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ABSTRACT 
Rogue waves, which are defined as waves with a wave 

height, or alternatively a crest height, exceeding the significant 
wave height by a certain factor, continue to endanger ships and 
offshore infrastructure. Hence, reliable rogue wave forecasting 
is of utmost importance to increase the safety for maritime 
operations. While the occurrence of rogue waves is widely 
acknowledged, their emergence remains unpredictable due to the 
lack of a well-accepted basis for explaining their occurrence. In 
fact, two popular mechanisms explaining the formation of rogue 
waves lead to considerably different conclusions about their 
predictability. On the one hand, a rogue wave could be formed 
by a superposition of wave trains with unknown phases. With this 
generation mechanism, rogue wave prediction is not viable. On 
the other hand, nonlinear focusing leading to the Benjamin-Feir 
instability gives rise to slowly developing rogue waves. Hence, 
this rogue wave formation could be detected with significant 
advance time. Given this background, there is an imperative 
need to address the basic question: Are rogue waves predictable? 

In this article, the authors explore the predictability of rogue 
waves by constructing and parameterizing neural networks. The 
networks are trained on available buoy data, which allows not 
only for an assessment under the most realistic conditions but 
also for indicating the sufficiency of current ocean measurements 
for rogue wave prediction.  

Keywords: Extreme waves, ocean buoys, machine learning, 
wave forecasting, extreme events 

1. INTRODUCTION
Rouge waves are extreme waves, which are significantly

higher than the surrounding waves. Such waves have damaged 
ships and offshore infrastructure and severely injured sailors as 

well as passengers [1,2]. To alleviate this danger, reliable rogue 
wave forecasts are of paramount importance.  

Rogue waves can be generated by superposition of many 
elementary, linear or nonlinear, waves [2,3]. To observe such a 
constructive interference, the phases of the individual waves 
need to be aligned appropriately. However, from many wave 
models, including the state-of-the-art, operational spectral wave 
models [4,5] one cannot obtain this phase information and a 
random distribution of the phases is assumed. It has been argued 
that the initial conditions for these ocean models are 
inaccessible, and therefore, no meaningful phase information can 
be extracted [6]. Thus, the emergence of individual rogue waves 
remains unpredictable in this setting. Indeed, resolving the phase 
information has been identified as crucial for the prediction of 
rogue waves [7].  

Irrespectively of the missing phase, quantities deduced from 
spectral wave models have been utilized for rogue wave 
predictions. For example, the excess kurtosis has been identified 
as a possible rogue wave indicator [8] and implemented in an 
operational wave forecasting system [9]. Alternatively, the 
Benjamin-Feir index deduced from the spectrum can indicate 
rogue waves resulting from the Benjamin-Feir instability [10]. 
Moreover, average sea statistics such as significant wave height, 
peak period, or skewness have been linked to rogue wave 
occurrences [11,12,13]. However, recent and extensive analyses 
[14,15] on available buoy data indicate that these parameters 
only poorly correlate with rogue wave occurrence in reality. In 
one study [15], the authors singled out the crest-trough 
correlation as the best predictor for certain rogue waves. 
However, a clear assessment of the predictable capabilities of the 
crest-trough correlation is not available in the literature. 

Another popular mechanism for explaining the formation of 
rogue waves is the Benjamin-Feir instability [2,3,16,17]. It can 
be shown that the amplitude of a single wave train becomes 
unstable when appropriate modulations are added. Under certain 
conditions these side bands grow and a rogue wave is generated. 
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As this instability develops on a slow time scale, in principle, it 
could be detected in advance. Therefore, rogue waves generated 
by the Benjamin-Feir instability could be predicted with 
significant advance time. However, the Benjamin-Feir instability 
is commonly observed in highly idealized scenarios such as 
unidirectional, stationary and narrow band waves. Hence, many 
researchers have questioned the relevance of the Benjamin-Feir 
instability in realistic scenarios [15, 18, 19].  

In summary, the two most common rogue mechanisms, 
superposition of elementary waves with random phases and the 
Benjamin-Feir instability differ considerably on the 
predictability of rogue waves. Moreover, with realistic data sets, 
the performance of the proposed rogue wave indicators is poor. 
This discrepancy illustrates the need to address the following 
fundamental question: Are rogue waves predictable? 

In this article, the authors answer this basic question by 
assembling models, which can be used to predict upcoming 
rogue waves minutes in advance from field measurements. To 
this end, the authors construct and parameterize universal 
function approximators, more specifically, neural networks. The 
authors use available buoy data from the Coastal Data 
Information Program (CDIP), Scripps Institution of 
Oceanography [20]. By employing field measurements, a 
satisfactory answer is obtained under realistic conditions, and 
furthermore, it is examined whether current ocean wave 
observations are sufficient to predict rogue waves.  
 
 

2. MATERIALS AND METHODS 

Fundamentally, rogue waves are predictable if there is a 
functional relationship between the waves that have passed prior 
to the rogue wave and the rogue wave event. If this functional 
relationship exists, it can be approximated by universal function 
approximators. Thus, universal function approximators can 
reveal the predictability of rogue waves. 

In this work, the authors employ neural networks as 
universal function approximators to uncover a functional 
relationship for rogue wave predictions. With their universal 
function approximation capabilities [21], these networks are 
capable of capturing any functional relationship. Hence, these 
networks have the capability for predicting rogue waves, if they 
are predictable. Moreover, with this non-parametric model 
choice, the necessity to rely on underlying modelling 
assumptions is alleviated. The neural networks are fitted to 
available buoy data [20]. Thereby, the predictability is not only 
investigated under realistic conditions but it is also verified that 
current ocean wave observations are sufficient to predict rouge 
waves. 

The general structure of the prepared data sets examined for  
the predictability of rogue waves is illustrated in Figure 1. 
Therein, two forty-minute sets of sea surface measurements are 
depicted. Only in the bottom time series, a rogue wave has 
occurred at about 35 minutes (highlighted in red), whereas no 
extreme wave occurred in the measurement data shown in the 
top of Figure 1. Now, the challenge is to predict upcoming rogue 
waves, based on measurements taken prior to the rogue wave 
event. More specifically, with a twenty-minute measurement 

available (cf. data inside the green box in Figure 1), the goal is 

Data fed into the model (𝑡𝑑𝑎𝑡𝑎) 

No rogue 
wave 
occurrence 

Rogue wave 
occurrence  

Advance warning time (𝑡𝑎𝑑𝑣) 

Data fed into the model (𝑡𝑑𝑎𝑡𝑎) 

Figure 1: General structure of the prepared data sets. No rogue wave occurred in the measurement data shown in the top, whereas a rogue 
wave occurred at about 35 minutes shown in the measurement data shown in the bottom.  
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to determine whether a rogue wave will occur within a given 
advance warning time (five minutes in Figure 1) or not. Thus, 
the two twenty-minute measurement sets inside the green box in 
Figure 1 can be split into the two categories i) rogue wave occurs 
after the recording (bottom measurement) and ii) no rogue wave 
occurs after the twenty-minute data window (top measurement). 
Thus, rogue wave prediction can be formulated as a classification 
task, more specifically, a time series classification problem. 
Therein, the challenge is not to find appropriate categories, as the 
data is naturally labelled as ‘rogue wave’ and ‘no rogue wave’, 
rather the decision to which category a new measurement with 
unknown label belongs.  

In the following, recurrent neural networks are utilized. To 
parameterize and validate these networks available buoy data 
[20] is utilized. This buoy data is described in the next section. 
Subsequently, the quality control of the data set, the data set 
preparation and the utilized neural network architecture are 
described.  
 

2.1 Buoy Data 
The buoy data set has been obtained from the Coastal Data 

Information Program (CDIP), Scripps Institution of 
Oceanography [20]. Overall, in this program, measurements 
from 166 buoys have been stored. As shown in Fig. 2, these 
buoys are primarily deployed at the shores of the continental US. 
Other buoys are located in the Pacific and some in lakes and 
sounds. In this study, the authors focus on rogue waves in the 
ocean, and hence, the recordings from inland buoys are not 
further considered. More specifically the CDIP buoys with the 
numbers 175, 177, 204, 205, 221, 230, 248, 251, and 253 are 
excluded from the presented analyses. With attention to the water 
depth variation, measurements from coastal as well as deep water 

are considered.  

The CDIP-buoys are either Datawell directional waveriders 
MkIII [22] or Datawell directional waveriders MkIV [23] and in 
total the measurements from all buoys comprise of 660 GB of 
data. Amongst other quantities, these buoys have been used to 
record the buoy’s vertical displacements with a sampling rate of 
1.28 Hz for the MkIII system and 2.56 Hz for the MkIV system. 
From the buoy’s vertical displacement measurements, rogue 
wave occurrences are apparent and hence they will be utilized in 
the following (cf. also Figure 1). All time series from all buoys 
together comprise more than 20 billion samples (20 ∙ 109), or 
equivalently 16 million half hour time series or 880 years of 
continuous data.  

Due to the isolated buoy locations (cf. Fig. 2), no 
information about the spatial wave propagation is available, and 
hence, no predictions about the space-time evolution of ocean 
waves can be obtained. To realize these predictions, high 
resolution spatial measurements of the sea surface elevation need 
to be available.  

Before proceeding with processing and identification of 
rogue waves, the enormous amount of data needs to be quality 
controlled. The utilized quality control protocol is detailed in the 
next section.  
 

2.2 Quality control 
Due to the harsh environments at sea, accurate 

measurements of ocean waves remain challenging [24]. Hence it 
is very likely that the vast data set [20] will be corrupted by 
measurement errors, sensor failures, and other malfunctions. To 
sort out unreliable data and only consider realistic wave profiles, 
the following judicious quality control is adapted.  

First, the measurements are divided into thirty-minute 
intervals, which is a time span commonly used to compute sea 
state parameters in oceanography [12]. For each window, the 
following quality flags were evaluated: 

1. Manufacturer quality flag: Datawell’s waverider 
buoys are equipped with an algorithm, which flags 
unreliable measurements. If a single value within 
the thirty-minute window is flagged as 
‘questionable’ or ‘bad’, the whole recording is 
discarded.  

2. Operator quality flag: CDIP personnel also 
routinely check the recorded buoy data for 
irregularities. These inspections are based on 
computed spectra and other sea state parameters. 
Raw time series, however, are not checked, and 
hence, not flagged by the CDIP staff. Nevertheless, 
to still benefit from the decades of experience of 
these operators and ensure a rigorous quality 
control, this quality control is utilized for the time 
series as follows. If any sample of the recording 
under consideration contributes to a spectrum, 
which did not pass CDIP’s quality control, then the 
whole measurement is discarded. 

3. Spike detection: Even after passing the first two 
steps of the quality control, unrealistic spikes are 
observed in the recoded sea surface elevation (cf. 

Figure 2: Location of the ocean buoys [20]. The color indicates the 
water depth. Additional buoys (not shown) are located near Floripa 
(Brazil), Anuu (American Samoa), Saipan (US), Guam (US), Palau 
(Marshall Islands) and Majuro (Marshall Islands). 
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Figure 3). These spikes can be detected by 
monitoring the rate of change of the sea surface 
elevation. The authors employ the threshold value 
from [9]  

 
𝑆𝑦 =

4𝜋𝜎

𝑇𝑧
 √2 ln(𝑁𝑧),    (1) 

 
where 𝜎 denotes the standard deviation of the sea 
surface elevation, 𝑇𝑧 is the mean zero upcrossing 
period, and 𝑁𝑧 is the number of zero upcrossings. 
If the absolute value of the rate of change, 
calculated as the difference between two 
subsequent samples divided by the sample period, 
exceeds the threshold (1) once, then the whole 30-
mintue measurement is discarded.  

4. Sensor range: Moreover, waves whose crest 
heights or trough depths exceeded the sensor range 
are found in the buoy data [20] (cf. Figure 4). 
Although, in principle, Figure 4 could show a 
rogue wave, the associated crest height exceeds the 
maximal sensor range of 20.47 m. This is 
considered to be indicative of a malfunction. Thus, 
measurements with sea surface elevations 
exceeding the sensor range are discarded.  

5. Repetitive values: Additionally, in some 
measurements of the sea surface elevation, the 
same value occurs for multiple consecutive points 
(cf. Figure 5). Considering the ever changing, 
dynamic ocean surface, such behavior seems very 
unlikely. Thus, following the work in reference 
[12], every measurement with ten consecutive 
points of equal value is discarded. 

  

About ninety percent of the measurements of the original 
data set pass all five steps of the quality control. So, in total the 
buoy data [20] yields about 14 million quality controlled thirty-
minute measurements. Subsequently, these recordings are 
scanned for rogue waves and organized into data sets, as 
described in the next section. 
 

2.3 Data sets 
If a thirty-minute measurement passes all previous five 

quality control steps, then, the measurement is scanned for rogue 
waves. From the literature (e.g., [3,11,12,14,15,18,25]), the 
following three rogue wave definitions are extracted 

 
𝐻

𝐻𝑠
> 2.2,     𝐻

𝐻𝑠
> 2,       𝜂𝑐

𝐻𝑆
> 1.25,            (2) 

 
where 𝐻 denotes the wave height (trough to crest), 𝜂𝑐 denotes 
the crest height, and 𝐻𝑠 denotes the significant wave height. The 
significant wave height is defined as four times the standard 
deviation of the sea surface elevation (see, e.g., [3]).  

If one of the criteria (2) is met, then the corresponding thirty-
minute measurement of the sea surface elevation is included in a 
data set. Thereby, each criterion (2) is treated individually 
yielding a different data set. Moreover, the measurements are 
normalized so that the rogue wave event occurs at minute 25 
within the saved recording. So, each saved recording consists of 
25 minutes of measurement prior to the rogue wave and five 
minutes after the rogue wave. In addition to each sample with a 
rogue wave, another sample without a rogue wave from the same 
buoy location is saved. This procedure yields perfectly balanced 
data sets with an equal number of samples with and without 
rogue waves. Depending on the application, this balance could 
be altered in future studies. 

As a final check, ten percent of the saved samples are 
selected for visual inspection and no systematic irregularities are 
detected. The authors note that the quality control described in 
Section 2.2 has been developed such that no systematic 
irregularities remain in the final data sets. Indeed, the quality 
control steps 3-5 (cf. Section 2.2) have been introduced after 
recognizing the irregularities shown in Figures 3-5.  

FIGURE 3: Unrealistic spike observed in the measured sea surface 
elevation. 
 

FIGURE 4: Sea surface elevation out of the sensor range.  
  

FIGURE 5: Consecutive points of equal value in the recoded sea 
surface elevation.  
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A detailed overview of the three different data sets is 
provided in Table 1. Depending on the rogue wave definition (2), 
the final data sets consist of 40-400 thousand measurements of 
sea surface elevation. The rogue wave definition 𝐻 𝐻𝑠⁄ > 2.2 
yields the smallest data set, whereas about ten times more rogue 
waves are detected when the threshold is raised to two (𝐻 𝐻𝑠⁄ >
2). Owing to the definitions (2), the data set A is contained in the 
data set B. Furthermore, a large overlap is expected between the 
data set C and data set A as well as data set C and data set B. 
However, it is noted that data set C is not necessarily fully 
contained in data set B, due to the different rogue wave 
definitions (cf. equations (2)). 

 
Table 1: Overview of the complied, quality-controlled data sets. 

Data Set Rogue wave 
Definition 

Number of 
samples with 
rogue wave 

Samples 
without 

rogue wave 

A 
𝐻

𝐻𝑠

> 2.2 18 ∙ 103 18 ∙ 103 

B 
𝐻

𝐻𝑠

> 2 172 ∙ 103 172 ∙ 103 

C 
𝜂𝑐

𝐻𝑆

> 1.25 27 ∙ 103 27 ∙ 103 

 
The data sets are prepared without storing the location or 

water depth of the ocean buoy. In subsequent studies, one could 
add these physical parameters and verify if the forecasting 
accuracy can be enhanced. 

 
2.4 Neural Networks 
In the past decade, neural networks have been successfully 

employed for various tasks such as image recognition, speech 
recognition, and genome sequencing. With their appealing 
promise to capture any underlying input-output relationship, 
assuming that enough data for parameter tuning is available, 
these networks are, at least in principle, capable of uncovering a 
hidden relationship between rouge wave events and waves prior 
to the rogue wave.  

Within this work, recurrent neural networks with LSTM 
cells [26] are employed. Recurrent neural networks are designed 
to process time series and feature internal states. As a distinction, 
LSTM-networks can flexibly retain and erase their internal 
states. LSTM-networks have been successfully employed to 
handle complex time series [27] and ocean wave measurements 
[28,29].  

A stacked architecture shown in Figure 6 is utilized, wherein 
each stage consists of the four layers. The first layer is a LSTM 
layer with 𝑁𝐿𝑆𝑇𝑀 hidden units. After that a batch normalization 
rescales each batch to have zero mean and unit variance. 
Subsequently, a dropout layer is used to set each feature to zero 
with a probability of 𝑝𝐷. Dropout layers are commonly employed 
to prevent overfitting, which often arises with neural networks 
[30]. Finally, a fully connected layer is used to extract 𝑁𝑓   

features from the data. The four layers (LSTM, Batch 
normalization, fully connected and Dropout) are repeated 𝑁𝐿 
times. 

The output of the network is a probabilistic classifier. For 
each class (i.e., “no rogue wave” and “rogue wave”), the output 
returned is a probability indicating the likelihood that the 
supplied sample belongs to the corresponding class. These two 
probabilities necessarily sum up to one. To yield a definite 
prediction, the class with the higher probability is selected as 
forecast. 

The weights of the neural network are obtained via a 
stochastic gradient descent implemented within the Adam 
optimizer [31]. Therein, 80 percent of each data set (cf. Table 1) 
is utilized, with the remaining 20 percent being reserved for 
testing. The hyperparameters are selected upon best performance 
on the testing portion of the data set A. The final hyperparameter 
values are reported in Table 2. With the hyperparameter choice 
listed in Table 2, the network has about 4600 trainable 
parameters.  

 
Table 2: Choice of hyperparameters 

Parameter Value 
Hidden units 𝑁𝐿𝑆𝑇𝑀 10 
Dropout probability 𝑝𝐷 0.05 
Number of features in dense 
layer 𝑁𝑓 

2 (except 50 for the first one) 

Number of stacked layers 𝑁𝐿 4 
 
The obtained hyperparameters are verified with the state-of-

the-art, automated hyperparameter tuning algorithm tune [32] 
and no significant improvements could be found. Moreover, 
alternative networks architectures, notably convolutional neural 
networks [33] and transformer networks [34] have also been 
tested. However, the depicted architecture in Figure 6 with the 

Figure 6: Employed architecture of the neural network. 
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hyperparameters listed in Table 2 yielded consistently the best 
results.  

The networks are constructed and trained by using 
TensorFlow [35] (version 2.9.1). The training and testing 
experiments are conducted utilizing a NVIDIA Quadro P1000 
GPU unit. 

 
3. RESULTS AND DISCUSSION 

The rogue wave predictions are obtained as follows. To train 
the neural network, twenty minutes of sea surface elevation are 
extracted from each sample (𝑡𝑑𝑎𝑡𝑎 = 20 min cf. Fig. 1). This 
window length yields time series with 1536 samples. For 
samples with a rogue wave the twenty-minute window is taken 
from the measurements prior to the rogue wave, whereby 
duration between the last included sample and the rogue wave 
event is denoted as advance warning time 𝑡𝑎𝑑𝑣 (cf. Figure 1). 
After extracting the measurements, they are randomly shuffled 
and 80% of the measurements are utilized to train the network, 
whereas the remaining 20% are reserved for testing the 
performance of constructed model on new data. The network is 
trained to distinguish measurements after which a rogue wave 
occurred from recordings where no rogue wave occurred 
afterwards. Thereby, the network can be used to obtain an 
advance warning of an occurring rogue wave, with a certain 
accuracy.  

In the following, the data set A (𝐻 𝐻𝑠⁄ > 2.2) is employed 
within the forecasting experiments first. Subsequently, the 
performance of the neural network on the other two data sets (B 
and C) is investigated.  

 
3.1 Data set A (𝑯 𝑯𝒔⁄ > 𝟐. 𝟐) 
First, the capabilities of the neural network to predict rogue 

waves are illustrated with the data set A. Within this data set, a 
rogue wave is defined as a wave with a wave height 𝐻 exceeding 
the significant wave height 𝐻𝑠 by a factor of at least 2.2. About 
18 thousand rogue waves from the buoy data [20] satisfy this 
rogue wave definition. Compared to the alternative definitions 
(cf. equation (2)), the data set A consists of the least number of 
waves.  

Setting the advance warning time of one minute yields the 
result shown in Figure 7. The depicted confusion matrix shows 
all outcome possibilities of the prediction experiment. In the first 
case, labelled as ̀ `true negative” the model’s prediction is correct 
that no rogue wave will occur after the measurement. The 
percentage of 40.82% indicates that in about four out of five 
measurements, the prediction from the neural network is correct 
on no upcoming rogue wave. However, the field ``false 
positive’’ with the percentage of 9.19% implies that about one 
out of five measurements is incorrectly labelled as measurement 
prior to a rogue wave. For the ``false negative’’ field, the 
network prediction is no upcoming rogue wave, whereas in 
reality, a rogue wave does occur. The percentage of 10.68% 
implies that in about one out of five rogue waves is not predicted 
by the neural network. The ``true positive’’ field, in turn, shows 
the number of accurately predicted rogue waves. Overall, the 
network prediction is correct for four out of five rogue waves.  

In summary, from Figure 7, one can gather that rogue waves 
are indeed predicable from current ocean wave measurements. 
More precisely 80% of the rouge waves are predicable about one 
minute in advance. The overall accuracy calculated as the sum 
of the true positives and true negatives of the neural network’s 
prediction is 80%. This implies that four out of five predictions 
of the neural network are correct. In total, about 3000 rouge 
waves are correctly predicted. To the best of the authors’ 
knowledge, this is the most extensive rogue wave prediction 
experiment on field measurements that has been carried out. 

The longer the advance warning times is, the more time is 
gained to enforce safety or undertake other countermeasures. 
Thus, it is natural to strive to extend the advance warning time. 
Subsequently, the advance warning time is increased from one 
minute to a maximum of five minutes and the forecasting 
experiments are repeated. The resulting percentages of true 
negatives, false positives, false negatives, and true positives are 
shown in Figure 8. Moreover, the percentage of correct 
predictions calculated as the sum of true positives and true 
negatives is included as accuracy. The overall trend is clear. As 
expected, the accuracy is found to deteriorate as the advance 
warning time is increased. Interestingly, the percentage of 
correctly predicted rogue waves remains approximately 
constant, whereas the correctly predicted no-rogue-wave 
samples decreases with increasing advance warning time. Even 
for the longest advance warning time of five minutes seven out 
of ten predictions are correct, or equivalently 2900 rogue waves 

Figure 7: Prediction results for data set A (𝐻 𝐻𝑠⁄ > 2.2), with an 
advance warning time of one minute (𝑡𝑎𝑑𝑣 = 1 min) and  𝑡𝑑𝑎𝑡𝑎 = 20 
minutes (cf. Figure 1). 
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have been accurately predicted, while missing only 900 rogue 
waves.  

The results shown in Figure 8 confirm the observation made 
in Figure 7. Rogue waves are predictable with a high accuracy 
of 70 to 80 percent within an advance warning time of several 
minutes. In the next section, it is investigated if that observation 
can be confirmed for the alternative rogue wave definitions 
utilized to compile the data sets B and C.  
 

3.2 Data sets B (𝑯 𝑯𝒔⁄ > 𝟐) and C (𝜼𝒄 𝑯𝒔⁄ > 𝟏. 𝟐𝟓) 
To verify the predictability of rouge waves satisfying 

alternative definitions, the forecasting experiments detailed in 
Section 3.1 are repeated for the data sets B and C. The data set B 
consists of about 10 times more rogue waves than data set A, 
while data set C is about twice as big as data set A.  

Training and testing the LSTM-network on the data B for an 
advance warning time of one-minute yields the confusion matrix 
shown in Figure 9. For the advance warning time of one minute 
the percentage of correct predictions is about 76.4% and 
approximately 27 thousand rogue waves are correctly predicted 
from field data for the data set B.  

The performance of the neural network on the data set B is 
slightly decreased compared to results shown with the data set A 
(cf. Figure 7). More precisely, the accuracy for data set B of 
76.4% is less than the accuracy of 80.1% obtained for data set A. 
However, it is noted that this discrepancy could be explained 
with the hyperparameter choice (cf. Table 2). The 
hyperparameters were tuned for data set A but not data set B. 
Indeed, it is expected that for the more extensive and hence more 
complex data set B, a neural network featuring more parameters 
could help increase the accuracy further. Due to the excessive 
training time of more than a day with the current computational 
infrastructure, hyper parameter tuning for data set B was not 
carried out.  

In the same vein, the results for data set C are shown as a 
confusion matrix for an advance warning time of one minute in 
Figure 10. For this data set about 75.3% of all predictions are 
correct and 4251 rogue waves are correctly predicted in advance.  

The percentage of correct predictions for data set C is found 
to decrease by about 5% compared to the data set A (cf. Figure 
7). From this difference, one could conclude that rogue waves 
with large wave heights (i.e., 𝐻 𝐻𝑠⁄ > 2.2) are easier to predict 
than rogue waves with large crests (i.e., 𝜂𝑐 𝐻𝑠⁄ > 1.25). 
However, it remains to be explored how statistically relevant the 
observed discrepancy is. Additionally, the authors remark that 
observations based on such forecasting experiments can merely 
indicate correlations but not causations. 

 
 
 

Figure 8: Prediction results for data set A (𝐻 𝐻𝑠⁄ > 2.2), for various 
advance warning times and  𝑡𝑑𝑎𝑡𝑎 = 20 minutes (cf. Figure 1). 

Figure 10: Prediction results for data set C (𝜂𝑐 𝐻𝑠⁄ > 2), with an 
advance warning time of one minute (𝑡𝑎𝑑𝑣 = 1 min) and  𝑡𝑑𝑎𝑡𝑎 = 20 
minutes (cf. Figure 1). 

Figure 9: Prediction results for data set B (𝐻 𝐻𝑠⁄ > 2), with an 
advance warning time of one minute (𝑡𝑎𝑑𝑣 = 1 min) and  𝑡𝑑𝑎𝑡𝑎 = 20 
minutes (cf. Figure 1). 
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4. CONCLUSION 

In this work, the authors show that rogue waves are 
predictable from field measurements. More precisely, rogue 
wave can be predicted with an accuracy of about 80% one minute 
in advance from buoy data [20]. The forecasting accuracy drops 
to about 70 percent, when the advance warning time is extended 
to five minutes. These observations are verified by correctly 
predicting the emergence of thousands of rogue waves.  

While within this article, it has been shown that rogue waves 
are predicable, the total accuracy of the predictions could be 
improved in future work. To this end, the ever-growing data set 
[20], alternative measurements, or different networks, and 
possibly an ensemble of multiple networks, could be utilized. 
Moreover, tools from explainable AI could be used to obtain 
physical insights from the trained, black-box models. 
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