I\‘Gc in equation (2.1).

Now, instead of the arclength, we compute the integral jc(’/l\“* . ’/1\“) ds. This is equivalent to the
integral (2.6). We compute

AAx A A - A
) () -rO) dy - (P4 _ - -
L (T T)ds L oo o L L7 -7O))ds= 1¥(A)-yO) . (AJ)
The final result is just the distance between the two endpoints of the curve, rather than the
arclength of the curve.
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