
Vol.:(0123456789)1 3

Engineering with Computers (2024) 40:1831–1856 
https://doi.org/10.1007/s00366-023-01894-9

ORIGINAL ARTICLE

Simulations of modulated plane waves using weakly compressible 
smoothed particle hydrodynamics

Samarpan Chakraborty1 · Kayo Ide2 · Balakumar Balachandran3 

Received: 23 April 2023 / Accepted: 31 August 2023 / Published online: 27 September 2023 
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023

Abstract
Extreme waves, also known as ‘rogue waves’, have posed considerable challenges to maritime traffic over some time. Efforts 
have been directed at investigating the mechanisms governing these extreme energy localizations in oceanic environments. 
Modulational instability, also known as sideband instability, is one such mechanism that has been proposed to explain the 
occurrence of such phenomena in the framework of non-linear theory. The current work is aimed at better understanding the 
effects of sideband modulations on the propagation of unidirectional waves. To achieve this, a numerical wave tank (NWT) 
has been constructed using Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH) to investigate the different 
parameters associated with the generation and propagation of plane, modulated waves. General Process Graphics Computing 
Unit (GPGPU) computing has been utilized to accelerate the computational process and improve the computational effi-
ciency. The chosen numerical scheme has been validated by carrying out irregular waves focusing simulations to compare 
with available experimental data. Additionally, a Peregrine-type breather experiment has also been performed as part of the 
validation studies to look at energy localization within the NWT. The effects of the different parameters associated with the 
modulations to a plane propagating wave have been investigated using a blend of surface elevation data, eigenvalue, and 
frequency spectra. The effect of water depth on the perturbations to plane waves has been also investigated. The observations 
from these experiments can help shed light into the effects of modulations in the propagation of plane waves and help in the 
study of oceanic energy localization studies in future.
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1  Introduction

Extreme oceanic waves [2], more popularly known as ‘rogue 
waves’, are large-amplitude waves that appear suddenly on 
the ocean surface and tend to disappear without a trace [3]. 
Such extreme energy localizations can have a devastating 
impact on maritime traffic and offshore operations. Consid-
erable research efforts have been directed at the investiga-
tion and prediction of such occurrences. Several mechanisms 
have been proposed to explain this phenomenon in differ-
ent oceanic scenarios [17, 21]. A general review of differ-
ent physical mechanisms governing the formation of rogue 
waves was provided by Pelinovsky and Kharif [33]. Linear 
mechanisms include superposition of different monochro-
matic wave components via geometric focusing [20]. The 
effect of linear directional focusing behind such phenom-
ena was investigated by Adcock et al. [1] through numeri-
cal modeling of the widely studied Draupner Wave [6]. The 
modification of the linear focusing due to the introduction 
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of non-linearity via phase modulation has been investigated 
by Wang and Balachandran [36]. Atmospheric forcing and 
wave-current interactions [39] have also been observed to 
lead to such high waves. The phenomenon of modulational 
instability (“Modulational Instability and Rogue Waves in 
Crossing Sea States in: Journal of Physical Oceanography 
Volume 48 Issue 6 (2018),” n.d.) is another phenomenon that 
has been theoretically proposed in the framework of weakly 
non-linear theory to explain the formation of such extreme 
energy localizations.

The phenomenon of modulational instability has been 
observed in a wide variety of non-linear physical systems, 
ranging from plasma waves [19], electromagnetic beams to 
water waves [37]. In the framework of the analysis of sud-
den extreme energy localizations in oceanic environments, 
this is more commonly known as the Benjamin-Feir (BF) 
instability [18]. The effect of this phenomenon results from 
the interaction between a strong carrier wave and pertur-
bations in the form of lower and higher frequency side-
bands, resulting in instabilities due to exponential growth 
spatiotemporally.

Numerous studies have been conducted to investigate the 
mechanism of modulational instability in oceanic waves. 
Wave tank experiments were performed by Onorato et al. 
[32] and subsequent statistical and probability analyses 
were performed to explain the observations in terms of the 
modulational instability mechanism. Numerical modeling 
using full non-linear equations was used by Chalikov [13] 
for investigation of the growth of the BF instability in an 
initially homogeneous Stokes wave train. Water wave experi-
ments exhibiting non-linear modulation have been discussed 
in Bonnefoy et al. [10] through numerical tools of non-linear 
spectral analysis. Numerical wave tank experiments provide 
an excellent alternative to physical models in offshore and 
coastal engineering situations in regard to resources and 
scale efforts, thus allowing for improved opportunities to 
carry out investigations for extreme energy localizations in 
oceanic environments.

Different numerical models can be utilized for simula-
tions of wave tank studies depending on the size and com-
plexity of the simulation domain or resolution, among other 
factors. Weakly Compressible Smoothed Particle Hydrody-
namics (WCSPH) [28] is a Lagrangian method that has been 
used quite extensively in the last few decades for simulation 
of astrophysical phenomena and wave tank studies. Long-
crested wave generation studies using WCSPH were carried 
out by Altomare et al. [4] to validate against theoretical and 
experimental observations. Different numerical dissipation 
schemes and kernel functions were investigated for effective-
ness in numerical wave tank simulations by the authors in a 
prior study [12]. Energy localization studies due to current 
gradients in ocean waves were carried out by Manolidis et al. 
[23]. New rogue wave forms were studied by Chabalko et al. 

[11] and Moitra et al. [26] by utilizing the massive paral-
lelization inherent in GPU computing.

Numerical modeling of fluids can be implemented 
through two broad approaches in SPH literature. Incom-
pressible Smoothed Particle Hydrodynamics (ISPH) [22], 
as the name suggests, is based on enforcing a very low level 
of compressibility of the fluid through solution of a pres-
sure Poisson equation. Although the method is accurate, 
it involves substantial computational time and resources, 
which might not be relevant for large scale numerical 
experiments. The Weakly Compressible Smoothed Particle 
Hydrodynamics, on the other hand, is based on a weakly 
compressible fluid assumption and solved using a stiff equa-
tion of state. Diego and Colagrossi [15] showed that free 
surface motion can be intrinsically tracked using WCSPH 
in hydrodynamic simulations. This is utilized in numerical 
wave tank simulations for an efficient and accurate recording 
of free surface elevation.

The authors’ aim in the current work is to investigate the 
influence of modulation in unidirectional waves traveling in 
an NWT through simulations of perturbed plane waves using 
different sets of parameters through a WCSPH scheme. The 
study is closely based on the work carried out by Eeltink 
et al. [16] investigating the non-linear evolution of waves 
in experimental wave tanks followed by subsequent predic-
tions using deep learning frameworks. An overview of the 
basic concepts used in this study of plane perturbed waves 
is provided in Fig. 1. As the initial effort, an NWT has been 
constructed using a WCSPH numerical scheme. Using this 
setup, several simulations have been conducted by variation 
of the different parameters involved in the wave making. 
The surface elevation measurements from these experiments 
have been then utilized for carrying out different analyses. 
The observations from these efforts are aimed at examin-
ing the influence of perturbation sidebands and particularly 
their asymmetry, as well as investigating the effect of the 
modulation frequency and water depth d . The steps involved 
in this workflow will be explored later in a more detailed 
manner. With that in mind, the rest of the paper is organized 
as follows. Firstly, in the next section, the authors provide 
a brief description of the WCSPH formulation used along 
with the different analysis techniques being utilized for the 
studies on perturbed plane waves. Following this, irregular 
wave focusing experiments are simulated using available 
wave conditions for the validation of the scheme used in the 
numerical model. The evolution of a modulated wave group 
in the NWT, described using a Peregrine type breather solu-
tion has also been discussed in the Appendix as part of our 
validation studies for the numerical scheme. Subsequently, 
in the following section, parametric studies on modulated 
waves have been conducted using the workflow as discussed 
in Fig. 1. Finally, the conclusions are drawn based upon 
the observations to provide insight into the wave evolution 
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due to modulations in plane wave propagation scenarios. 
The authors are hopeful that the results from this work can 
help in energy localization studies in oceans that the authors 
intend to carry out in future.

2 � Methods

The WCSPH scheme implemented in this paper is closely 
based upon the work of Monaghan [28]. It is based on the 

Fig. 1   An overview of the basic concepts used in this study of plane 
perturbed waves in numerical wave tanks. A numerical wave tank has 
been constructed using the WCSPH scheme. Different experiments 
have been carried out on plane perturbed waves using this developed 
numerical model. The surface elevation measurements from these 

experiments have been utilized for carrying out different analyses. 
The observations from these efforts are aimed at examining the influ-
ence of perturbation sidebands and particularly their asymmetry, as 
well as investigating the effect of the modulation frequency and rela-
tion to water depth
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Navier–Stokes equation where fluid properties are described 
primarily through density and momentum equations as given 
in Eqns. 2 and 5 using a smoothing function W

(

rij, h
)

 which 
takes into account the contribution of neighboring particles 
for fluid property calculation at a particular position. The 
different function values at any particular computational 
node i is computed using the discretized SPH equation of 
the form

where qj is the function value at the jth point, W
(

rij, h
)

 is 
a smoothing function, mj and �j are the mass and density 
related to the jth particle and h is the smoothing length for 
W
(

rij, h
)

 . The particle masses in this work are assumed to be 
constant and are represented by mi . The particle densities �i 
can be computed accordingly as

Following this, the particle pressures Pi can be computed 
using a stiff equation of state proposed by Batchelor [7] as:

where � = 7 , � is the current density of the particle and �0 is 
the reference density. The constant B , termed as bulk modu-
lus gives a measure of the incompressibility of the medium 
and the relative density fluctuations during the simulations. 
It depends on the anticipated maximum velocity of the fluid 
Vf  and a chosen compressibility factor � and is given by

where cs =
Vf
√

�
 . The Navier–Stokes equation for the Lagran-

gian formulation is then used for computing the particle 
accelerations as

where ∇iW
(

rij, h
)

 represents the kernel gradient function, VTi 
represents the acceleration due to viscous forces and Fi gives 
the acceleration due to body forces. The rate of change of 
density of the particles d�i

dt
 are computed as follows:

Finally, the particles are moved forward in time by calcu-
lating their velocities vi and positions ri from their respective 

(1)qi(r) =
∑

j

qj

mj

�j
W
(

ri − rj, h
)

(2)�i =
∑

j

mj W(rij, h)

(3)P = B

((

�

�0

)�

− 1

)

(4)B =
�0cs

2

�

(5)
dvi

dt
= −

∑

j

mj

(

Pi

�i
2
+

Pj

�j
2

)

∇iW
(

rij, h
)

+ VTi + Fi

(6)
d�i
dt

=
∑

j

mjvij.∇iW
(

rij, h
)

accelerations ai using a modified version of the conventional 
leap-frog formulation.

The weakly compressible nature of the WCSPH approach 
makes it susceptible to spurious density fluctuations during 
simulations. Computation of the viscous term in the NS equa-
tion involves calculation of the Laplacian of the smoothing 
function, and this can lead to instabilities in the numerical 
scheme. Introduction of numerical dissipation thus plays a key 
role in this numerical scheme to help dissipate the unwanted 
pressure oscillations. Different dissipation schemes like the 
artificial viscosity, density reinitialization and the �-SPH 
scheme have been proposed in the SPH literature over the 
years [5, 15, 27]. The effectiveness of the different dissipation 
schemes in carrying out numerical wave tank simulations was 
investigated in a prior study carried out by the authors [12]. 
Using the results from the study, a dissipation scheme was 
chosen by implementing the parameters � and � in the viscous 
force term VTi and the density change rate d�i

dt
 respectively as 

follows.

where �ij =
hvij.rij

rij
2

 , �ij =
�i+�j

2
 is the density average of the ith 

and the jth particles. VTi
Mor is the viscosity term implemented 

by  M o r r i s  e t   a l .  [ 3 0 ]  a n d  i s  g i ve n  by 
VTi

Mor =
∑

j

mj(�i+�j)

�i�j

�

1

�
rij�

�Wij

�ri

�

 . The parameter � is used to 
prevent unphysical particle penetration and helps achieve 
numerical stability.

The � dissipation term added to the rate of change density 
equation reads as

where Da encompasses the dissipation term in the form

Here, �ji is a second-order term implemented in the form 
�ji = �j − �i in the present study.

The smoothing kernel functions used in WCSPH also play a 
prominent role in the modeling as pointed out by Dehnen and 

(7a)v
i+

1

2

= v
i−

1

2

+ aidt

(7b)vi+1 = v
i+

1

2

+ ai
dt

2

(8)ri+1 = ri + v
i+

1

2

dt

(9)VTi =

{

VTi
Mor − mj

𝛽𝜇ij
2

𝜌ij
∇i W

(

rij, h
)

, vij. rij < 0

VTi
Mor

, vij.rij > 0

(10)
d�i
dt

=
∑

j

mjvij.∇iW
(

rij, h
)

+ Da

(11)Da = 2�hc0
∑

j

mj

�j
�ji

(

rj − ri
)

.∇iWij

(

rj − ri
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Aly [14]. The efficacy of kernel functions in conjunction with 
a suitable numerical dissipation scheme in wave tank was also 
examined in the prior work carried out by the authors [12]. 
Following the observations from that study, the fifth degree 
Wendland class 2 kernel W(r, h) has been used for the numeri-
cal simulations performed in this work. The domain radius has 
been taken as 2h for this chosen kernel function, where h is 
the smoothing radius. In all the simulations performed in the 
current work, h has been taken to be 1.5Δx , where Δx is the 
fluid particle spacing. The kernel function and its derivative 
are given as:

Here, z = |r|

h
 , where r is the distance from the considered 

particle to its neighboring particles.
Dynamic boundary conditions have been implemented 

for the domain boundaries in all the numerical experiments 
carried out in this study. The same set of equations applies 
for the boundary particles too, with the only constraint being 
their motion is governed by externally applied forces. This 
reduces the computational effort associated with the numeri-
cal modelling. The numerical model thus described has been 
run using CUDA 11.7.0 (“NVIDIA CUDA Toolkit Release 
Notes,” n.d.) to utilize its massively parallel computational 
nature. In addition, the process has been accelerated by mak-
ing use of the powerful p100 GPU partition available via the 
high-performance computing (HPC) facilities of the Bluecrab 
(“Bluecrab HPC Cluster,” n.d.) cluster and the a100 GPU par-
tition available via the HPC facilities of the Zaratan cluster  
[38], allowing for substantially reduced computational times.

The plane modulated waves generated in our simulations 
involve a carrier wave perturbed with two frequency sidebands, 
where the resultant wave amplitude is expressed as follows.

(14) Here, 
√

b0 , 
√

b−1 and 
√

b+1 are the amplitudes of the 
carrier mode and the two frequency sidebands, respectively. 
The amplitudes are determined using the parameters bF and � 
using the equations

where bF is the sideband fraction and � can be termed 
as sideband imbalance. ΩM in Eq. 14 is the modulation 
frequency of the sidebands, Φ gives the relative phase 
between the sidebands and the carrier mode and � is the 

(12)W(r, h) =

{

7

4𝜋h2
(2z + 1)

(

1 −
z

2

)4

, 0 ≤ z ≤ 2

0, z > 2

(13)∇W(r, h) =

{

−
35

4𝜋h3

(

1 −
z

2

)3

z
r

|r|
, 0 ≤ z ≤ 2

0, z > 2

(14)a(0, �) =
√

b0 +
√

b+1e
i(ΩM�+Φ) +

√

b−1e
i(−ΩM�+Φ)

(15)b0 = 1 − bF, b−1 =
1 − b0 − �

2
, b+1 =

1 − b0 + �

2

dimensionless time. The piston maker displacement can be 
constructed using the surface elevation at x = 0 given by

where ã0 is the initial value of the non-dimensional ampli-
tude. The readers are encouraged to look at the original 
paper [16] for a detailed explanation of the non-dimension-
alization of the different quantities.

For the different validation and perturbed wave stud-
ies, the surface elevation readings �(t) are obtained at the 
different wave gauge locations following the NWT experi-
ments. These measurements are then analyzed using dif-
ferent approaches to look at the influence of the different 
parameters involved as depicted in Fig. 1. The frequency 
spectra over the wave tank, found out using the Fourier 
transform gives an account of the energy in the different 
frequency bands as the wave propagates through the NWT. 
This helps visualize the relative influence of the carrier and 
the frequency sidebands during the wave propagation pro-
cess. Apart from this approach, the wave amplitudes at the 
different wave gauge locations over the time of propagation 
are calculated using the Hilbert transform according to the 
given formula as follows.

where �̃(t) = H(�(t)) and H(η) = F−1[−i  sign(ω) 
F[η]] where F is a Fourier transform and � is the angular 
frequency. For the current study (�(t)) has been computed 
using the ‘hilbert’ function in MATLAB. The time average 
of these wave amplitudes is then computed at the different 
wave gauge locations to further provide information about 
the energy propagation over the wave tank for the different 
sets of parameters.

In contrast to these approaches, the wavelet energy spec-
trum method helps understand the energy variations in the 
different frequency bands at different time instants over the 
simulation duration. This helps understand the time–fre-
quency relationship inherent in the surface elevation time 
series at different locations along the NWT. The analytical 
Morlet wavelet (“Morlet wavelet—MATLAB Morlet,” n.d.) 
used as the mother wavelet for this analysis can be defined 
in the frequency domain as:

Using the inverse Fourier transform, the Morlet wavelet 
in the time domain can be expressed as:

Using this, the continuous wavelet transform can be 
defined as:

(16)�(0, t) = ã0a(0, �)e
i�0t

(17)a(t) = |

|

�(t) + i�̃(t)|
|

(18)Ψ̂(�) = 2e
−

(�−6)2

2 Û(�)

(19)Ψ(t) =

√

2

�
e
−

t2

2
+6it
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where m is the wavelet scale and � is the wavelet time for 
time–frequency analysis and �(t) is the surface elevation 
time series. Following this, the wavelet energy spectrum 
can be computed as:

Finally, as part of our analysis process, the time histories 
of the surface elevation observations have been used to carry 
out eigenvalue analysis using a Zakharov-Shabat [37] eigen-
value system which can be defined as follows.

Here B(x, t, �) is a vector function, � is a spectral param-
eter and A is the non-dimensional wave amplitude defined 
in the non-dimensional NLS equation given by:

The eigenvalue system can be written as a system of lin-
ear equations as follows.

The Fourier collocation method was then used to break 
down this system into a discretized eigenvalue system to 
solve for the eigenvalues corresponding to the Fourier coef-
ficients of the eigenfunction B.

3 � Results and discussion

3.1 � Validation studies

In a previous aforementioned study [12], the authors carried 
out numerical simulations of sloshing and wave tank experi-
ments for validation of the WCSPH numerical scheme. In 
the present study, the chosen numerical dissipation scheme 

(20)Xw(m, �) =
1

√

m

∞

∫
−∞

�(t)Ψ
�

t − �

m

�

dt

(21)WES(m, �) =
Xw(m, �)Xw

∗(m, �)

m

(22)Bx =

[

−i� A

−A∗ i�

]

B

(23)iAt + Axx + 2|A|2A = 0

(24)
[

−�x A

A∗ �x

]

B = i�B

and the kernel function of the model has been validated for 
the study of modulated plane waves through simulations 
involving focusing of double wave groups in a NWT, the 
details of which experiments are available in the work by 
Wang et al. [35]. The surface elevation readings are obtained 
at various locations along the numerical wave tank and 
compared with the experimental observations. In addition 
to this, the developed numerical scheme has also been uti-
lized to look at the phenomenon of modulation growth in a 
wave tank. The experimental setup outlined in Shemer and 
Alperovich ( 2013) has been used to carry out simulations 
of a Peregrine-type breather in a NWT. The surface eleva-
tion observations at the different locations are then used for 
analysis of the modulation growth. The simulation setup 
description and the corresponding discussions on this effort 
are provided in the Appendix.

The wave focusing experiments detailed out in Wang 
et al. [35] consists of a 69.0m long, 2.0m wide and 1.8m deep 
experimental wave flume with a water depth of d = 1.2m . 
A piston maker is equipped at the left side of the flume for 
wave making and a wave absorbing zone is set up towards 
the end of the tank for wave absorbing arrangements. 25 
wave gauges are set up for recording the surface elevations 
at desired locations. For the two-dimensional numerical 
wave tank simulations conducted in this study, a wave tank 
of length 81.2m and a height of 3.6m with a water depth 
of d = 1.2m has been used. A piston wavemaker of length 
2.4m is arranged towards the left part of the wave flume and 
a sloping beach extending from 49.7m to 81.2m is provided 
for passive wave absorption.

For purposes of comparison, 5 wave gauges (WGs) are 
set up in this wave flume at locations where the elevation 
readings are available in Wang et al.[35]. An illustration 
of the experimental setup is provided in Fig. 2. The fluid 
properties and the parameters used during the simulations 
are summarized in Table 1. The low values of the Courant 
number ensure that the scheme is numerically stable for all 
fluid particle resolutions.

The numerical experiments have been run using different 
fluid particle resolutions for a particular case of focusing 
of double wave groups. The wave parameters are given in 
Table 2.

Here, fp1 and fp2 are the peak frequencies associated with 
two different wave groups that are propagating in the same 

Fig. 2   Numerical setup for the irregular wave focusing experiments. All dimensions are provided in meters. The wave gauges are depicted using 
WG
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direction in the wave tank. Ab denotes the focusing ampli-
tude of an individual wave group while xb gives the focusing 
position along the wave tank. The readers are directed to 
Wang et al. [35] for a detailed explanation of the procedure 
for determination of the individual frequencies and ampli-
tudes of the wave components in each wave group. Follow-
ing this work, the wave spectra for the two wave groups are 
discretized in the frequency range (0.4 − 2.0)Hz with each 
having the same Nf = 200 components. The displacement of 
the piston wavemaker X(t) is determined by superimposing 
the displacements for the individual wave groups using the 
equations for the free surface elevation �(t) and the transfer 
function Tki for a piston-type wavemaker given as following.

Here,ai and fi are the amplitude and frequency of a sin-
gle wave component, tb is the time of focusing while Tki is 
the Biesel transfer function [8] for a piston type wavemaker 
given as follows.

where d is the water depth in the numerical wave tank.
Free surface elevation readings are obtained at the dif-

ferent gauge locations for all the simulations to compare 
with the experimental readings available in Wang et al.[35]. 
The comparisons at x = 3m and x = 13m for a fluid particle 
resolution of Δx = 0.03m are presented in Figs. 3 and 4.

(25)�X(t)

�t
=

Nf
∑

i=1

�i

Tki
aicos

[

ki
(

x − xb
)

− 2�fi
(

t − tb
)]

(26)Tki =
2
[

cosh
(

2kid
)

− 1
]

2kid + sinh
(

2ki d
)

Additionally, the surface elevation time series �(t) have 
been used for analysis of the time–frequency relationship 
using the wavelet energy spectrum method as outlined in §2. 
For all the numerical experiments carried out in this study, 
the wavelet energy spectrum has been computed using the 
built-in ‘cwt’ function using the analytical ‘amor’ wavelet 
function in MATLAB (“MATLAB—MathWorks,” n.d.).

As can be seen from the upper plot in Fig. 3, for the com-
parisons at x = 3m , the numerical surface elevation observa-
tions show considerable agreement with the experimental 
readings from t = 38s to t = 45s , when the two wave groups 
are in the process of focusing. The wave amplitude during 
this time duration is more than 2cm , while it is much lower 
during the initial times. As can be seen from the plot, there is 
reduced agreement between the experimental and the numer-
ical results before t = 35s , where the amplitude is signifi-
cantly lower than 2cm . This disagreement can be attributed 
to the numerical dissipation associated with WCSPH. As 
mentioned previously, numerical dissipation is essential for 
stability during the simulations, but its incorporation does 
not allow the complete development of the low amplitude 
waves observed initially. However, the purpose of the vali-
dation study was to investigate if the model can capture the 
energy focusing during the simulation. Though there are dis-
cernible differences between the two sets of readings, the 
model was able to correctly capture the focusing phenom-
enon at this location with respect to magnitude and phase. A 
wavelet energy spectrum for this time series has been shown 
in the lower plot in Fig. 3 to better capture the focusing 
process. The onset of energy localization between 40 and 
45 s in the frequency range of 0.7 and 0.8 Hz can be clearly 
observed in this plot. A similar set of comparisons carried 
out for the wave gauge location at x = 13m is presented in 
Fig. 4. The surface elevation comparisons in the upper plot 
of Fig. 4 reveal a qualitative agreement with respect to the 
focusing phenomenon. However, there are discernible differ-
ences in the phase and magnitude of the elevation readings, 
where the magnitude of the focused wave group for the sim-
ulation is lower than the experimental observations. As in 

Table 1   The simulation 
parameters in the WCSPH 
numerical setting used for the 
validation study on focusing 
experiments of the double wave 
groups

Δx Fluid particle resolution ∈ {3 × 10
−2m, 4.5 × 10

−2m, 6 × 10
−2m, 9 × 10

−2m, 12 × 10
−2m}

Courant number ∈ [0.00025, 0.001]

Boundary particle resolution 0.5 Δx
h Smoothing length 1.5Δx

� Parameter for numerical stability ∈ [2.0, 4.0]

� �− SPH coefficient 0.001

�0 Reference density 1000

vmax Maximum fluid velocity 3.0m∕s

c0 Numerical speed of sound 10vmax

dt Time step size 1 × 10
−5
s

v Morris’ viscosity factor 1 × 10
−6

Table 2   The wave parameters for the particular double wave group 
focusing case used for the validation study

fp1(Hz) fp2(Hz) Δf p(Hz) Ab(cm) (f p1) Ab(cm) (f p2) xb(m)

0.8 0.7 0.1 4.32 4.39 22.2
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the previous case, these differences can be attributed to the 
dissipative effects of our numerical model, which increase 
with larger wave propagation distances. Despite these dif-
ferences, the model was able to capture the focusing at this 
location which can be seen from the ratio of the focused 
wave packet with the background wave. This can be further 
examined using the wavelet transform plot at this location 
represented in the lower plot of Fig. 4. The WES plot reveals 
that the focusing takes place over a narrower time range and 

starts encompassing more frequencies as compared to the 
observations at x = 3m , signifying the growth of the focus-
ing phenomenon. Thus, it can be discerned from the results 
of this study that the WCSPH model is able to encapsulate 
the double wave group focusing phenomenon in a numerical 
wave tank; however, there are deficiencies which can be put 
down to the effects of numerical dissipation.

A grid study was carried out to investigate the conver-
gence of the numerical scheme as well as look at the effect of 

Fig. 3   Results of the validation study for ∆x = 0.03m at x = 3m. The 
upper plot reveals the surface elevation comparisons between the 
numerical observations in this study and the experimental readings in 

Wang et al. The lower plot gives the WES distribution for the surface 
elevation readings

Fig. 4   Results of the validation study at x = 13 m similar to the depiction in Fig. 3
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numerical dissipation involved. The results of this study are 
depicted via L2 error plots in Fig. 5. Five different particle 
resolutions Δx mentioned in Table 1 have been used for this 
purpose. The L2 error for a particular particle resolution at 
a certain wave gauge location is computed using the formula

where �num(x, ti) are the free surface elevation readings 
obtained from the simulations at a particular location at dif-
ferent time instants, �exp(x, ti) are the experimental readings 
and N is the number of observations.

The L2 errors depicted in Fig. 5 have been obtained 
through interpolation between the different fluid particle 
resolutions Δx using the in-built MATLAB ‘fit’ function 
using a smoothing parameter of 0.9999. The interpolated 
errors at x = 3m show a decreasing trend, indicating the 

(27)L2(x) =

√

√

√

√
1

N

N
∑

i=1

(

�num(x, ti) − �exp(x, ti)
)2

grid indifference at small distances from the wave maker. At 
larger distances though, the errors show a gradual increasing 
trend with decreasing resolution. The L2 error plots reveal 
that as the distance of wave propagation increases, the errors 
generally start to increase owing to the numerical dissipative 
nature of the scheme. The higher error at the focus position 
of x = 22.2m can also be attributed to this feature. In gen-
eral, the error plots reveal that our chosen numerical scheme 
performs reasonably well at a wide range of particle resolu-
tions till wave propagation distances around 10 − 15m from 
where numerical dissipation starts having an effect on the 
simulation results.

3.2 � Numerical experiments for parametric study 
of perturbed plane waves

The numerical scheme thus validated has been then utilized 
for carrying out investigations on modulated, unidirectional 
regular waves in the NWT. The simulation setup is based 
on the experiments detailed out in Eeltink et al. [16]. For 
the two-dimensional simulations in the current study, a 
numerical wave flume of length 33.5m with a water depth 
of d = 1.2m is used. A piston wavemaker of height of 3.0m 
is installed at the left of the tank for wave generation and a 
sloping beach is provided at the end of the tank to facilitate 
passive wave absorption, similar to the approach used in the 
work of Altomare et al. [4]. 23 wave gauges are installed 
along the length of the wave tank as depicted in Fig. 6. The 
simulation parameters used in these simulations are provided 
in Table 3.

A total of 22,467 particles constitutes the simulation 
domain when the fluid particle resolution Δx was 4 × 10

−2 
m. This is the particle resolution that has been used for all 
our subsequent results and observations.

The surface elevation readings at the different wave gauge 
locations for the different numerical experiments have been 
obtained and analyzed using the different approaches out-
lined in §2. The observations from these analysis efforts are 
aimed at examining the effect of the different parameters 
associated with the generation and propagation of modulated 
plane waves, with a particular emphasis on the influence of 
the perturbation sidebands 

(

bF, �
)

 , modulational frequency.
ΩM and the effect of water depth d used in our simulations.

Fig. 5   Grid study showing the L2 errors interpolated over the range 
of particle resolutions for the different wave gauge locations used in 
the numerical simulations of the double focusing wave groups

Fig. 6   Numerical setup for parametric study of the plane perturbed waves. All dimensions are provided in meters. 23 wave gauges have been 
used for these simulations
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A total of 40 numerical experiments have been imple-
mented using the different wave parameters outlined in 
Table 4. The effect of a particular parameter is investigated 
through its variation over its range while keeping the other 
parameters constant. The effect of water depth d on the 
wave propagation has been investigated by carrying out a 
different series of simulations where a water depth d = 0.8m 
is used with all other dimensions resembling the numeri-
cal setup illustrated in Fig. 6. The same set of parameters 
given in Table 4 has been implemented in these simulations 
for comparison purposes. The parameters kept fixed dur-
ing these different sets of comparisons for the variation of 
the single parameter in discussion is displayed in boldface 
in Table 4. The results from the subsequent analyses using 
simulation observations for the different parameters are pre-
sented below.

3.2.1 � Sideband fraction 
(

bF

)

The sideband fraction parameter bF , as outlined in Eq. 15 
determines the amplitudes of the carrier modes and the fre-
quency sidebands. As can be clearly seen from Eq. 15, larger 
the value of bF , smaller is the amplitude of the carrier mode 
and larger is the amplitude value of the frequency sidebands 
for a fixed value of the sideband imbalance parameter � . For 
the simulations, the values of bF are varied between 0.01 and 
0.2 while the other fixed parameters are those that have been 
depicted in red in Table 4. The time series of the simula-
tion observations are then used for carrying out eigenvalue 
analysis as discussed in §2. The eigenvalue spectra for four 
different values of bF at x = 4.8m is presented in Fig. 7. The 

imaginary part of the eigenvalues, �I give a measure of the 
wave surface elevation [36]. As apparent from the plots, the 
wave surface elevation �(t) increases with increasing values 
of bF , which is illustrated more clearly using the panned 
plots in the right panel of Fig. 7.

As apparent from Eq. 14, the energy at the wavemaker 
gets distributed between the carrier modes and the frequency 
sidebands according to the value of bF. Larger the values of 
bF , larger are the relative amplitudes of the sidebands in rela-
tion to the carrier mode, with the total amplitude remaining 
the same. When � = 0, as is the case in these simulations for 
the variation of bF , the sideband amplitudes are only depend-
ent on bF, which ultimately decides the wave propagation 
behavior over the NWT. The observations in Fig. 7 suggest 
that larger the amplitudes of the sidebands in relation to the 
carrier mode at the wavemaker, larger is the overall wave 
amplitude at increasing distances from the wavemaker. Thus, 
it can be ascertained that higher energy in the frequency 
sidebands at the wavemaker result in higher wave amplitudes 
than a single carrier wave. The energy distribution in the 
different frequency modes can also be visualized through 
frequency spectrum plots as illustrated in Fig. 8a. The mean 
wave amplitudes, obtained as discussed in §3.2, are plotted 
at the different wave gauge locations for all the values of bF 
and depicted in Fig. 8b. From Fig. 8a, it can be observed that 
when bF = 0.01 , the carrier mode has the maximum amount 
of energy being transmitted at the wavemaker which gets 
propagated through the NWT. As the value of bF increases, 
the relative influence of the sidebands grows compared to 
the carrier mode, particularly that for the lower frequency 
sideband. The lower sideband can be observed to propagate 
throughout the length of the NWT, which is not observed 
for the carrier mode in any of the above simulations. The 
increased energy in the sidebands lead to larger wave ampli-
tudes as can be observed clearly from the plots in Fig. 8b. 
Till around x = 9m in the NWT, the time averaged wave 
amplitudes are seen to increase with increasing values of bF 
till bF = 0.15. Subsequent increase in the values of bF does 
not lead to significant growth in amplitudes, which is also 
noted from the frequency spectra plots for bF = 0.15 and 

Table 3   The simulation parameters in the WCSPH numerical setting 
used for the parametric studies on the perturbed plane waves. Other 
simulation parameters are the same as given in Table 1

Δx Fluid particle resolution ∈ {2 × 10−2m, 4 × 10−2m}

Courant number ∈ {0.00075, 0.0015}

� �− SPH coefficient 0

Table 4   The wave parameters 
for the different simulations 
used in the parametric studies of 
the plane perturbed waves

Perturbation parameters Notations Values Discussion 
section

Sideband fraction bF ∈ {0.01, 0.05, 0.1, 0.15, �.�} §3.2.1

Sideband imbalance � ∈ {−0.2,−0.1, �, 0.08, 0.16} §3.2.2

Relative phase Φ ∈
{

0,
�

2
,�,

3�

2
, 2�

}

§3.2.3

Carrier frequency f0 ∈ {0.4Hz, 0.8Hz, �.���, 1.6Hz, 2.0Hz} §3.2.4

Initial steepness ã0k0 ∈ {0.05, 0.12, �.��, 0.24, 0.3} §3.2.5

Modulational frequency ΩM ∈ [0.001, �.�, 10.0] §3.2.6

Water depth d ∈ {0.8, �.�} §3.2.7
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Fig. 7   The eigenvalue spectra for 4 different values of bF used in the numerical simulations. The left panel depicts the spectra within a range of 
�R from -10 to 10. The right panel shows a zoomed version of the plots in the left panel for �I ranging from 0.01 to 0.015 for better visualization

Fig. 8   a Frequency spectrum values for 4 different values of bF . The 
plots give the energy distribution over the length of the wave tank for 
the different frequency values. b The time averaged wave amplitudes 

for the different values of bF at the different gauge locations along the 
wave tank
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bF = 0.20 in Fig. 8a. It can thus be ascertained that increased 
energy in perturbation sidebands leads to elevated wave 
amplitudes for a modulated plane propagating wave, with the 
lower sideband in particular, having a prominent effect on 
the wave propagation nature. The marked disparity between 
the sidebands observed during the wave propagation in the 
above simulations were investigated through the variations 
of the sideband imbalance � , which is discussed next.

3.2.2 � Sideband imbalance (˛)

The sideband imbalance, as expressed in Eq. 15 determines 
the relative influence of the two frequency sidebands on the 
resultant wave amplitude. As can be seen from Eq. 15, for a 
fixed carrier mode amplitude, larger the sideband imbalance 
� , larger is the amplitude of the higher frequency sideband 
and conversely, the energy transferred to the lower frequency 
sideband at the wavemaker decreases. To observe the rela-
tive effect of the two perturbation sidebands, simulations are 
carried out by varying the values of � between −0.2 and 
0.16 while keeping the other parameters fixed as depicted 
in Table 4. Similar to the study of bF , eigenvalue analysis 
was also carried out at x = 4.8m for the different values of 
� . The eigenvalue spectra for these simulations are depicted 
in Fig. 9. As the imaginary part of the eigenvalues, �I give 
a measure of the wave surface elevations obtained from the 
observation time series, it can be ascertained from the plots 
in Fig. 9 that increase in sideband imbalance results in a 
decrease of wave amplitudes at non-zero distances from the 
wavemaker. For � = 0 , the two perturbation sidebands are 

equal in magnitude at the wavemaker. As � becomes positive, 
more energy is provided to the higher frequency sideband 
at the wavemaker. As depicted in the plots for � = 0.08 in 
Fig. 9, there is a marked decrease in �I and consequently, the 
wave surface elevation at x = 4.8m compared to � = 0. On 
the other hand, when � becomes negative, a larger portion of 
the energy at the wavemaker is given to the lower frequency 
perturbation relative to the higher sideband. From the plots for 
� = −0.1 and � = −0.2 in Fig. 9, it can be observed that the �I 
values are higher than that for � = 0.08 , signifying that larger 
waves are observed as � tends to more negative values. These 
observations suggest that there is significantly lower energy 
decay when fed to the lower frequency sideband compared 
to the higher frequency perturbation in the propagation of 
such plane perturbed waves in our NWT. Consequently, the 
observed wave surface elevations are higher when the values 
of � become more negative. Furthermore, as can be observed 
from the plots in Fig. 9b, there is a marked increase in wave 
surface elevation from � = −0.1 to � = −0.2 compared to 
the elevation when the values are decreased from � = 0 to 
� = −0.1 . This signifies that at lower absolute values of � , the 
wave propagation is dominated by the effect of the sideband 
fraction bF . However, as the value of � gets more negative, 
the asymmetry in the sidebands has a more pronounced effect 
on the wave propagation scenario compared to the sideband 
fraction bF.

To further look at the asymmetric nature of the per-
turbation sidebands during the plane wave propagation, 
the energy distribution in the different frequency modes 
along the NWT is illustrated with the help of frequency 

Fig. 9   The eigenvalue spectra for 4 different values of � used in the numerical simulations. The left panel depicts the spectra within a range of 
�R from -10 to 10. The right panel shows a zoomed version of the plots in the left panel for �I ranging from 0.01 to 0.015 for better visualization
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spectrum plots in Fig. 10a. The mean amplitude variation 
along the wave tank is also depicted in Fig. 10b. The fre-
quency spectrum plots in Fig. 10a consolidate the observa-
tions in Fig. 9. It can be observed that as the values of � 
get more negative, a larger amount of energy is transferred 
to the lower frequency sideband that propagates over 
the length of the NWT. The energy decay is much more 
prominent for the higher frequency sideband that results 
in lower energy values further down the NWT when � 
is positive. The mean surface amplitudes at the different 
wave gauge locations are displayed in Fig. 10b. The plots 
reiterate our observations that wave amplitudes decrease 
with increasing � , showing the influence of the lower fre-
quency sideband in the wave evolution for such perturbed 
plane wave scenarios. The energy patterns in the different 
frequencies during the wave evolution is further elucidated 
through the wavelet energy spectrum method, which was 
discussed during our validation efforts. The WES plots 
in Fig. 11 depict the energy spectra at 4 different gauge 
locations for � = 0.16 and � = −0.2. The comparison of 
the plots at x = 0.35m reveal that the energy distribution 
close to the wavemaker are similar for both the values of 
� , signifying that the energy input from the wavemaker do 
not determine the asymmetric behavior of the sidebands. 
However, with wave propagation along the wave tank, dis-
parities in energy distribution show up. The dominance 
of the higher sideband is clearly visible for � = 0.16 at 
x = 4.85m . However, this begins to break up farther away 
from the wavemaker, and the energy and consequently, the 
wave amplitude starts diminishing. On the contrary, for 

� = −0.2, the energy of the lower sideband becomes sig-
nificant at x = 4.85m . With increasing distance, the lower 
sideband continues to remain dominant, as a consequence 
of which the wave amplitudes are higher over the wave 
tank than for � = 0.16.

3.2.3 � Relative phase ( 8)

This parameter, given in Eq. 14 determines the relative phase 
between the carrier mode and the frequency sidebands. The 
fixed wave parameters used for these simulations are given 
in Table 4. The values of Φ are varied between 0 and 2�. As 
done before, frequency spectrum plots and mean amplitude 
plots are created for different values of Φ . These are illus-
trated in Figure.

12. The plots in Fig. 12a reveal that there are negligible 
differences between the different values of Φ when energy 
distribution is considered for the different frequency bands. 
In all the cases, there is visible energy localization in the 
lower frequency sideband. However, with the increase of 
Φ , the rate of energy decay over the NWT in the lower side-
band shows a decreasing trend. The mean amplitude plots 
given in Fig. 12b help consolidate the observations of the 
frequency spectrum plots depicted in Fig. 12a, showing 
that the results obtained by using the various values of Φ 
at different gauge locations are similar. This shows that the 
relative phase between the carrier and sidebands does not 
significantly influence wave propagation in our simulation 
scenarios. However, the influence of the lower frequency 

Fig. 10   a Frequency spectrum values for 4 different values of � . The plots give the energy distribution over the length of the wave tank for the 
different frequency values. b The time averaged wave amplitudes for the different values of α at the different gauge locations along the wave tank
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perturbation is still apparent from these observations, point-
ing to the asymmetric nature of the perturbation sidebands.

3.2.4 � Carrier mode frequency ( f
0
)

The influence of the carrier mode frequency depicted in Eq. 14 
on the wave evolution has been also investigated through a dif-
ferent set of simulations. For all these simulations, the resultant 
wavenumbers are found out using the frequency dispersion 
relation as follows.

where, � is the carrier wave frequency, g is the accelera-
tion due to gravity, k is the associated wavenumber and h 

(28)�2 = gk tanh(kh)

is the water depth in the NWT. The fixed wave parameters 
used in these simulations for studying the variation of f0 are 
given in Table 4. The parameter f0 used for the comparisons 
was varied between 0.4Hz and 2.0Hz . The time series of the 
amplitudes at the different gauge locations are illustrated for 
different values of f0 through Fig. 13a.

The spatial evolution plots in Fig. 13a show that the 
wave amplitudes across the wave tank increase with 
decrease in the carrier mode frequency. However, the 
high energy involved in the lower frequency cases can be 
attributed to the carrier mode only as low frequency results 
in high initial amplitude according to the dispersion rela-
tion provided the initial wave steepness is kept constant. 
The influence of the different modes in the energy distri-
bution along the wave tank is elucidated through WES 

Fig. 11   WES plots for two different values of α at 4 different locations along the numerical wave tank. The left panel (a–d) displays the results 
for � = 0.16 and the right panel (e–h) depicts the results for � = -0.2
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plots for f0 = 0.8Hz and f0 = 1.2Hz in Fig. 13b. As can 
be seen clearly from the plots, for f0 = 0.8Hz , at all the 
different gauge locations, the energy is primarily con-
centrated around the main frequency of 0.8Hz . However, 
for f0 = 1.2Hz , transfer of energy can be observed from 

the carrier mode to the sidebands as the distance from 
the wavemaker increases. Thus, it can be ascertained that 
for lower carrier mode frequencies, sideband perturba-
tion does not significantly influence the evolution of a 
unidirectional plane wave. On the other hand, sideband 

Fig. 12   a Frequency spectrum values for 4 different values of Φ . The plots give the energy distribution over the length of the wave tank for the 
different frequency values. b The time averaged wave amplitudes for the different values of Φ at the different gauge locations along the wave tank

Fig. 13   a Spatial and temporal evolution of the wave amplitudes 
across the numerical wave tank for 4 different values of f0 . b WES 
plots for two different values of f0 at 3 different locations along the 

numerical wave tank. The left panel (a–c) displays the results for 
f0 = 0.8 Hz and the right panel (d–f) depicts the results for f0 = 1.2Hz
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modulation, especially the lower energy sideband has a 
significant effect on the propagation of plane unidirec-
tional waves with higher carrier frequencies.

3.2.5 � Initial steepness (ã
0
k
0
)

The initial steepness in Eq. 14 determines the initial wave 
amplitude if the wave carrier frequency is constant. Simu-
lations are implemented to study the influence of this 
parameter on the resultant amplitudes of plane perturbed 
waves. The parameter ã0k0 was varied between 0.12 and 
0.30 while the other fixed parameters are given in Table 4. 
Similar to our previous efforts, the obtained surface 
elevation readings at the different gauge locations were 
used for calculating the wave amplitudes. The obtained 
wave amplitudes at the different wave gauge locations are 
provided in Fig. 14a. The energy distribution among the 
different frequency modes over the NWT are depicted in 
Fig. 14b.

As apparent from the plots in Fig.  14a, larger the 
initial steepness, larger are the wave amplitudes over 
the NWT in general. Additionally, from the frequency 
spectrum plots in Fig. 14b, it can be observed that the 
perturbation sidebands move apart as the initial wave 
steepness increases. For lower values of ã0k0 , a larger 
amount of energy localization can be seen in the higher 
frequency sideband. As initial steepness increases, the 
energy localization in the lower frequency perturbation 
increases, which results in larger wave amplitudes over 
the NWT. The influence and the asymmetric nature of the 

modulation sidebands is thus, further illustrated through 
these observations.

3.2.6 � Modulational frequency ( ÄM)

The modulational frequency (ΩM) in Eq. 14 determines the 
frequency of the perturbations being added to the unidirec-
tionally propagating regular wave in the NWT. Larger the 
value of ΩM , more disparate are the sidebands from the car-
rier frequency. Similar to our previously discussed studies, a 
carrier frequency of 1.2Hz was used for the generation of the 
plane waves. Perturbations with values ranging from 0.001 to 
10.0 have been used for this study. The other associated fixed 
wave parameters are given in Table 4. The spatial and tem-
poral evolution of the wave amplitudes for the different val-
ues of ΩM is illustrated in Fig. 15. The process of modulation 
can be observed through the onset of the blue patterns in the 
different plots. For smaller values of ΩM , the perturbations 
die down at very small distances from the wavemaker at 
x = 0 and cannot result in elevated wave amplitudes, as can 
be seen clearly from the plots of ΩM = 0.001,ΩM = 0.04 and 
ΩM = 0.075. For larger values, the perturbations  ΩM = 5.0 
and ΩM = 10.0 give very similar results as apparent from 
their respective plots.

To gain further understanding on the phenomenon of 
this modulation, the frequency spectrum plots illustrated in 
Fig. 16 are used for looking at the energy distribution within 
the different frequency modes during these simulations. 
Since the frequency spectrum plots in Fig. 16 are drawn 
to the same scale, the energy distribution for ΩM = 0.001 

Fig. 14   a Frequency spectrum values for 4 different values of ã0k0 . b The time averaged wave amplitudes for the different values of ã0k0 at the 
different gauge locations along the wave tank



1847Engineering with Computers (2024) 40:1831–1856	

1 3

Fig. 15   Spatial and temporal evolution of the wave amplitudes across the numerical wave tank for 10 different values of ΩM

Fig. 16   Frequency spectrum plots of the perturbed plane waves for the different values of ΩM
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only shows a faint line for the energy in the carrier mode. 
As ΩM increases, the energy in the carrier band is seen to 
increase, but the sidebands are very close to the main fre-
quency mode to be recognized differently. The growth of the 
sidebands can be seen prominently for ΩM = 0.4 where the 
lower sideband displays more growth than the higher side-
band. As ΩM increases, the sidebands start to get apart from 
one another and more energy localization is observed in the 
lower sideband. Particularly, for ΩM = 5.0 and ΩM = 10.0 , it 
can be clearly observed that there is a lot of energy localiza-
tion in the lower frequency sideband, leading to growth of 
wave amplitudes. The energy growth patterns resemble that 
of the spatial evolution plots in Fig. 15, which shows that 
there is very little wave growth above a certain value of the 
modulational frequency ΩM.

The mean wave amplitudes at the different locations 
along the wave tank are depicted in Fig. 17a to consolidate 
the observations in Fig. 15. In addition, the WES plots of 
ΩM = 1.0 and ΩM = 2.5 are compared at 3 different locations 
to better visualize the results illustrated through Fig. 18.

The plots of the mean amplitudes at the different gauge 
locations in Fig.  17a suggest that the mean amplitudes 
grow with increasing ΩM till ΩM = 5.0. However, further 
increase of ΩM to 10.0 does not result in increased wave 
amplitudes and the maximum of wave amplitude oscillates 
between ΩM = 5.0 and ΩM = 10.0 at the different wave 
gauge locations.

These results point to the fact that wave amplitudes do 
not get modified significantly by modulations when the 

modulational frequency parameter goes beyond a certain 
threshold value. In this case, the ratio of the modulational 
frequency ΩM and the carrier frequency parameter f0 is 
around 4.167 . The energy spectrum plots in Fig. 17b reveal 
the evolution of energy distribution between the carrier and 
the sidebands for two values of ΩM . The plots for ΩM = 1.0 
at the different locations suggest that there is very little 
energy transfer from the carrier mode to the sidebands. On 
the contrary, for ΩM = 2.5 , the transfer of energy from the 
carrier frequency of 1.2Hz to the lower sideband 0.95Hz 
can be observed to start occurring at x = 4.85m and starts 
getting more prominent with increasing distance from the 
wavemaker, and this finally results in the increased wave 
amplitudes compared to the case of ΩM = 1.0.

3.2.7 � Effect of water depth (d)

The impact of water depth d on the effect of the differ-
ent parameters during the propagation of plane, perturbed 
waves has been also investigated through a different set of 
simulations. As mentioned in §2, the same set of numerical 
simulations have been also implemented in the NWT for a 
water depth of d = 0.8m . The results for the different sets of 
parameters are discussed below.

The plots in Fig. 18a compare the eigenvalue spec-
tra for the two water depths using the surface elevation 
time series �(t) for bF = 0.1 and bF = 0.2 at a location 
of x = 4.8m down the numerical wave tank. It can be 
observed that for both the values of the parameter, the 

Fig. 17   a The time averaged wave amplitudes for the different values 
of ΩM at the different gauge locations along the wave tank. b WES 
plots for two different values of ΩM at 3 different locations along the 

numerical wave tank. The left panel (a–c) displays the results for 
ΩM = 1.0 and the right panel (d–f) depicts the results for ΩM = 2.5 
Frequency spectrum values for 4 different values of ΩM
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wave elevation is much higher for d = 1.2m compared to 
d = 0.8m . To visualize the wave evolution differently, the 
surface elevation plots for bF = 0.1 at 3 different loca-
tions is presented in Fig. 18b for the two water depths. 
It can be seen that at x = 0.35m, the elevation pattern for 
the two water depths resembles each other closely. How-
ever, as the distance increases, the crests and troughs for 
d = 0.8m begin to get shorter in comparison to d = 1.2m

x = 8.85m . This is more pronounced for the plots at , 
where the troughs in between peaks are observed to die 

down. These observations suggest that perturbations to 
a regular, unidirectional wave have a reduced effect for 
decreasing water depths.

Similar to Fig. 18b, comparisons between the two water 
depths for ΩM = 1.6 at different locations are illustrated 
in Fig. 19a. The observations resemble the results from 
Fig. 18b. As the distance from the wavemaker increases, 
the crests and troughs become shorter for d = 0.8m when 
compared to d = 1.2m , with more disparities being 
observed between the two sets. This again points to the 

Fig. 18   a Eigenvalue spectrum for two values of bF for d = 1.2 m and d = 0.8 m (b) The surface elevation comparisons between d = 1.2 m and 
d = 0.8 m for bF = 0.1 at 3 different locations

Fig. 19   a Surface elevation comparisons between d = 1.2 m and d = 0.8 m for ΩM = 1.6 at 3 different locations (b) Surface elevation comparisons 
between d = 1.2 m and d = 0.8m at x = 7m for � = 0, � = 0.08 and � = -0.2
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reduced modulational effects on unidirectional regular 
waves with decreasing water depth d . The variation of the 
sideband imbalance (�) parameter in Fig. 19b for a fixed 
wave gauge location reveals the impact of � during plane, 
perturbed waves propagation. As observed in Fig. 19a, the 
plots show that the wave elevation is smaller for d = 0.8m 
for all the values. However, it can also be seen that posi-
tive values of � lead to greater variation in the elevations 
for the two depths compared to a negative value of � . For 
� = −0.2 , the gulf between the two sets of values is much 
lower than that for � = 0.08 and � = 0. These observa-
tions demonstrate that the effect of perturbation, though 
diminished, still applies for lower water depths in these 
simulations.

To gain further insight into the perturbation process for 
varying depths, the observations for the simulations imple-
menting different initial steepness ã0k0 and carrier frequen-
cies f0 are illustrated in Figs. 20a, b respectively. The plots 
in Fig. 20a show that as the initial wave steepness ã0k0 
increases, the peaks, and troughs for the two water depths d 
start approaching each other. On the contrary, in Fig. 20b, 
as the carrier frequency f0 increases, the obtained surface 
elevation readings for the d = 0.8m diminish at a much faster 
rate when compared to d = 1.2m . These observations can be 
attributed to the following. Firstly, as the initial wave steep-
ness ã0k0 increases, the initial wave amplitude also increases 
which results in shallower sea scenarios. For the two differ-
ent water depths d , thus, higher initial steepness ã0k0 results 
in similar wave propagation scenarios, thus rendering similar 
results. On the other hand, higher carrier wave frequency f0 , 
according to the frequency dispersion relationship, results in 
lower initial wavelengths. This results in deeper sea environ-
ments, and the surface elevation readings for lower depths 

are much lower than that for higher water depths. These 
observations help us inferring that modulations can signifi-
cantly affect the evolution of regular unidirectional waves in 
deep sea waters, while moving to shallower seas reduces the 
effect of such perturbations.

4 � Conclusions

Numerical wave tanks have been constructed to study the 
effect of modulations in the propagation of regular waves 
in unidirectional seas through WCSPH simulations. Quan-
titative investigations have been carried out for the differ-
ent parameters involved in these simulations to study their 
effect on the modulation mechanism. Further, the effect of 
water depth d has been also investigated in modification of 
the wave amplitude in such wave propagation scenarios. 
The results from this study can be utilized for the design of 
wave tank experiments and numerical simulations in future 
to study the phenomenon of modulational instability in oce-
anic environments. Such efforts can hopefully provide fur-
ther meaningful insight into the mechanisms behind extreme 
energy localizations and rogue waves in oceans.

Numerical simulations of double focusing irregular waves 
have been used to validate the numerical model chosen for 
the study in addition to study of a Peregrine type breather 
evolution in our numerical wave tank. For the focusing of 
the double wave groups, considerable agreement is obtained 
between the numerical results and the experimental readings 
at small distances from the wavemaker, which has been illus-
trated through surface elevation and wavelet energy spec-
trum plots. A good qualitative agreement with respect to the 
focusing phenomenon is also found at locations further down 

Fig. 20   a Surface elevation comparisons between d = 1.2  m and d = 0.8  m at x = 7  m for ã0k0 = 0.12, ã0k0 = 0.18 and ã0k0 = 0.24 (b) Surface 
elevation comparisons between d = 1.2 m and d = 0.8 m at x = 6.85 m for f0 = 0.8 Hz, f0 = 1.2 Hz and f0 = 1.6Hz
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the numerical wave tank; however, the readings fall short 
of the experimental findings due to the inherent numerical 
dissipation of the chosen scheme. However, it must be kept 
in mind that any length of a numerical tank can be easily 
simulated through appropriate scaling, thus, allowing us for 
to make an informed judgement about required accuracy and 
allowed computational expense.

For the studies on the perturbed plane waves carried out 
using this setup, eigenvalue, frequency, and wavelet energy 
spectra are computed using the measured surface elevations 
to capture the effects of the different involved parameters. The 
sideband fraction (bF) and the sideband imbalance (�) , which 
determine the magnitude and the asymmetry of the sidebands 
respectively are found to have a significant effect on the wave 
evolution. Larger values of bF result in larger wave amplitudes 
signifying the influence of the sidebands in such wave evolu-
tion scenarios. For � , more negative values result in larger 
wave amplitudes. This observation, combined with the find-
ings from bF studies ascertain that the lower sideband in such 
scenarios play a more dominant role than the upper sideband 
in facilitating higher wave amplitudes over the NWT. The 
relative phase (Φ) between the carrier band and the sidebands 
does not influence the wave evolution significantly according 
to this study. According to the investigations on the initial 
steepness (ã0k0) , the wave amplitude increases with increas-
ing values of ã0k0 , and the increase can be attributed to the 
growth of the smaller sideband. For carrier band frequencies 
(f0) , smaller values result in larger wave amplitudes by virtue 
of the frequency dispersion relationship, however, the evolu-
tion cannot be attributed to the perturbation growth. The stud-
ies on modulational frequency (ΩM) revealed that increasing 
this parameter led to higher wave amplitudes due to sideband 
growth up to a certain threshold value. Increasing beyond this 
value does not result in higher wave amplitudes. The ratio of 
this threshold value to the carrier mode frequency is found 
out to be 4.167 in this case. The investigations on the effect 
of water depth d in this modulation process using the different 
parameters reveal that the impact of perturbations diminish 
with decreasing depth d , demonstrating that this modulational 
process is predominantly effective in deep sea waters.

As discussed above, the sideband fraction (bF) , side-
band imbalance (�) and modulational frequency (ΩM) has a 
considerable influence on the behavior of plane modulated 
waves in a numerical wave tank. Qualitatively, it was found 
out that increase of bF results in increased energy localiza-
tion, however the rate of increase slows down progressively. 
For �, the energy localization is dependent on both the sign 
and the magnitude of the parameter. The energy localization 
increases with increasing negative values of this parameter, 
as pointed above, implying the influence of the lower fre-
quency sideband. However, to get a quantitative outlook into 
the nature of these parametric responses, a large number 
of experiments will need to be carried out in future. The 

parameter ΩM also shows an increasing energy localization 
trend in the lower perturbation sideband with increasing 
values, however, only minor increase can be observed after 
a certain limit. This shows a non-linear response in regard 
to the ratio between the modulation frequency parameter 
ΩM and the carrier frequency f0 if energy localization is 
considered. This non-linear response characteristic will be 
quantified through numerical experiments in future.

These simulations, as mentioned previously, can easily be 
used for much larger scale scenarios through suitable scal-
ing of the inter-particle distances and smoothing lengths. 
The results from these simulations can be used to design 
numerical wave tank experiments to study different kinds of 
rapid wave formations in oceanic environments. The obser-
vations from this study can serve as a foundation for pur-
suing further numerical investigations into the mechanism 
of modulational instability leading to rogue wave events in 
oceans. These numerical simulations can also pave the way 
for looking at other mechanisms of extreme oceanic wave 
formations listed in §1. The authors intend to extend the 
2-D simulations into 3 dimensions in future endeavors using 
improved GPU parallelization techniques for a more realistic 
outlook into such energy localization scenarios. It is hoped 
that the results acquired from such studies, blended with 
improved deep learning techniques can significantly aid in 
the prediction of such extreme oceanic events in future. Fur-
thermore, as has been observed during our validation studies 
and investigations using the plane perturbed waves, numeri-
cal dissipative effects can hinder the full evolution of small 
amplitude waves at large distances from the wavemaker in 
WCSPH models. The authors intend to investigate the effect 
of numerical dissipation in such scenarios in greater detail 
in future efforts.

Appendix

Evolution of Peregrine-type breather in NWT using WCSPH
The Non-linear Schrödinger equation is the simplest theo-

retical model to explain the evolution of a unidirectional and 
narrow-banded modulated wave group in deep water, which 
can result in the formation of steep ocean waves through 
modulational instability. This equation admits a number of 
breather type soliton solutions. The Peregrine breather is 
one such soliton which is localized in both space and time, 
and the soliton breathes only once during its motion. The 
modulation evolution of the Peregrine breather solution has 
been investigated through wave tank simulations here.

Using the notations described in Shemer and Alperovich 
[34], the water surface elevation ζ(x, t) for a wave group with 
carrier frequency �0 and wavenumber k0 satisfying the fre-
quency dispersion relationship is given by:
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where a(x, t) is the slowly varying complex wave group 
envelope. The characteristic wave amplitude a0 , the wave 

(29)ζ(x, t) = Re
[

a(x, t) ei(k0x−�0t)
] steepness � = a0k0 and the wave group velocity cg are used 

to give the spatial NLS equation as

(30)−i
dA

d�
+

�2A

��2
+ |A|2A = 0

Fig. 21   Numerical setup for Peregrine-type wave experiments. All dimensions are provided in meters. 13 wave gauges have been used for these 
simulations and located as shown in the figure. These are depicted using WGs

Fig. 22   The motion imparted by 
the flap wavemaker at x = 0 m. 
The maximum amplitude of 
the Peregrine breather is set at 
X0 = 9 m. The proportionality 
factor is taken to be � = 1. The 
flap motion is kept at 0 for 65 T0 
after the tapered motion at the 
end to capture the observations 
at farther locations from the 
wavemaker

Fig. 23   The evolution of a modulated wave group in a wave tank 
studied through surface elevation readings at different locations. The 
left plot shows the results from experiments carried out by Shemer 

et al. [34] The right plot shows the results from the WCSPH simula-
tions in the present study
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where � = ��0

(

x

cg
− t

)

;� = �2k0x;A(�, �) = a∕a0

The Peregrine soliton written in terms of these dimen-
sionless variables is given by

The experiments detailed out in Shemer and Alperovich 
[34] were carried out in a wave tank 18 m long, 1.2 m 
wide and 0.9 m deep with a programmable flap type wave-
maker for wave generation. The simulations in the present 
study are carried out in a 2D numerical wave tank which 
is 18.5 m long and 0.9 m deep, with a slope at the end 
starting from 14 m for passive wave absorption to reduce 
wave reflection. A flap type wavemaker at x = 0m is used 
for the wave generation. Surface elevation measurements 
were obtained at 13 different locations along the wave tank, 
as depicted in the simulation setup is provided in Fig. 21. 

Simulations have been carried out using a water depth 
of d = 0.6 m with the parameters: period T0 = 0.587s, cor-
responding to k0 = 0.587s, �0 = 0.538m , � = 0.0825 and 

(31)A(�, �) = −
√

2

�

1 −
4(1 − 4i�)

1 + 4�2 + 16�2

�

e−2i�

�0 = 0.01m. The flap wavemaker motion is calculated using 
the Eqs. 29, 30 and 31 with a proportionality factor to 
achieve the wavemaker motion as

where � is the proportionality factor utilized to achieve a cer-
tain surface elevation during the wave tank simulations. The 
A(x, t) in Eq. 32 [34] is computed to achieve the maximum 
of the Peregrine soliton at X0 = 9m. The total duration of the 
wave group itself has been taken to be 115T0 with tapering 
windows of 10T0 over the two end periods. The wavemaker 
motion for � = 1 is given in Fig. 22.

The surface elevation readings at 4 different locations 
given in Shemer and Alperovich [34] are used to look at 
the evolution of the modulation along the wave tank. Con-
sidering the numerical dissipation present in WCSPH mod-
els, a proportionality factor of � = 1.5 was used during the 
wave generation to obtain a background wave amplitude at 
X0 = 9m , similar to that observed in the experimental results 
detailed in Shemer and Alperovich [34]. The simulation 

(32)X(t) = �A(x, t)

Fig. 24   The evolution of the 
modulated wave group in the 
numerical wave tank using 
a flap type wavemaker with 
� = 1.5. Surface elevation read-
ings at six different locations 
are depicted with respect to the 
wave group velocity. The center 
of the modulated wave group is 
at 
(

t − x∕cg
)

T0 = 0
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observations along with the experimental results given in 
[34] are depicted in Fig 23.

From the surface elevation plots in Fig. 23, it can be 
observed that there are significant differences between the 
experimental results in Shemer and Alperovich [34] and the 
observations using the WCSPH simulations. This can be 
attributed to the numerical dissipation present in WCSPH. 
This results in gradual decrease of the background wave 
amplitude with increasing distance from the wavemaker at 
x = 0m. The evolution of the modulation can be observed 

clearly in the experimental results from the left plot with the 
maximum modulation amplitude observed at x = 11.6m. To 
get a better picture of the modulation evolution in our simu-
lations, the surface elevation observations at more locations 
along the wave tank are depicted in Fig. 24. The surface 
elevation observations for the WCSPH simulations at six 
different locations along the numerical tank are shown in 
Fig. 24. It can be seen from these plots that the background 
wave amplitude gradually starts to decrease with increasing 

Fig. 25   The evolution of the modulated wave group in the numerical wave tank using a flap type wavemaker with � = 3.0. Surface elevation read-
ings at six different locations are depicted with respect to the wave group velocity. The center of the modulated wave group is at 

(

t − x∕cg
)

T0 = 0
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distance from the wavemaker due to numerical dissipative 
effects.

However, the growth of the modulation can be observed 
clearly by looking at the ratio of the peak modulation ampli-
tude to the average background wave amplitude. For the sake 
of subsequent break-down of the observations, this will be 
referred to as the amplitude ratio � in further discussions. 
At x = 1.85m , the ratio � is observed to be 1.31. The growth 
of the modulation down the numerical wave tank can be 
observed from the plots at x = 2.25m and x = 5.65m . The 
amplitude ratio � is found to increase to 1.49 at x = 2.25m and 
1.92 at x = 5.65m , where it is found to reach the maximum 
during the simulation duration. The modulation amplitude 
starts diminishing after this position, with the amplitude ratio 
between the modulation and the background going down to 
1.8 and 1.5 at x = 7.65m and x = 11.6m respectively. These 
observations depict the evolution of a modulated wave group 
for a Peregrine-type breather solution for NLSE in our devel-
oped NWT. However, due to the numerical dissipation in 
the WCSPH model, the amplitude, and the location of the 
maximum evolution amplitude in the simulation results differ 
from theoretical and experimental results given in Shemer and 
Alperovich [34].

A second set of simulations was performed using a larger 
proportionality factor of � = 3.0 using the same set of 
parameters. Wave breaking is not observed during the course 
of this simulation. The surface elevation readings at six sep-
arate locations for these simulations are given in Fig. 25. 
Similar to the case of � = 1.5 , it is observed from the plots 
in Fig. 25 that the background wave amplitude decreases 
with increasing distance from the wavemaker. However, 
the ratio of the modulation amplitude to the background 
amplitude shows a growth from x = 0m to x = 6.25m . As 
observed from the elevation readings in Fig. 25, the ampli-
tude ratio � shows an increase from the initial ratio of 1.3 
at the wavemaker to � = 1.35 at x = 2.25m. The modula-
tion gets enhanced further down the numerical wave tank 
as observed from the plots at x = 4.25m, x = 5.65m and 
x = 6.25m . The amplitude ratio � evolves through 1.47 and 
2.125 at x = 4.25m and x = 5.65m respectively to a maxi-
mum of � = 2.8 at x = 6.25m . Similar to the case of � = 1.5 , 
the amplitude ratio is observed to reduce after this location, 
with the values observed being 1.8 and 1.66 at x = 9m and 
x = 9.25m respectively. The numerical experiments carried 
out for the Peregrine-type breather extend our validation 
efforts for the numerical WCSPH scheme utilized in our 
studies of plane modulated waves. It can be ascertained 
from these simulation results that the developed numerical 
scheme is able to capture the modulation evolution process 
that results in the formation of large Peregrine type breather 
solutions to the NLSE, which is very similar to observed 
extreme waves in oceans. However, there are discernible dif-
ferences when compared to previous experimental studies 

on these waves. Such disagreements can be attributed to the 
numerical dissipation which is necessary for the stability of 
the weakly compressible scheme in our studies. This mainly 
gets manifested for waves with smaller amplitudes and larger 
distances from the wavemaker. Thus, for the larger propor-
tionality factor that we have used in our study, the modula-
tion growth was observed to be more prominent. The phe-
nomenon of numerical dissipation in our model and methods 
to reduce its effects will be investigated in future studies to 
be carried out by the authors.
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