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Abstract

Extreme waves, also known as ‘rogue waves’, have posed considerable challenges to maritime traffic over some time. Efforts
have been directed at investigating the mechanisms governing these extreme energy localizations in oceanic environments.
Modulational instability, also known as sideband instability, is one such mechanism that has been proposed to explain the
occurrence of such phenomena in the framework of non-linear theory. The current work is aimed at better understanding the
effects of sideband modulations on the propagation of unidirectional waves. To achieve this, a numerical wave tank (NWT)
has been constructed using Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH) to investigate the different
parameters associated with the generation and propagation of plane, modulated waves. General Process Graphics Computing
Unit (GPGPU) computing has been utilized to accelerate the computational process and improve the computational effi-
ciency. The chosen numerical scheme has been validated by carrying out irregular waves focusing simulations to compare
with available experimental data. Additionally, a Peregrine-type breather experiment has also been performed as part of the
validation studies to look at energy localization within the NWT. The effects of the different parameters associated with the
modulations to a plane propagating wave have been investigated using a blend of surface elevation data, eigenvalue, and
frequency spectra. The effect of water depth on the perturbations to plane waves has been also investigated. The observations
from these experiments can help shed light into the effects of modulations in the propagation of plane waves and help in the
study of oceanic energy localization studies in future.
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1 Introduction

Extreme oceanic waves [2], more popularly known as ‘rogue
waves’, are large-amplitude waves that appear suddenly on
the ocean surface and tend to disappear without a trace [3].
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ent oceanic scenarios [17, 21]. A general review of differ-
ent physical mechanisms governing the formation of rogue
waves was provided by Pelinovsky and Kharif [33]. Linear
mechanisms include superposition of different monochro-
matic wave components via geometric focusing [20]. The
effect of linear directional focusing behind such phenom-
ena was investigated by Adcock et al. [1] through numeri-
cal modeling of the widely studied Draupner Wave [6]. The
modification of the linear focusing due to the introduction
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of non-linearity via phase modulation has been investigated
by Wang and Balachandran [36]. Atmospheric forcing and
wave-current interactions [39] have also been observed to
lead to such high waves. The phenomenon of modulational
instability (“Modulational Instability and Rogue Waves in
Crossing Sea States in: Journal of Physical Oceanography
Volume 48 Issue 6 (2018),” n.d.) is another phenomenon that
has been theoretically proposed in the framework of weakly
non-linear theory to explain the formation of such extreme
energy localizations.

The phenomenon of modulational instability has been
observed in a wide variety of non-linear physical systems,
ranging from plasma waves [19], electromagnetic beams to
water waves [37]. In the framework of the analysis of sud-
den extreme energy localizations in oceanic environments,
this is more commonly known as the Benjamin-Feir (BF)
instability [18]. The effect of this phenomenon results from
the interaction between a strong carrier wave and pertur-
bations in the form of lower and higher frequency side-
bands, resulting in instabilities due to exponential growth
spatiotemporally.

Numerous studies have been conducted to investigate the
mechanism of modulational instability in oceanic waves.
Wave tank experiments were performed by Onorato et al.
[32] and subsequent statistical and probability analyses
were performed to explain the observations in terms of the
modulational instability mechanism. Numerical modeling
using full non-linear equations was used by Chalikov [13]
for investigation of the growth of the BF instability in an
initially homogeneous Stokes wave train. Water wave experi-
ments exhibiting non-linear modulation have been discussed
in Bonnefoy et al. [10] through numerical tools of non-linear
spectral analysis. Numerical wave tank experiments provide
an excellent alternative to physical models in offshore and
coastal engineering situations in regard to resources and
scale efforts, thus allowing for improved opportunities to
carry out investigations for extreme energy localizations in
oceanic environments.

Different numerical models can be utilized for simula-
tions of wave tank studies depending on the size and com-
plexity of the simulation domain or resolution, among other
factors. Weakly Compressible Smoothed Particle Hydrody-
namics (WCSPH) [28] is a Lagrangian method that has been
used quite extensively in the last few decades for simulation
of astrophysical phenomena and wave tank studies. Long-
crested wave generation studies using WCSPH were carried
out by Altomare et al. [4] to validate against theoretical and
experimental observations. Different numerical dissipation
schemes and kernel functions were investigated for effective-
ness in numerical wave tank simulations by the authors in a
prior study [12]. Energy localization studies due to current
gradients in ocean waves were carried out by Manolidis et al.
[23]. New rogue wave forms were studied by Chabalko et al.
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[11] and Moitra et al. [26] by utilizing the massive paral-
lelization inherent in GPU computing.

Numerical modeling of fluids can be implemented
through two broad approaches in SPH literature. Incom-
pressible Smoothed Particle Hydrodynamics (ISPH) [22],
as the name suggests, is based on enforcing a very low level
of compressibility of the fluid through solution of a pres-
sure Poisson equation. Although the method is accurate,
it involves substantial computational time and resources,
which might not be relevant for large scale numerical
experiments. The Weakly Compressible Smoothed Particle
Hydrodynamics, on the other hand, is based on a weakly
compressible fluid assumption and solved using a stiff equa-
tion of state. Diego and Colagrossi [15] showed that free
surface motion can be intrinsically tracked using WCSPH
in hydrodynamic simulations. This is utilized in numerical
wave tank simulations for an efficient and accurate recording
of free surface elevation.

The authors’ aim in the current work is to investigate the
influence of modulation in unidirectional waves traveling in
an NWT through simulations of perturbed plane waves using
different sets of parameters through a WCSPH scheme. The
study is closely based on the work carried out by Eeltink
et al. [16] investigating the non-linear evolution of waves
in experimental wave tanks followed by subsequent predic-
tions using deep learning frameworks. An overview of the
basic concepts used in this study of plane perturbed waves
is provided in Fig. 1. As the initial effort, an NWT has been
constructed using a WCSPH numerical scheme. Using this
setup, several simulations have been conducted by variation
of the different parameters involved in the wave making.
The surface elevation measurements from these experiments
have been then utilized for carrying out different analyses.
The observations from these efforts are aimed at examin-
ing the influence of perturbation sidebands and particularly
their asymmetry, as well as investigating the effect of the
modulation frequency and water depth d. The steps involved
in this workflow will be explored later in a more detailed
manner. With that in mind, the rest of the paper is organized
as follows. Firstly, in the next section, the authors provide
a brief description of the WCSPH formulation used along
with the different analysis techniques being utilized for the
studies on perturbed plane waves. Following this, irregular
wave focusing experiments are simulated using available
wave conditions for the validation of the scheme used in the
numerical model. The evolution of a modulated wave group
in the NWT, described using a Peregrine type breather solu-
tion has also been discussed in the Appendix as part of our
validation studies for the numerical scheme. Subsequently,
in the following section, parametric studies on modulated
waves have been conducted using the workflow as discussed
in Fig. 1. Finally, the conclusions are drawn based upon
the observations to provide insight into the wave evolution
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Numerical wave tank experiments on perturbed plane
waves using WCSPH through different parameter studies
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Fig.1 An overview of the basic concepts used in this study of plane
perturbed waves in numerical wave tanks. A numerical wave tank has
been constructed using the WCSPH scheme. Different experiments
have been carried out on plane perturbed waves using this developed
numerical model. The surface elevation measurements from these

due to modulations in plane wave propagation scenarios.
The authors are hopeful that the results from this work can
help in energy localization studies in oceans that the authors
intend to carry out in future.

experiments have been utilized for carrying out different analyses.
The observations from these efforts are aimed at examining the influ-
ence of perturbation sidebands and particularly their asymmetry, as
well as investigating the effect of the modulation frequency and rela-
tion to water depth

2 Methods

The WCSPH scheme implemented in this paper is closely
based upon the work of Monaghan [28]. It is based on the
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Navier—Stokes equation where fluid properties are described
primarily through density and momentum equations as given
in Eqns. 2 and 5 using a smoothing function W (r;;, k) which
takes into account the contribution of neighboring particles
for fluid property calculation at a particular position. The
different function values at any particular computational
node i is computed using the discretized SPH equation of

the form
m.
TOEDY g, Wlri=rh) (1)
j .

where g; is the function value at the j* point, W(ry, h) is
a smoothing function, m; and p; are the mass and density
related to the j* particle and 4 is the smoothing length for
W(rl], h) The particle masses in this work are assumed to be
constant and are represented by m;. The particle densities p;

can be computed accordingly as
=)' m; Wy, ) )
J

Following this, the particle pressures P; can be computed
using a stiff equation of state proposed by Batchelor [7] as:

=o(2) )

where y = 7, p is the current density of the particle and p is
the reference density. The constant B, termed as bulk modu-
lus gives a measure of the incompressibility of the medium
and the relative density fluctuations during the simulations.
It depends on the anticipated maximum velocity of the fluid
V; and a chosen compressibility factor n and is given by

c

B = ‘00_? 4)
14

where ¢, = % The Navier—Stokes equation for the Lagran-

gian formulation is then used for computing the particle
accelerations as

_=_Z (_+—>V W(rj k) + Vy + F, 5)

where V., W(ru, h) represents the kernel gradient function, Vy;
represents the acceleration due to viscous forces and F; gives
the acceleration due to body forces. The rate of change of

density of the particles % are computed as follows:

dp;
——va VW( U,h) 6)

Finally, the particles are moved forward in time by calcu-
lating their velocities v; and positions r; from their respective
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accelerations g; using a modified version of the conventional
leap-frog formulation.

Vil =V + a;dt (7a)
2 2
dt
Viel = Vipl + ai (7b)
ri+1=ri+vi+1dt 8)

The weakly compressible nature of the WCSPH approach
makes it susceptible to spurious density fluctuations during
simulations. Computation of the viscous term in the NS equa-
tion involves calculation of the Laplacian of the smoothing
function, and this can lead to instabilities in the numerical
scheme. Introduction of numerical dissipation thus plays a key
role in this numerical scheme to help dissipate the unwanted
pressure oscillations. Different dissipation schemes like the
artificial viscosity, density reinitialization and the 6-SPH
scheme have been proposed in the SPH literature over the
years [5, 15, 27]. The effectiveness of the different dissipation
schemes in carrying out numerical wave tank simulations was
investigated in a prior study carried out by the authors [12].
Using the results from the study, a dissipation scheme was
chosen by implementing the parameters f and 6 in the viscous
force term V; and the density change rate 22 respectlvely as

follows.
o { Vi — PN W (1 h). vy < O o
1=
VT o s Vil >0
hvyry — pit Pith; .
where u; = —==, p; = == is the density average of the i
i 2 o F

and the j" particles. V;;°" is the viscosity term implemented

by Morris et al. [30] and is given by

Mor __ mi(uitp) (1 Wy
Vi =2 pibj (|’/| ar;

prevent unphysical particle penetration and helps achieve
numerical stability.

The 6 dissipation term added to the rate of change density
equation reads as

) The parameter f is used to

dp;
——va VW( lj’h) D, (10

where D, encompasses the dissipation term in the form

. VW
D, = 26hc, Z @Wﬁw (11
J

, 2
b (r; =)
Here, y; is a second-order term implemented in the form
Wj; = p; — p; in the present study.
The smoothing kernel functions used in WCSPH also play a
prominent role in the modeling as pointed out by Dehnen and
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Aly [14]. The efficacy of kernel functions in conjunction with
a suitable numerical dissipation scheme in wave tank was also
examined in the prior work carried out by the authors [12].
Following the observations from that study, the fifth degree
Wendland class 2 kernel W(r, k) has been used for the numeri-
cal simulations performed in this work. The domain radius has
been taken as 24 for this chosen kernel function, where 4 is
the smoothing radius. In all the simulations performed in the
current work, / has been taken to be 1.5Ax, where Ax is the
fluid particle spacing. The kernel function and its derivative
are given as:

4
7 4
wom = J @+ n(1-%)  0=z<2 -
0, z>72
_£<1_£>3L 0<z<?2
VW(r, h) = e 2) V== (13)
0, z>72

Here, z = %, where r is the distance from the considered
particle to its neighboring particles.

Dynamic boundary conditions have been implemented
for the domain boundaries in all the numerical experiments
carried out in this study. The same set of equations applies
for the boundary particles too, with the only constraint being
their motion is governed by externally applied forces. This
reduces the computational effort associated with the numeri-
cal modelling. The numerical model thus described has been
run using CUDA 11.7.0 (“NVIDIA CUDA Toolkit Release
Notes,” n.d.) to utilize its massively parallel computational
nature. In addition, the process has been accelerated by mak-
ing use of the powerful p100 GPU partition available via the
high-performance computing (HPC) facilities of the Bluecrab
(“Bluecrab HPC Cluster,” n.d.) cluster and the a100 GPU par-
tition available via the HPC facilities of the Zaratan cluster
[38], allowing for substantially reduced computational times.

The plane modulated waves generated in our simulations
involve a carrier wave perturbed with two frequency sidebands,
where the resultant wave amplitude is expressed as follows.

a(0,7) = \/b_O + 4 /b+1ei(QMT+(D) + 4 /b_lei(—QMr+d>) (14)

(14) Here, \/b_ ,A/b_ and 4/b ., are the amplitudes of the
carrier mode and the two frequency sidebands, respectively.

The amplitudes are determined using the parameters b, and a
using the equations

1-by—«a _1-by+a

by=1-bp,b_; = ) by = )

s)
where by is the sideband fraction and a can be termed
as sideband imbalance. €, in Eq. 14 is the modulation
frequency of the sidebands, @ gives the relative phase
between the sidebands and the carrier mode and 7 is the

dimensionless time. The piston maker displacement can be
constructed using the surface elevation at x = 0 given by

n(0, 1) = aya(0, t)e" ™" (16)

where 4 is the initial value of the non-dimensional ampli-
tude. The readers are encouraged to look at the original
paper [16] for a detailed explanation of the non-dimension-
alization of the different quantities.

For the different validation and perturbed wave stud-
ies, the surface elevation readings #(¢) are obtained at the
different wave gauge locations following the NWT experi-
ments. These measurements are then analyzed using dif-
ferent approaches to look at the influence of the different
parameters involved as depicted in Fig. 1. The frequency
spectra over the wave tank, found out using the Fourier
transform gives an account of the energy in the different
frequency bands as the wave propagates through the NWT.
This helps visualize the relative influence of the carrier and
the frequency sidebands during the wave propagation pro-
cess. Apart from this approach, the wave amplitudes at the
different wave gauge locations over the time of propagation
are calculated using the Hilbert transform according to the
given formula as follows.

a(t) = |n(r) + in(0)| a7)

where 75(H) = H@n(t)) and H(n) = F~'[-i sign(w)
F[n]] where F is a Fourier transform and o is the angular
frequency. For the current study (5(¢)) has been computed
using the ‘hilbert’ function in MATLAB. The time average
of these wave amplitudes is then computed at the different
wave gauge locations to further provide information about
the energy propagation over the wave tank for the different
sets of parameters.

In contrast to these approaches, the wavelet energy spec-
trum method helps understand the energy variations in the
different frequency bands at different time instants over the
simulation duration. This helps understand the time—fre-
quency relationship inherent in the surface elevation time
series at different locations along the NWT. The analytical
Morlet wavelet (“Morlet wavelet—MATLAB Morlet,” n.d.)
used as the mother wavelet for this analysis can be defined
in the frequency domain as:

—6)2

‘/I\‘(a)) =2e” “

U(w) (18)

Using the inverse Fourier transform, the Morlet wavelet
in the time domain can be expressed as:

W) = \/%e_g%" (19)

Using this, the continuous wavelet transform can be
defined as:

@ Springer



1836

Engineering with Computers (2024) 40:1831-1856

1 —(t—T
X, (m,7) = — / n(t)‘l‘(—)dt (20)
il m

where m is the wavelet scale and 7 is the wavelet time for
time—frequency analysis and #(¢) is the surface elevation
time series. Following this, the wavelet energy spectrum
can be computed as:

X, (m,0)X,,*(m, 1)

WES(m, 7) = - 1)

Finally, as part of our analysis process, the time histories
of the surface elevation observations have been used to carry
out eigenvalue analysis using a Zakharov-Shabat [37] eigen-
value system which can be defined as follows.

B, = [__jﬁ 2 B (22)

Here B(x, t, &) is a vector function, £ is a spectral param-
eter and A is the non-dimensional wave amplitude defined
in the non-dimensional NLS equation given by:

A, +A, +2/APA=0 (23)

The eigenvalue system can be written as a system of lin-
ear equations as follows.

-0, A, .

The Fourier collocation method was then used to break
down this system into a discretized eigenvalue system to
solve for the eigenvalues corresponding to the Fourier coef-

ficients of the eigenfunction B.

3 Results and discussion
3.1 Validation studies

In a previous aforementioned study [12], the authors carried
out numerical simulations of sloshing and wave tank experi-
ments for validation of the WCSPH numerical scheme. In
the present study, the chosen numerical dissipation scheme

and the kernel function of the model has been validated for
the study of modulated plane waves through simulations
involving focusing of double wave groups in a NWT, the
details of which experiments are available in the work by
Wang et al. [35]. The surface elevation readings are obtained
at various locations along the numerical wave tank and
compared with the experimental observations. In addition
to this, the developed numerical scheme has also been uti-
lized to look at the phenomenon of modulation growth in a
wave tank. The experimental setup outlined in Shemer and
Alperovich ( 2013) has been used to carry out simulations
of a Peregrine-type breather in a NWT. The surface eleva-
tion observations at the different locations are then used for
analysis of the modulation growth. The simulation setup
description and the corresponding discussions on this effort
are provided in the Appendix.

The wave focusing experiments detailed out in Wang
et al. [35] consists of a 69.0m long, 2.0m wide and 1.8m deep
experimental wave flume with a water depth of d = 1.2m.
A piston maker is equipped at the left side of the flume for
wave making and a wave absorbing zone is set up towards
the end of the tank for wave absorbing arrangements. 25
wave gauges are set up for recording the surface elevations
at desired locations. For the two-dimensional numerical
wave tank simulations conducted in this study, a wave tank
of length 81.2m and a height of 3.6m with a water depth
of d = 1.2m has been used. A piston wavemaker of length
2.4m is arranged towards the left part of the wave flume and
a sloping beach extending from 49.7m to 81.2m is provided
for passive wave absorption.

For purposes of comparison, 5 wave gauges (WGs) are
set up in this wave flume at locations where the elevation
readings are available in Wang et al.[35]. An illustration
of the experimental setup is provided in Fig. 2. The fluid
properties and the parameters used during the simulations
are summarized in Table 1. The low values of the Courant
number ensure that the scheme is numerically stable for all
fluid particle resolutions.

The numerical experiments have been run using different
fluid particle resolutions for a particular case of focusing
of double wave groups. The wave parameters are given in
Table 2.

Here, f,; and f,, are the peak frequencies associated with
two different wave groups that are propagating in the same

-4.50—10.00—————9.20————9.80————8.00——

WGl WG2 WG3 WG4

WG5

L

/

36 | | I
5.4J_2J 48.21

31.50

Fig.2 Numerical setup for the irregular wave focusing experiments. All dimensions are provided in meters. The wave gauges are depicted using

WG
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Table 1 The simulation Ax

- Fluid particle resolution
parameters in the WCSPH

€ {3x1072m,4.5% 1072m, 6 x 1072m, 9 x 1072m, 12 x 10>m}

numerical setting used for the

S . Courant number
validation study on focusing

€ [0.00025,0.001]

experiments of the double wave Boundary particle resolution 0.5 Ax
groups h Smoothing length 1.5Ax
p Parameter for numerical stability € [2.0,4.0]
1 6— SPH coefficient 0.001
20 Reference density 1000
Ve ~ Maximum fluid velocity 3.0m/s
Co Numerical speed of sound 10v,,,,
dt Time step size 1x 1075
y Morris’ viscosity factor 1x10°°

Table2 The wave parameters for the particular double wave group
focusing case used for the validation study

T(Hz)  fo(Hz)  Af,(Hz)  Aylem) (f,)  Ay(em) (f )

0.8 0.7 0.1 4.32 4.39 222

x,(m)

direction in the wave tank. A, denotes the focusing ampli-
tude of an individual wave group while x,, gives the focusing
position along the wave tank. The readers are directed to
Wang et al. [35] for a detailed explanation of the procedure
for determination of the individual frequencies and ampli-
tudes of the wave components in each wave group. Follow-
ing this work, the wave spectra for the two wave groups are
discretized in the frequency range (0.4 — 2.0)Hz with each
having the same N, = 200 components. The displacement of
the piston wavemaker X(¢) is determined by superimposing
the displacements for the individual wave groups using the
equations for the free surface elevation #(f) and the transfer
function T}, for a piston-type wavemaker given as following.

N,

X() _ N @

== ; T—kiaicos[ki(x —x,) = 2xf(t—1,)] (25)
Here,q; and f; are the amplitude and frequency of a sin-

gle wave component, f, is the time of focusing while 7}, is

the Biesel transfer function [8] for a piston type wavemaker

given as follows.
_ 2[cosh(2kd) — 1]
* 2kd + sinh(2k; d)

ki (26)

where d is the water depth in the numerical wave tank.
Free surface elevation readings are obtained at the dif-
ferent gauge locations for all the simulations to compare
with the experimental readings available in Wang et al.[35].
The comparisons at x = 3m and x = 13m for a fluid particle
resolution of Ax = 0.03m are presented in Figs. 3 and 4.

Additionally, the surface elevation time series #(f) have
been used for analysis of the time—frequency relationship
using the wavelet energy spectrum method as outlined in §2.
For all the numerical experiments carried out in this study,
the wavelet energy spectrum has been computed using the
built-in ‘cwt’ function using the analytical ‘amor’ wavelet
function in MATLAB (“MATLAB—MathWorks,” n.d.).

As can be seen from the upper plot in Fig. 3, for the com-
parisons at x = 3m, the numerical surface elevation observa-
tions show considerable agreement with the experimental
readings from ¢ = 38s to t = 455, when the two wave groups
are in the process of focusing. The wave amplitude during
this time duration is more than 2¢m, while it is much lower
during the initial times. As can be seen from the plot, there is
reduced agreement between the experimental and the numer-
ical results before t = 35s, where the amplitude is signifi-
cantly lower than 2cm. This disagreement can be attributed
to the numerical dissipation associated with WCSPH. As
mentioned previously, numerical dissipation is essential for
stability during the simulations, but its incorporation does
not allow the complete development of the low amplitude
waves observed initially. However, the purpose of the vali-
dation study was to investigate if the model can capture the
energy focusing during the simulation. Though there are dis-
cernible differences between the two sets of readings, the
model was able to correctly capture the focusing phenom-
enon at this location with respect to magnitude and phase. A
wavelet energy spectrum for this time series has been shown
in the lower plot in Fig. 3 to better capture the focusing
process. The onset of energy localization between 40 and
45 s in the frequency range of 0.7 and 0.8 Hz can be clearly
observed in this plot. A similar set of comparisons carried
out for the wave gauge location at x = 13m is presented in
Fig. 4. The surface elevation comparisons in the upper plot
of Fig. 4 reveal a qualitative agreement with respect to the
focusing phenomenon. However, there are discernible differ-
ences in the phase and magnitude of the elevation readings,
where the magnitude of the focused wave group for the sim-
ulation is lower than the experimental observations. As in
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Experimental results
—— Numerical results
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Fig.3 Results of the validation study for Ax=0.03m at x=3m. The
upper plot reveals the surface elevation comparisons between the
numerical observations in this study and the experimental readings in

0.03
10.02

0.01

Wang et al. The lower plot gives the WES distribution for the surface
elevation readings
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Fig.4 Results of the validation study at x =13 m similar to the depiction in Fig. 3

the previous case, these differences can be attributed to the
dissipative effects of our numerical model, which increase
with larger wave propagation distances. Despite these dif-
ferences, the model was able to capture the focusing at this
location which can be seen from the ratio of the focused
wave packet with the background wave. This can be further
examined using the wavelet transform plot at this location
represented in the lower plot of Fig. 4. The WES plot reveals
that the focusing takes place over a narrower time range and

@ Springer

starts encompassing more frequencies as compared to the
observations at x = 3m, signifying the growth of the focus-
ing phenomenon. Thus, it can be discerned from the results
of this study that the WCSPH model is able to encapsulate
the double wave group focusing phenomenon in a numerical
wave tank; however, there are deficiencies which can be put
down to the effects of numerical dissipation.

A grid study was carried out to investigate the conver-
gence of the numerical scheme as well as look at the effect of
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numerical dissipation involved. The results of this study are
depicted via L2 error plots in Fig. 5. Five different particle
resolutions Ax mentioned in Table 1 have been used for this
purpose. The L2 error for a particular particle resolution at
a certain wave gauge location is computed using the formula

N

]lv z (nnum(x’ tl) - rlexp('xv [i))z (27)

i=1

L,(x) =

where 7, (x,t;) are the free surface elevation readings
obtained from the simulations at a particular location at dif-
ferent time instants, 7,,,(x, ;) are the experimental readings
and N is the number of observations.

The L2 errors depicted in Fig. 5 have been obtained
through interpolation between the different fluid particle
resolutions Ax using the in-built MATLAB ‘fit’ function
using a smoothing parameter of 0.9999. The interpolated
errors at x = 3m show a decreasing trend, indicating the

0.02

——x = 3m
——z = 13m
0.018 H——2 = 22.2m
T = 32m
——z = 40m

0.012

L2 error

0.01

0.008

0.006

h\.\g

0.004 *
0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11
Az

Fig.5 Grid study showing the L2 errors interpolated over the range
of particle resolutions for the different wave gauge locations used in
the numerical simulations of the double focusing wave groups

WG1 .. WG3 WG4 WG5S WG6.WGS.. .. .. .. . . . oo

grid indifference at small distances from the wave maker. At
larger distances though, the errors show a gradual increasing
trend with decreasing resolution. The L2 error plots reveal
that as the distance of wave propagation increases, the errors
generally start to increase owing to the numerical dissipative
nature of the scheme. The higher error at the focus position
of x = 22.2m can also be attributed to this feature. In gen-
eral, the error plots reveal that our chosen numerical scheme
performs reasonably well at a wide range of particle resolu-
tions till wave propagation distances around 10 — 15m from
where numerical dissipation starts having an effect on the
simulation results.

3.2 Numerical experiments for parametric study
of perturbed plane waves

The numerical scheme thus validated has been then utilized
for carrying out investigations on modulated, unidirectional
regular waves in the NWT. The simulation setup is based
on the experiments detailed out in Eeltink et al. [16]. For
the two-dimensional simulations in the current study, a
numerical wave flume of length 33.5m with a water depth
of d = 1.2m is used. A piston wavemaker of height of 3.0m
is installed at the left of the tank for wave generation and a
sloping beach is provided at the end of the tank to facilitate
passive wave absorption, similar to the approach used in the
work of Altomare et al. [4]. 23 wave gauges are installed
along the length of the wave tank as depicted in Fig. 6. The
simulation parameters used in these simulations are provided
in Table 3.

A total of 22,467 particles constitutes the simulation
domain when the fluid particle resolution Ax was 4 x 107
m. This is the particle resolution that has been used for all
our subsequent results and observations.

The surface elevation readings at the different wave gauge
locations for the different numerical experiments have been
obtained and analyzed using the different approaches out-
lined in §2. The observations from these analysis efforts are
aimed at examining the effect of the different parameters
associated with the generation and propagation of modulated
plane waves, with a particular emphasis on the influence of
the perturbation sidebands (b, a), modulational frequency.

Q,, and the effect of water depth d used in our simulations.

WWG20 WG21 WG22 WG23

*=1.5 20.0

12.0

Fig. 6 Numerical setup for parametric study of the plane perturbed waves. All dimensions are provided in meters. 23 wave gauges have been

used for these simulations
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A total of 40 numerical experiments have been imple-
mented using the different wave parameters outlined in
Table 4. The effect of a particular parameter is investigated
through its variation over its range while keeping the other
parameters constant. The effect of water depth d on the
wave propagation has been investigated by carrying out a
different series of simulations where a water depth d = 0.8m
is used with all other dimensions resembling the numeri-
cal setup illustrated in Fig. 6. The same set of parameters
given in Table 4 has been implemented in these simulations
for comparison purposes. The parameters kept fixed dur-
ing these different sets of comparisons for the variation of
the single parameter in discussion is displayed in boldface
in Table 4. The results from the subsequent analyses using
simulation observations for the different parameters are pre-
sented below.

3.2.1 Sideband fraction (by)

The sideband fraction parameter b, as outlined in Eq. 15
determines the amplitudes of the carrier modes and the fre-
quency sidebands. As can be clearly seen from Eq. 15, larger
the value of by, smaller is the amplitude of the carrier mode
and larger is the amplitude value of the frequency sidebands
for a fixed value of the sideband imbalance parameter a. For
the simulations, the values of b are varied between 0.01 and
0.2 while the other fixed parameters are those that have been
depicted in red in Table 4. The time series of the simula-
tion observations are then used for carrying out eigenvalue
analysis as discussed in §2. The eigenvalue spectra for four
different values of b at x = 4.8m is presented in Fig. 7. The

Table 3 The simulation parameters in the WCSPH numerical setting
used for the parametric studies on the perturbed plane waves. Other
simulation parameters are the same as given in Table 1

Ax Fluid particle resolution € (2% 107 2m,4 x 10"2m}

Courant number € {0.00075,0.0015}
1) 6— SPH coefficient 0

imaginary part of the eigenvalues, &; give a measure of the
wave surface elevation [36]. As apparent from the plots, the
wave surface elevation #(f) increases with increasing values
of by, which is illustrated more clearly using the panned
plots in the right panel of Fig. 7.

As apparent from Eq. 14, the energy at the wavemaker
gets distributed between the carrier modes and the frequency
sidebands according to the value of b. Larger the values of
by, larger are the relative amplitudes of the sidebands in rela-
tion to the carrier mode, with the total amplitude remaining
the same. When o = 0, as is the case in these simulations for
the variation of b, the sideband amplitudes are only depend-
ent on by, which ultimately decides the wave propagation
behavior over the NWT. The observations in Fig. 7 suggest
that larger the amplitudes of the sidebands in relation to the
carrier mode at the wavemaker, larger is the overall wave
amplitude at increasing distances from the wavemaker. Thus,
it can be ascertained that higher energy in the frequency
sidebands at the wavemaker result in higher wave amplitudes
than a single carrier wave. The energy distribution in the
different frequency modes can also be visualized through
frequency spectrum plots as illustrated in Fig. 8a. The mean
wave amplitudes, obtained as discussed in §3.2, are plotted
at the different wave gauge locations for all the values of by
and depicted in Fig. 8b. From Fig. 8a, it can be observed that
when by = 0.01, the carrier mode has the maximum amount
of energy being transmitted at the wavemaker which gets
propagated through the NWT. As the value of b increases,
the relative influence of the sidebands grows compared to
the carrier mode, particularly that for the lower frequency
sideband. The lower sideband can be observed to propagate
throughout the length of the NWT, which is not observed
for the carrier mode in any of the above simulations. The
increased energy in the sidebands lead to larger wave ampli-
tudes as can be observed clearly from the plots in Fig. 8b.
Till around x = 9m in the NWT, the time averaged wave
amplitudes are seen to increase with increasing values of by
till b = 0.15. Subsequent increase in the values of b does
not lead to significant growth in amplitudes, which is also
noted from the frequency spectra plots for b, = 0.15 and

Table 4 The wave parameters

. N . Perturbation parameters Notations Values Discussion

for the different simulations section

used in the parametric studies of

the plane perturbed waves Sideband fraction by € {0.01,0.05,0.1,0.15, 0.2} §3.2.1
Sideband imbalance a € {-0.2,-0.1,0,0.08,0.16} §3.2.2
Relative phase (0} c {O, % - %n Zn-} §3.2.3
Carrier frequency o € {0.4Hz,0.8Hz,1.2Hz, 1.6Hz,2.0Hz} §3.2.4
Initial steepness aoko € {0.05,0.12,0.18,0.24,0.3} §3.2.5
Modulational frequency Qy € [0.001,2.0,10.0] §3.2.6
Water depth d € {0.8,1.2} §3.2.7
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Fig.7 The eigenvalue spectra for 4 different values of b used in the numerical simulations. The left panel depicts the spectra within a range of
&g from -10 to 10. The right panel shows a zoomed version of the plots in the left panel for &, ranging from 0.01 to 0.015 for better visualization
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br = 0.201in Fig. 8a. It can thus be ascertained that increased
energy in perturbation sidebands leads to elevated wave
amplitudes for a modulated plane propagating wave, with the
lower sideband in particular, having a prominent effect on
the wave propagation nature. The marked disparity between
the sidebands observed during the wave propagation in the
above simulations were investigated through the variations
of the sideband imbalance «, which is discussed next.

3.2.2 Sideband imbalance (@)

The sideband imbalance, as expressed in Eq. 15 determines
the relative influence of the two frequency sidebands on the
resultant wave amplitude. As can be seen from Eq. 15, for a
fixed carrier mode amplitude, larger the sideband imbalance
a, larger is the amplitude of the higher frequency sideband
and conversely, the energy transferred to the lower frequency
sideband at the wavemaker decreases. To observe the rela-
tive effect of the two perturbation sidebands, simulations are
carried out by varying the values of a between —0.2 and
0.16 while keeping the other parameters fixed as depicted
in Table 4. Similar to the study of b, eigenvalue analysis
was also carried out at x = 4.8m for the different values of
a. The eigenvalue spectra for these simulations are depicted
in Fig. 9. As the imaginary part of the eigenvalues, &; give
a measure of the wave surface elevations obtained from the
observation time series, it can be ascertained from the plots
in Fig. 9 that increase in sideband imbalance results in a
decrease of wave amplitudes at non-zero distances from the
wavemaker. For a = 0, the two perturbation sidebands are

a=0 a=0.08
0.02 0.02 -
0.01 - 0.01
'y 0 aatas 0
-0.01 -0.01
0.02 -0.02
-10 0 10 -10 0 10
&r 3
a=-0.1 a=-0.2
0.02 0.02
0.01 0.01
i 0 sains 0 et
-0.01 -0.01
-0.02 -0.02
-10 0 10 -10 0 10
&r ér

&1

&1

equal in magnitude at the wavemaker. As a becomes positive,
more energy is provided to the higher frequency sideband
at the wavemaker. As depicted in the plots for @ = 0.08 in
Fig. 9, there is a marked decrease in &; and consequently, the
wave surface elevation at x = 4.8m compared to a = 0. On
the other hand, when a becomes negative, a larger portion of
the energy at the wavemaker is given to the lower frequency
perturbation relative to the higher sideband. From the plots for
a = —0.1and a = —0.2 in Fig. 9, it can be observed that the &,
values are higher than that for a = 0.08, signifying that larger
waves are observed as a tends to more negative values. These
observations suggest that there is significantly lower energy
decay when fed to the lower frequency sideband compared
to the higher frequency perturbation in the propagation of
such plane perturbed waves in our NWT. Consequently, the
observed wave surface elevations are higher when the values
of @ become more negative. Furthermore, as can be observed
from the plots in Fig. 9b, there is a marked increase in wave
surface elevation from @ = —0.1 to & = —0.2 compared to
the elevation when the values are decreased from a = 0 to
a = —0.1. This signifies that at lower absolute values of a, the
wave propagation is dominated by the effect of the sideband
fraction br. However, as the value of @ gets more negative,
the asymmetry in the sidebands has a more pronounced effect
on the wave propagation scenario compared to the sideband
fraction by.

To further look at the asymmetric nature of the per-
turbation sidebands during the plane wave propagation,
the energy distribution in the different frequency modes
along the NWT is illustrated with the help of frequency
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Fig.9 The eigenvalue spectra for 4 different values of a used in the numerical simulations. The left panel depicts the spectra within a range of
&g from -10 to 10. The right panel shows a zoomed version of the plots in the left panel for &; ranging from 0.01 to 0.015 for better visualization
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Fig. 10 a Frequency spectrum values for 4 different values of a. The plots give the energy distribution over the length of the wave tank for the
different frequency values. b The time averaged wave amplitudes for the different values of a at the different gauge locations along the wave tank

spectrum plots in Fig. 10a. The mean amplitude variation
along the wave tank is also depicted in Fig. 10b. The fre-
quency spectrum plots in Fig. 10a consolidate the observa-
tions in Fig. 9. It can be observed that as the values of «
get more negative, a larger amount of energy is transferred
to the lower frequency sideband that propagates over
the length of the NWT. The energy decay is much more
prominent for the higher frequency sideband that results
in lower energy values further down the NWT when «
is positive. The mean surface amplitudes at the different
wave gauge locations are displayed in Fig. 10b. The plots
reiterate our observations that wave amplitudes decrease
with increasing a, showing the influence of the lower fre-
quency sideband in the wave evolution for such perturbed
plane wave scenarios. The energy patterns in the different
frequencies during the wave evolution is further elucidated
through the wavelet energy spectrum method, which was
discussed during our validation efforts. The WES plots
in Fig. 11 depict the energy spectra at 4 different gauge
locations for @ = 0.16 and @ = —0.2. The comparison of
the plots at x = 0.35m reveal that the energy distribution
close to the wavemaker are similar for both the values of
a, signifying that the energy input from the wavemaker do
not determine the asymmetric behavior of the sidebands.
However, with wave propagation along the wave tank, dis-
parities in energy distribution show up. The dominance
of the higher sideband is clearly visible for a« = 0.16 at
x = 4.85m. However, this begins to break up farther away
from the wavemaker, and the energy and consequently, the
wave amplitude starts diminishing. On the contrary, for

a = —0.2, the energy of the lower sideband becomes sig-
nificant at x = 4.85m. With increasing distance, the lower
sideband continues to remain dominant, as a consequence
of which the wave amplitudes are higher over the wave
tank than for « = 0.16.

3.2.3 Relative phase (®)

This parameter, given in Eq. 14 determines the relative phase
between the carrier mode and the frequency sidebands. The
fixed wave parameters used for these simulations are given
in Table 4. The values of @ are varied between 0 and 2. As
done before, frequency spectrum plots and mean amplitude
plots are created for different values of ®@. These are illus-
trated in Figure.

12. The plots in Fig. 12a reveal that there are negligible
differences between the different values of ® when energy
distribution is considered for the different frequency bands.
In all the cases, there is visible energy localization in the
lower frequency sideband. However, with the increase of
@, the rate of energy decay over the NWT in the lower side-
band shows a decreasing trend. The mean amplitude plots
given in Fig. 12b help consolidate the observations of the
frequency spectrum plots depicted in Fig. 12a, showing
that the results obtained by using the various values of ®
at different gauge locations are similar. This shows that the
relative phase between the carrier and sidebands does not
significantly influence wave propagation in our simulation
scenarios. However, the influence of the lower frequency
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Fig. 11 WES plots for two different values of o at 4 different locations along the numerical wave tank. The left panel (a—d) displays the results

for #=0.16 and the right panel (e-h) depicts the results for a=-0.2

perturbation is still apparent from these observations, point-
ing to the asymmetric nature of the perturbation sidebands.

3.2.4 Carrier mode frequency (f;)

The influence of the carrier mode frequency depicted in Eq. 14
on the wave evolution has been also investigated through a dif-
ferent set of simulations. For all these simulations, the resultant
wavenumbers are found out using the frequency dispersion
relation as follows.
w® = gk tanh(kh) (28)

where, w is the carrier wave frequency, g is the accelera-
tion due to gravity, k is the associated wavenumber and £

@ Springer

is the water depth in the NWT. The fixed wave parameters
used in these simulations for studying the variation of f are
given in Table 4. The parameter f, used for the comparisons
was varied between 0.4Hz and 2.0Hz. The time series of the
amplitudes at the different gauge locations are illustrated for
different values of f; through Fig. 13a.

The spatial evolution plots in Fig. 13a show that the
wave amplitudes across the wave tank increase with
decrease in the carrier mode frequency. However, the
high energy involved in the lower frequency cases can be
attributed to the carrier mode only as low frequency results
in high initial amplitude according to the dispersion rela-
tion provided the initial wave steepness is kept constant.
The influence of the different modes in the energy distri-
bution along the wave tank is elucidated through WES
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fo =0.8Hz ) f() =1:.2Hz

I 0.055

[(5)
f() =2.0HZ

(w) apnpdury

(2)

Fig. 13 a Spatial and temporal evolution of the wave amplitudes
across the numerical wave tank for 4 different values of f,. b WES
plots for two different values of f, at 3 different locations along the

plots for f, = 0.8Hz and f, = 1.2Hz in Fig. 13b. As can
be seen clearly from the plots, for f, = 0.8Hz, at all the
different gauge locations, the energy is primarily con-
centrated around the main frequency of 0.8 Hz. However,
for f, = 1.2Hz, transfer of energy can be observed from
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numerical wave tank. The left panel (a—c) displays the results for
Jfo=0.8 Hz and the right panel (d—f) depicts the results for fy=1.2Hz

the carrier mode to the sidebands as the distance from
the wavemaker increases. Thus, it can be ascertained that
for lower carrier mode frequencies, sideband perturba-
tion does not significantly influence the evolution of a
unidirectional plane wave. On the other hand, sideband
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modulation, especially the lower energy sideband has a
significant effect on the propagation of plane unidirec-
tional waves with higher carrier frequencies.

3.2.5 Initial steepness (ayk,)

The initial steepness in Eq. 14 determines the initial wave
amplitude if the wave carrier frequency is constant. Simu-
lations are implemented to study the influence of this
parameter on the resultant amplitudes of plane perturbed
waves. The parameter dyk, was varied between 0.12 and
0.30 while the other fixed parameters are given in Table 4.
Similar to our previous efforts, the obtained surface
elevation readings at the different gauge locations were
used for calculating the wave amplitudes. The obtained
wave amplitudes at the different wave gauge locations are
provided in Fig. 14a. The energy distribution among the
different frequency modes over the NWT are depicted in
Fig. 14b.

As apparent from the plots in Fig. 14a, larger the
initial steepness, larger are the wave amplitudes over
the NWT in general. Additionally, from the frequency
spectrum plots in Fig. 14b, it can be observed that the
perturbation sidebands move apart as the initial wave
steepness increases. For lower values of dyk,, a larger
amount of energy localization can be seen in the higher
frequency sideband. As initial steepness increases, the
energy localization in the lower frequency perturbation
increases, which results in larger wave amplitudes over
the NWT. The influence and the asymmetric nature of the
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modulation sidebands is thus, further illustrated through
these observations.

3.2.6 Modulational frequency (2;,)

The modulational frequency (£2,,) in Eq. 14 determines the
frequency of the perturbations being added to the unidirec-
tionally propagating regular wave in the NWT. Larger the
value of Q,,, more disparate are the sidebands from the car-
rier frequency. Similar to our previously discussed studies, a
carrier frequency of 1.2Hz was used for the generation of the
plane waves. Perturbations with values ranging from 0.001 to
10.0 have been used for this study. The other associated fixed
wave parameters are given in Table 4. The spatial and tem-
poral evolution of the wave amplitudes for the different val-
ues of Q,, is illustrated in Fig. 15. The process of modulation
can be observed through the onset of the blue patterns in the
different plots. For smaller values of Q,,, the perturbations
die down at very small distances from the wavemaker at
x = 0 and cannot result in elevated wave amplitudes, as can
be seen clearly from the plots of Q;, = 0.001, €2,, = 0.04 and
Q,, = 0.075. For larger values, the perturbations Q,, = 5.0
and Q,, = 10.0 give very similar results as apparent from
their respective plots.

To gain further understanding on the phenomenon of
this modulation, the frequency spectrum plots illustrated in
Fig. 16 are used for looking at the energy distribution within
the different frequency modes during these simulations.
Since the frequency spectrum plots in Fig. 16 are drawn
to the same scale, the energy distribution for €,, = 0.001
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Fig. 14 a Frequency spectrum values for 4 different values of dyk,,. b The time averaged wave amplitudes for the different values of gk, at the

different gauge locations along the wave tank

@ Springer



Engineering with Computers (2024) 40:1831-1856

1847
Q= 0.001 Q= 0.04 Q= 0.1018 Qi =04
18 18
0.045
14 14
T T
6 6
2 2
0 20 40 60 0 20 40 0 20 40 60 =
t(s) (s) #(s) t(s) t(s) 2
g
()
Qy = 10.0 g
0
20 40 60 20 40 60 20 40 60
£(s) t(s) i(s)
Fig. 15 Spatial and temporal evolution of the wave amplitudes across the numerical wave tank for 10 different values of Q,,
Q4 = 0.001 Q= 0.04 Q= 0.075 Q= 0.1018 Qy =04
18 18 18 18 18
16 16 16 16 16 0.02
14 14 14 14 | 14
12 12 12 12 12
= 0 =0 =10 )
5 g g g g g 8 g 8 g
6 6 6 6 6
4 4 4 4 4 m
2 2 2 2 2
I 1 | -
0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 g
Frequency(Hz) Frequency(Hz) Frequency(Hz) Frequency(Hz) Frequency(Hz) <
Qy =0.8 Qy =1.0 Qy =25 Q= 5.0 Qy = 10.0 g
18 18 18 18 18
16 16 16 16 16
14 14 14 14 | 14
12 12 12 12 12
T £ 10 T 10 T10 = 10
5 ol = = = | =
¥ g % g B g 58 T8
6 6 6 6 6
4 4 4 .
2 2 2 2 2
| I I I
0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
Frequency(Hz) Frequency(Hz) Frequency(Hz) Frequency(Ilz) Frequency(Hz)

Fig. 16 Frequency spectrum plots of the perturbed plane waves for the different values of €2,
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only shows a faint line for the energy in the carrier mode.
As Q, increases, the energy in the carrier band is seen to
increase, but the sidebands are very close to the main fre-
quency mode to be recognized differently. The growth of the
sidebands can be seen prominently for Q,;, = 0.4 where the
lower sideband displays more growth than the higher side-
band. As Q,, increases, the sidebands start to get apart from
one another and more energy localization is observed in the
lower sideband. Particularly, for Q,;, = 5.0 and Q,, = 10.0, it
can be clearly observed that there is a lot of energy localiza-
tion in the lower frequency sideband, leading to growth of
wave amplitudes. The energy growth patterns resemble that
of the spatial evolution plots in Fig. 15, which shows that
there is very little wave growth above a certain value of the
modulational frequency €2,,.

The mean wave amplitudes at the different locations
along the wave tank are depicted in Fig. 17a to consolidate
the observations in Fig. 15. In addition, the WES plots of
Q,, = 1.0and Q,, = 2.5 are compared at 3 different locations
to better visualize the results illustrated through Fig. 18.

The plots of the mean amplitudes at the different gauge
locations in Fig. 17a suggest that the mean amplitudes
grow with increasing Q,, till Q,, = 5.0. However, further
increase of Q,, to 10.0 does not result in increased wave
amplitudes and the maximum of wave amplitude oscillates
between Q,, = 5.0 and €, = 10.0 at the different wave
gauge locations.

These results point to the fact that wave amplitudes do
not get modified significantly by modulations when the
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Fig. 17 a The time averaged wave amplitudes for the different values
of Q,, at the different gauge locations along the wave tank. b WES
plots for two different values of Q,, at 3 different locations along the
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modulational frequency parameter goes beyond a certain
threshold value. In this case, the ratio of the modulational
frequency Q,, and the carrier frequency parameter f is
around 4.167. The energy spectrum plots in Fig. 17b reveal
the evolution of energy distribution between the carrier and
the sidebands for two values of Q,,. The plots for Q,, = 1.0
at the different locations suggest that there is very little
energy transfer from the carrier mode to the sidebands. On
the contrary, for Q,, = 2.5, the transfer of energy from the
carrier frequency of 1.2Hz to the lower sideband 0.95Hz
can be observed to start occurring at x = 4.85m and starts
getting more prominent with increasing distance from the
wavemaker, and this finally results in the increased wave
amplitudes compared to the case of ©,, = 1.0.

3.2.7 Effect of water depth (d)

The impact of water depth d on the effect of the differ-
ent parameters during the propagation of plane, perturbed
waves has been also investigated through a different set of
simulations. As mentioned in §2, the same set of numerical
simulations have been also implemented in the NWT for a
water depth of d = 0.8m. The results for the different sets of
parameters are discussed below.

The plots in Fig. 18a compare the eigenvalue spec-
tra for the two water depths using the surface elevation
time series #5(t) for by = 0.1 and by = 0.2 at a location
of x =4.8m down the numerical wave tank. It can be
observed that for both the values of the parameter, the
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numerical wave tank. The left panel (a—c) displays the results for
Q,, = 1.0 and the right panel (d—f) depicts the results for Q,, = 2.5
Frequency spectrum values for 4 different values of €,



Engineering with Computers (2024) 40:1831-1856

1849
_— bp =0.1,d=12m bp =0.1,d = 0.8m
’ br =0.1,2 = 0.35m
; ; ; - ‘ :
0.01 0.01 = 0.05F I ‘ b oA ephha R Rap A hAA A
= 0 U v Wy t v i ‘ V! I\ d 0 !
G0 3 0 a'ae -0.05 £ Ls | w I
| 0 10 20 30 40 50 60
-0.01 -0.01 t(s)
i by = 0.1, 5=4.85m
UL 1
-0.02 -0.02 = TRIW i ‘
-10 0 10 -10 0 10 = 0 ," A \ A i LA 1 i i 3
ér ér = AR AL T | ‘
b= 02.d =12m bp =0.2,d = 0.8m -0.02 . 4 . .
0.02 0.02 10 20 30 40 50 60
t(s)
0.01 0.01 bp = 0.1,z = 8.85m
G0 oot 0 B
L -0.02 g ] . g
-0.01 .01 10 20 30 40 50 60
d=1.2m t(s)
-0.02 - -0.02 - d=0.8m
-10 0 10 -10 0 10
§r §r
(@) (b)

Fig. 18 a Eigenvalue spectrum for two values of b for d=1.2 m and d=0.8 m (b) The surface elevation comparisons between d=1.2 m and

d=0.8 m for b,=0.1 at 3 different locations

wave elevation is much higher for d = 1.2m compared to
d = 0.8m. To visualize the wave evolution differently, the
surface elevation plots for b, = 0.1 at 3 different loca-
tions is presented in Fig. 18b for the two water depths.
It can be seen that at x = 0.35m, the elevation pattern for
the two water depths resembles each other closely. How-
ever, as the distance increases, the crests and troughs for
d = 0.8m begin to get shorter in comparison to d = 1.2m
x = 8.85m. This is more pronounced for the plots at ,
where the troughs in between peaks are observed to die
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down. These observations suggest that perturbations to
a regular, unidirectional wave have a reduced effect for
decreasing water depths.

Similar to Fig. 18b, comparisons between the two water
depths for ©,, = 1.6 at different locations are illustrated
in Fig. 19a. The observations resemble the results from
Fig. 18b. As the distance from the wavemaker increases,
the crests and troughs become shorter for d = 0.8m when
compared to d = 1.2m, with more disparities being
observed between the two sets. This again points to the
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Fig. 19 a Surface elevation comparisons between d=1.2 m and d =0.8 m for ,,=1.6 at 3 different locations (b) Surface elevation comparisons

betweend=1.2 m and d=0.8m at x=7m for a=0, a=0.08 and a=-0.2
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reduced modulational effects on unidirectional regular
waves with decreasing water depth d. The variation of the
sideband imbalance («) parameter in Fig. 19b for a fixed
wave gauge location reveals the impact of a during plane,
perturbed waves propagation. As observed in Fig. 19a, the
plots show that the wave elevation is smaller for d = 0.8m
for all the values. However, it can also be seen that posi-
tive values of « lead to greater variation in the elevations
for the two depths compared to a negative value of a. For
a = —0.2, the gulf between the two sets of values is much
lower than that for @ = 0.08 and « = 0. These observa-
tions demonstrate that the effect of perturbation, though
diminished, still applies for lower water depths in these
simulations.

To gain further insight into the perturbation process for
varying depths, the observations for the simulations imple-
menting different initial steepness d,k, and carrier frequen-
cies f;, are illustrated in Figs. 20a, b respectively. The plots
in Fig. 20a show that as the initial wave steepness dyk,
increases, the peaks, and troughs for the two water depths d
start approaching each other. On the contrary, in Fig. 20b,
as the carrier frequency f; increases, the obtained surface
elevation readings for the d = 0.8m diminish at a much faster
rate when compared to d = 1.2m. These observations can be
attributed to the following. Firstly, as the initial wave steep-
ness dyk, increases, the initial wave amplitude also increases
which results in shallower sea scenarios. For the two differ-
ent water depths d, thus, higher initial steepness dk, results
in similar wave propagation scenarios, thus rendering similar
results. On the other hand, higher carrier wave frequency f;,
according to the frequency dispersion relationship, results in
lower initial wavelengths. This results in deeper sea environ-
ments, and the surface elevation readings for lower depths
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are much lower than that for higher water depths. These
observations help us inferring that modulations can signifi-
cantly affect the evolution of regular unidirectional waves in
deep sea waters, while moving to shallower seas reduces the
effect of such perturbations.

4 Conclusions

Numerical wave tanks have been constructed to study the
effect of modulations in the propagation of regular waves
in unidirectional seas through WCSPH simulations. Quan-
titative investigations have been carried out for the differ-
ent parameters involved in these simulations to study their
effect on the modulation mechanism. Further, the effect of
water depth d has been also investigated in modification of
the wave amplitude in such wave propagation scenarios.
The results from this study can be utilized for the design of
wave tank experiments and numerical simulations in future
to study the phenomenon of modulational instability in oce-
anic environments. Such efforts can hopefully provide fur-
ther meaningful insight into the mechanisms behind extreme
energy localizations and rogue waves in oceans.

Numerical simulations of double focusing irregular waves
have been used to validate the numerical model chosen for
the study in addition to study of a Peregrine type breather
evolution in our numerical wave tank. For the focusing of
the double wave groups, considerable agreement is obtained
between the numerical results and the experimental readings
at small distances from the wavemaker, which has been illus-
trated through surface elevation and wavelet energy spec-
trum plots. A good qualitative agreement with respect to the
focusing phenomenon is also found at locations further down
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Fig.20 a Surface elevation comparisons between d=1.2 m and d=0.8 m at x=7 m for Gyk,=0.12, dyk,=0.18 and dyk,=0.24 (b) Surface
elevation comparisons between d=1.2 m and d=0.8 m at x=6.85 m for f,=0.8 Hz, f,=1.2 Hz and f,=1.6Hz
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the numerical wave tank; however, the readings fall short
of the experimental findings due to the inherent numerical
dissipation of the chosen scheme. However, it must be kept
in mind that any length of a numerical tank can be easily
simulated through appropriate scaling, thus, allowing us for
to make an informed judgement about required accuracy and
allowed computational expense.

For the studies on the perturbed plane waves carried out
using this setup, eigenvalue, frequency, and wavelet energy
spectra are computed using the measured surface elevations
to capture the effects of the different involved parameters. The
sideband fraction (by) and the sideband imbalance («), which
determine the magnitude and the asymmetry of the sidebands
respectively are found to have a significant effect on the wave
evolution. Larger values of b result in larger wave amplitudes
signifying the influence of the sidebands in such wave evolu-
tion scenarios. For a, more negative values result in larger
wave amplitudes. This observation, combined with the find-
ings from b studies ascertain that the lower sideband in such
scenarios play a more dominant role than the upper sideband
in facilitating higher wave amplitudes over the NWT. The
relative phase (@) between the carrier band and the sidebands
does not influence the wave evolution significantly according
to this study. According to the investigations on the initial
steepness (dyk,), the wave amplitude increases with increas-
ing values of @k, and the increase can be attributed to the
growth of the smaller sideband. For carrier band frequencies
(fy), smaller values result in larger wave amplitudes by virtue
of the frequency dispersion relationship, however, the evolu-
tion cannot be attributed to the perturbation growth. The stud-
ies on modulational frequency (€2,,) revealed that increasing
this parameter led to higher wave amplitudes due to sideband
growth up to a certain threshold value. Increasing beyond this
value does not result in higher wave amplitudes. The ratio of
this threshold value to the carrier mode frequency is found
out to be 4.167 in this case. The investigations on the effect
of water depth d in this modulation process using the different
parameters reveal that the impact of perturbations diminish
with decreasing depth d, demonstrating that this modulational
process is predominantly effective in deep sea waters.

As discussed above, the sideband fraction (by), side-
band imbalance («) and modulational frequency (€2,,) has a
considerable influence on the behavior of plane modulated
waves in a numerical wave tank. Qualitatively, it was found
out that increase of b results in increased energy localiza-
tion, however the rate of increase slows down progressively.
For a, the energy localization is dependent on both the sign
and the magnitude of the parameter. The energy localization
increases with increasing negative values of this parameter,
as pointed above, implying the influence of the lower fre-
quency sideband. However, to get a quantitative outlook into
the nature of these parametric responses, a large number
of experiments will need to be carried out in future. The

parameter €2,, also shows an increasing energy localization
trend in the lower perturbation sideband with increasing
values, however, only minor increase can be observed after
a certain limit. This shows a non-linear response in regard
to the ratio between the modulation frequency parameter
€Q,, and the carrier frequency f if energy localization is
considered. This non-linear response characteristic will be
quantified through numerical experiments in future.

These simulations, as mentioned previously, can easily be
used for much larger scale scenarios through suitable scal-
ing of the inter-particle distances and smoothing lengths.
The results from these simulations can be used to design
numerical wave tank experiments to study different kinds of
rapid wave formations in oceanic environments. The obser-
vations from this study can serve as a foundation for pur-
suing further numerical investigations into the mechanism
of modulational instability leading to rogue wave events in
oceans. These numerical simulations can also pave the way
for looking at other mechanisms of extreme oceanic wave
formations listed in §1. The authors intend to extend the
2-D simulations into 3 dimensions in future endeavors using
improved GPU parallelization techniques for a more realistic
outlook into such energy localization scenarios. It is hoped
that the results acquired from such studies, blended with
improved deep learning techniques can significantly aid in
the prediction of such extreme oceanic events in future. Fur-
thermore, as has been observed during our validation studies
and investigations using the plane perturbed waves, numeri-
cal dissipative effects can hinder the full evolution of small
amplitude waves at large distances from the wavemaker in
WCSPH models. The authors intend to investigate the effect
of numerical dissipation in such scenarios in greater detail
in future efforts.

Appendix

Evolution of Peregrine-type breather in NWT using WCSPH

The Non-linear Schrédinger equation is the simplest theo-
retical model to explain the evolution of a unidirectional and
narrow-banded modulated wave group in deep water, which
can result in the formation of steep ocean waves through
modulational instability. This equation admits a number of
breather type soliton solutions. The Peregrine breather is
one such soliton which is localized in both space and time,
and the soliton breathes only once during its motion. The
modulation evolution of the Peregrine breather solution has
been investigated through wave tank simulations here.

Using the notations described in Shemer and Alperovich
[34], the water surface elevation {(x, 7) for a wave group with
carrier frequency @, and wavenumber k; satisfying the fre-
quency dispersion relationship is given by:
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Fig.21 Numerical setup for Peregrine-type wave experiments. All dimensions are provided in meters. 13 wave gauges have been used for these
simulations and located as shown in the figure. These are depicted using WGs
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Fig.23 The evolution of a modulated wave group in a wave tank
studied through surface elevation readings at different locations. The
left plot shows the results from experiments carried out by Shemer

€ 1) = Rear,p el | 29)

where a(x, ) is the slowly varying complex wave group
envelope. The characteristic wave amplitude a,, the wave
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et al. [34] The right plot shows the results from the WCSPH simula-
tions in the present study

steepness £ = apk, and the wave group velocity ¢, are used
to give the spatial NLS equation as

2
A, 2A

an *ag TS0

(30)
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where & = ea)o<ci - t);n = e2ky;A(E, ) = a/ag
8
The Peregrine soliton written in terms of these dimen-
sionless variables is given by

A&, ) = —\/5[1 -

4(1 — din)

—2in
1+4£2 + 16;12] @D

The experiments detailed out in Shemer and Alperovich
[34] were carried out in a wave tank 18 m long, 1.2 m
wide and 0.9 m deep with a programmable flap type wave-
maker for wave generation. The simulations in the present
study are carried out in a 2D numerical wave tank which
is 18.5 m long and 0.9 m deep, with a slope at the end
starting from 14 m for passive wave absorption to reduce
wave reflection. A flap type wavemaker at x = Om is used
for the wave generation. Surface elevation measurements
were obtained at 13 different locations along the wave tank,
as depicted in the simulation setup is provided in Fig. 21.

Simulations have been carried out using a water depth
of d = 0.6 m with the parameters: period T,, = 0.587s, cor-
responding to k, = 0.587s, 4, = 0.538m, € = 0.0825 and

¢y = 0.01m. The flap wavemaker motion is calculated using
the Eqgs. 29, 30 and 31 with a proportionality factor to
achieve the wavemaker motion as

X(t) = aA(x, 1) (32)

where «a is the proportionality factor utilized to achieve a cer-
tain surface elevation during the wave tank simulations. The
A(x, t) in Eq. 32 [34] is computed to achieve the maximum
of the Peregrine soliton at X; = 9m. The total duration of the
wave group itself has been taken to be 1157, with tapering
windows of 107, over the two end periods. The wavemaker
motion for @ = 1is given in Fig. 22.

The surface elevation readings at 4 different locations
given in Shemer and Alperovich [34] are used to look at
the evolution of the modulation along the wave tank. Con-
sidering the numerical dissipation present in WCSPH mod-
els, a proportionality factor of @ = 1.5 was used during the
wave generation to obtain a background wave amplitude at
X, = 9m, similar to that observed in the experimental results
detailed in Shemer and Alperovich [34]. The simulation
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modulated wave group in the PR
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a flap type wavemaker with ~r
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observations along with the experimental results given in
[34] are depicted in Fig 23.

From the surface elevation plots in Fig. 23, it can be
observed that there are significant differences between the
experimental results in Shemer and Alperovich [34] and the
observations using the WCSPH simulations. This can be
attributed to the numerical dissipation present in WCSPH.
This results in gradual decrease of the background wave
amplitude with increasing distance from the wavemaker at
x = Om. The evolution of the modulation can be observed

clearly in the experimental results from the left plot with the
maximum modulation amplitude observed at x = 11.6m. To
get a better picture of the modulation evolution in our simu-
lations, the surface elevation observations at more locations
along the wave tank are depicted in Fig. 24. The surface
elevation observations for the WCSPH simulations at six
different locations along the numerical tank are shown in
Fig. 24. It can be seen from these plots that the background
wave amplitude gradually starts to decrease with increasing
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Fig. 25 The evolution of the modulated wave group in the numerical wave tank using a flap type wavemaker with @ =3.0. Surface elevation read-
ings at six different locations are depicted with respect to the wave group velocity. The center of the modulated wave group is at (t —x/ c'g)TO =0

@ Springer



Engineering with Computers (2024) 40:1831-1856

1855

distance from the wavemaker due to numerical dissipative
effects.

However, the growth of the modulation can be observed
clearly by looking at the ratio of the peak modulation ampli-
tude to the average background wave amplitude. For the sake
of subsequent break-down of the observations, this will be
referred to as the amplitude ratio y in further discussions.
At x = 1.85m, the ratio y is observed to be 1.31. The growth
of the modulation down the numerical wave tank can be
observed from the plots at x = 2.25m and x = 5.65m. The
amplitude ratio y is found to increase to 1.49 at x = 2.25m and
1.92 at x = 5.65m, where it is found to reach the maximum
during the simulation duration. The modulation amplitude
starts diminishing after this position, with the amplitude ratio
between the modulation and the background going down to
1.8 and 1.5 at x = 7.65m and x = 11.6m respectively. These
observations depict the evolution of a modulated wave group
for a Peregrine-type breather solution for NLSE in our devel-
oped NWT. However, due to the numerical dissipation in
the WCSPH model, the amplitude, and the location of the
maximum evolution amplitude in the simulation results differ
from theoretical and experimental results given in Shemer and
Alperovich [34].

A second set of simulations was performed using a larger
proportionality factor of a = 3.0 using the same set of
parameters. Wave breaking is not observed during the course
of this simulation. The surface elevation readings at six sep-
arate locations for these simulations are given in Fig. 25.
Similar to the case of @ = 1.5, it is observed from the plots
in Fig. 25 that the background wave amplitude decreases
with increasing distance from the wavemaker. However,
the ratio of the modulation amplitude to the background
amplitude shows a growth from x = Om to x = 6.25m. As
observed from the elevation readings in Fig. 25, the ampli-
tude ratio y shows an increase from the initial ratio of 1.3
at the wavemaker to y = 1.35 at x = 2.25m. The modula-
tion gets enhanced further down the numerical wave tank
as observed from the plots at x = 4.25m, x = 5.65m and
x = 6.25m. The amplitude ratio y evolves through 1.47 and
2.125 at x = 4.25m and x = 5.65m respectively to a maxi-
mum of y = 2.8 atx = 6.25m. Similar to the case of @ = 1.5,
the amplitude ratio is observed to reduce after this location,
with the values observed being 1.8 and 1.66 at x = 9m and
x = 9.25m respectively. The numerical experiments carried
out for the Peregrine-type breather extend our validation
efforts for the numerical WCSPH scheme utilized in our
studies of plane modulated waves. It can be ascertained
from these simulation results that the developed numerical
scheme is able to capture the modulation evolution process
that results in the formation of large Peregrine type breather
solutions to the NLSE, which is very similar to observed
extreme waves in oceans. However, there are discernible dif-
ferences when compared to previous experimental studies

on these waves. Such disagreements can be attributed to the
numerical dissipation which is necessary for the stability of
the weakly compressible scheme in our studies. This mainly
gets manifested for waves with smaller amplitudes and larger
distances from the wavemaker. Thus, for the larger propor-
tionality factor that we have used in our study, the modula-
tion growth was observed to be more prominent. The phe-
nomenon of numerical dissipation in our model and methods
to reduce its effects will be investigated in future studies to
be carried out by the authors.
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