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ABSTRACT

Rogue waves, which are defined as waves with a wave
height, or alternatively a crest height, exceeding the significant
wave height by a certain factor, continue to endanger ships and
offshore infrastructure. Hence, reliable rogue wave forecasting
is of utmost importance to increase the safety for maritime
operations. While the occurrence of rogue waves is widely
acknowledged, their emergence remains unpredictable due to the
lack of a well-accepted basis for explaining their occurrence. In
fact, two popular mechanisms explaining the formation of rogue
waves lead to considerably different conclusions about their
predictability. On the one hand, a rogue wave could be formed
by a superposition of wave trains with unknown phases. With this
generation mechanism, rogue wave prediction is not viable. On
the other hand, nonlinear focusing leading to the Benjamin-Feir
instability gives rise to slowly developing rogue waves. Hence,
this rogue wave formation could be detected with significant
advance time. Given this background, there is an imperative
need to address the basic question: Are rogue waves predictable?

In this article, the authors explore the predictability of rogue
waves by constructing and parameterizing neural networks. The
networks are trained on available buoy data, which allows not
only for an assessment under the most realistic conditions but
also for indicating the sufficiency of current ocean measurements
for rogue wave prediction.

Keywords: Extreme waves, ocean buoys, machine learning,
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1. INTRODUCTION

Rouge waves are extreme waves, which are significantly
higher than the surrounding waves. Such waves have damaged
ships and offshore infrastructure and severely injured sailors as
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well as passengers [1,2]. To alleviate this danger, reliable rogue
wave forecasts are of paramount importance.

Rogue waves can be generated by superposition of many
elementary, linear or nonlinear, waves [2,3]. To observe such a
constructive interference, the phases of the individual waves
need to be aligned appropriately. However, from many wave
models, including the state-of-the-art, operational spectral wave
models [4,5] one cannot obtain this phase information and a
random distribution of the phases is assumed. It has been argued
that the initial conditions for these ocean models are
inaccessible, and therefore, no meaningful phase information can
be extracted [6]. Thus, the emergence of individual rogue waves
remains unpredictable in this setting. Indeed, resolving the phase
information has been identified as crucial for the prediction of
rogue waves [7].

Irrespectively of the missing phase, quantities deduced from
spectral wave models have been utilized for rogue wave
predictions. For example, the excess kurtosis has been identified
as a possible rogue wave indicator [8] and implemented in an
operational wave forecasting system [9]. Alternatively, the
Benjamin-Feir index deduced from the spectrum can indicate
rogue waves resulting from the Benjamin-Feir instability [10].
Moreover, average sea statistics such as significant wave height,
peak period, or skewness have been linked to rogue wave
occurrences [11,12,13]. However, recent and extensive analyses
[14,15] on available buoy data indicate that these parameters
only poorly correlate with rogue wave occurrence in reality. In
one study [15], the authors singled out the crest-trough
correlation as the best predictor for certain rogue waves.
However, a clear assessment of the predictable capabilities of the
crest-trough correlation is not available in the literature.

Another popular mechanism for explaining the formation of
rogue waves is the Benjamin-Feir instability [2,3,16,17]. It can
be shown that the amplitude of a single wave train becomes
unstable when appropriate modulations are added. Under certain
conditions these side bands grow and a rogue wave is generated.
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As this instability develops on a slow time scale, in principle, it
could be detected in advance. Therefore, rogue waves generated
by the Benjamin-Feir instability could be predicted with
significant advance time. However, the Benjamin-Feir instability
is commonly observed in highly idealized scenarios such as
unidirectional, stationary and narrow band waves. Hence, many
researchers have questioned the relevance of the Benjamin-Feir
instability in realistic scenarios [15, 18, 19].

In summary, the two most common rogue mechanisms,
superposition of elementary waves with random phases and the
Benjamin-Feir instability differ considerably on the
predictability of rogue waves. Moreover, with realistic data sets,
the performance of the proposed rogue wave indicators is poor.
This discrepancy illustrates the need to address the following
fundamental question: Are rogue waves predictable?

In this article, the authors answer this basic question by
assembling models, which can be used to predict upcoming
rogue waves minutes in advance from field measurements. To
this end, the authors construct and parameterize universal
function approximators, more specifically, neural networks. The
authors use available buoy data from the Coastal Data
Information Program (CDIP), Scripps Institution of
Oceanography [20]. By employing field measurements, a
satisfactory answer is obtained under realistic conditions, and
furthermore, it is examined whether current ocean wave
observations are sufficient to predict rogue waves.

Fundamentally, rogue waves are predictable if there is a
functional relationship between the waves that have passed prior
to the rogue wave and the rogue wave event. If this functional
relationship exists, it can be approximated by universal function
approximators. Thus, universal function approximators can
reveal the predictability of rogue waves.

In this work, the authors employ neural networks as
universal function approximators to uncover a functional
relationship for rogue wave predictions. With their universal
function approximation capabilities [21], these networks are
capable of capturing any functional relationship. Hence, these
networks have the capability for predicting rogue waves, if they
are predictable. Moreover, with this non-parametric model
choice, the necessity to rely on underlying modelling
assumptions is alleviated. The neural networks are fitted to
available buoy data [20]. Thereby, the predictability is not only
investigated under realistic conditions but it is also verified that
current ocean wave observations are sufficient to predict rouge
waves.

The general structure of the prepared data sets examined for
the predictability of rogue waves is illustrated in Figure 1.
Therein, two forty-minute sets of sea surface measurements are
depicted. Only in the bottom time series, a rogue wave has
occurred at about 35 minutes (highlighted in red), whereas no
extreme wave occurred in the measurement data shown in the
top of Figure 1. Now, the challenge is to predict upcoming rogue
waves, based on measurements taken prior to the rogue wave
event. More specifically, with a twenty-minute measurement
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Figure 1: General structure of the prepared data sets. No rogue wave occurred in the measurement data shown in the top, whereas a rogue
wave occurred at about 35 minutes shown in the measurement data shown in the bottom.

2. MATERIALS AND METHODS

available (cf. data inside the green box in Figure 1), the goal is
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to determine whether a rogue wave will occur within a given
advance warning time (five minutes in Figure 1) or not. Thus,
the two twenty-minute measurement sets inside the green box in
Figure 1 can be split into the two categories i) rogue wave occurs
after the recording (bottom measurement) and ii) no rogue wave
occurs after the twenty-minute data window (top measurement).
Thus, rogue wave prediction can be formulated as a classification
task, more specifically, a time series classification problem.
Therein, the challenge is not to find appropriate categories, as the
data is naturally labelled as ‘rogue wave’ and ‘no rogue wave’,
rather the decision to which category a new measurement with
unknown label belongs.

In the following, recurrent neural networks are utilized. To
parameterize and validate these networks available buoy data
[20] is utilized. This buoy data is described in the next section.
Subsequently, the quality control of the data set, the data set
preparation and the utilized neural network architecture are
described.

2.1 Buoy Data

The buoy data set has been obtained from the Coastal Data
Information Program (CDIP), Scripps Institution of
Oceanography [20]. Overall, in this program, measurements
from 166 buoys have been stored. As shown in Fig. 2, these
buoys are primarily deployed at the shores of the continental US.
Other buoys are located in the Pacific and some in lakes and
sounds. In this study, the authors focus on rogue waves in the
ocean, and hence, the recordings from inland buoys are not
further considered. More specifically the CDIP buoys with the
numbers 175, 177, 204, 205, 221, 230, 248, 251, and 253 are
excluded from the presented analyses. With attention to the water
depth variation, measurements from coastal as well as deep water
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Figure 2: Location of the ocean buoys [20]. The color indicates the
water depth. Additional buoys (not shown) are located near Floripa
(Brazil), Anuu (American Samoa), Saipan (US), Guam (US), Palau
(Marshall Islands) and Majuro (Marshall Islands).

are considered.

The CDIP-buoys are either Datawell directional waveriders
MKIII [22] or Datawell directional waveriders MkIV [23] and in
total the measurements from all buoys comprise of 660 GB of
data. Amongst other quantities, these buoys have been used to
record the buoy’s vertical displacements with a sampling rate of
1.28 Hz for the MKIII system and 2.56 Hz for the MkIV system.
From the buoy’s vertical displacement measurements, rogue
wave occurrences are apparent and hence they will be utilized in
the following (cf. also Figure 1). All time series from all buoys
together comprise more than 20 billion samples (20 - 10°), or
equivalently 16 million half hour time series or 880 years of
continuous data.

Due to the isolated buoy locations (cf. Fig.2), no
information about the spatial wave propagation is available, and
hence, no predictions about the space-time evolution of ocean
waves can be obtained. To realize these predictions, high
resolution spatial measurements of the sea surface elevation need
to be available.

Before proceeding with processing and identification of
rogue waves, the enormous amount of data needs to be quality
controlled. The utilized quality control protocol is detailed in the
next section.

2.2 Quality control

Due to the harsh environments at sea, accurate
measurements of ocean waves remain challenging [24]. Hence it
is very likely that the vast data set [20] will be corrupted by
measurement errors, sensor failures, and other malfunctions. To
sort out unreliable data and only consider realistic wave profiles,
the following judicious quality control is adapted.

First, the measurements are divided into thirty-minute
intervals, which is a time span commonly used to compute sea
state parameters in oceanography [12]. For each window, the
following quality flags were evaluated:

1. Manufacturer quality flag: Datawell’s waverider
buoys are equipped with an algorithm, which flags
unreliable measurements. If a single value within
the thirty-minute window is flagged as
‘questionable’ or ‘bad’, the whole recording is
discarded.

2. Operator quality flag: CDIP personnel also
routinely check the recorded buoy data for
irregularities. These inspections are based on
computed spectra and other sea state parameters.
Raw time series, however, are not checked, and
hence, not flagged by the CDIP staff. Nevertheless,
to still benefit from the decades of experience of
these operators and ensure a rigorous quality
control, this quality control is utilized for the time
series as follows. If any sample of the recording
under consideration contributes to a spectrum,
which did not pass CDIP’s quality control, then the
whole measurement is discarded.

3. Spike detection: Even after passing the first two
steps of the quality control, unrealistic spikes are
observed in the recoded sea surface elevation (cf.
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Figure 3). These spikes can be detected by
monitoring the rate of change of the sea surface
elevation. The authors employ the threshold value
from [9]

S, = 4;’: J2In(N,), (1)

where o denotes the standard deviation of the sea
surface elevation, T, is the mean zero upcrossing
period, and N, is the number of zero upcrossings.
If the absolute value of the rate of change,
calculated as the difference between two
subsequent samples divided by the sample period,
exceeds the threshold (1) once, then the whole 30-
mintue measurement is discarded.

Start time 10-Jun-2001 19:59:15

0 P s W) e ool TV} T " | .|
M y b ¥ i

surface height in m
>

20k | I | I I I I

timeins

FIGURE 3: Unrealistic spike observed in the measured sea surface

elevation.

4. Sensor range: Moreover, waves whose crest
heights or trough depths exceeded the sensor range
are found in the buoy data [20] (cf. Figure 4).
Although, in principle, Figure 4 could show a
rogue wave, the associated crest height exceeds the
maximal sensor range of 20.47 m. This is
considered to be indicative of a malfunction. Thus,
measurements with sea surface elevations
exceeding the sensor range are discarded.
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FIGURE 4: Sea surface elevation out of the sensor range.

5. Repetitive values: Additionally, in some
measurements of the sea surface elevation, the
same value occurs for multiple consecutive points
(cf. Figure 5). Considering the ever changing,
dynamic ocean surface, such behavior seems very
unlikely. Thus, following the work in reference
[12], every measurement with ten consecutive
points of equal value is discarded.
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FIGURE 5: Consecutive points of equal value in the recoded sea
surface elevation.

About ninety percent of the measurements of the original
data set pass all five steps of the quality control. So, in total the
buoy data [20] yields about 14 million quality controlled thirty-
minute measurements. Subsequently, these recordings are
scanned for rogue waves and organized into data sets, as
described in the next section.

2.3 Data sets

If a thirty-minute measurement passes all previous five
quality control steps, then, the measurement is scanned for rogue
waves. From the literature (e.g., [3,11,12,14,15,18,25]), the
following three rogue wave definitions are extracted

2522, 252, Ze 5 1.25, )

Hs Hg Hg
where H denotes the wave height (trough to crest), . denotes
the crest height, and H; denotes the significant wave height. The
significant wave height is defined as four times the standard
deviation of the sea surface elevation (see, e.g., [3]).

If one of the criteria (2) is met, then the corresponding thirty-
minute measurement of the sea surface elevation is included in a
data set. Thereby, each criterion (2) is treated individually
yielding a different data set. Moreover, the measurements are
normalized so that the rogue wave event occurs at minute 25
within the saved recording. So, each saved recording consists of
25 minutes of measurement prior to the rogue wave and five
minutes after the rogue wave. In addition to each sample with a
rogue wave, another sample without a rogue wave from the same
buoy location is saved. This procedure yields perfectly balanced
data sets with an equal number of samples with and without
rogue waves. Depending on the application, this balance could
be altered in future studies.

As a final check, ten percent of the saved samples are
selected for visual inspection and no systematic irregularities are
detected. The authors note that the quality control described in
Section 2.2 has been developed such that no systematic
irregularities remain in the final data sets. Indeed, the quality
control steps 3-5 (cf. Section 2.2) have been introduced after
recognizing the irregularities shown in Figures 3-5.
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A detailed overview of the three different data sets is
provided in Table 1. Depending on the rogue wave definition (2),
the final data sets consist of 40-400 thousand measurements of
sea surface elevation. The rogue wave definition H/Hg > 2.2
yields the smallest data set, whereas about ten times more rogue
waves are detected when the threshold is raised to two (H/Hg >
2). Owing to the definitions (2), the data set A is contained in the
data set B. Furthermore, a large overlap is expected between the
data set C and data set A as well as data set C and data set B.
However, it is noted that data set C is not necessarily fully
contained in data set B, due to the different rogue wave
definitions (cf. equations (2)).

Table 1: Overview of the complied, quality-controlled data sets.

Rogue wave Number of Samples
Data Set gue W samples with without
Definition
rogue wave | rogue wave
H
A —>22 18- 103 18-103
H;
H
B —>2 172103 172-103
H;
e 3 3
C —>1.25 27-10 27-10
Hg

The data sets are prepared without storing the location or
water depth of the ocean buoy. In subsequent studies, one could
add these physical parameters and verify if the forecasting
accuracy can be enhanced.

2.4 Neural Networks

In the past decade, neural networks have been successfully
employed for various tasks such as image recognition, speech
recognition, and genome sequencing. With their appealing
promise to capture any underlying input-output relationship,
assuming that enough data for parameter tuning is available,
these networks are, at least in principle, capable of uncovering a
hidden relationship between rouge wave events and waves prior
to the rogue wave.

Within this work, recurrent neural networks with LSTM
cells [26] are employed. Recurrent neural networks are designed
to process time series and feature internal states. As a distinction,
LSTM-networks can flexibly retain and erase their internal
states. LSTM-networks have been successfully employed to
handle complex time series [27] and ocean wave measurements
[28,29].

A stacked architecture shown in Figure 6 is utilized, wherein
each stage consists of the four layers. The first layer is a LSTM
layer with N;grp hidden units. After that a batch normalization
rescales each batch to have zero mean and unit variance.
Subsequently, a dropout layer is used to set each feature to zero
with a probability of pj,. Dropout layers are commonly employed
to prevent overfitting, which often arises with neural networks
[30]. Finally, a fully connected layer is used to extract Nf

Input
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ad \AICIING)

[ OG0

LSTM-layer Dropout Layer Fully Connected Layer
Ny sy : Number pp - Dropout Ng: Number of
of hidden units probability extracted features

y

Repeat N, times
Figure 6: Employed architecture of the neural network.

features from the data. The four layers (LSTM, Batch
normalization, fully connected and Dropout) are repeated N;
times.

The output of the network is a probabilistic classifier. For
each class (i.e., “no rogue wave” and “rogue wave”), the output
returned is a probability indicating the likelihood that the
supplied sample belongs to the corresponding class. These two
probabilities necessarily sum up to one. To yield a definite
prediction, the class with the higher probability is selected as
forecast.

The weights of the neural network are obtained via a
stochastic gradient descent implemented within the Adam
optimizer [31]. Therein, 80 percent of each data set (cf. Table 1)
is utilized, with the remaining 20 percent being reserved for
testing. The hyperparameters are selected upon best performance
on the testing portion of the data set A. The final hyperparameter
values are reported in Table 2. With the hyperparameter choice
listed in Table 2, the network has about 4600 trainable
parameters.

Table 2: Choice of hyperparameters

Parameter Value

Hidden units Njgry 10

Dropout probability pp 0.05

Number of features in dense | 2 (except 50 for the first one)
layer Nf

Number of stacked layers N, | 4

The obtained hyperparameters are verified with the state-of-
the-art, automated hyperparameter tuning algorithm tune [32]
and no significant improvements could be found. Moreover,
alternative networks architectures, notably convolutional neural
networks [33] and transformer networks [34] have also been
tested. However, the depicted architecture in Figure 6 with the

Copyright © 2023 by ASME

¥20Z Joquialdas 9| uo Jasn saleiqr puelkiely Jo Ausieaun Aq jpd 0z0€0L-€202oBWO-GL0BZ0IZ00A/6E8070./SL0VZ0LZ00/N L¥898/€202AVINO/APA-sBuipaadoid/3yNO/Bi0 awse uonos|jodjelbipawse//:dpy woly papeojumoq



hyperparameters listed in Table 2 yielded consistently the best
results.

The networks are constructed and trained by using
TensorFlow [35] (version 2.9.1). The training and testing
experiments are conducted utilizing a NVIDIA Quadro P1000
GPU unit.

3. RESULTS AND DISCUSSION
The rogue wave predictions are obtained as follows. To train
the neural network, twenty minutes of sea surface elevation are

extracted from each sample (t;,,, = 20 min cf. Fig. 1). This
window length yields time series with 1536 samples. For
samples with a rogue wave the twenty-minute window is taken
from the measurements prior to the rogue wave, whereby
duration between the last included sample and the rogue wave
event is denoted as advance warning time t,q4, (cf. Figure 1).
After extracting the measurements, they are randomly shuffled
and 80% of the measurements are utilized to train the network,
whereas the remaining 20% are reserved for testing the
performance of constructed model on new data. The network is
trained to distinguish measurements after which a rogue wave
occurred from recordings where no rogue wave occurred
afterwards. Thereby, the network can be used to obtain an
advance warning of an occurring rogue wave, with a certain
accuracy.

In the following, the data set A (H/Hg > 2.2) is employed
within the forecasting experiments first. Subsequently, the
performance of the neural network on the other two data sets (B
and C) is investigated.

3.1 DatasetA(H/H > 2.2)

First, the capabilities of the neural network to predict rogue
waves are illustrated with the data set A. Within this data set, a
rogue wave is defined as a wave with a wave height H exceeding
the significant wave height Hg by a factor of at least 2.2. About
18 thousand rogue waves from the buoy data [20] satisfy this
rogue wave definition. Compared to the alternative definitions
(cf. equation (2)), the data set A consists of the least number of
waves.

Setting the advance warning time of one minute yields the
result shown in Figure 7. The depicted confusion matrix shows
all outcome possibilities of the prediction experiment. In the first
case, labelled as "'true negative” the model’s prediction is correct
that no rogue wave will occur after the measurement. The
percentage of 40.82% indicates that in about four out of five
measurements, the prediction from the neural network is correct
on no upcoming rogue wave. However, the field "'false
positive’” with the percentage of 9.19% implies that about one
out of five measurements is incorrectly labelled as measurement
prior to a rogue wave. For the "'false negative’’ field, the
network prediction is no upcoming rogue wave, whereas in
reality, a rogue wave does occur. The percentage of 10.68%
implies that in about one out of five rogue waves is not predicted
by the neural network. The " “true positive’’ field, in turn, shows
the number of accurately predicted rogue waves. Overall, the
network prediction is correct for four out of five rogue waves.
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Figure 7: Prediction results for data set A (H/Hg > 2.2), with an
advance warning time of one minute (44, = 1 min) and tg4:q = 20
minutes (cf. Figure 1).

In summary, from Figure 7, one can gather that rogue waves
are indeed predicable from current ocean wave measurements.
More precisely 80% of the rouge waves are predicable about one
minute in advance. The overall accuracy calculated as the sum
of the true positives and true negatives of the neural network’s
prediction is 80%. This implies that four out of five predictions
of the neural network are correct. In total, about 3000 rouge
waves are correctly predicted. To the best of the authors’
knowledge, this is the most extensive rogue wave prediction
experiment on field measurements that has been carried out.

The longer the advance warning times is, the more time is
gained to enforce safety or undertake other countermeasures.
Thus, it is natural to strive to extend the advance warning time.
Subsequently, the advance warning time is increased from one
minute to a maximum of five minutes and the forecasting
experiments are repeated. The resulting percentages of true
negatives, false positives, false negatives, and true positives are
shown in Figure 8. Moreover, the percentage of correct
predictions calculated as the sum of true positives and true
negatives is included as accuracy. The overall trend is clear. As
expected, the accuracy is found to deteriorate as the advance
warning time is increased. Interestingly, the percentage of
correctly predicted rogue waves remains approximately
constant, whereas the correctly predicted no-rogue-wave
samples decreases with increasing advance warning time. Even
for the longest advance warning time of five minutes seven out
of ten predictions are correct, or equivalently 2900 rogue waves
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Figure 8: Prediction results for data set A (H/H; > 2.2), for various
advance warning times and tg4¢, = 20 minutes (cf. Figure 1).

have been accurately predicted, while missing only 900 rogue
waves.

The results shown in Figure 8 confirm the observation made
in Figure 7. Rogue waves are predictable with a high accuracy
of 70 to 80 percent within an advance warning time of several
minutes. In the next section, it is investigated if that observation
can be confirmed for the alternative rogue wave definitions
utilized to compile the data sets B and C.

3.2 DatasetsB (H/H; > 2)and C (n./Hg > 1.25)

To verify the predictability of rouge waves satisfying
alternative definitions, the forecasting experiments detailed in
Section 3.1 are repeated for the data sets B and C. The data set B
consists of about 10 times more rogue waves than data set A,
while data set C is about twice as big as data set A.

Training and testing the LSTM-network on the data B for an
advance warning time of one-minute yields the confusion matrix
shown in Figure 9. For the advance warning time of one minute
the percentage of correct predictions is about 76.4% and
approximately 27 thousand rogue waves are correctly predicted
from field data for the data set B.

The performance of the neural network on the data set B is
slightly decreased compared to results shown with the data set A
(cf. Figure 7). More precisely, the accuracy for data set B of
76.4% is less than the accuracy of 80.1% obtained for data set A.
However, it is noted that this discrepancy could be explained
with the hyperparameter choice (cf. Table 2). The
hyperparameters were tuned for data set A but not data set B.
Indeed, it is expected that for the more extensive and hence more
complex data set B, a neural network featuring more parameters
could help increase the accuracy further. Due to the excessive
training time of more than a day with the current computational
infrastructure, hyper parameter tuning for data set B was not
carried out.
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Figure 9: Prediction results for data set B (H/Hg > 2), with an
advance warning time of one minute (t44, = 1 min) and tg4:q = 20
minutes (cf. Figure 1).

In the same vein, the results for data set C are shown as a
confusion matrix for an advance warning time of one minute in
Figure 10. For this data set about 75.3% of all predictions are
correct and 4251 rogue waves are correctly predicted in advance.

The percentage of correct predictions for data set C is found
to decrease by about 5% compared to the data set A (cf. Figure
7). From this difference, one could conclude that rogue waves
with large wave heights (i.e., H/H; > 2.2) are easier to predict
than rogue waves with large crests (i.e., n./Hs; > 1.25).
However, it remains to be explored how statistically relevant the
observed discrepancy is. Additionally, the authors remark that
observations based on such forecasting experiments can merely
indicate correlations but not causations.

Confusion Matrix
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g
] True Neg False Pos
= 4014 1454 3500
2 36.56% 13.24%
o
=
3000
¥ g
-
% - 2500
5 False Neg True Pos
S - 1260 4251 - 2000
:%” 11.48% 38.72%
- 1500

|
No rogue wave

Rogue wave

Prediction

Figure 10: Prediction results for data set C (./H; > 2), with an
advance warning time of one minute (t,4, = 1 min) and t 4., = 20
minutes (cf. Figure 1).

Copyright © 2023 by ASME

¥20Z Joquialdas 9| uo Jasn saleiqr puelkiely Jo Ausieaun Aq jpd 0z0€0L-€202oBWO-GL0BZ0IZ00A/6E8070./SL0VZ0LZ00/N L¥898/€202AVINO/APA-sBuipaadoid/3yNO/Bi0 awse uonos|jodjelbipawse//:dpy woly papeojumoq



4., CONCLUSION

In this work, the authors show that rogue waves are
predictable from field measurements. More precisely, rogue
wave can be predicted with an accuracy of about 80% one minute
in advance from buoy data [20]. The forecasting accuracy drops
to about 70 percent, when the advance warning time is extended
to five minutes. These observations are verified by correctly
predicting the emergence of thousands of rogue waves.

While within this article, it has been shown that rogue waves
are predicable, the total accuracy of the predictions could be
improved in future work. To this end, the ever-growing data set
[20], alternative measurements, or different networks, and
possibly an ensemble of multiple networks, could be utilized.
Moreover, tools from explainable Al could be used to obtain
physical insights from the trained, black-box models.
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