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Small-angle X-ray and neutron scattering (SAXS and SANS) patterns from
certain semicrystalline polymers and liquid crystals contain discrete reflections
from ordered assemblies and central diffuse scattering (CDS) from uncorrelated
structures. Systems with imperfectly ordered lamellar structures aligned by
stretching or by a magnetic field produce four distinct SAXS patterns: two-point
‘banana’, four-point pattern, four-point ‘eyebrow’ and four-point ‘butterfly’. The
peak intensities of the reflections lie not on a layer line, or the arc of a circle, but
on an elliptical trajectory. Modeling shows that randomly placed lamellar stacks
modified by chain slip and stack rotation or interlamellar shear can create these
forms. On deformation, the isotropic CDS becomes an equatorial streak with an
oval, diamond or two-bladed propeller shape, which can be analyzed by
separation into isotropic and oriented components. The streak has elliptical
intensity contours, a natural consequence of the imperfect alignment of the
elongated scattering objects. Both equatorial streaks and two- and four-point
reflections can be fitted in elliptical coordinates with relatively few parameters.
Equatorial streaks can be analyzed to obtain the size and orientation of voids,
fibrils or surfaces. Analyses of the lamellar reflection yield lamellar spacing,
stack orientation (interlamellar shear) angle « and chain slip angle ¢, as well as
the size distribution of the lamellar stacks. Currently available computational
tools allow these microstructural parameters to be rapidly refined.

1. Introduction

Nanostructures are widely used as building blocks in nature
and in the laboratory to produce optimally designed materials
with the desired properties. These building blocks are hier-
archically organized through self-assembly in natural mate-
rials to enhance strength and stiffness, e.g. in bones, abalone
shells, dental tissue, tendons and hair (Espinosa et al., 2009),
and by thermal processing, e.g. spinning, drawing and 3D
printing, in synthetic polymers (Baer et al., 1987). Supramol-
ecular assemblies of these building blocks are used in
biomedical applications such as controlled-release devices
(Liang et al., 2022; Hedegaard & Mata, 2020). Rigid crystalline
lamellae and softer non-crystalline layers, ~100 nm wide and
with alternating ~25 nm periodicity, are the building blocks in
many semicrystalline polymers. Characterization of structural
features in such assemblies is important for understanding the
influence of structure on macroscopic physical properties, and
to achieve desired properties such as a favorable combination
of stiffness and toughness. These structure—property correla-
tions need to be established on a large scale to take advantage
of machine learning (ML) and other artificial intelligence (AI)
tools that are now under development (Beltran-Villegas et al.,
2019). Small-angle X-ray scattering (SAXS), which can
provide the necessary structural information at nano-length
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scales (1-100 nm), is the tool of choice for such high-
throughput measurements (Lombardo et al., 2020).

The methods for deriving structural information from
SAXS and the related technique of small-angle neutron
scattering (SANS) are quite different from those used in wide-
angle X-ray scattering (WAXS), primarily because of the
completely different characteristics of the two types of data. In
WAXS, there may be hundreds or thousands of reflections
depending on the size of the unit cell (larger size allows more
reflections) and the extent of long-range order (higher order
produces more reflections). Crystallographic methods that
derive the structure use the ‘integrated intensities’ of these
reflections. This is not feasible in SAXS where there are, at
most, a handful of reflections, and more often just one or two
diffuse spots including the one centered on the origin. The
‘intensity variations’ within these spots are used to determine
parameters related to the structure. One example of this is the
determination of the radius of gyration of the scattering object
by Guinier analysis of the intensity variation of the central
diffuse spot (Guinier & Fournet, 1955). Similar analyses of the
discrete patterns yield information about some general
features of the structures such as size, interplanar spacing and
orientation distribution.

More recently, 3D and domain structures have been
determined by ab initio modeling from 1D SAXS patterns
from dilute solutions (Volkov & Svergun, 2003; Svergun &
Koch, 2003). Similar comprehensive analysis of patterns from
solid materials is lacking. The limited progress made since
their first discussion in early literature (Alexander, 1969) can
be typically found in book chapters (Saldivar-Guerra &
Vivaldo-Lima, 2013) and as part of the detailed analysis of
specific samples such as nylon 6 (Zheng et al., 1989; Murthy et
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al., 1996, Murthy & Grubb, 2002), poly(ethylene terephthal-
ate) (Rule ef al., 1995; Murthy et al., 1998; Murthy & Grubb,
2003), polyurethanes (Koerner et al., 2008), polypropylene
(Fischer et al., 2010), silk (Yang et al., 1997), flax (Astley &
Donald, 2001) and liquid crystals (Chakraborty et al., 2013).
We recently demonstrated a method in which, starting from
plausible models, the model parameters are iteratively
improved by comparing the simulated pattern with the
observed pattern until there is a reasonable agreement
between the two (Grubb et al., 2021).

In this paper, after a discussion of the features in the full
SAXS pattern and their relation to the structure, structural
models that are consistent with the data will be presented. This
will be followed by a proposal to parameterize the SAXS
patterns in the solid state to rapidly quantify the structural
features without relying on the description of the underlying
structure. The goal is to show that the approach is more
generally applicable. These procedures can be automated to
featurize and classify the large number of patterns for use in
ML and AI methods.

2. Features in SAXS patterns

SAXS patterns typically consist of discrete reflections from
long-range order and central diffuse scattering (CDS) from
uncorrelated structures (Fig. 1). Lamellar structures produce
two apparently distinct SAXS patterns, a ‘two-point’ [Figs.
1(a) and 1(d)] and a ‘four-point’ [Figs. 1(b) and 1(e)]. When
rod-like molecules in liquid crystalline phases are aligned by a
magnetic field or shear, nematic and smectic-A phases
produce a two-point pattern while smectic-C phases give a
four-point pattern with an angle ¢ between the reflections. The
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Structures and their corresponding SAXS patterns. (a) Two-point ‘banana’ pattern from nematic layers, adopted from Dingemans er al. (2013) with the
permission of the publisher Taylor & Francis Ltd. (b) Four-point pattern from cybotactic nematic layers (Dingemans et al., 2013). (c¢) Schematic of a fiber
with both tilted and un-tilted lamellae (Murthy ez al., 1990). (d) Two-point pattern from an un-tilted lamellar stack. (e) Four-point pattern from a tilted
lamellar stack. Patterns in (d) and (e) are from nylon-6 fibers (Murthy & Grubb, 2002).
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splitting of each of the reflections in the two-point pattern that
gives rise to the four-point pattern is caused by the lamellar
normal being tilted away from the molecular axis. In some
cases when the tilt is small, the reflections overlap giving the
appearance of a two-point pattern, so one cannot say that a
two-point pattern means no tilt. The radial position of these
reflections corresponds to a lamellar spacing.

Similar two- and four-point patterns are observed in semi-
crystalline polymers. In polymers that crystallize as micelles or
as folded-chain lamellae, there are crystalline lamellae alter-
nating with amorphous domains [Fig. 1(c)] (Murthy et al.,
1990). Fig. 1(d) shows a two-point bar pattern from un-tilted
lamellae in undrawn fibers. Fig. 1(e) shows a four-point pattern
arising from tilted lamellae in drawn fibers caused by chain slip
[Figs. 2(a) and 2(b)].

CDS wusually arises from voids, particles, surfaces and
interfaces. CDS could be in the form of circular or oval scat-
tering, or in the form of an equatorial streak in stretched
samples. This CDS is seen along with the discrete (lamellar)
reflections in Figs. 1(d) and 1(e). The near-isotropic CDS can
be attributed to large isotropic domains including voids, and
the streak to needle-shaped voids and fibrils, interfaces, or the
sample surface (Grubb & Murthy, 2010). The CDS can be
analyzed to obtain the size and orientation of voids, fibrils or
surfaces (Wang et al., 2012) (see Section 4.2) and to under-
stand the structural changes during deformation.
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Figure 2

3. Structural models and the simulation of small-angle
patterns

3.1. Lamellar reflections

SAXS patterns of a lamellar structure can be simulated
from models of lamellar stacks constructed using the scheme
in Fig. 2 with the following parameters. (1) The lamellar
spacing which moves the spot along the radial direction. (2)
The tilt of the lamellae which determines the separation of the
spots along the azimuthal direction. (3) The rotation of the
stacks which determines how much the spot rotates around its
center. When the stacks rotate, either because of lamellar slip
or by whole-body rotation, the reflections rotate around their
center by an angle «; when the stacks rotate in the same
direction as the tilt of the lamellae, an eyebrow pattern occurs;
when the stacks rotate in the opposite direction to the tilt, the
result is a butterfly pattern (Hay & Keller, 1967; Cowking et
al., 1968; Pope & Keller, 1975; Grubb et al., 2021). Note that
the lamellar rotation may occur by lamellar slip, which
preserves the alignment of the chains along the z axis, or by
whole-body rotation, which does not. Two more parameters
are required to determine the shape of the spot. (4) The width
of the stack determines the spreading of the reflection along
the equatorial or the x axis. (5) The height of the stack
determines the breadth of the reflection along the meridional
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Schemes for simulating the lamellar reflections (Murthy et al., 2021). Four classes of SAS lamellar arrangements and the corresponding patterns are
shown: (a) two-point banana, (b) four-point, (c¢) four-point eyebrow, (d) four-point butterfly.
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Simulation of discrete patterns by Fourier transform of model structures. The first column shows the organization of the lamellae within a stack. The
second column shows the space-filled structures used to generate the diffraction patterns. The third column shows both the observed diffraction patterns
(left) and the simulated patterns (right) (Grubb er al., 2021; Androsch et al., 2002).

direction or the z axis. More realistic patterns can be obtained
by introducing a distribution of the various parameters.

Images of lamellar stacks were generated using the model
and the parameters described in the previous paragraph, and
digitally packed into a box. A Fourier transform of such a box
yields the diffraction pattern. Three classes of patterns
obtained this way are shown in Fig. 3. The simulated patterns
are in very good quantitative agreement with the observed
pattern, showing that the model can capture the essential
features of the structure. This can be clearly seen in the
overlay of the 1D scans through the lamellar reflections in the
observed and the simulated diffraction pattern (Fig. 4). From
such simulations one can obtain lamellar spacing, the tilt angle
of the lamellae, the rotation angle of the lamellar stack, the
height and the width of the lamellar stacks, and the distribu-
tion of these parameters. These procedures have been
implemented (Grubb et al., 2021) in both MATLAB (The
MathWorks, Nattick, MA, USA) and Mathematica (Wolfram
Research, Champaign, Illinois, USA).

3.2. Central diffuse scattering

The central scattering can be produced using the structural
models shown in Fig. 5. The shapes and arrangements of
objects that give rise to the various forms of CDS and equa-
torial scattering fall on a continuum of structural features. A
random distribution of unoriented scattering centers, voids or

particles [Fig. 5(a)], or a random polymer chain [Fig. 5(b)],
gives rise to isotropic CDS [Fig. 5(c)]. When the particles or
voids are elongated but the height is of the same order of
magnitude as the lateral size [ie. ellipsoid-shaped, Fig. 5(d)],
or when a polymer chain assembly is sheared or otherwise
oriented [Fig. 5(e)], then the axial width of the reflection
increases in the x direction such that the pattern becomes
elliptical [Fig. 5(f)]. The scattering from well oriented rod-like
particles [Fig. 5(g)] is an equatorial disc spread by misor-
ientation into fan- or diamond-shaped scattering, depending
on the gradient of the intensity [Figs. 5(k) and 5(i)]. With rods,
the misorientation dominates to produce the fan or diamond,
whereas for ellipsoids the shape transform dominates. These
equatorial streaks are commonly present in Poiseuille and
extension flows, and in fibrous materials containing aligned
and elongated voids or surfaces.

Some CDS patterns, including equatorial scattering, were
simulated using the methods employed for discrete reflections
as described in our previous publication (Grubb et al., 2021).
The fans can be simulated from a simple assembly of rods [Fig.
6(a) and 6(b)]. To simulate the propellor, the rods used in Fig.
6(a) need to be mixed with discs (projected spheres) [Figs.
6(c)-6(e)]. As will be shown Section 4.2, these two populations
of objects sufficiently explain the observed CDS. To obtain the
diamond pattern, the population of discs was replaced by
ellipsoids [Figs. 6(f)-6(h)].

1130 Murthy and Grubb -« Evolution of elliptical SAXS patterns in aligned systems
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1D scans through the lamellar reflections comparing the observed (black
crosses) and simulated (red dots) intensities. These figures correspond to
the 2D images shown in Fig. 3. Left and right columns are slices parallel
and perpendicular to the fiber axis, respectively. (@) and (b) Two-point
banana-shaped pattern. (¢) and (d) Four-point eyebrow pattern. (e) and
(f) Four-point butterfly pattern. These are the MATLAB simulations in
Figs. 6 and 7 from our earlier paper (Grubb et al., 2021).

One of the differences between the fan and diamond
patterns is the rate at which the intensity falls off with scat-
tering angle. Although the central scattering peak in a
diamond pattern appears to narrow at higher angles along the
equator, the longitudinal width of the peak actually increases
with the scattering vector, as in the fan-like pattern (Grubb et
al., 1991; Grubb & Prasad, 1992; Murthy et al., 1996; Yang et
al., 1997). The rate of this increase is determined by the
orientation of the scattering objects, which can be either voids
or surfaces, and the width extrapolated to the meridian is
determined by the length of the scattering entity. These
orientation values are consistent with those obtained from
WAXS data, and the length of the scattering entities is
consistent with the estimates made from the lamellar reflec-
tions (Murthy et al., 1996).

4. Elliptical features in small-angle scattering patterns

An important observation that can be made in the SAXS
patterns, both observed (Fig. 1) and simulated (Figs. 3 and 6),
in the discrete reflections and in the CDS, is that there are
features in the pattern that appear elliptical (Mildner, 1983;
Brandt & Ruland, 1996). Although this has been reported in
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Figure 5

Schemes for simulating the CDS and equatorial streaks with randomly
placed scattering objects. (a) Unoriented or spherical distribution of
scattering particles. (b) Random chain. (c¢) Isotropic CDS. (d) Oriented
ellipsoidal particles with some orientational correlation. (e) Shear-
oriented polymer chain. (f) Oval-shaped anisotropic CDS. (g) Rod-like
particles with preferred orientation. (4) Fan- and (i) diamond-like
equatorial streaks

the literature, it has not been explored in depth. Some
examples from the published literature are shown in Fig. 7.
The most obvious example is the pattern from a stretched
amorphous polystyrene [Fig. 7(a)] (Hadziioannou et al., 1982);
these are SANS data from atactic polystyrene using 95%
protonated and 5% completely deuterated chains to examine
the scattering from isolated chains. Similar scattering has been
observed in SAXS from polymer melts under shear (Somani et
al.,2002). Ellipticity is equally obvious in the CDS from fibers
with internal structure and voids, as seen in a SAXS pattern
from hair [Fig. 7(b)]. Elliptical scattering is also observed
when orientational correlations are present in an assembly of
thin disc-like laponite particles in clay suspension that show
discotic ordering (Lemaire et al., 2002). Examples of elliptical
patterns in discrete reflections are seen for stretched block
copolymers (Brandt & Ruland, 1996) and polyurethanes [Fig.
7(c)] (Blundell et al., 2002). The distribution of scattering
domains in unstretched block copolymers is isotropic and
random, and so the scattering is also isotropic along a circular
track. When the sample is stretched, the domains move apart
in the stretching direction as they come closer in the lateral
direction. This affine deformation is the most natural expla-
nation for the elliptical scattering from an oriented material.
Finally, anisotropic shrinkage of the mesostructured silica film
that occurs perpendicular to the substrate during drying, cross-
linking and densification of the silica framework distributes
the reflections along an elliptical trajectory [Fig. 7(d)]
(Hayward et al., 2004).

J. Appl. Cryst. (2024). 57, 1127-1136
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(a) Misorientation of the rod-like particles that gives a fan-like pattern (b). (¢) and (d) Distribution of isotropic and rod-like particles, and (e) the
diffraction pattern from this mixture. (f) and (g) Distribution of ellipsoid and rod-like particles, and (%) the diffraction pattern from this mixture.

Though the elliptical form is apparent in the patterns shown
in Fig. 7, it is not so obvious in the patterns shown in Figs. 1-3
and 6. But elliptical features are also present in these other
patterns including lamellar reflections, as will be discussed in
the following section.

4.1. Ellipticity in lamellar reflection

The peak intensities of the discrete reflections shown in
Figs. 1(d) and 1(e), 2(a)-2(d), and 3(4) and 3(i) do not lie on a
layer line, or on the arc of a circle, but follow an elliptical
trajectory. This can be seen by first analyzing the pattern as a

series of z slices [Fig. 8(a)] and then plotting the positions of
the peak maxima of the lamellar reflections [Fig. 8(b)]. The
peak maxima fall on an ellipse out to ¢ angles as high as 75°.
This elliptical trajectory can be further confirmed by linear-
izing the expression for an ellipse:
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Elliptical patterns in various systems. (¢) SANS pattern of polystyrene chains; reprinted from Hadziioannou et al. (1982) with permission from the
American Chemical Society. (b) SAXS patterns of hair soaked in coconut oil and then heat-treated for 90 s at 180°C; adapted from Kamath ez al. (2014)
with permission from the Society of Cosmetic Chemists. (¢) Polyurethane; adapted from Blundell er al. (2002) with permission from Elsevier. (d) Silica
framework; reprinted from Hayward et al. (2004) with permission from the American Chemical Society.
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Elliptical trajectory of the lamellar reflections (Murthy et al., 2000). (a) 2D SAXS pattern from an oriented nylon-6 fiber. (b) Plot of the lamellar peak
position as a function of the distance perpendicular to the fiber axis in a drawn and annealed fiber. (c¢) Plot of Lé versus tan’e.

If the contour is an ellipse, the plot z2 as a function of x*
should be a straight line. For convenience in extracting the
lamellar parameters, this equation can be rearranged to

1 2 1 2 1 2 x 2
)= Qi
2o 20 (2)

X
tan¢g = —.
2

When (1/z,)* is plotted as a function of (x/z,)* = tan’¢, the
intercept Ly, gives the lamellar spacing along the draw
direction (meridional axis), and the slope Lg is the fictitious
spacing of the lamellae oriented along the equator (Murthy et
al., 2000). Fig. 8(c), which is typical of many polymers inves-
tigated in our laboratory, exhibits a linear fit up to 65° in ¢,
showing that the contour is very close to being an ellipse. This
method necessarily fails at the equator where the z slice is
parallel to the contour of the reflection. Finding the peak
trajectory as a locus of minimum curvature of the intensity

surface extends the elliptical fitting to even higher angles
(Murthy et al., 2000; Grubb et al., 2016).

The trajectory for the bar pattern is a single ellipse, but for
the eyebrow and butterfly patterns each requires two ellipses
(Fig. 3). This has been extensively discussed in our earlier
publications (Grubb et al., 2021; Wang et al., 2007).

An elliptical trajectory is a natural consequence of the
affine deformation of a lattice, such as those of block copo-
lymers. But the observed changes in lamellar spacing in many
samples are not consistent with such affine deformation. In the
case of semicrystalline polymers and liquid crystals, it is not
necessary to have affine transformation of the domains to
obtain an elliptical trajectory. Lamellae in a semicrystalline
polymer or a liquid crystal could move apart along the
orientation direction as they move closer together in the
lateral direction. A moderate amount of disorder, such as
randomly placed lamellar stacks that are small and spread the
reflection in the lateral direction combined with a range of
lamellar tilts and a range of stack axis directions, can make the
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Figure 9

(a) Diamond-shaped SAXS pattern from a solution-spun polyacrylonitrile (PAN). (b) Propeller-shaped pattern from a gel-spun PAN fiber. (¢) Fan-
shaped diffraction pattern from micro-voids in oriented bundles of y-irradiated polyacrylonitrile-based carbon fibers. Linear fitting of the linearized
intensity plot for (d) the diamond-like pattern shown in (@), and a superposition of two implied ellipses (e) for the propeller-like pattern shown in (b). (f)
Tllustration of how the misorientation-dominated fan pattern arises. In these figures, S, and S, correspond to x and z,, in equations (1) and (2) and Fig. 8.

(a), (b), (d) and (e) Reproduced from Wang et al. (2012). (c) Reproduced from Feng et al. (2018) with permission from the Royal Society of Chemistry.
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peak positions trace out an ellipse without the requirement of
an affinely deformed lattice.

4.2. Central diffuse scattering and the equatorial streak

In addition to the two- and four-point reflections, CDS with
an oval, diamond or two-bladed propeller shape also has
elliptical characteristics. There are in general five types of
CDS: isotropic, oval, fan, diamond and propeller. While
simple anisotropic scattering can be fitted to a single ellipse,
ellipticity in other types of CDS can be demonstrated by
linearizing the equation for the ellipses [equations (1) and (2)].
The results are shown in Fig. 9. If in Figs. 9(a) and 9(b) there
was only one ellipse, then there should be a single straight line
in the plot S2 versus x°. Instead, there are two straight-line
segments in the data for diamond- and propeller-shaped
patterns, indicating that there are two components [Figs. 9(d)
and 9(e)], one nearly isotropic central scattering and the other
the anisotropic streak (Wang et al., 2012). In the case of a fan-
like pattern that is dominated by misorientation [Fig. 9(c)]
(Feng et al., 2018), the outside edges of the fan can be fitted to
an ellipse to obtain the degree of orientation from the ellip-
ticity of the fitted curve as shown in Fig. 9(f) (Wang et al.,
2012). Thus, the changes in the central scattering can be
completely reconstructed using a two-component model.

4.3. Utility of the elliptical features

The elliptical features in the scattering pattern contain
details of the deformation that gives rise to anisotropy. In
some instances, there could be correlation between long-
itudinal and transverse deformation (affine transformation).
In others, it could be due to the random placement of the
lamellar stacks modified by chain slip and stack rotation or
interlamellar shear. For example, the three parameters that
describe the elliptical trajectory in semicrystalline polymers,
the lamellar spacing, chain slip and lamellar slip, are related to
the interaction of the lamellae with the surrounding amor-
phous regions and fibrils. Elliptical features are also useful in
providing a framework or constraint for analyzing the scat-
tering patterns. This will be discussed in the following section.

5. Parameterization of the pattern

Section 3 dealt with the analysis of the SAXS pattern by
modeling the structure using known principles of lamellar
assembly. This approach was validated by demonstrating the
agreement of the patterns simulated from models with the
observed diffraction patterns. Currently available computa-
tional tools allow these microstructures to be rapidly refined.
The problem with a modeling approach is that the model
derived from a pattern is not unique. An alternative approach
is to parameterize the data. The parameters derived from such
functional fitting can be assigned to features in known and
validated structural models, structures validated by simulating
scattering that agrees with the observed diffraction patterns or
by complementary techniques such as microscopy. In this
latter approach, the pattern can be quickly reduced to a few

important, reliable parameters that can be used for quantita-
tive comparison of the changes that occur during testing and
processing. In most instances, these are sufficient to under-
stand the changes in the key aspects of the structure such as
fibril size and orientation and lamellar spacing, stack size and
orientation.

Patterns such as isotropic diffuse scattering from orienta-
tionally disordered anisotropic structures or the discrete
reflections in a smectic phase that fall on a circle [Fig. 10(a)]
can be best described in polar coordinates. But the reflections
from a cybotactic nematic phase are curved along an elliptical
arc [weak and diffuse reflections in Fig. 10(b)]. Therefore, the
intensity in such patterns can be best described in elliptical
coordinates (u, v) using two orthogonal functions, f(u) and
g(v). The coordinate system is schematically illustrated in Fig.
10(b). Moving along the u coordinate is analogous to going
along r in polar coordinates and increases the size of the
ellipse. Going along v is moving along the ellipse, analogous to
changing ¢. The observed pattern can be reconstructed with
the least number of parameters by expressing the intensity in
elliptical coordinates as a function of f(u) and g(v): f(i) along
the hyperbola and g(v) along the ellipse.

Using these ideas, different types of two- and four-point
patterns, as well as CDS including the equatorial streak, can be
fitted to functions with only five parameters, two for the u—v
position and two for the widths (Au and Av) of the reflections,
and a fifth parameter for the ellipticity of the pattern (Murthy
et al., 1997). Fig. 11 shows a complete fit of both the discrete
reflections and the equatorial streaks. There is good agree-
ment between the fitted contours and the observed data.
These results show that (1) the trajectory of the lamellar
SAXS scattering is neither straight nor circular; (2) the
reflections are curved because of randomly placed lamellar
stacks with a range of tilts and rotations; (3) this curvature
cannot be efficiently handled in Cartesian coordinates. The
elliptical features of the SAXS patterns, including the equa-
torial streak, suggest that the entire SAXS pattern can be
optimally fitted in elliptical coordinates with the least number
of parameters. Following the changes in the central diffuse
scattering and the lamellar diffraction pattern during defor-
mation allowed us to show the extent to which these structures

Figure 10

Description of the elliptical scheme, adopted from Francescangeli et al.
(2011) with permission from the American Physical Society. (a) Polar
coordinates that can be used to fit the sharp smectic reflections. (b)
Elliptical coordinates used to fit the weak and diffuse four-point eyebrow
pattern.
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(b)

Figure 11

Example of complete SAXS pattern fitting, both the discrete lamellar reflections and the equatorial streak. These are contour maps of the intensity
distribution. The intensity of 30-350 counts is divided into 20 contours. The x and y axes are marked in channel numbers. (a) Observed data. (b) Fitted
data. (¢) Difference map with contour levels between 20 and 50 counts (Murthy et al., 1997).

determine the mechanical properties of the polymer (Murthy
& Grubb, 2002, 2003; Wang et al., 2009).

6. Conclusions

The two features in SAXS often have elliptical shapes that can
be used to our advantage to efficiently analyze these patterns.
The two components in the equatorial streak, one isotropic
and the other oriented, can be analyzed to obtain the size and
orientation of voids, fibrils or surfaces. Ellipticity in the central
diffuse scattering can be attributed to the affine deformation
induced by flow or stretching. The two-point banana, four-
point eyebrow and four-point butterfly patterns can be simu-
lated from a random assembly of lamellar stacks modified by
chain slip and stack rotation or interlamellar shear. These can
also be analyzed in elliptical coordinates. Thus, the whole 2D
SAXS data set can be profile fitted efficiently in elliptical
coordinates to fully characterize or featurize the SAXS
diffraction pattern with the least number of parameters. Such
rapid analyses of data from a large number of samples are
required for implementing ML and AI methods in materials
development.
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