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ABSTRACT

Previous studies show that the total volume of fractures increases non-linearly during loading as rocks approach
failure in triaxial compression at stress and temperature conditions representative of the upper crust. However,
the factors that control the critical volume of fractures or the critical spatial organization of the fracture network
that trigger macroscopic failure remain unclear. To identify the fracture characteristics that determine the timing
of macroscopic failure and localization of the fracture networks, we analyze data from six X-ray tomography
experiments on Westerly granite with varying confining stress, fluid pressure, and amounts of preexisting
damage. We develop machine learning models to predict 1) the timing of failure, 2) the localization of the
fracture networks as measured with the Gini coefficient of the fracture volume, and 3) the change in localization
from one differential stress step to the next. When the models only have access to individual fracture charac-
teristics, the fracture length produces the best predictions of the distance to failure. When the models have access
to the fracture length and sets of other characteristics, the fracture volume, aperture, and distance between
fractures produce the best predictions of the distance to failure. The characteristics that describe the time or
loading in the experiment, the axial strain and differential stress, produce some of the best predictions of the Gini
coefficient. The results are generally consistent among the different experiments, suggesting that the fracture
characteristics that determine the timing of macroscopic failure, and the localization of the fracture network, are
independent of the range of confining stress, fluid pressure, and amount of preexisting damage tested here. Our
results are consistent with the idea that monitoring the spatial distribution of deformation and changes in the
seismic wave properties indicative of fracture growth may improve forecasting efforts of failure in the crust.

1. Introduction

experiments show that fractures can grow quasi-stably as the system
accumulates more axial or differential stress before fracture growth and

Developing a method to estimate the stress conditions at macro-
scopic failure using characteristics of fracture networks would be a
significant advance in our understanding of rock deformation. In tension
under constant or increasing stress loading, fracture growth tends to
develop unstably, producing rapid macroscopic, system-size failure after
initiation. This unstable growth occurs because increasing fracture
length increases the stress intensity factor in these systems, and thereby
promotes additional fracture growth (e.g., Bieniawski, 1968). Under
constant displacement or slow velocity loading, fracture growth in
tension can be stable (e.g., Obreimoff, 1930). In compression,
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coalescence triggers macroscopic failure (e.g., Bieniawski, 1968; Brace,
1964; Brace et al., 1966; Paterson and Wong, 2005, p. 111). Previous
analyses have attributed this quasistatic growth to the propagation of
wing cracks from inclined shear cracks because the stress intensity factor
at an isolated wing crack tip may decrease as it propagates away from
the stress concentration at the tip of the inclined shear crack, particu-
larly if the fracture propagates into a region with some lateral
compression (Brace and Bombolakis, 1963; Brace et al., 1966; Fairhurst
and Cook, 1966; Ashby and Sammis, 1990; Horii and Nemat-Nasser,
1985; Paterson and Wong, 2005 p. 120). This decrease of the stress
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intensity factor then stabilizes growth and allows strain-hardening
before macroscopic, catastrophic failure. However, wing crack growth
may only stabilize when the fractures are relatively isolated, and not
when neighboring cracks begin to perturb each other's local stress field.
Moreover, such idealized wing crack development from preexisting in-
clined shear cracks is rarely observed in experiments on natural, three-
dimensional rocks (e.g., Renard et al., 2019a, 2019b; Cartwright-Taylor
et al., 2020; McBeck et al., 2021a, 2023a).

Because fracture opening appears to precede some, but not all,
earthquakes (e.g., Chiarabba et al., 2020), constraining fracture char-
acteristics that help predict the timing of catastrophic failure in triaxial
compression experiments, such as length and orientation, may help
forecast the timing of large earthquakes in the crust. In particular,
geophysical observations and laboratory experiments suggest that
monitoring the volume of fractures in the crust, through changes in the
seismic wave speeds and anisotropies, could help forecast the timing of
large earthquakes (e.g., Chiarabba et al., 2020; Shreedharan et al.,
2021a, 2021b). However, the associated changes in seismic wave
properties have only been observed preceding some earthquakes (Bakun
et al., 2005). This lack of detection may be due to the competing effects
of fracture opening near the crustal slip zone, and the closure of fractures
in the surrounding wall rock (Shreedharan et al., 2021b).

Another characteristic of deformation that may be useful for fore-
casting efforts is the evolving spatial organization of deformation, such
as seismicity and fractures. Geophysical observations in Southern and
Baja California reveal that the localization of low magnitude seismicity
preceded the main shocks of the M > 71,992 Landers, 1999 Hector Mine,
2010 El Mayor-Cucapah, and 2019 Ridgecrest earthquakes (Ben-Zion
and Zaliapin, 2020). The seismicity generally increased in localization in
the final two to three years preceding the main shock. However, for
short time periods during this general increase, localization remained at
similar values or decreased, that is, delocalized. Consistent with these
trends, monitoring the spatial organization of the high magnitudes of
shear and dilative strain, and fractures in X-ray tomography triaxial
compression experiments with increasing differential stress reveals
phases of delocalization within a broader trend of increasing localization
as the rocks approach macroscopic failure (McBeck et al., 2021a, 2022b)
(e.g., Fig. 1b). Bifurcation theory (Rudnicki and Rice, 1975) and visco-
elastic damage rheology models (Lyakhovsky et al., 2011) have explic-
itly linked the onset of macroscopic failure in rocks to the localization of
strain. Moreover, experiments that track the location of acoustic emis-
sions under triaxial compression find that following the peak stress,
acoustic emissions can localize into an elongate zone that appears to
produce the macroscopic, system-spanning shear fracture identified
post-mortem (Lockner et al., 1991; Aben et al., 2019). A few recent
experiments also reveal evidence of localization preceding failure on
preexisting faults (Dresen et al., 2020; Bolton et al., 2023; Marty et al.,
2023). Much previous work has recognized the importance of localiza-
tion in the macroscopic failure of rocks and heterogeneous materials (e.
g., Satoh et al., 1996; Benson et al., 2007; Rizzo et al., 2017), but few
analyses have focused on the temporary decreases in localization, or
attempted to identify the factors that promote these episodes of delo-
calization. Identifying these factors may help earthquake forecasting
efforts that use the evolving spatial distribution of seismicity to recog-
nize the precursory phase leading to large earthquakes.

In this work, we use a suite of six X-ray tomography triaxial
compression experiments with systematically varying confining stress,
fluid pressure, and amount of preexisting damage to identify the fracture
characteristics that control localization and delocalization, and the
characteristics that control the timing of macroscopic, catastrophic
failure. We develop machine learning models to predict three targets.
One set of models predicts the stress distance to macroscopic failure, Ao,
from the differential stress acting on the rock when an X-ray tomogram
was acquired, op, and the differential stress at macroscopic failure, 65, A
o= (o5 —op)/o}, (Fig. 1a). The second set of models predicts the
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Fig. 1. Sketch of the predictions of the machine learning models: a) the stress
distance to failure, As, b) the Gini coefficient calculated from the volume of the
fractures at each differential stress step in the triaxial compression experiments,
and the change in the Gini coefficient from one stress step to the next, AGini.
c—d) Three-dimensional representations of fractures identified in the final
tomogram acquired immediately preceding macroscopic failure in two experi-
ments with confining stresses, 65, of 10 MPa and 15 MPa, fluid pressures, Pr, of
5 MPa and 10 MPa, with nominally intact and heat-treated (damaged) Westerly
granite. The fractures are shown with slightly transparent blue objects, and the
different shades of blue correspond to different densities of fractures. e) Frac-
tures at four differential stress steps in one experiment with 6,=15 MPa and
Pr=10 MPa on intact rock. Tomogram (#4) was the final tomogram acquired
preceding macroscopic failure. The circular shapes at the bottom of the images
are ring artefacts and excluded from the analysis. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

localization of the fracture networks using the Gini coefficient of the
fracture volume, which measures the deviation of a population from
uniformity, and the third set predicts the change in the Gini coefficient
from one stress step to the next (Fig. 1b). Larger values of the Gini co-
efficient indicate more unequal distributions (Gini, 1921) with a few
larger fractures and many smaller fractures, while smaller values indi-
cate a more uniform distribution with fractures of the same or similar
volumes. Previous analyses show that the Gini coefficient can continu-
ally increase and accelerate toward failure in triaxial compression ex-
periments (e.g., Fig. 1b) (McBeck et al., 2021a). The coalescence of
many small fractures into larger fractures is likely the dominant form of
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fracture development that produces the increase in the Gini coefficient.
In other experiments, the Gini coefficient may generally increase, but
also temporarily decrease, producing phases of delocalization toward
macroscopic failure, and thus non-monotonic behavior. Identifying the
factors that promote these phases of delocalization may improve efforts
to forecast the timing of catastrophic failure.

In order to identify the characteristics that control localization and
delocalization, and that control the timing of failure, we identify the
characteristics that produce the best model predictions of each of the
three targets. To compare the influence of the different confining stress,
fluid pressure, and preexisting damage on the predictability of failure
and localization, we develop models using data from each individual
experiment, as well as models using data from all the experiments
combined. Previous work suggests that varying amounts of preexisting
damage may produce different modes of catastrophic failure. In partic-
ular, higher levels of preexisting damage could promote more contin-
uous and gradual transitions to failure, whereas less preexisting damage
could promote more abrupt transitions (e.g., Tang et al., 2000; Vasseur
et al., 2015; Cartwright-Taylor et al., 2020). Consequently, the amount
of preexisting damage may influence the timing of the precursory phase
leading to macroscopic failure, and thus the predictability of failure. To
assess the ability to upscale the results to crustal fault networks, we vary
the volume of the system used to extract the fracture characteristics and
compare the resulting sets of characteristics identified as important in
the different models.

In previous studies we used fracture characteristics identified in a
different set of X-ray tomography experiments to predict the stress dis-
tance to failure (McBeck et al., 2020), and to predict the value of fracture
characteristics using other characteristics (McBeck et al., 2022a).
However, these analyses did not include the Gini coefficient of the
fracture volume, and so did not reveal insights into the ability of this
localization metric to help predict the timing of macroscopic failure, or
insights into the factors that control delocalization. Another previous
analysis attributed differences in the localization of fracture networks to
varying confining stresses and grain sizes of minerals in crystalline rock
(McBeck et al., 2021a). However, this previous work did not have access
to the new experiments with systematically varying confining stress,
fluid pressure and damage, and so was not able to robustly compare
these effects. The present analysis will compare these influences.

2. Methods
2.1. Triaxial compression X-ray tomography experiments

We performed six triaxial compression experiments at beamline ID19
at the European Synchrotron Radiation Facility, in Grenoble, France. We
used 10 mm tall and 4 mm diameter cylinders of Westerly granite.
Westerly granite is a low-porosity crystalline rock dominated by inter-
locking quartz, feldspar, and biotite. Westerly granite has a mean grain
size of 0.75 mm and an initial porosity of <1% (e.g., Atkinson and
Meredith, 1987).

Using the Hades triaxial compression apparatus (Renard et al.,
2016), we imposed a constant confining stress in each experiment in the
range 5-20 MPa, and constant pore fluid pressure in the range 0-10 MPa
(Table S1). We varied the confining stress and fluid pressure so that five
of the six experiments experienced the same effective stress, confining
stress minus fluid pressure (P,=5 MPa), and the remaining experiment
experienced P,=10 MPa. Consequently, this suite of experiments does
not allow differentiating between the influence of pore fluid pressure
and confining stress. We then increased the axial stress, o1, in steps of
0.5-5 MPa, with smaller steps closer to failure, until the rock failed with
a stress drop. After each step increase in o1, we acquired an X-ray
tomogram in under 1.5 min while the rock was inside the Hades appa-
ratus and thus under constant loading.

To assess the influence of preexisting damage on the timing of
macroscopic failure and localization of the fracture networks, we
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deformed intact and heat-treated (damaged) Westerly granite samples
drilled from the same block. We damaged the cores by heating them in
an oven with an initial heating rate of 4 °C/min from room temperature
to 650 °C, and then for five hours at 650 °C, and then with a cooling rate
of 4 °C/min to room temperature. This heating procedure causes the
damaged rock cores to fail at lower differential stresses than the intact
rock cores for the same confining stress and effective stress conditions
(Fig. S1). We performed all the experiments at ambient room tempera-
ture in the range 22-24 °C. For the experiments that include fluid
pressure, we saturated the granite cores in deionized water in a vacuum
chamber for two weeks preceding the experiment.

Following each experiment, we reconstructed the radiographs into
three-dimensional volumes. The volumes are 1600x1600x1600 voxels,
and each voxel side length is 6.5 pm. During reconstruction, we applied
methods to remove acquisition noise, such as ring artefacts. We reduced
the remaining noise in the reconstructed, three-dimensional data using
the software Avizo3D™, including the application of a non-local means
filter (Buades et al., 2005). After these steps, the data contain some
visible noise, such as a few ring artefacts. Later, we apply additional
post-processing techniques to exclude these artefacts from the analyses,
which we describe below. We segmented the solid rock from the frac-
tures using a method similar to Otsu's thresholding technique to identify
a global threshold between the solid material and the fractures (McBeck
et al, 2021c). This method produces segmented tomograms with
porosity similar to values measured in the laboratory with sample
imbibition when the pores have dimensions above the spatial resolution
of the tomograms, which is in the range 2-3 voxels (Renard et al.,
2019a). We then applied several processing steps to the segmented to-
mograms in Avizo3D™, including Label Analysis, that identify indi-
vidual fractures using connected clusters of voxels, and calculate the
geometric characteristics of fractures.

We calculated the macroscopic axial strain done on the rock cores,
€z, Dy identifying the height of the rock core in each tomogram.
Consequently, the spatial resolution and quality of the tomogram in-
fluences the calculated ¢,,. An alternative method of constraining the
axial strain uses the displacement recorded by the linear variable
displacement transducer (LVDT) installed on the deformation apparatus.
However, the LVDT displacement incorporates the deformation of the
rock as well as the elastic response of the apparatus. Consequently, the
axial strain derived from the tomograms is more representative of the
deformation of the rock core than the strain derived from the LVDT. The
axial strain calculated from the tomograms is similar to the displacement
recorded by the LVDT after correcting for the elastic deformation of the
rig (Fig. S2), lending confidence to the ¢,, calculated from the tomo-
grams.

Following previous work that characterizes or predicts the distance
to failure using the stress (e.g., Renard et al., 2018; Kandula et al., 2019;
McBeck et al., 2020), we predict the distance to failure in terms of the
differential stress. Consequently, the calculated &,, does not influence
the key results of the analysis because we use the characteristics of the
fracture networks to predict the stress distance to failure. To predict the
Gini coefficient and AGini, we use the characteristics of the fracture
networks as well as the macroscopic op and &,,. Later, we show that some
of the models developed for individual experiments use ¢, to predict the
Gini coefficient (Section 3.2). This result lends confidence to the &,
calculated from the tomograms.

2.2. Machine learning models

Here, we use machine learning to identify the characteristics of
fracture networks that are the most useful for predicting the timing of
catastrophic failure, the localization, and the changes in localization. As
described above, we develop the models to use geometric characteristics
of the fracture networks revealed in the X-ray tomograms to predict 1)
the stress distance to failure, 2) the Gini coefficient at a given stress (or
time) step, and 3) the change in the Gini coefficient, AGini, from one
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stress step to the next. The Gini coefficient uses the Lorenz curve to
measure the deviation from a uniform distribution (e.g., Gini, 1921).
The Lorenz curve shows the proportion of the total amount of a popu-
lation, such as fracture volume, that is included in the bottom percentile
of a population. The Gini coefficient is one minus twice the integral of
the Lorenz curve. Consequently, larger Gini coefficients indicate that the
total volume of the fractures in a network is dominated by a few frac-
tures, whereas lower Gini coefficients indicate that the total volume is
more equally distributed among all the fractures.

The processing steps described in Section 2.1 produce a suite of
characteristics for each individual fracture in each stress step, including
the volume of the fracture, the centroid of the fracture, the surface area
of the fracture, the eigenvalues of the fracture, and the orientation of
each eigenvector relative to the vertical axis, parallel to the o; direction,
and one of the horizontal axes, parallel to the ¢, direction (Table S2).
The eigenvalues and eigenvectors of each fracture are calculated from
the covariance matrix of the voxels of the fracture. We characterize the
length of the fractures using the first eigenvalue, and the apertures of the
fractures using the second and third eigenvalues. We also use ratios
between eigenvalues to define the anisotropy (1-third eigenvalue/first
eigenvalue), elongation (second eigenvalue/first eigenvalue), and flat-
ness (third eigenvalue/s eigenvalue).

To test the influence of system size on the factors that control the
timing of failure and localization, we provide features to the model that
represent characteristics of the population of fractures within one or
more subvolumes at each stress step (and tomogram). In particular, the
data table fed to the models have rows that represent each subvolume at
each stress step. When the length of one side of the subvolume is larger
than the height of the rock core (subvolume size, s=1600 voxels, or
about one centimeter), then the data table of each experiment has one
row for each stress step. We test subvolume sizes of 600 voxels (3.9 mm)
and 400 voxels (2.6 mm), which produce two and three subvolumes at
each differential stress step, respectively. We use a mask to remove the
upper and lower pistons, and the jacket that encases the rock core from
the images, so only the fractures identified within the rocks are used in
the analysis.

For a given subvolume size, we identify all the fractures within the
subvolume at a particular stress step using the centroid of the fractures.
We then calculate statistics of each geometric characteristic of all the
fractures within the subvolume, such as the volume. These statistics are
the mean, standard deviation, maximum, and several percentile values
(25th, 50th, 75th, 90th). We include features that describe the confining
stress and fluid pressure of the experiment (with the numbers prescribed
in each experiment), as well as whether the rock is damaged or not (with
a one or zero). For the models that predict the Gini coefficient and
change in the Gini coefficient, we include features that describe the
macroscopic time within the experiment, including the cumulative axial
strain, &,,, and the differential stress, op. For these models, we exclude
the features that describe the fracture volume because the Gini coeffi-
cient is calculated from the fracture volume. Table S2 lists all 115 fea-
tures used in the present study.

In addition to the influence of the subvolume size, s, we also test the
influence of excluding relatively thicker or more tortuous fractures and
voids by varying the minimum shape anisotropy, a, from 0.25 to 0.75,
and the minimum volume of individual fractures, v, from 100 to 1000
voxels. We show the results of varying s and v in the main manuscript
because varying these parameters may provide insights into the most
appropriate methods of analyzing crustal fault networks. Removing
voids with lower anisotropies in the experimental analysis, in contrast, is
motivated by removing artefacts of the tomogram acquisition and seg-
mentation, such as the few ring artefacts that remain after filtering the
data (e.g., at the bottom of the core in Fig. 1d).

To predict the change in the Gini coefficient, we calculate the Gini
coefficient within each subvolume at each differential stress step, for a
given set of s, v, and a for each experiment. We then apply a median filter
with a window size of five data points in order to smooth small per-
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turbations in the curve of the Gini coefficient and differential stress for
each subvolume size. We calculate the change in the Gini coefficient
from one scan to the next, AGini, using this smoothed curve. We also
tried to predict AGini without smoothing the data and achieved similar
results to those shown here. We tested predicting the AGini divided by
the change in ¢,,, and AGini divided by the change in o) from one scan to
the next. The performance of the models that predict AGini are the same
as the models that predict AGini/A¢,, and AGini/Acp, and so we only
show the results of predicting AGini.

We develop XGBoost regression models in this work. This method is a
widely used algorithm in machine learning (e.g., Rouet-Leduc et al.,
2017; Hulbert et al., 2019; Shreedharan et al., 2021a) that we have used
in previous analyses (e.g., McBeck et al., 2020, 2022a). We estimate the
influence of the features on the model predictions using Shapely Addi-
tive Explanations (SHAP), a widely used metric in machine learning
(Lundberg and Lee, 2017; Pedregosa et al., 2011). We report and
compare the mean absolute value of the SHAP (mean |SHAP|) of each
feature calculated from the SHAP values of all the data points (e.g.,
samples) provided to the models.

We develop models using data from individual experiments, as well
as all of the experiments combined together. We separate the training
(70%) and testing (remaining 30%) datasets so that there is no overlap
between these two sets. For the datasets with the largest tested sub-
volumes, s =1600 voxels, each sample is distinct in time (stress step) and
space. For the datasets with smaller subvolumes, s=400 voxels and 600
voxels, each stress step includes three and two subvolumes, respectively.
We randomize the times that occur in the training and testing datasets
such that times earlier and later in the experiment can occur in either
dataset. Comparing the performance of models developed with this
randomized splitting and models developed from training and testing
data that are continuous in time does not produce significant differences
in the model performance.

For each set of targets, experiments, and parameters of s, v, and a, we
develop ten unique models that differ only in the separation of the
training and testing datasets. We develop these models to reduce the
influence of random variations in the training and testing dataset on the
model performance. We then report the mean =+ one standard deviation
of the R? values in the results. Because we develop these ten models for
each set of parameters, we have ten sets of SHAP values for each of these
combinations. To simplify the identification of the features that have the
strongest influence on the model performance, we weight each SHAP
value by the R? value of the model, and then average these weighted
values for the models with R2>0.7 for predicting the distance to failure
and the Gini coefficient, and with R?>0.6 for predicting the AGini (e.g.,
McBeck et al., 2020, 2022a). To further compare the influence of each
feature on the predictions, after we examine the R2-weighted SHAP
values, we develop models that only include particular subsets of fea-
tures. Comparing the performance of models developed with only sub-
sets of features provides a more robust method of assessing the influence
of each fracture characteristic on the model predictions than comparing
the SHAP values.

3. Results
3.1. Macroscopic mechanical behavior

Here, we focus on models that predict the stress distance to macro-
scopic failure, A = (65 —op)/oh. Fig. 2 shows the axial strain and
differential stress when a tomogram was acquired in each experiment.
Many of the experiments produce non-linear stress-strain behavior early
in loading because the rock core was not completely in contact with the
pistons of the apparatus at the beginning of the experiment, and because
some small preexisting fractures or voids closed (Fig. 2). Several of the
experiments host an extended phase of yielding preceding macroscopic
failure in which the slope of the axial strain-differential stress curve
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Fig. 2. Axial strain and differential stress conditions when each tomogram was acquired in the six experiments. The applied confining stress, o2, and fluid pressure,
Py, are listed to the left of each set of plots. The data shown with the blue circles in the insets are the portion of the experiment within 70% of the differential stress at
macroscopic failure, highlighted with blue rectangles. The number of scans acquired in each experiment is listed in each plot. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)



J. McBeck et al.

decreases toward nearly zero (WG20, WG18, WG14). These experiments
tend to have higher confining stresses (15 MPa and 20 MPa) than the
experiments that do not produce this behavior (5 MPa and 10 MPa). The
experimental design may not have captured the yielding phase preced-
ing failure in the experiments with lower confining stress because the
final differential stress step increase of 0.5 MPa was too large to allow a
prolonged phase of yielding. However, the mechanical behavior
observed here is consistent with previous experiments that observe a
longer yielding phase, in terms of the accumulated axial strain, for rocks
deformed at higher confining stresses than lower confining stresses (e.g.,
Paterson, 1958; Paterson and Wong, 2005 p. 212).

3.2. Predicting the distance to macroscopic failure

The models use the characteristics of the fracture networks to predict
the distance to failure. Consequently, we vary the populations of frac-
tures included in the models to assess 1) how the volume or size of the
fractures controls the predictability of failure, and 2) how the size of the
system controls the predictability of failure. We exclude fractures with
volumes smaller than particular volume thresholds, v, of 100 to 1000
voxels. We also vary the size of the subvolume, s, used to calculate the
statistics of the fracture characteristics from the height of the tomogram
(s=1600 voxels), to about half (s=600 voxels), and one third (s=400
voxels) of the height of the tomogram. We develop models for individual
experiments and all the experiments combined to assess differences in
predictability due to the varying confining stress, fluid pressure, and
initial damage of each rock.

The R? values are above 0.9 for all of these models, indicating that
the models can predict Ac with strong correlations between the pre-
dicted and observed Ac (Fig. 3). This performance is a significant
improvement beyond previous efforts to predict the timing of macro-
scopic failure using characteristics of the fracture networks, which only
achieved R? values of about 0.6 (McBeck et al., 2020).

Varying v does not systematically alter the R? values for the model
that uses data from all the experiments, or the models developed from
individual experiments (Fig. 3a). Varying s has a stronger influence on
the R? value than varying v (Fig. 3b). Increasing s from about the radius
of the base of the rock cylinder (400 voxels) to the height of the rock
cylinder (1600 voxels) increases the R? value from about 0.8 to above
0.95 for each experiment and combination of experiments. Providing
less data (i.e., a lower number of subvolumes) to the models thus
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produces higher R? values. Generally, one may expect that providing
more data to a machine learning model produces better model perfor-
mance. However, the quality of the data can influence whether the
model performance decreases or increases. In the Discussion section, we
describe how the heterogeneity of the fracture networks allow the
models to perform better when they have access to a lower number of
larger subvolumes, rather than a higher number of smaller subvolumes.

To identify which fracture characteristics control the model pre-
dictions, and thus may be beneficial for forecasting the timing of cata-
strophic failure, we first identify the features with the highest mean |
SHAP| values for the sets of the models. Table S3 shows the features with
the R2-weighted mean |SHAP| values >50% of the maximum of these
values for each experiment, and combination of experiments, with
varying s. These values approximate the influence of each feature on the
model results, and thus indicate which features the models rely or
depend on. All models developed from individual experiments with
s=1600 voxels, except experiment WG19, rely on the Gini coefficient of
the fracture volume to predict the timing of failure. When the models use
data from all the experiments and s=1600 voxels, they rely on the mean
of the first eigenvalue, proportional to the length of the fracture. For
smaller s, the individual experiment models and the combined experi-
ment model rely on the shape anisotropy, surface area, and eigenvalues
of the fractures. Consequently, varying the size of the system used to
calculate the statistics of the fracture properties, the Gini coefficient, and
other features changes the features that control the model predictions,
according to the SHAP values.

To better quantify the influence of each fracture characteristic on the
predictions, we develop models using subsets of features (Fig. 4). The
performance of the models developed with different subsets of features
is likely a more reliable measure of the relative usefulness of each
characteristic to the predictions than the SHAP values. The models
include features derived from individual fracture characteristics
(Fig. 4b, d, f), and from a combination of characteristics that include the
most important feature identified using the SHAP values (Table S3), the
first eigenvalue (Fig. 4a, c, e). We focus on models that use data from all
the experiments because they may be more representative of the
fundamental processes in crystalline rock than models developed from
individual experiments.

When the models are developed with individual characteristics, the
localization metrics, the Gini coefficient and the distance between
fractures, produce relatively poorly performing models. These models

b) varying subvolume size, s
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Fig. 3. Performance, R?, of models that predict the stress distance to failure, Ao, for all of the experiments combined together and the individual experiments. The
plots show the results using a) different thresholds of the minimum fracture volume included in the data, v, and b) different subvolume sizes to extract the data, s. The
horizontal axes list the individual experiment or combination of all of the experiments (all) used to develop the model, and the applied confining stress, o2, of the
individual experiments. The model performance is reported as the mean + one standard deviation of the R? values of models developed with different training and
testing datasets for each individual experiment and all of the experiments. The data provided to the models shown in (a) have s=1600 voxels, or one subvolume per
differential stress step. The data provided to the models shown in (b) include fractures with v>100 voxels. Increasing v both increases and decreases the model
performance, depending on the experiment (a). Increasing s increases the model performance (b).
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Fig. 4. Performance of models that predict Ac using subsets of features with data from all the experiments for v=100 voxels and varying subvolume size: a-b) s=400
voxels, c-d) s=600 voxels, and e-f) s=1600 voxels. The left column (a, c, €) shows the results of models that use a combination of features that include the first

eigenvalue (i.e., the fracture length). The right column (b, d, f) shows the results

of models that use individual characteristics as features, such as the fracture

anisotropy or distance between fractures. The model performance is reported as the mean + one standard deviation of the R? values of models developed with
different training and testing datasets. The text next to each data point is the mean R? value. The list of characteristics to the right of each plot shows the ranking of
the model performances, where number one is the best performing model. Models developed with features that describe the spatial localization, including the
distance between fractures and the Gini coefficient of the fracture volume, are highlighted with bold, red font. When the models are developed with individual
characteristics, the localization metrics produce relatively poorly performing models. When the models are developed with combinations of characteristics that
include the first eigenvalue, the localization metrics and particularly the distance between fractures produce models that perform better than the majority of the
models developed with the other features. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

rank from the seventh to tenth best-performing models out of eleven,
depending on the subvolume size (Fig. 4). When the models are devel-
oped with combinations of characteristics that include the first eigen-
value, the models that use the first eigenvalue and the localization
metrics perform better than the majority of the other models. The
models developed with the distance between fractures and the first
eigenvalue rank from the second (s=1600 voxels) to the fourth (s=600
voxels) best-performing models out of eleven. The models developed

with the Gini coefficient and the first eigenvalue rank from the fourth
(s=1600 voxels) to the seventh (s=400 voxels) best-performing models.
Other than the localization metrics, the characteristics that produce the
best performing models when they are combined with the first eigen-
value include the volume and anisotropy of the fractures.

In summary, characterizing the length of the fractures, with the first
eigenvalue, provides more useful information about the distance to
macroscopic failure than the other tested characteristics, including the
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anisotropy, the orientation relative to the o; direction, 6, and the
localization metrics. When the fracture length is combined with the
other fracture network properties to predict the distance to failure, the
volume, anisotropy, distance between fractures, and for some sub-
volume sizes, the Gini coefficient, provide more useful information than
the other tested characteristics.

Varying the subvolume size does not significantly change the key
observations. For the models developed with the individual character-
istics, the first and second eigenvalues and the anisotropy produce the
three best-performing models for all of the subvolume sizes. The volume
of the fractures and # produce the fourth to sixth best-performing
models. Finally, the distance between fractures and the Gini coeffi-
cient produce the seventh to tenth best-performing models, and the
elongation produces the worst-performing models.

For models developed with combinations of characteristics that
include the first eigenvalue, the volume produces the best-performing
models for all the subvolume sizes. The elongation, flatness and orien-
tation relative to the o, direction, ¢, produce the worst-performing
models. For the smaller subvolume sizes, s=400 voxels and 600 vox-
els, the third eigenvalue produces the second best-performing model,
and the distance between fractures produces the third or fourth best-
performing model. When s=1600 voxels, the distance produces the
second best-performing model, and the Gini coefficient produces the
fourth best-performing model. Consequently, increasing the subvolume
size increases the usefulness of the localization metrics, and particularly
the usefulness of the Gini coefficient, for predicting the distance to
failure.

3.3. Predicting localization: The Gini coefficient

Next, we develop models to predict the Gini coefficient of the frac-
ture volume using characteristics of the fracture networks. The Gini
coefficient increases toward failure in all of the experiments (Fig. 5). In
half of the experiments (WG10, WG06, WG14), the Gini coefficient
temporarily decreases, producing episodes of delocalization. Previous
analyses attribute phases of delocalization to the presence of

a) 0,=5 MPa P_=0 MPa intact

b) 0,=10 MPa P_=5 MPa intact
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heterogeneities and stress shadows (e.g., McBeck et al., 2021a, 2021b).
Consequently, one would expect the damaged (heat-treated) rock cores
to favor episodes of delocalization rather than the nominally intact
rocks. However, this suite of experiments shows that the intact rocks can
also experience phases of delocalization, and that damaged rocks can
host increasingly localized fracture networks without phases of delo-
calization. Due to this behavior, we develop models to predict the Gini
coefficient at particular stress steps, and the change in the Gini coeffi-
cient between stress steps.

Similar to the set of models that predict the distance to failure, we
test the influence of varying the fracture volume and subvolume size on
the models that predict the Gini coefficient. Varying v does not produce
systematic difference in the model performance (Fig. 6a), similar to the
models that predict the distance to failure (Fig. 3). Increasing s tends to
decrease the R? values for all but the experiment WG14 models (Fig. 6b),
in contrast to the models that predict the distance to failure (Fig. 3).
Varying both of these parameters produces only small changes in R?
values as all of the mean R? values are above 0.90.

To identify the fracture characteristics that control the model pre-
dictions, and thus the Gini coefficient, we examine the sets of features
with the highest mean |SHAP| values, similar to the previous section. All
of the models developed from individual experiments with s=1600
voxels, rely on the macroscopic axial strain, ¢,,, or the macroscopic
differential stress, op (Table S4). When all the experiments are combined
(Table S4), and s=1600 voxels, the models primarily rely on the stan-
dard deviation of the second eigenvalue, which is proportional to the
larger of the two apertures of the fracture. For the smaller s, the models
depend on the surface area of the fractures and the first or second ei-
genvalues. Consequently, changing the system size changes the fracture
characteristics and macroscopic parameters that are useful for esti-
mating the Gini coefficient for models developed for individual experi-
ments, according to the SHAP values.

We next develop models using subsets of features to more robustly
quantify the influence of each characteristic on the model performance
(Fig. 7). We focus on models developed using data from all experiments.
The key difference between the performance of models developed with

c¢) 0,=10 MPa P_=5 MPa damaged

1 0.75
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0.7
0.65
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Fig. 5. The Gini coefficient calculated from the volume of the fractures at each tomogram as a function of the op/c% for each experiment using the whole tomogram.
Some experiments include phases in which the Gini coefficient decreases, indicative of temporary episodes of delocalization (a, c, f), while others host a continual
increase of localization. The curves are median filters through the data, which are used to calculate the change in the Gini coefficient, as described in the

Methods section.
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Fig. 6. Performance of models that predict the Gini coefficient with varying minimum fracture volume, v (a), and subvolume size, s (b). The model performance is
reported as the mean + one standard deviation of the R? values of models developed with different training and testing datasets. Increasing s produces worse model

performances.

the different subvolume sizes is that when s=1600 voxels, models that
only use the features that describe the time in the experiment, such as ¢,,
and op, produce high R? values (0.96). In contrast, for the smaller
subvolumes, these models perform poorly with R? values of 0.03 and
0.09.

Except for models developed with the time-based features, the
relative performance of the models is similar for the different subvolume
sizes. When s=400 voxels, the subsets of features that produce the best-
performing models are the 1) surface area, 2) eigenvalues, and 3) dis-
tance between fractures. These subsets of features produce the best
performing models when s=600 voxels, as well as features derived from
the orientation of the fractures relative to the o; direction, 8. When
s=1600 voxels, the subsets of features that produce the best-performing
models are those identified when s=600 voxels, as well as the time-
based features (&,; and op), and the anisotropy. The elongation and
flatness produce some of the worst performing models for all the sub-
volume sizes.

3.4. Predicting the change in localization: AGini

We now focus on models that predict the change in the Gini coeffi-
cient, AGini (Fig. 8). Varying the parameters v and s does not produce
systematic trends in the model performance. For some combinations of
these parameters and some experiments (WG19, WG20, WG18), the
models perform with moderate to strong correlations between the pre-
dicted and observed AGini. These experiments host the most systematic
evolutions of the Gini coefficient, and do not contain phases of delo-
calization (Fig. 5). The poor performance of models that predict AGini
for experiments with phases of delocalization reveals the difficulty of
predicting these temporary episodes. Examining the features that most
strongly control the predictions for models with R? values >0.6
(Table S5) shows that the ¢,, and op are the most important features for
models developed with s=1600 voxels. For the smaller subvolumes, the
eigenvalues and flatness are the most important features.

4. Discussion
4.1. Predictability of the stress distance to macroscopic failure

To assess how localization is linked to the macroscopic failure of
crystalline rocks in the upper crust, we developed machine learning

models to predict the stress distance to catastrophic failure using char-
acteristics of the fracture networks. These models perform with R?

values of 0.8-0.95, and thus better than previous analyses that predicted
the stress distance to failure in crystalline rocks with R? values of about
0.6 (McBeck et al., 2020). The present models may perform better than
the previous models because the eight experiments in the previous work
included a lower number of tomograms (439) than the six experiments
of the present analysis (599). Moreover, the previous analysis used a
larger variety of rock types (Carrara marble, quartz monzonite, Westerly
granite) than the current study (only Westerly granite). The different
rock types produce different fracture distributions that may make pre-
dictions among all the rock types difficult. For example, the Carrara
marble experiments produce a more uniform spatial distribution of
fractures of more similar sizes immediately preceding failure than the
Westerly granite or monzonite experiments (e.g., fig. 1 in McBeck et al.,
2020). Indeed, models that predict the characteristics of fracture prop-
erties, such as the volume and aperture, using other characteristics in the
marble experiments produce lower R? scores than models developed for
the granite and monzonite rocks (McBeck et al., 2022a). Consistent with
this idea, the characteristics identified as important to the model pre-
dictions, using the SHAP values, are similar among models developed for
the different experiments analyzed in the current work (Table S3). For
example, when s=1600 voxels, all the experiments except WG19 pri-
marily rely on the Gini coefficient to predict the distance to failure. This
consistency suggests that the varying pore fluid pressure, confining
stress, and amount of preexisting damage does not change which char-
acteristics are the most useful for predicting the distance to failure in
these experiments. Other factors that we did not test in our experiments,
such as the loading rate, may change these characteristics.

Another key difference between the present and previous analyses is
the inclusion of more features in the present analysis, such as the Gini
coefficient. The models in the present study developed using the first
eigenvalue and Gini coefficient produce better predictions of the dis-
tance to failure than models developed with other subsets of features,
such as the first eigenvalue and the orientation relative to the o; di-
rection, 0 (Fig. 4a, c, e). This result suggests that the Gini coefficient
provides useful information about the timing of macroscopic failure, and
that adding this metric in the previous analysis may have improved the
model performance.

When the models include data from all the experiments and only
subsets of the fracture characteristics, the characteristics that produce
the best performing models and thus contain the most useful informa-
tion for predicting the timing of macroscopic failure, are the eigenvalues
(proportional to the fracture length and aperture) and anisotropy
(Fig. 4b, d, f). Models that include the volume of the fractures rank only
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Fig. 7. Performance of models that predict the Gini coefficient using all the features, and only subsets of features with data from all the experiments for v=100 voxels
and a) s=400 voxels, b) s=600 voxels, and c) s=1600 voxels. The model performance is reported as the mean =+ one standard deviation of the R? values of models
developed with different training and testing datasets. The text next to each data point is the mean R? value. The list to the right of each plot shows the ranking of the
models, where one is the best-performing model. The models that use features that describe the time in the experiment (¢,, and op) are highlighted with red, bold
font. When s=1600 voxels, the models that use the time-based features, &, and op, produce high R? values (c). For the smaller subvolumes, in contrast, these models
Eerform poorly (a-b). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. Performance of models that predict the change in the Gini coefficient, AGini, from one differential stress step to the next using different combinations of the v
(a), and s (b). Only three experiments produce reasonable model performances, with R? values >0.7: WG19, WG20, and WG18. These experiments do not include

phases of delocalization.

fourth to sixth out of eleven, and models that include only the Gini co-
efficient or distance between the fractures rank only seventh to tenth out
of eleven models. When the first eigenvalue is combined with other
characteristics (Fig. 4 a, c, e), the top three or four characteristics that
produce the best performing models are the volume, distance between
fractures, anisotropy, and third eigenvalue (proportional to the
aperture).

The characteristic that provides less useful information, particularly
when it is combined with the fracture length, is the orientation of the
fracture, 6. This result is surprising because the orientation is widely
used in the Coulomb failure criterion, and calculations of the stress in-
tensity factor (e.g., Jaeger and Cook, 1979; Paterson and Wong, 2005),
and is often linked to the evolving micromechanisms of damage as rocks
approach macroscopic failure (e.g., Tapponier and Brace, 1976).
Consistent with the relative unimportance of ¢ identified here, a previ-
ous analysis that predicted fracture characteristics, such as 6, using other
characteristics found that models that predict 6 perform more poorly
than models that predict the other characteristics (McBeck et al.,
2022a). The apparent difficulty of predicting € in this previous work,
and the relative unimportance of § when predicting the stress distance to
failure in the current work, suggest that the relationship between 6 and
other characteristics, such as length, and the evolution of 6 toward
macroscopic failure is less systematic than other fracture characteristics.

The previous analysis that used fracture characteristics to predict the
distance to failure found that the fracture volume is not useful for pre-
dictions, while the aperture, anisotropy, ¢, and distance between frac-
tures are useful for these predictions (McBeck et al., 2020). Both the
previous and present analyses identified the aperture, anisotropy, and
distance between fractures as important characteristics. The previous
and present analyses differ in the relative importance of the fracture
volume and 6. This difference may arise because of the inclusion of
different rock types (monzonite and Carrara marble) in the previous
work. The Carrara marble and Westerly granite produce fracture pop-
ulations with different sizes and volumes for a given distance to failure
that may cause the fracture volume to be a worse predictor of the

11

distance to failure than the anisotropy, distance between fractures, or 6.
In general, however, we consider the results of the present analysis to be
more robust than the previous analysis because the present analysis
produces higher R? scores. In both the present and previous work, one of
the most important characteristics for the model predictions when
combined with the other important characteristics is the distance be-
tween fractures. Consequently, the spatial distribution of the fractures is
useful for predicting the timing of macroscopic failure in triaxial
compression experiments on crystalline rocks at the stress and temper-
ature conditions of the upper crust.

4.2. Predictability of localization

Previous analyses (e.g., Ben-Zion and Zaliapin, 2020, 2019) suggest
that monitoring the spatial distribution of deformation, such as fractures
or seismicity, may be useful for estimating the timing of catastrophic
failure. To help such efforts, we developed machine learning models to
predict the localization of the fracture networks. Previous studies have
demonstrated that fracture networks, strain fields, acoustic emissions,
and low magnitude seismicity can temporarily decrease in spatial
localization as the system approaches catastrophic failure (Benson et al.,
2007; McBeck et al., 2021a, 2022b; Ben-Zion and Zaliapin, 2020).
Because the factors that control these phases of delocalization remain
unclear, we developed models to predict the change in the localization
from one stress step to the next.

The models that predict the Gini coefficient for individual experi-
ments using the largest subvolume size primarily depend on features
that describe the time in the experiment, including ¢, and op (Table S4).
This consistency among the experiments suggests that the confining
stress, fluid pressure, and amount of preexisting damage do not alter the
usefulness of these features for predicting the localization of the fracture
networks in these experiments. The models developed with all the ex-
periments and the largest subvolume size primarily depend on the sec-
ond eigenvalue, according to the SHAP values (Table S4). However,
when these models only have access to subsets of features, they perform
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with slightly higher R? values (0.96) when they only include the time-
based features (e;; and op) than when they only include the second
eigenvalue (0.94) (Fig. 7c).

The performance of the models developed with different subsets of
features is a more reliable measure of the relative usefulness of each
characteristic to the predictions than the SHAP values. Consequently, for
models developed with the largest subvolume size for all the experi-
ments combined, and individual experiments, the time-based features
produce some of the best predictions of the Gini coefficient. This result
highlights the strong relationship between the localization of the frac-
ture networks and the timing of macroscopic failure. This result is
consistent with previous analyses that observed generally increasing
localization preceding macroscopic failure in the fracture networks and
strain fields of X-ray tomography triaxial compression experiments
(McBeck et al., 2021a, 2022b), in low magnitude seismicity in southern
and Baja California (Ben-Zion and Zaliapin, 2020), and in the spatial
distribution of acoustic emissions in triaxial compression experiments
(Lockner et al., 1991; Benson et al., 2007; Aben et al., 2019). The result
is also consistent with theoretical results based on bifurcation theory
(Rudnicki and Rice, 1975) and damage rheology models (Lyakhovsky
et al., 2011) that describe macroscopic failure as a product of localiza-
tion. In both bifurcation theory and damage rheology models, the
deformation field separates into two solutions that represent the local-
ized shear zone and surrounding material outside the shear zone during
failure.

Two conceptual theories have been proposed to describe the evolu-
tion of deformation approaching system-size failure in rocks in the
brittle regime. One theory suggests that brittle failure may be a critical
phenomenon with power-law acceleration of damage before failure (e.
g., Renard et al., 2018). Alternatively, bifurcation theory may determine
the conditions at which deformation localizes and ultimately produces
system-scale failure (e.g., Rudnicki and Rice, 1975). Recent work using
two-dimensional cellular solids under compression indicates the
compatibility of these two theories (Mayya et al., 2023). These experi-
ments show that the approach to failure contains a phase of power-law
acceleration of damage at some distance to failure, and then a bifurca-
tion of the deformation field in the final stage of loading immediately
preceding macroscopic failure, producing localization. If this approach
applies to a wide range of brittle heterogeneous materials, such as rocks,
then the final localization stage following the power-law acceleration of
damage may be a deterministic precursor of system-size failure.

For the models that predict the change in localization, AGini, some
models developed for individual experiments achieve moderate to
strong correlations between the predicted and observed AGini (Fig. 8).
However, these experiments host systematic increases in the Gini coef-
ficient toward macroscopic failure, and no clear phases of delocalization
(Fig. 5). The poor performance of models that predict AGini for exper-
iments that include phases of delocalization illustrates the difficulty of
predicting these temporary episodes. Moreover, the set of experiments
that produce more poorly performing models do not differ in their initial
conditions, such as confining stress, fluid pressure, or initial damage,
from the experiments that produce better models. Consequently, future
work is needed to identify the conditions that promote phases of
delocalization.

The features that dominantly control the predicted AGini include &,
and op for models using largest subvolume, and the flatness and ei-
genvalues of fractures for models using the smaller subvolumes
(Table S5). The dependence of the models on the macroscopic time-
based features is consistent with the observed acceleration of the Gini
coefficient in these experiments (Fig. 5), which produce systematic in-
creases in the AGini as a function of &, and/or op.

4.3. Implications for upscaling

A key question in this analysis is how to extend the results to larger
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length-scales, such as kilometer-scale crustal fault networks. To provide
insights into upscaling, we varied the size of the system (i.e., subvolume
size, s) used to calculate the fracture characteristics. In both the models
that predict the distance to failure and the Gini coefficient for the in-
dividual experiments, varying s from the largest subvolume to one of the
smaller subvolumes changes the features that most strongly control the
model predictions identified with the SHAP values (Table S3, Table S4).
However, comparing the performance of models that only include sub-
sets of fracture characteristics reveals general similarities among the
subvolume sizes for models developed with all the experiments (Fig. 4,
Fig. 7).

For models that predict the distance to failure using all of the ex-
periments, the fracture length (first eigenvalue) provides more useful
information about the distance to failure, and thus produces better
model performance, than the other tested characteristics, including the
anisotropy, 6, Gini coefficient, and distance between the fractures,
regardless of subvolume size (Fig. 4). When the fracture length is com-
bined with the other fracture network properties to predict the distance
to failure, the volume, anisotropy, and distance between fractures
generally provide more useful information than the other tested char-
acteristics for all the subvolume sizes.

One moderate difference between models that predict the stress
distance to failure with different subvolume sizes is that the Gini coef-
ficient produces better performing models at larger subvolume sizes
compared to smaller subvolumes (Fig. 4). Similarly, for models that
predict the stress distance to failure using the individual experiments,
the Gini coefficient is one of the most important identified features for
the larger subvolumes, but not the smaller subvolumes (Table S3). The
relative unimportance of the Gini coefficient for the smaller subvolumes
reflects the heterogeneity of the Gini coefficient calculated in the smaller
subvolumes. In particular, the Gini coefficient in one subvolume can
differ by a significant amount from the Gini coefficient in another sub-
volume at the same stress step (Fig. S3). In other words, the size of the
representative elementary volume (e.g., Bachmat and Bear, 1987; Zhang
et al., 2000; McBeck et al., 2023b) of the Gini coefficient is the size of the
system or larger, rather than smaller than the system. This difference
obscures the relationship between the Gini coefficient and the distance
to failure, reducing the ability of the models to predict this relationship.
This heterogeneity helps explain the better performance of models that
predict the distance to failure using data from all the experiments
developed with the first eigenvalue and Gini coefficient at larger sub-
volumes (Fig. 4e) compared to the performance of these models at
smaller subvolumes (Fig. 4a, c).

Similar to models that predict the distance to failure, the models that
predict the Gini coefficient primarily depend on the same subset of
features at the varying subvolume sizes. In particular, the most impor-
tant identified features include the eigenvalues, surface area, and dis-
tance between the fractures for all subvolume sizes (Fig. 7). For the
largest subvolume size, the time-based features (¢,, and op) also produce
some of the best-performing models. The difference in the importance of
the time-based features with different subvolume sizes arises at least in
part from the heterogeneity of the Gini coefficient described in the
previous paragraph and in Fig. S3.

In summary, these results suggest that the fracture network charac-
teristics that provide the most useful information about the distance to
failure and the value of the Gini coefficient are generally independent of
the system size. Consequently, we cautiously suggest that the results
found at these smaller scales may apply to larger crustal systems.
Although the length scale of these experiments is several orders of
magnitude smaller than the length scales of crustal fault networks, the
length distribution of fractures can be scale-invariant over several orders
of magnitude (e.g., Bonnet et al., 2001). These scaling properties suggest
that the fracture characteristics observed in the laboratory may be
similar to characteristics observed in the crust. However, these scaling
properties break down when the system includes a macroscopic, system-
scale heterogeneity, such as a fault or mechanical contact between
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lithographic units. Consequently, these results may be most applicable
to volumes of crust without system-scale heterogeneities, such as the
damage zone or host rock adjacent to a crustal fault.

For example, the fracture length and volume produce models that
perform better than those developed from the fracture length and
orientation (Fig. 4). Consequently, monitoring changes in the bulk
fracture volume, such as with the seismic wave speeds (e.g., Chiarabba
et al., 2020; Shreedharan et al., 2021a, 2021b) may be useful for fore-
casting the timing of large earthquakes, and identifying the preferred
orientation of these fractures, through seismic anisotropy for example,
may not significantly improve forecasting efforts.

5. Conclusions

The experimental results and machine learning models help improve
our understanding of the evolving deformation leading to catastrophic
failure. The models predict the distance to failure in terms of the dif-
ferential stress, the localization of the fracture networks, and the change
in localization using characteristics of the fracture networks observed in
X-ray tomography triaxial compression experiments. The six experi-
ments on Westerly granite include systematically varying confining
stress, fluid pressure, and amounts of preexisting damage. The models
produce better predictions of the stress distance to macroscopic failure
than previous work (McBeck et al., 2020), with R? values of 0.8-0.95.
This improvement in the model performance lends confidence to the
idea that monitoring geophysical changes in the crust produced by the
evolution of fracture network characteristics may assist earthquake
early warning efforts. Examining the performance of models developed
with subsets of characteristics helps identify features that may be the
most useful to monitor in the crust.

The analysis indicates that the first eigenvalue of the fractures
(proportional to the fracture length), fracture volume, distance between
fractures, shape anisotropy (or thinness of the fractures), and third
eigenvalue (proportional to the smallest aperture), provide the most
useful information about the timing of macroscopic failure (Fig. 9a). The
characteristic that provides less useful information, particularly when it
is combined with the fracture length, is the fracture orientation relative
to the o direction. These results are consistent for all the tested sub-
volume sizes, so we cautiously propose that monitoring changes in the
bulk fracture volume, such as with the seismic wave speeds (e.g.,
Chiarabba et al., 2020) may be useful for forecasting the timing of large
earthquakes, whereas identifying the preferred orientation of these
fractures, through seismic anisotropy, may be less useful. The charac-
teristics that are the most beneficial for the model predictions are
generally consistent among models developed for the different experi-
ments. This result suggests that the usefulness of these characteristics for
predicting the timing of failure is independent of the confining stress,
fluid pressure, and amounts of preexisting damage within the ranges of
the parameters tested here.

Monitoring the spatial distribution of deformation, such as fractures
or seismicity, may be useful for estimating the timing of catastrophic
failure (e.g., McBeck et al., 2020; Kato and Ben-Zion, 2021). Although
deformation generally localizes toward catastrophic failure, it occa-
sionally decreases in localization (McBeck et al., 2021a, 2022b; Ben-
Zion and Zaliapin, 2020) (e.g., Fig. 1), which complicates efforts to use
localization to recognize the acceleration of the precursory stage leading
to large earthquakes. To help such efforts, we developed machine
learning models to predict the localization of the fracture networks as
measured with the Gini coefficient of the fracture volume. The models
can predict the Gini coefficient with R? values above 0.90, but predict
changes in the Gini coefficient from one stress step to the next with R?
values from below zero to 0.8 for individual experiments. The features
that describe the macroscopic time in the experiment, ¢,, and op, pro-
duce the best predictions of the Gini coefficient when models are
developed using the complete scan at a given stress step, rather than
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a) predicting the stress distance to failure

Independent of o,, P., damage, system-size
Useful characteristics:

fracture length, aperture, volume, anisotropy,
distance between fractures

Less useful characteristic:
Orientation

anisotropy=
1-(smaller aperture/length)

b) predicting localization: Gini of the fracture volume
Independent of o,, P., damage

Useful characteristics:

€,,, 0., fracture length, apertures, surface area

Less useful characteristics:
elongation, flatness

elongation=
larger aperture/
length

flatness=
smaller aperture/
larger aperture

c) predicting changes in localization: AGini
Delocalization is not linked to o,, P, damage

Successful predictions for experiments
without phases of delocaliization

Gini good predictions
bad predictions

o-D

Fig. 9. Sketch of the key results of a) predicting the stress distance to failure, b)
predicting the Gini coefficient, and c) predicting the change in the Gini coef-
ficient. a) Independent of the stress and fluid conditions, amount of preexisting
damage, and size of the system, the characteristics that are the most useful for
predicting the distance to failure are the fracture length, aperture, volume,
anisotropy, and distance between the fractures. In contrast, the orientation is
less useful. b) Independent of the stress and fluid conditions, and amount of
preexisting damage, but not of the system size, the characteristics that are the
most useful for predicting the Gini coefficient are the macroscopic axial strain,
differential stress, fracture length, apertures, and surface area. In contrast, the
ratios between the apertures (elongation and flatness) are not as useful. c)
Episodes of delocalization of the fracture networks are not linked to the
confining stress, fluid pressure, and amount of damage. The models can predict
the change in the Gini coefficient, and thus phases of localization and delo-
calization, for experiments that host fracture networks that systematically in-
crease in localization, and do not host phases of delocalization.
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subvolumes of the scan. This result applies for models developed using
all the experiments and individual experiments (Fig. 9b). Consequently,
these results highlight the clear relationship between deformation
localization and the accumulated axial strain and/or differential stress
in the experiment, and thus the proximity to macroscopic failure. The
consistency of the importance of ¢,, and op among the different exper-
iments indicates that varying the stress and fluid conditions or preex-
isting damage does not perturb the relationship between localization
and proximity to failure. This result is consistent with previous work that
attributed macroscopic failure to the localization of deformation (e.g.,
Rudnicki and Rice, 1975; Lyakhovsky et al., 2011). The heterogeneity of
the Gini coefficient, and thus the fracture networks (e.g., Fig. S3), ex-
plains the relative unimportance of the ¢,, and op for predicting the Gini
values at smaller subvolumes.

The models achieve moderate to strong correlations between the
predicted and observed AGini for the experiments that do not include
phases of delocalization, and weak to non-existent correlations for the
experiments with phases of delocalization (Fig. 8, Fig. 5, Fig. 9¢). These
results highlight the difficulty of predicting these temporary episodes
from the fracture network characteristics. The set of experiments that
produce more poorly performing models do not differ in their initial
conditions, such as confining stress, fluid pressure, or initial damage,
from the experiments that produce better models. Consequently, addi-
tional analyses are required to constrain the conditions that promote
phases of delocalization.
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