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A B S T R A C T   

Previous studies show that the total volume of fractures increases non-linearly during loading as rocks approach 
failure in triaxial compression at stress and temperature conditions representative of the upper crust. However, 
the factors that control the critical volume of fractures or the critical spatial organization of the fracture network 
that trigger macroscopic failure remain unclear. To identify the fracture characteristics that determine the timing 
of macroscopic failure and localization of the fracture networks, we analyze data from six X-ray tomography 
experiments on Westerly granite with varying confining stress, fluid pressure, and amounts of preexisting 
damage. We develop machine learning models to predict 1) the timing of failure, 2) the localization of the 
fracture networks as measured with the Gini coefficient of the fracture volume, and 3) the change in localization 
from one differential stress step to the next. When the models only have access to individual fracture charac
teristics, the fracture length produces the best predictions of the distance to failure. When the models have access 
to the fracture length and sets of other characteristics, the fracture volume, aperture, and distance between 
fractures produce the best predictions of the distance to failure. The characteristics that describe the time or 
loading in the experiment, the axial strain and differential stress, produce some of the best predictions of the Gini 
coefficient. The results are generally consistent among the different experiments, suggesting that the fracture 
characteristics that determine the timing of macroscopic failure, and the localization of the fracture network, are 
independent of the range of confining stress, fluid pressure, and amount of preexisting damage tested here. Our 
results are consistent with the idea that monitoring the spatial distribution of deformation and changes in the 
seismic wave properties indicative of fracture growth may improve forecasting efforts of failure in the crust.   

1. Introduction 

Developing a method to estimate the stress conditions at macro
scopic failure using characteristics of fracture networks would be a 
significant advance in our understanding of rock deformation. In tension 
under constant or increasing stress loading, fracture growth tends to 
develop unstably, producing rapid macroscopic, system-size failure after 
initiation. This unstable growth occurs because increasing fracture 
length increases the stress intensity factor in these systems, and thereby 
promotes additional fracture growth (e.g., Bieniawski, 1968). Under 
constant displacement or slow velocity loading, fracture growth in 
tension can be stable (e.g., Obreimoff, 1930). In compression, 

experiments show that fractures can grow quasi-stably as the system 
accumulates more axial or differential stress before fracture growth and 
coalescence triggers macroscopic failure (e.g., Bieniawski, 1968; Brace, 
1964; Brace et al., 1966; Paterson and Wong, 2005, p. 111). Previous 
analyses have attributed this quasistatic growth to the propagation of 
wing cracks from inclined shear cracks because the stress intensity factor 
at an isolated wing crack tip may decrease as it propagates away from 
the stress concentration at the tip of the inclined shear crack, particu
larly if the fracture propagates into a region with some lateral 
compression (Brace and Bombolakis, 1963; Brace et al., 1966; Fairhurst 
and Cook, 1966; Ashby and Sammis, 1990; Horii and Nemat-Nasser, 
1985; Paterson and Wong, 2005 p. 120). This decrease of the stress 
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intensity factor then stabilizes growth and allows strain-hardening 
before macroscopic, catastrophic failure. However, wing crack growth 
may only stabilize when the fractures are relatively isolated, and not 
when neighboring cracks begin to perturb each other's local stress field. 
Moreover, such idealized wing crack development from preexisting in
clined shear cracks is rarely observed in experiments on natural, three- 
dimensional rocks (e.g., Renard et al., 2019a, 2019b; Cartwright-Taylor 
et al., 2020; McBeck et al., 2021a, 2023a). 

Because fracture opening appears to precede some, but not all, 
earthquakes (e.g., Chiarabba et al., 2020), constraining fracture char
acteristics that help predict the timing of catastrophic failure in triaxial 
compression experiments, such as length and orientation, may help 
forecast the timing of large earthquakes in the crust. In particular, 
geophysical observations and laboratory experiments suggest that 
monitoring the volume of fractures in the crust, through changes in the 
seismic wave speeds and anisotropies, could help forecast the timing of 
large earthquakes (e.g., Chiarabba et al., 2020; Shreedharan et al., 
2021a, 2021b). However, the associated changes in seismic wave 
properties have only been observed preceding some earthquakes (Bakun 
et al., 2005). This lack of detection may be due to the competing effects 
of fracture opening near the crustal slip zone, and the closure of fractures 
in the surrounding wall rock (Shreedharan et al., 2021b). 

Another characteristic of deformation that may be useful for fore
casting efforts is the evolving spatial organization of deformation, such 
as seismicity and fractures. Geophysical observations in Southern and 
Baja California reveal that the localization of low magnitude seismicity 
preceded the main shocks of the M > 71,992 Landers, 1999 Hector Mine, 
2010 El Mayor-Cucapah, and 2019 Ridgecrest earthquakes (Ben-Zion 
and Zaliapin, 2020). The seismicity generally increased in localization in 
the final two to three years preceding the main shock. However, for 
short time periods during this general increase, localization remained at 
similar values or decreased, that is, delocalized. Consistent with these 
trends, monitoring the spatial organization of the high magnitudes of 
shear and dilative strain, and fractures in X-ray tomography triaxial 
compression experiments with increasing differential stress reveals 
phases of delocalization within a broader trend of increasing localization 
as the rocks approach macroscopic failure (McBeck et al., 2021a, 2022b) 
(e.g., Fig. 1b). Bifurcation theory (Rudnicki and Rice, 1975) and visco- 
elastic damage rheology models (Lyakhovsky et al., 2011) have explic
itly linked the onset of macroscopic failure in rocks to the localization of 
strain. Moreover, experiments that track the location of acoustic emis
sions under triaxial compression find that following the peak stress, 
acoustic emissions can localize into an elongate zone that appears to 
produce the macroscopic, system-spanning shear fracture identified 
post-mortem (Lockner et al., 1991; Aben et al., 2019). A few recent 
experiments also reveal evidence of localization preceding failure on 
preexisting faults (Dresen et al., 2020; Bolton et al., 2023; Marty et al., 
2023). Much previous work has recognized the importance of localiza
tion in the macroscopic failure of rocks and heterogeneous materials (e. 
g., Satoh et al., 1996; Benson et al., 2007; Rizzo et al., 2017), but few 
analyses have focused on the temporary decreases in localization, or 
attempted to identify the factors that promote these episodes of delo
calization. Identifying these factors may help earthquake forecasting 
efforts that use the evolving spatial distribution of seismicity to recog
nize the precursory phase leading to large earthquakes. 

In this work, we use a suite of six X-ray tomography triaxial 
compression experiments with systematically varying confining stress, 
fluid pressure, and amount of preexisting damage to identify the fracture 
characteristics that control localization and delocalization, and the 
characteristics that control the timing of macroscopic, catastrophic 
failure. We develop machine learning models to predict three targets. 
One set of models predicts the stress distance to macroscopic failure, Δσ, 
from the differential stress acting on the rock when an X-ray tomogram 
was acquired, σD, and the differential stress at macroscopic failure, σF

D, Δ 
σ =

(
σF

D − σD
)/

σF
D (Fig. 1a). The second set of models predicts the 

localization of the fracture networks using the Gini coefficient of the 
fracture volume, which measures the deviation of a population from 
uniformity, and the third set predicts the change in the Gini coefficient 
from one stress step to the next (Fig. 1b). Larger values of the Gini co
efficient indicate more unequal distributions (Gini, 1921) with a few 
larger fractures and many smaller fractures, while smaller values indi
cate a more uniform distribution with fractures of the same or similar 
volumes. Previous analyses show that the Gini coefficient can continu
ally increase and accelerate toward failure in triaxial compression ex
periments (e.g., Fig. 1b) (McBeck et al., 2021a). The coalescence of 
many small fractures into larger fractures is likely the dominant form of 

Fig. 1. Sketch of the predictions of the machine learning models: a) the stress 
distance to failure, Δσ, b) the Gini coefficient calculated from the volume of the 
fractures at each differential stress step in the triaxial compression experiments, 
and the change in the Gini coefficient from one stress step to the next, ΔGini. 
c–d) Three-dimensional representations of fractures identified in the final 
tomogram acquired immediately preceding macroscopic failure in two experi
ments with confining stresses, σ2, of 10 MPa and 15 MPa, fluid pressures, PF , of 
5 MPa and 10 MPa, with nominally intact and heat-treated (damaged) Westerly 
granite. The fractures are shown with slightly transparent blue objects, and the 
different shades of blue correspond to different densities of fractures. e) Frac
tures at four differential stress steps in one experiment with σ2=15 MPa and 
PF=10 MPa on intact rock. Tomogram (#4) was the final tomogram acquired 
preceding macroscopic failure. The circular shapes at the bottom of the images 
are ring artefacts and excluded from the analysis. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

J. McBeck et al.                                                                                                                                                                                                                                 



Tectonophysics 871 (2024) 230191

3

fracture development that produces the increase in the Gini coefficient. 
In other experiments, the Gini coefficient may generally increase, but 
also temporarily decrease, producing phases of delocalization toward 
macroscopic failure, and thus non-monotonic behavior. Identifying the 
factors that promote these phases of delocalization may improve efforts 
to forecast the timing of catastrophic failure. 

In order to identify the characteristics that control localization and 
delocalization, and that control the timing of failure, we identify the 
characteristics that produce the best model predictions of each of the 
three targets. To compare the influence of the different confining stress, 
fluid pressure, and preexisting damage on the predictability of failure 
and localization, we develop models using data from each individual 
experiment, as well as models using data from all the experiments 
combined. Previous work suggests that varying amounts of preexisting 
damage may produce different modes of catastrophic failure. In partic
ular, higher levels of preexisting damage could promote more contin
uous and gradual transitions to failure, whereas less preexisting damage 
could promote more abrupt transitions (e.g., Tang et al., 2000; Vasseur 
et al., 2015; Cartwright-Taylor et al., 2020). Consequently, the amount 
of preexisting damage may influence the timing of the precursory phase 
leading to macroscopic failure, and thus the predictability of failure. To 
assess the ability to upscale the results to crustal fault networks, we vary 
the volume of the system used to extract the fracture characteristics and 
compare the resulting sets of characteristics identified as important in 
the different models. 

In previous studies we used fracture characteristics identified in a 
different set of X-ray tomography experiments to predict the stress dis
tance to failure (McBeck et al., 2020), and to predict the value of fracture 
characteristics using other characteristics (McBeck et al., 2022a). 
However, these analyses did not include the Gini coefficient of the 
fracture volume, and so did not reveal insights into the ability of this 
localization metric to help predict the timing of macroscopic failure, or 
insights into the factors that control delocalization. Another previous 
analysis attributed differences in the localization of fracture networks to 
varying confining stresses and grain sizes of minerals in crystalline rock 
(McBeck et al., 2021a). However, this previous work did not have access 
to the new experiments with systematically varying confining stress, 
fluid pressure and damage, and so was not able to robustly compare 
these effects. The present analysis will compare these influences. 

2. Methods 

2.1. Triaxial compression X-ray tomography experiments 

We performed six triaxial compression experiments at beamline ID19 
at the European Synchrotron Radiation Facility, in Grenoble, France. We 
used 10 mm tall and 4 mm diameter cylinders of Westerly granite. 
Westerly granite is a low-porosity crystalline rock dominated by inter
locking quartz, feldspar, and biotite. Westerly granite has a mean grain 
size of 0.75 mm and an initial porosity of <1% (e.g., Atkinson and 
Meredith, 1987). 

Using the Hades triaxial compression apparatus (Renard et al., 
2016), we imposed a constant confining stress in each experiment in the 
range 5–20 MPa, and constant pore fluid pressure in the range 0–10 MPa 
(Table S1). We varied the confining stress and fluid pressure so that five 
of the six experiments experienced the same effective stress, confining 
stress minus fluid pressure (Pe=5 MPa), and the remaining experiment 
experienced Pe=10 MPa. Consequently, this suite of experiments does 
not allow differentiating between the influence of pore fluid pressure 
and confining stress. We then increased the axial stress, σ1, in steps of 
0.5–5 MPa, with smaller steps closer to failure, until the rock failed with 
a stress drop. After each step increase in σ1, we acquired an X-ray 
tomogram in under 1.5 min while the rock was inside the Hades appa
ratus and thus under constant loading. 

To assess the influence of preexisting damage on the timing of 
macroscopic failure and localization of the fracture networks, we 

deformed intact and heat-treated (damaged) Westerly granite samples 
drilled from the same block. We damaged the cores by heating them in 
an oven with an initial heating rate of 4 ◦C/min from room temperature 
to 650 ◦C, and then for five hours at 650 ◦C, and then with a cooling rate 
of 4 ◦C/min to room temperature. This heating procedure causes the 
damaged rock cores to fail at lower differential stresses than the intact 
rock cores for the same confining stress and effective stress conditions 
(Fig. S1). We performed all the experiments at ambient room tempera
ture in the range 22–24 ◦C. For the experiments that include fluid 
pressure, we saturated the granite cores in deionized water in a vacuum 
chamber for two weeks preceding the experiment. 

Following each experiment, we reconstructed the radiographs into 
three-dimensional volumes. The volumes are 1600x1600x1600 voxels, 
and each voxel side length is 6.5 μm. During reconstruction, we applied 
methods to remove acquisition noise, such as ring artefacts. We reduced 
the remaining noise in the reconstructed, three-dimensional data using 
the software Avizo3D™, including the application of a non-local means 
filter (Buades et al., 2005). After these steps, the data contain some 
visible noise, such as a few ring artefacts. Later, we apply additional 
post-processing techniques to exclude these artefacts from the analyses, 
which we describe below. We segmented the solid rock from the frac
tures using a method similar to Otsu's thresholding technique to identify 
a global threshold between the solid material and the fractures (McBeck 
et al., 2021c). This method produces segmented tomograms with 
porosity similar to values measured in the laboratory with sample 
imbibition when the pores have dimensions above the spatial resolution 
of the tomograms, which is in the range 2–3 voxels (Renard et al., 
2019a). We then applied several processing steps to the segmented to
mograms in Avizo3D™, including Label Analysis, that identify indi
vidual fractures using connected clusters of voxels, and calculate the 
geometric characteristics of fractures. 

We calculated the macroscopic axial strain done on the rock cores, 
εzz, by identifying the height of the rock core in each tomogram. 
Consequently, the spatial resolution and quality of the tomogram in
fluences the calculated εzz. An alternative method of constraining the 
axial strain uses the displacement recorded by the linear variable 
displacement transducer (LVDT) installed on the deformation apparatus. 
However, the LVDT displacement incorporates the deformation of the 
rock as well as the elastic response of the apparatus. Consequently, the 
axial strain derived from the tomograms is more representative of the 
deformation of the rock core than the strain derived from the LVDT. The 
axial strain calculated from the tomograms is similar to the displacement 
recorded by the LVDT after correcting for the elastic deformation of the 
rig (Fig. S2), lending confidence to the εzz calculated from the tomo
grams. 

Following previous work that characterizes or predicts the distance 
to failure using the stress (e.g., Renard et al., 2018; Kandula et al., 2019; 
McBeck et al., 2020), we predict the distance to failure in terms of the 
differential stress. Consequently, the calculated εzz does not influence 
the key results of the analysis because we use the characteristics of the 
fracture networks to predict the stress distance to failure. To predict the 
Gini coefficient and ΔGini, we use the characteristics of the fracture 
networks as well as the macroscopic σD and εzz. Later, we show that some 
of the models developed for individual experiments use εzz to predict the 
Gini coefficient (Section 3.2). This result lends confidence to the εzz 
calculated from the tomograms. 

2.2. Machine learning models 

Here, we use machine learning to identify the characteristics of 
fracture networks that are the most useful for predicting the timing of 
catastrophic failure, the localization, and the changes in localization. As 
described above, we develop the models to use geometric characteristics 
of the fracture networks revealed in the X-ray tomograms to predict 1) 
the stress distance to failure, 2) the Gini coefficient at a given stress (or 
time) step, and 3) the change in the Gini coefficient, ΔGini, from one 
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stress step to the next. The Gini coefficient uses the Lorenz curve to 
measure the deviation from a uniform distribution (e.g., Gini, 1921). 
The Lorenz curve shows the proportion of the total amount of a popu
lation, such as fracture volume, that is included in the bottom percentile 
of a population. The Gini coefficient is one minus twice the integral of 
the Lorenz curve. Consequently, larger Gini coefficients indicate that the 
total volume of the fractures in a network is dominated by a few frac
tures, whereas lower Gini coefficients indicate that the total volume is 
more equally distributed among all the fractures. 

The processing steps described in Section 2.1 produce a suite of 
characteristics for each individual fracture in each stress step, including 
the volume of the fracture, the centroid of the fracture, the surface area 
of the fracture, the eigenvalues of the fracture, and the orientation of 
each eigenvector relative to the vertical axis, parallel to the σ1 direction, 
and one of the horizontal axes, parallel to the σ2 direction (Table S2). 
The eigenvalues and eigenvectors of each fracture are calculated from 
the covariance matrix of the voxels of the fracture. We characterize the 
length of the fractures using the first eigenvalue, and the apertures of the 
fractures using the second and third eigenvalues. We also use ratios 
between eigenvalues to define the anisotropy (1-third eigenvalue/first 
eigenvalue), elongation (second eigenvalue/first eigenvalue), and flat
ness (third eigenvalue/s eigenvalue). 

To test the influence of system size on the factors that control the 
timing of failure and localization, we provide features to the model that 
represent characteristics of the population of fractures within one or 
more subvolumes at each stress step (and tomogram). In particular, the 
data table fed to the models have rows that represent each subvolume at 
each stress step. When the length of one side of the subvolume is larger 
than the height of the rock core (subvolume size, s=1600 voxels, or 
about one centimeter), then the data table of each experiment has one 
row for each stress step. We test subvolume sizes of 600 voxels (3.9 mm) 
and 400 voxels (2.6 mm), which produce two and three subvolumes at 
each differential stress step, respectively. We use a mask to remove the 
upper and lower pistons, and the jacket that encases the rock core from 
the images, so only the fractures identified within the rocks are used in 
the analysis. 

For a given subvolume size, we identify all the fractures within the 
subvolume at a particular stress step using the centroid of the fractures. 
We then calculate statistics of each geometric characteristic of all the 
fractures within the subvolume, such as the volume. These statistics are 
the mean, standard deviation, maximum, and several percentile values 
(25th, 50th, 75th, 90th). We include features that describe the confining 
stress and fluid pressure of the experiment (with the numbers prescribed 
in each experiment), as well as whether the rock is damaged or not (with 
a one or zero). For the models that predict the Gini coefficient and 
change in the Gini coefficient, we include features that describe the 
macroscopic time within the experiment, including the cumulative axial 
strain, εzz, and the differential stress, σD. For these models, we exclude 
the features that describe the fracture volume because the Gini coeffi
cient is calculated from the fracture volume. Table S2 lists all 115 fea
tures used in the present study. 

In addition to the influence of the subvolume size, s, we also test the 
influence of excluding relatively thicker or more tortuous fractures and 
voids by varying the minimum shape anisotropy, a, from 0.25 to 0.75, 
and the minimum volume of individual fractures, v, from 100 to 1000 
voxels. We show the results of varying s and v in the main manuscript 
because varying these parameters may provide insights into the most 
appropriate methods of analyzing crustal fault networks. Removing 
voids with lower anisotropies in the experimental analysis, in contrast, is 
motivated by removing artefacts of the tomogram acquisition and seg
mentation, such as the few ring artefacts that remain after filtering the 
data (e.g., at the bottom of the core in Fig. 1d). 

To predict the change in the Gini coefficient, we calculate the Gini 
coefficient within each subvolume at each differential stress step, for a 
given set of s, v, and a for each experiment. We then apply a median filter 
with a window size of five data points in order to smooth small per

turbations in the curve of the Gini coefficient and differential stress for 
each subvolume size. We calculate the change in the Gini coefficient 
from one scan to the next, ΔGini, using this smoothed curve. We also 
tried to predict ΔGini without smoothing the data and achieved similar 
results to those shown here. We tested predicting the ΔGini divided by 
the change in εzz, and ΔGini divided by the change in σD from one scan to 
the next. The performance of the models that predict ΔGini are the same 
as the models that predict ΔGini/Δεzz and ΔGini/ΔσD, and so we only 
show the results of predicting ΔGini. 

We develop XGBoost regression models in this work. This method is a 
widely used algorithm in machine learning (e.g., Rouet-Leduc et al., 
2017; Hulbert et al., 2019; Shreedharan et al., 2021a) that we have used 
in previous analyses (e.g., McBeck et al., 2020, 2022a). We estimate the 
influence of the features on the model predictions using Shapely Addi
tive Explanations (SHAP), a widely used metric in machine learning 
(Lundberg and Lee, 2017; Pedregosa et al., 2011). We report and 
compare the mean absolute value of the SHAP (mean |SHAP|) of each 
feature calculated from the SHAP values of all the data points (e.g., 
samples) provided to the models. 

We develop models using data from individual experiments, as well 
as all of the experiments combined together. We separate the training 
(70%) and testing (remaining 30%) datasets so that there is no overlap 
between these two sets. For the datasets with the largest tested sub
volumes, s =1600 voxels, each sample is distinct in time (stress step) and 
space. For the datasets with smaller subvolumes, s=400 voxels and 600 
voxels, each stress step includes three and two subvolumes, respectively. 
We randomize the times that occur in the training and testing datasets 
such that times earlier and later in the experiment can occur in either 
dataset. Comparing the performance of models developed with this 
randomized splitting and models developed from training and testing 
data that are continuous in time does not produce significant differences 
in the model performance. 

For each set of targets, experiments, and parameters of s, v, and a, we 
develop ten unique models that differ only in the separation of the 
training and testing datasets. We develop these models to reduce the 
influence of random variations in the training and testing dataset on the 
model performance. We then report the mean ± one standard deviation 
of the R2 values in the results. Because we develop these ten models for 
each set of parameters, we have ten sets of SHAP values for each of these 
combinations. To simplify the identification of the features that have the 
strongest influence on the model performance, we weight each SHAP 
value by the R2 value of the model, and then average these weighted 
values for the models with R2>0.7 for predicting the distance to failure 
and the Gini coefficient, and with R2>0.6 for predicting the ΔGini (e.g., 
McBeck et al., 2020, 2022a). To further compare the influence of each 
feature on the predictions, after we examine the R2-weighted SHAP 
values, we develop models that only include particular subsets of fea
tures. Comparing the performance of models developed with only sub
sets of features provides a more robust method of assessing the influence 
of each fracture characteristic on the model predictions than comparing 
the SHAP values. 

3. Results 

3.1. Macroscopic mechanical behavior 

Here, we focus on models that predict the stress distance to macro
scopic failure, Δσ =

(
σF

D − σD
)/

σF
D. Fig. 2 shows the axial strain and 

differential stress when a tomogram was acquired in each experiment. 
Many of the experiments produce non-linear stress-strain behavior early 
in loading because the rock core was not completely in contact with the 
pistons of the apparatus at the beginning of the experiment, and because 
some small preexisting fractures or voids closed (Fig. 2). Several of the 
experiments host an extended phase of yielding preceding macroscopic 
failure in which the slope of the axial strain-differential stress curve 
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Fig. 2. Axial strain and differential stress conditions when each tomogram was acquired in the six experiments. The applied confining stress, σ2, and fluid pressure, 
PF , are listed to the left of each set of plots. The data shown with the blue circles in the insets are the portion of the experiment within 70% of the differential stress at 
macroscopic failure, highlighted with blue rectangles. The number of scans acquired in each experiment is listed in each plot. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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decreases toward nearly zero (WG20, WG18, WG14). These experiments 
tend to have higher confining stresses (15 MPa and 20 MPa) than the 
experiments that do not produce this behavior (5 MPa and 10 MPa). The 
experimental design may not have captured the yielding phase preced
ing failure in the experiments with lower confining stress because the 
final differential stress step increase of 0.5 MPa was too large to allow a 
prolonged phase of yielding. However, the mechanical behavior 
observed here is consistent with previous experiments that observe a 
longer yielding phase, in terms of the accumulated axial strain, for rocks 
deformed at higher confining stresses than lower confining stresses (e.g., 
Paterson, 1958; Paterson and Wong, 2005 p. 212). 

3.2. Predicting the distance to macroscopic failure 

The models use the characteristics of the fracture networks to predict 
the distance to failure. Consequently, we vary the populations of frac
tures included in the models to assess 1) how the volume or size of the 
fractures controls the predictability of failure, and 2) how the size of the 
system controls the predictability of failure. We exclude fractures with 
volumes smaller than particular volume thresholds, v, of 100 to 1000 
voxels. We also vary the size of the subvolume, s, used to calculate the 
statistics of the fracture characteristics from the height of the tomogram 
(s=1600 voxels), to about half (s=600 voxels), and one third (s=400 
voxels) of the height of the tomogram. We develop models for individual 
experiments and all the experiments combined to assess differences in 
predictability due to the varying confining stress, fluid pressure, and 
initial damage of each rock. 

The R2 values are above 0.9 for all of these models, indicating that 
the models can predict Δσ with strong correlations between the pre
dicted and observed Δσ (Fig. 3). This performance is a significant 
improvement beyond previous efforts to predict the timing of macro
scopic failure using characteristics of the fracture networks, which only 
achieved R2 values of about 0.6 (McBeck et al., 2020). 

Varying v does not systematically alter the R2 values for the model 
that uses data from all the experiments, or the models developed from 
individual experiments (Fig. 3a). Varying s has a stronger influence on 
the R2 value than varying v (Fig. 3b). Increasing s from about the radius 
of the base of the rock cylinder (400 voxels) to the height of the rock 
cylinder (1600 voxels) increases the R2 value from about 0.8 to above 
0.95 for each experiment and combination of experiments. Providing 
less data (i.e., a lower number of subvolumes) to the models thus 

produces higher R2 values. Generally, one may expect that providing 
more data to a machine learning model produces better model perfor
mance. However, the quality of the data can influence whether the 
model performance decreases or increases. In the Discussion section, we 
describe how the heterogeneity of the fracture networks allow the 
models to perform better when they have access to a lower number of 
larger subvolumes, rather than a higher number of smaller subvolumes. 

To identify which fracture characteristics control the model pre
dictions, and thus may be beneficial for forecasting the timing of cata
strophic failure, we first identify the features with the highest mean | 
SHAP| values for the sets of the models. Table S3 shows the features with 
the R2-weighted mean |SHAP| values >50% of the maximum of these 
values for each experiment, and combination of experiments, with 
varying s. These values approximate the influence of each feature on the 
model results, and thus indicate which features the models rely or 
depend on. All models developed from individual experiments with 
s=1600 voxels, except experiment WG19, rely on the Gini coefficient of 
the fracture volume to predict the timing of failure. When the models use 
data from all the experiments and s=1600 voxels, they rely on the mean 
of the first eigenvalue, proportional to the length of the fracture. For 
smaller s, the individual experiment models and the combined experi
ment model rely on the shape anisotropy, surface area, and eigenvalues 
of the fractures. Consequently, varying the size of the system used to 
calculate the statistics of the fracture properties, the Gini coefficient, and 
other features changes the features that control the model predictions, 
according to the SHAP values. 

To better quantify the influence of each fracture characteristic on the 
predictions, we develop models using subsets of features (Fig. 4). The 
performance of the models developed with different subsets of features 
is likely a more reliable measure of the relative usefulness of each 
characteristic to the predictions than the SHAP values. The models 
include features derived from individual fracture characteristics 
(Fig. 4b, d, f), and from a combination of characteristics that include the 
most important feature identified using the SHAP values (Table S3), the 
first eigenvalue (Fig. 4a, c, e). We focus on models that use data from all 
the experiments because they may be more representative of the 
fundamental processes in crystalline rock than models developed from 
individual experiments. 

When the models are developed with individual characteristics, the 
localization metrics, the Gini coefficient and the distance between 
fractures, produce relatively poorly performing models. These models 

Fig. 3. Performance, R2, of models that predict the stress distance to failure, Δσ, for all of the experiments combined together and the individual experiments. The 
plots show the results using a) different thresholds of the minimum fracture volume included in the data, v, and b) different subvolume sizes to extract the data, s. The 
horizontal axes list the individual experiment or combination of all of the experiments (all) used to develop the model, and the applied confining stress, σ2, of the 
individual experiments. The model performance is reported as the mean ± one standard deviation of the R2 values of models developed with different training and 
testing datasets for each individual experiment and all of the experiments. The data provided to the models shown in (a) have s=1600 voxels, or one subvolume per 
differential stress step. The data provided to the models shown in (b) include fractures with v>100 voxels. Increasing v both increases and decreases the model 
performance, depending on the experiment (a). Increasing s increases the model performance (b). 
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rank from the seventh to tenth best-performing models out of eleven, 
depending on the subvolume size (Fig. 4). When the models are devel
oped with combinations of characteristics that include the first eigen
value, the models that use the first eigenvalue and the localization 
metrics perform better than the majority of the other models. The 
models developed with the distance between fractures and the first 
eigenvalue rank from the second (s=1600 voxels) to the fourth (s=600 
voxels) best-performing models out of eleven. The models developed 

with the Gini coefficient and the first eigenvalue rank from the fourth 
(s=1600 voxels) to the seventh (s=400 voxels) best-performing models. 
Other than the localization metrics, the characteristics that produce the 
best performing models when they are combined with the first eigen
value include the volume and anisotropy of the fractures. 

In summary, characterizing the length of the fractures, with the first 
eigenvalue, provides more useful information about the distance to 
macroscopic failure than the other tested characteristics, including the 

Fig. 4. Performance of models that predict Δσ using subsets of features with data from all the experiments for v=100 voxels and varying subvolume size: a–b) s=400 
voxels, c–d) s=600 voxels, and e–f) s=1600 voxels. The left column (a, c, e) shows the results of models that use a combination of features that include the first 
eigenvalue (i.e., the fracture length). The right column (b, d, f) shows the results of models that use individual characteristics as features, such as the fracture 
anisotropy or distance between fractures. The model performance is reported as the mean ± one standard deviation of the R2 values of models developed with 
different training and testing datasets. The text next to each data point is the mean R2 value. The list of characteristics to the right of each plot shows the ranking of 
the model performances, where number one is the best performing model. Models developed with features that describe the spatial localization, including the 
distance between fractures and the Gini coefficient of the fracture volume, are highlighted with bold, red font. When the models are developed with individual 
characteristics, the localization metrics produce relatively poorly performing models. When the models are developed with combinations of characteristics that 
include the first eigenvalue, the localization metrics and particularly the distance between fractures produce models that perform better than the majority of the 
models developed with the other features. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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anisotropy, the orientation relative to the σ1 direction, θ, and the 
localization metrics. When the fracture length is combined with the 
other fracture network properties to predict the distance to failure, the 
volume, anisotropy, distance between fractures, and for some sub
volume sizes, the Gini coefficient, provide more useful information than 
the other tested characteristics. 

Varying the subvolume size does not significantly change the key 
observations. For the models developed with the individual character
istics, the first and second eigenvalues and the anisotropy produce the 
three best-performing models for all of the subvolume sizes. The volume 
of the fractures and θ produce the fourth to sixth best-performing 
models. Finally, the distance between fractures and the Gini coeffi
cient produce the seventh to tenth best-performing models, and the 
elongation produces the worst-performing models. 

For models developed with combinations of characteristics that 
include the first eigenvalue, the volume produces the best-performing 
models for all the subvolume sizes. The elongation, flatness and orien
tation relative to the σ2 direction, φ, produce the worst-performing 
models. For the smaller subvolume sizes, s=400 voxels and 600 vox
els, the third eigenvalue produces the second best-performing model, 
and the distance between fractures produces the third or fourth best- 
performing model. When s=1600 voxels, the distance produces the 
second best-performing model, and the Gini coefficient produces the 
fourth best-performing model. Consequently, increasing the subvolume 
size increases the usefulness of the localization metrics, and particularly 
the usefulness of the Gini coefficient, for predicting the distance to 
failure. 

3.3. Predicting localization: The Gini coefficient 

Next, we develop models to predict the Gini coefficient of the frac
ture volume using characteristics of the fracture networks. The Gini 
coefficient increases toward failure in all of the experiments (Fig. 5). In 
half of the experiments (WG10, WG06, WG14), the Gini coefficient 
temporarily decreases, producing episodes of delocalization. Previous 
analyses attribute phases of delocalization to the presence of 

heterogeneities and stress shadows (e.g., McBeck et al., 2021a, 2021b). 
Consequently, one would expect the damaged (heat-treated) rock cores 
to favor episodes of delocalization rather than the nominally intact 
rocks. However, this suite of experiments shows that the intact rocks can 
also experience phases of delocalization, and that damaged rocks can 
host increasingly localized fracture networks without phases of delo
calization. Due to this behavior, we develop models to predict the Gini 
coefficient at particular stress steps, and the change in the Gini coeffi
cient between stress steps. 

Similar to the set of models that predict the distance to failure, we 
test the influence of varying the fracture volume and subvolume size on 
the models that predict the Gini coefficient. Varying v does not produce 
systematic difference in the model performance (Fig. 6a), similar to the 
models that predict the distance to failure (Fig. 3). Increasing s tends to 
decrease the R2 values for all but the experiment WG14 models (Fig. 6b), 
in contrast to the models that predict the distance to failure (Fig. 3). 
Varying both of these parameters produces only small changes in R2 

values as all of the mean R2 values are above 0.90. 
To identify the fracture characteristics that control the model pre

dictions, and thus the Gini coefficient, we examine the sets of features 
with the highest mean |SHAP| values, similar to the previous section. All 
of the models developed from individual experiments with s=1600 
voxels, rely on the macroscopic axial strain, εzz, or the macroscopic 
differential stress, σD (Table S4). When all the experiments are combined 
(Table S4), and s=1600 voxels, the models primarily rely on the stan
dard deviation of the second eigenvalue, which is proportional to the 
larger of the two apertures of the fracture. For the smaller s, the models 
depend on the surface area of the fractures and the first or second ei
genvalues. Consequently, changing the system size changes the fracture 
characteristics and macroscopic parameters that are useful for esti
mating the Gini coefficient for models developed for individual experi
ments, according to the SHAP values. 

We next develop models using subsets of features to more robustly 
quantify the influence of each characteristic on the model performance 
(Fig. 7). We focus on models developed using data from all experiments. 
The key difference between the performance of models developed with 

Fig. 5. The Gini coefficient calculated from the volume of the fractures at each tomogram as a function of the σD/σF
D for each experiment using the whole tomogram. 

Some experiments include phases in which the Gini coefficient decreases, indicative of temporary episodes of delocalization (a, c, f), while others host a continual 
increase of localization. The curves are median filters through the data, which are used to calculate the change in the Gini coefficient, as described in the 
Methods section. 
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the different subvolume sizes is that when s=1600 voxels, models that 
only use the features that describe the time in the experiment, such as εzz 

and σD, produce high R2 values (0.96). In contrast, for the smaller 
subvolumes, these models perform poorly with R2 values of 0.03 and 
0.09. 

Except for models developed with the time-based features, the 
relative performance of the models is similar for the different subvolume 
sizes. When s=400 voxels, the subsets of features that produce the best- 
performing models are the 1) surface area, 2) eigenvalues, and 3) dis
tance between fractures. These subsets of features produce the best 
performing models when s=600 voxels, as well as features derived from 
the orientation of the fractures relative to the σ1 direction, θ. When 
s=1600 voxels, the subsets of features that produce the best-performing 
models are those identified when s=600 voxels, as well as the time- 
based features (εzz and σD), and the anisotropy. The elongation and 
flatness produce some of the worst performing models for all the sub
volume sizes. 

3.4. Predicting the change in localization: ΔGini 

We now focus on models that predict the change in the Gini coeffi
cient, ΔGini (Fig. 8). Varying the parameters v and s does not produce 
systematic trends in the model performance. For some combinations of 
these parameters and some experiments (WG19, WG20, WG18), the 
models perform with moderate to strong correlations between the pre
dicted and observed ΔGini. These experiments host the most systematic 
evolutions of the Gini coefficient, and do not contain phases of delo
calization (Fig. 5). The poor performance of models that predict ΔGini 
for experiments with phases of delocalization reveals the difficulty of 
predicting these temporary episodes. Examining the features that most 
strongly control the predictions for models with R2 values >0.6 
(Table S5) shows that the εzz and σD are the most important features for 
models developed with s=1600 voxels. For the smaller subvolumes, the 
eigenvalues and flatness are the most important features. 

4. Discussion 

4.1. Predictability of the stress distance to macroscopic failure 

To assess how localization is linked to the macroscopic failure of 
crystalline rocks in the upper crust, we developed machine learning 
models to predict the stress distance to catastrophic failure using char
acteristics of the fracture networks. These models perform with R2 

values of 0.8–0.95, and thus better than previous analyses that predicted 
the stress distance to failure in crystalline rocks with R2 values of about 
0.6 (McBeck et al., 2020). The present models may perform better than 
the previous models because the eight experiments in the previous work 
included a lower number of tomograms (439) than the six experiments 
of the present analysis (599). Moreover, the previous analysis used a 
larger variety of rock types (Carrara marble, quartz monzonite, Westerly 
granite) than the current study (only Westerly granite). The different 
rock types produce different fracture distributions that may make pre
dictions among all the rock types difficult. For example, the Carrara 
marble experiments produce a more uniform spatial distribution of 
fractures of more similar sizes immediately preceding failure than the 
Westerly granite or monzonite experiments (e.g., fig. 1 in McBeck et al., 
2020). Indeed, models that predict the characteristics of fracture prop
erties, such as the volume and aperture, using other characteristics in the 
marble experiments produce lower R2 scores than models developed for 
the granite and monzonite rocks (McBeck et al., 2022a). Consistent with 
this idea, the characteristics identified as important to the model pre
dictions, using the SHAP values, are similar among models developed for 
the different experiments analyzed in the current work (Table S3). For 
example, when s=1600 voxels, all the experiments except WG19 pri
marily rely on the Gini coefficient to predict the distance to failure. This 
consistency suggests that the varying pore fluid pressure, confining 
stress, and amount of preexisting damage does not change which char
acteristics are the most useful for predicting the distance to failure in 
these experiments. Other factors that we did not test in our experiments, 
such as the loading rate, may change these characteristics. 

Another key difference between the present and previous analyses is 
the inclusion of more features in the present analysis, such as the Gini 
coefficient. The models in the present study developed using the first 
eigenvalue and Gini coefficient produce better predictions of the dis
tance to failure than models developed with other subsets of features, 
such as the first eigenvalue and the orientation relative to the σ1 di
rection, θ (Fig. 4a, c, e). This result suggests that the Gini coefficient 
provides useful information about the timing of macroscopic failure, and 
that adding this metric in the previous analysis may have improved the 
model performance. 

When the models include data from all the experiments and only 
subsets of the fracture characteristics, the characteristics that produce 
the best performing models and thus contain the most useful informa
tion for predicting the timing of macroscopic failure, are the eigenvalues 
(proportional to the fracture length and aperture) and anisotropy 
(Fig. 4b, d, f). Models that include the volume of the fractures rank only 

Fig. 6. Performance of models that predict the Gini coefficient with varying minimum fracture volume, v (a), and subvolume size, s (b). The model performance is 
reported as the mean ± one standard deviation of the R2 values of models developed with different training and testing datasets. Increasing s produces worse model 
performances. 
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fourth to sixth out of eleven, and models that include only the Gini co
efficient or distance between the fractures rank only seventh to tenth out 
of eleven models. When the first eigenvalue is combined with other 
characteristics (Fig. 4 a, c, e), the top three or four characteristics that 
produce the best performing models are the volume, distance between 
fractures, anisotropy, and third eigenvalue (proportional to the 
aperture). 

The characteristic that provides less useful information, particularly 
when it is combined with the fracture length, is the orientation of the 
fracture, θ. This result is surprising because the orientation is widely 
used in the Coulomb failure criterion, and calculations of the stress in
tensity factor (e.g., Jaeger and Cook, 1979; Paterson and Wong, 2005), 
and is often linked to the evolving micromechanisms of damage as rocks 
approach macroscopic failure (e.g., Tapponier and Brace, 1976). 
Consistent with the relative unimportance of θ identified here, a previ
ous analysis that predicted fracture characteristics, such as θ, using other 
characteristics found that models that predict θ perform more poorly 
than models that predict the other characteristics (McBeck et al., 
2022a). The apparent difficulty of predicting θ in this previous work, 
and the relative unimportance of θ when predicting the stress distance to 
failure in the current work, suggest that the relationship between θ and 
other characteristics, such as length, and the evolution of θ toward 
macroscopic failure is less systematic than other fracture characteristics. 

The previous analysis that used fracture characteristics to predict the 
distance to failure found that the fracture volume is not useful for pre
dictions, while the aperture, anisotropy, θ, and distance between frac
tures are useful for these predictions (McBeck et al., 2020). Both the 
previous and present analyses identified the aperture, anisotropy, and 
distance between fractures as important characteristics. The previous 
and present analyses differ in the relative importance of the fracture 
volume and θ. This difference may arise because of the inclusion of 
different rock types (monzonite and Carrara marble) in the previous 
work. The Carrara marble and Westerly granite produce fracture pop
ulations with different sizes and volumes for a given distance to failure 
that may cause the fracture volume to be a worse predictor of the 

distance to failure than the anisotropy, distance between fractures, or θ. 
In general, however, we consider the results of the present analysis to be 
more robust than the previous analysis because the present analysis 
produces higher R2 scores. In both the present and previous work, one of 
the most important characteristics for the model predictions when 
combined with the other important characteristics is the distance be
tween fractures. Consequently, the spatial distribution of the fractures is 
useful for predicting the timing of macroscopic failure in triaxial 
compression experiments on crystalline rocks at the stress and temper
ature conditions of the upper crust. 

4.2. Predictability of localization 

Previous analyses (e.g., Ben-Zion and Zaliapin, 2020, 2019) suggest 
that monitoring the spatial distribution of deformation, such as fractures 
or seismicity, may be useful for estimating the timing of catastrophic 
failure. To help such efforts, we developed machine learning models to 
predict the localization of the fracture networks. Previous studies have 
demonstrated that fracture networks, strain fields, acoustic emissions, 
and low magnitude seismicity can temporarily decrease in spatial 
localization as the system approaches catastrophic failure (Benson et al., 
2007; McBeck et al., 2021a, 2022b; Ben-Zion and Zaliapin, 2020). 
Because the factors that control these phases of delocalization remain 
unclear, we developed models to predict the change in the localization 
from one stress step to the next. 

The models that predict the Gini coefficient for individual experi
ments using the largest subvolume size primarily depend on features 
that describe the time in the experiment, including εzz and σD (Table S4). 
This consistency among the experiments suggests that the confining 
stress, fluid pressure, and amount of preexisting damage do not alter the 
usefulness of these features for predicting the localization of the fracture 
networks in these experiments. The models developed with all the ex
periments and the largest subvolume size primarily depend on the sec
ond eigenvalue, according to the SHAP values (Table S4). However, 
when these models only have access to subsets of features, they perform 

Fig. 7. Performance of models that predict the Gini coefficient using all the features, and only subsets of features with data from all the experiments for v=100 voxels 
and a) s=400 voxels, b) s=600 voxels, and c) s=1600 voxels. The model performance is reported as the mean ± one standard deviation of the R2 values of models 
developed with different training and testing datasets. The text next to each data point is the mean R2 value. The list to the right of each plot shows the ranking of the 
models, where one is the best-performing model. The models that use features that describe the time in the experiment (εzz and σD) are highlighted with red, bold 
font. When s=1600 voxels, the models that use the time-based features, εzz and σD, produce high R2 values (c). For the smaller subvolumes, in contrast, these models 
perform poorly (a-b). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Performance of models that predict the change in the Gini coefficient, ΔGini, from one differential stress step to the next using different combinations of the v 
(a), and s (b). Only three experiments produce reasonable model performances, with R2 values >0.7: WG19, WG20, and WG18. These experiments do not include 
phases of delocalization. 
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with slightly higher R2 values (0.96) when they only include the time- 
based features (εzz and σD) than when they only include the second 
eigenvalue (0.94) (Fig. 7c). 

The performance of the models developed with different subsets of 
features is a more reliable measure of the relative usefulness of each 
characteristic to the predictions than the SHAP values. Consequently, for 
models developed with the largest subvolume size for all the experi
ments combined, and individual experiments, the time-based features 
produce some of the best predictions of the Gini coefficient. This result 
highlights the strong relationship between the localization of the frac
ture networks and the timing of macroscopic failure. This result is 
consistent with previous analyses that observed generally increasing 
localization preceding macroscopic failure in the fracture networks and 
strain fields of X-ray tomography triaxial compression experiments 
(McBeck et al., 2021a, 2022b), in low magnitude seismicity in southern 
and Baja California (Ben-Zion and Zaliapin, 2020), and in the spatial 
distribution of acoustic emissions in triaxial compression experiments 
(Lockner et al., 1991; Benson et al., 2007; Aben et al., 2019). The result 
is also consistent with theoretical results based on bifurcation theory 
(Rudnicki and Rice, 1975) and damage rheology models (Lyakhovsky 
et al., 2011) that describe macroscopic failure as a product of localiza
tion. In both bifurcation theory and damage rheology models, the 
deformation field separates into two solutions that represent the local
ized shear zone and surrounding material outside the shear zone during 
failure. 

Two conceptual theories have been proposed to describe the evolu
tion of deformation approaching system-size failure in rocks in the 
brittle regime. One theory suggests that brittle failure may be a critical 
phenomenon with power-law acceleration of damage before failure (e. 
g., Renard et al., 2018). Alternatively, bifurcation theory may determine 
the conditions at which deformation localizes and ultimately produces 
system-scale failure (e.g., Rudnicki and Rice, 1975). Recent work using 
two-dimensional cellular solids under compression indicates the 
compatibility of these two theories (Mayya et al., 2023). These experi
ments show that the approach to failure contains a phase of power-law 
acceleration of damage at some distance to failure, and then a bifurca
tion of the deformation field in the final stage of loading immediately 
preceding macroscopic failure, producing localization. If this approach 
applies to a wide range of brittle heterogeneous materials, such as rocks, 
then the final localization stage following the power-law acceleration of 
damage may be a deterministic precursor of system-size failure. 

For the models that predict the change in localization, ΔGini, some 
models developed for individual experiments achieve moderate to 
strong correlations between the predicted and observed ΔGini (Fig. 8). 
However, these experiments host systematic increases in the Gini coef
ficient toward macroscopic failure, and no clear phases of delocalization 
(Fig. 5). The poor performance of models that predict ΔGini for exper
iments that include phases of delocalization illustrates the difficulty of 
predicting these temporary episodes. Moreover, the set of experiments 
that produce more poorly performing models do not differ in their initial 
conditions, such as confining stress, fluid pressure, or initial damage, 
from the experiments that produce better models. Consequently, future 
work is needed to identify the conditions that promote phases of 
delocalization. 

The features that dominantly control the predicted ΔGini include εzz 
and σD for models using largest subvolume, and the flatness and ei
genvalues of fractures for models using the smaller subvolumes 
(Table S5). The dependence of the models on the macroscopic time- 
based features is consistent with the observed acceleration of the Gini 
coefficient in these experiments (Fig. 5), which produce systematic in
creases in the ΔGini as a function of εzz and/or σD. 

4.3. Implications for upscaling 

A key question in this analysis is how to extend the results to larger 

length-scales, such as kilometer-scale crustal fault networks. To provide 
insights into upscaling, we varied the size of the system (i.e., subvolume 
size, s) used to calculate the fracture characteristics. In both the models 
that predict the distance to failure and the Gini coefficient for the in
dividual experiments, varying s from the largest subvolume to one of the 
smaller subvolumes changes the features that most strongly control the 
model predictions identified with the SHAP values (Table S3, Table S4). 
However, comparing the performance of models that only include sub
sets of fracture characteristics reveals general similarities among the 
subvolume sizes for models developed with all the experiments (Fig. 4, 
Fig. 7). 

For models that predict the distance to failure using all of the ex
periments, the fracture length (first eigenvalue) provides more useful 
information about the distance to failure, and thus produces better 
model performance, than the other tested characteristics, including the 
anisotropy, θ, Gini coefficient, and distance between the fractures, 
regardless of subvolume size (Fig. 4). When the fracture length is com
bined with the other fracture network properties to predict the distance 
to failure, the volume, anisotropy, and distance between fractures 
generally provide more useful information than the other tested char
acteristics for all the subvolume sizes. 

One moderate difference between models that predict the stress 
distance to failure with different subvolume sizes is that the Gini coef
ficient produces better performing models at larger subvolume sizes 
compared to smaller subvolumes (Fig. 4). Similarly, for models that 
predict the stress distance to failure using the individual experiments, 
the Gini coefficient is one of the most important identified features for 
the larger subvolumes, but not the smaller subvolumes (Table S3). The 
relative unimportance of the Gini coefficient for the smaller subvolumes 
reflects the heterogeneity of the Gini coefficient calculated in the smaller 
subvolumes. In particular, the Gini coefficient in one subvolume can 
differ by a significant amount from the Gini coefficient in another sub
volume at the same stress step (Fig. S3). In other words, the size of the 
representative elementary volume (e.g., Bachmat and Bear, 1987; Zhang 
et al., 2000; McBeck et al., 2023b) of the Gini coefficient is the size of the 
system or larger, rather than smaller than the system. This difference 
obscures the relationship between the Gini coefficient and the distance 
to failure, reducing the ability of the models to predict this relationship. 
This heterogeneity helps explain the better performance of models that 
predict the distance to failure using data from all the experiments 
developed with the first eigenvalue and Gini coefficient at larger sub
volumes (Fig. 4e) compared to the performance of these models at 
smaller subvolumes (Fig. 4a, c). 

Similar to models that predict the distance to failure, the models that 
predict the Gini coefficient primarily depend on the same subset of 
features at the varying subvolume sizes. In particular, the most impor
tant identified features include the eigenvalues, surface area, and dis
tance between the fractures for all subvolume sizes (Fig. 7). For the 
largest subvolume size, the time-based features (εzz and σD) also produce 
some of the best-performing models. The difference in the importance of 
the time-based features with different subvolume sizes arises at least in 
part from the heterogeneity of the Gini coefficient described in the 
previous paragraph and in Fig. S3. 

In summary, these results suggest that the fracture network charac
teristics that provide the most useful information about the distance to 
failure and the value of the Gini coefficient are generally independent of 
the system size. Consequently, we cautiously suggest that the results 
found at these smaller scales may apply to larger crustal systems. 
Although the length scale of these experiments is several orders of 
magnitude smaller than the length scales of crustal fault networks, the 
length distribution of fractures can be scale-invariant over several orders 
of magnitude (e.g., Bonnet et al., 2001). These scaling properties suggest 
that the fracture characteristics observed in the laboratory may be 
similar to characteristics observed in the crust. However, these scaling 
properties break down when the system includes a macroscopic, system- 
scale heterogeneity, such as a fault or mechanical contact between 
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lithographic units. Consequently, these results may be most applicable 
to volumes of crust without system-scale heterogeneities, such as the 
damage zone or host rock adjacent to a crustal fault. 

For example, the fracture length and volume produce models that 
perform better than those developed from the fracture length and 
orientation (Fig. 4). Consequently, monitoring changes in the bulk 
fracture volume, such as with the seismic wave speeds (e.g., Chiarabba 
et al., 2020; Shreedharan et al., 2021a, 2021b) may be useful for fore
casting the timing of large earthquakes, and identifying the preferred 
orientation of these fractures, through seismic anisotropy for example, 
may not significantly improve forecasting efforts. 

5. Conclusions 

The experimental results and machine learning models help improve 
our understanding of the evolving deformation leading to catastrophic 
failure. The models predict the distance to failure in terms of the dif
ferential stress, the localization of the fracture networks, and the change 
in localization using characteristics of the fracture networks observed in 
X-ray tomography triaxial compression experiments. The six experi
ments on Westerly granite include systematically varying confining 
stress, fluid pressure, and amounts of preexisting damage. The models 
produce better predictions of the stress distance to macroscopic failure 
than previous work (McBeck et al., 2020), with R2 values of 0.8–0.95. 
This improvement in the model performance lends confidence to the 
idea that monitoring geophysical changes in the crust produced by the 
evolution of fracture network characteristics may assist earthquake 
early warning efforts. Examining the performance of models developed 
with subsets of characteristics helps identify features that may be the 
most useful to monitor in the crust. 

The analysis indicates that the first eigenvalue of the fractures 
(proportional to the fracture length), fracture volume, distance between 
fractures, shape anisotropy (or thinness of the fractures), and third 
eigenvalue (proportional to the smallest aperture), provide the most 
useful information about the timing of macroscopic failure (Fig. 9a). The 
characteristic that provides less useful information, particularly when it 
is combined with the fracture length, is the fracture orientation relative 
to the σ1 direction. These results are consistent for all the tested sub
volume sizes, so we cautiously propose that monitoring changes in the 
bulk fracture volume, such as with the seismic wave speeds (e.g., 
Chiarabba et al., 2020) may be useful for forecasting the timing of large 
earthquakes, whereas identifying the preferred orientation of these 
fractures, through seismic anisotropy, may be less useful. The charac
teristics that are the most beneficial for the model predictions are 
generally consistent among models developed for the different experi
ments. This result suggests that the usefulness of these characteristics for 
predicting the timing of failure is independent of the confining stress, 
fluid pressure, and amounts of preexisting damage within the ranges of 
the parameters tested here. 

Monitoring the spatial distribution of deformation, such as fractures 
or seismicity, may be useful for estimating the timing of catastrophic 
failure (e.g., McBeck et al., 2020; Kato and Ben-Zion, 2021). Although 
deformation generally localizes toward catastrophic failure, it occa
sionally decreases in localization (McBeck et al., 2021a, 2022b; Ben- 
Zion and Zaliapin, 2020) (e.g., Fig. 1), which complicates efforts to use 
localization to recognize the acceleration of the precursory stage leading 
to large earthquakes. To help such efforts, we developed machine 
learning models to predict the localization of the fracture networks as 
measured with the Gini coefficient of the fracture volume. The models 
can predict the Gini coefficient with R2 values above 0.90, but predict 
changes in the Gini coefficient from one stress step to the next with R2 

values from below zero to 0.8 for individual experiments. The features 
that describe the macroscopic time in the experiment, εzz and σD, pro
duce the best predictions of the Gini coefficient when models are 
developed using the complete scan at a given stress step, rather than 

Fig. 9. Sketch of the key results of a) predicting the stress distance to failure, b) 
predicting the Gini coefficient, and c) predicting the change in the Gini coef
ficient. a) Independent of the stress and fluid conditions, amount of preexisting 
damage, and size of the system, the characteristics that are the most useful for 
predicting the distance to failure are the fracture length, aperture, volume, 
anisotropy, and distance between the fractures. In contrast, the orientation is 
less useful. b) Independent of the stress and fluid conditions, and amount of 
preexisting damage, but not of the system size, the characteristics that are the 
most useful for predicting the Gini coefficient are the macroscopic axial strain, 
differential stress, fracture length, apertures, and surface area. In contrast, the 
ratios between the apertures (elongation and flatness) are not as useful. c) 
Episodes of delocalization of the fracture networks are not linked to the 
confining stress, fluid pressure, and amount of damage. The models can predict 
the change in the Gini coefficient, and thus phases of localization and delo
calization, for experiments that host fracture networks that systematically in
crease in localization, and do not host phases of delocalization. 
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subvolumes of the scan. This result applies for models developed using 
all the experiments and individual experiments (Fig. 9b). Consequently, 
these results highlight the clear relationship between deformation 
localization and the accumulated axial strain and/or differential stress 
in the experiment, and thus the proximity to macroscopic failure. The 
consistency of the importance of εzz and σD among the different exper
iments indicates that varying the stress and fluid conditions or preex
isting damage does not perturb the relationship between localization 
and proximity to failure. This result is consistent with previous work that 
attributed macroscopic failure to the localization of deformation (e.g., 
Rudnicki and Rice, 1975; Lyakhovsky et al., 2011). The heterogeneity of 
the Gini coefficient, and thus the fracture networks (e.g., Fig. S3), ex
plains the relative unimportance of the εzz and σD for predicting the Gini 
values at smaller subvolumes. 

The models achieve moderate to strong correlations between the 
predicted and observed ΔGini for the experiments that do not include 
phases of delocalization, and weak to non-existent correlations for the 
experiments with phases of delocalization (Fig. 8, Fig. 5, Fig. 9c). These 
results highlight the difficulty of predicting these temporary episodes 
from the fracture network characteristics. The set of experiments that 
produce more poorly performing models do not differ in their initial 
conditions, such as confining stress, fluid pressure, or initial damage, 
from the experiments that produce better models. Consequently, addi
tional analyses are required to constrain the conditions that promote 
phases of delocalization. 
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