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Abstract

Most research in the behavioral sciences aims to characterize effects of interest using sample
means intended to describe the "typical" person. A difference in means is usually construed as a
size difference in an effect common across subjects. However, mean effect size varies with both
within-subject effect size and population prevalence (proportion of population showing the effect)
in compared groups or across conditions. Few studies consider how prevalence affects mean effect
size measurements and existing estimators of prevalence are, conversely, confounded by
uncertainty about within-subject power. We introduce a widely applicable Bayesian method, the
p-curve mixture model, that jointly estimates prevalence and effect size. Our approach outperforms
existing prevalence estimation methods when within-subject power is uncertain and is sensitive to
differences in prevalence or effect size across groups or experimental conditions. We present
examples, extracting novel insights from existing datasets, and provide a user-facing software tool.
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Introduction

Many psychology and cognitive neuroscience studies support their claims by showing that there
is a statistically significant difference in the mean size of some effect — say, a difference in some
variable as the result of an intervention — between two or more conditions or groups. Such a
difference is often interpreted as a change in the effect size’s magnitude between groups. This
interpretation follows from a set of typical, though usually unstated, assumptions: (1) a group
condition mean characterizes the condition response of a “group-representative subject,” (2)
measurements from actual subjects represent noise around this central tendency, and (3) subjects
who are very far from the mean are “outliers” who may safely (or even should) be discarded from
analyses because they have systematic characteristic differences from the representative
hypothetical subject being investigated. However, these assumptions are not always correct and,
we argue, can therefore obscure meaningful patterns in sample variance that may be present in
subpopulations, even if not in a modal subject.

Population prevalence refers to the proportion of a population (or sample from that
population) demonstrating an effect. In other words, the mean effect size in a population is,
notably, only equal to the within-subject effect size if the population prevalence of the effect is
100%. If an effect is heterogenous — some people show it and some do not — then the sample mean
will be “watered down” relative to the within-subject effect size, and will thus be representative of
neither the subgroup that shows the effect nor that which does not. In an experiment, the mean
effect size could vary across groups or conditions because the within-subject effect size differs,
but it could also vary if the proportion of people who show the effect differs.

This distinction bears important implications. For example, an intervention that has a
strong within-subject effect, even if it only applies to a modest subpopulation, could still have
useful practical or clinical applications. Conversely, an intervention that achieves an equivalent
group mean effect size when averaging over a negligible within-subject effect that is widely
present in the population may be less useful in practice — but also more likely to replicate in a new
sample, as a researcher does not have to be “lucky” in sampling subjects from the selected
subgroup. While may be tempting to assume such situations are exceptions, the strong correlation
between group mean effect size and the between-study heterogeneity of that effect among
preregistered replications indicates the largest effects are actually the most likely to vary across
subjects (Olsson-Collentine et al., 2020). Indeed, there is a growing recognition across fields of
behavioral research that effects measured and mechanistic models fit at the group-level often
deviate markedly from what is observed in any single subject (Bolger et al., 2019; Botella et al.,
2019; Grandy et al., 2017; Moreau & Corballis, 2019; Navarro et al., 2006). As such, Bryan and
colleagues have recently argued that the antidote to the reproducibility crisis in the behavioral
sciences is a “heterogeneity revolution,” in which systematic approaches to sampling and to
quantifying population heterogeneity are adopted (Bryan et al., 2021). While we agree with Bryan
et al. (2021) that researchers should more often adopt sampling plans that explicitly aim to capture
population heterogeneity when measuring already-established effects, much research aims merely
to establish the existence of novel effects predicted by theories. Even for the latter sort of research,
it would be highly informative for empirical studies to estimate and report the proportion of the
(sampled) population to which observed effects can be expected to apply, as well as useful
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quantities such as within-subject effect size or power estimates, both of which can inform sampling
approaches for future confirmatory or applied research.

Currently, standard approaches to dealing with population heterogeneity are likely to
exacerbate this problem; for instance, outlier removal aims to eliminate subgroup differences
before computing descriptive or inferential statistics. This approach yields sample mean effect size
estimates that neither are good estimates of the true population mean, as they exclude parts of the
population, nor capture real heterogeneity. A better approach would be to jointly estimate the
population prevalence of observed effects and the within-subject effect size for those to whom the
effect applies, so as to quantify heterogeneity instead of artificially removing it. Moreover, a
systematic difference in the prevalence of an effect between two populations (i.e. between-group
difference) may be of scientific interest; for example, as psychological differences between people
from Western and non-Western cultures have become increasingly well-documented, it would be
fruitful to dissociate whether such differences reflect the prevalence or size of effects, possibilities
that suggest distinct theoretical explanations (Henrich et al., 2010; Muthukrishna et al., 2020).
Moreover, one might wish to estimate the difference in the prevalence of two effects in the same
population (i.e. within-group difference) or the conditional probability/prevalence of one effect
given that a person shows a different effect — which may be used as evidence that two behavioral
and/or neural phenotypes are driven by the same latent trait.

When the ground truth status of individuals is known, estimating prevalence is simply a
matter of computing the sample proportion of individuals showing the effect. In practice, however,
we must deal with the possibility that some subjects may show an effect in reality, but we failed
to detect it in our experiment. In such cases, sample proportions are systematically lower than the
population prevalence, so frequentist approaches to prevalence inference have primarily aimed to
put a lower bound on population prevalence, rather than an estimate (Allefeld et al., 2016;
Donhauser et al., 2018). Without such an estimate, however, one cannot easily compare groups or
conditions. Ince and colleagues proposed a simple but powerful Bayesian method in which, given
the binary outcomes of null hypothesis significance tests (NHST) conducted within each subject,
models the incidence of a significant within-subject test as a Binomial distribution as a function of
the population prevalence and within-subject power (Ince et al., 2021). Not only does this approach
allow prevalence to be compared across groups or conditions, but it is applicable whenever a p-
value can be computed for each subject. However, estimates are sensitive to the arbitrary
significance level of the within-subject test, and as we show here, the approach cannot be fruitfully
extended to settings in which the within-subject power/effect size is unknown or may vary across
groups or conditions. That is, the Binomial model cannot simultaneously estimate both population
prevalence of an effect and the within-subject effect size.

In our past work, we have dealt with this issue by using Bayesian mixture modeling
(Hedger et al., 2020; Veillette, Gao, et al., 2024). This approach models the distribution of the
subject-level observations as a mixture of two or more subgroup distributions, allowing one to
infer the parameters of these distributions and the proportion of subjects that belong to each
subgroup simultaneously. However, using this approach for prevalence estimation requires
constructing an appropriate Bayesian model of the data, which may require substantial expertise
or might even be intractable. In the present work, we aim to combine the advantages of mixture
modeling with the broad applicability of the Binomial model. Our “p-curve mixture model”
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simultaneously infers the population prevalence and the (relative) within-subject effect size from
the unthresholded p-values of within-subject null hypothesis significance tests. Thus, it can be
uniformly applied to any study in which a significance test can be performed per-subject. Since it
does not require assuming a fixed power a priori as do previous methods, our method can be
applied to datasets that were not originally collected with within-subject statistics in mind; this
wide applicability affords the opportunity for researchers to estimate population heterogeneity
using existing data and experimental designs.

Methods
1. Bayesian mixture models for prevalence estimation

We will first describe how Bayesian mixture models can be used to estimate prevalence and effect
size generally, before moving on to p-curve mixture models which are a special case. An “effect”
here may, for example, refer to that of a treatment of intervention, or to a quantifiable behavioral
characteristic/skill — such as a performance measure on a task — that can be compared to a
meaningful null (“no effect”) distribution, as in the example in this section.

The general Bayesian approach to statistics is to first describe a generative model of one’s
data — that is, to specify the likelihood of the data given some parameters — and then use Bayes’
rule to infer plausible values for the parameters given the observed data. In a Bayesian mixture
model, this generative model entails that an observation can come from any one of at least two
distributions; thus, the marginal likelihood of the data is a mixture of the likelihoods of the
component distributions, weighted by the probabilities of an observation coming from each
component. In most applications of Bayesian Mixture models, the parameters of al/l component
distributions (e.g. their mean and scale) and the relative probabilities of each component
distribution are all estimated during model fitting. This is what most mixture modeling software
packages, Bayesian or frequentist, implement out-of-the-box (Benaglia et al., 2010). Mixture
models, Bayesian or otherwise, have often been used as a sort of probabilistic clustering technique
to infer the presence of latent subgroups within a large-sample datasets (Kim et al., 2020; Lubke
& Muthén, 2005), or to infer effect heterogeneity across studies in meta-analyses (Moreau &
Corballis, 2019). However, mixture models can be applied to achieve more specific inferential
goals by placing constraints on the shape of the component distributions (Frischkorn & Popov,
2023).

When one component distribution is constrained such that one component distribution is a
null H, distribution — the likelihood of a subjects’ data if there is no effect — and the other
distribution is an alternative H, distribution which ideally incorporates prior information about the
range of plausible effect sizes under the alternative hypothesis, then the probability assigned to the
H, distribution is an estimate of H;’s prevalence in the sampled population.

One such generative model for accuracy data, which we have used in previous work and
in Example A, is written as follows (Veillette, Gao, et al., 2024). Subject i, who is participating in
a two-alternative forced choice task, answers correctly with accuracy k;, such that their total
number of correct trials over the task is k;~Binomial(n;,s, k;). Subjects perform above chance
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at this task (i.e. H; is true) with probability y, the population prevalence. If H; is indeed true for
subject i, then 2(x; —0.5)~Beta(a, ), which constrains k; to be between 0.5 and 1 (the
definition of an above-chance accuracy), and k; = 0.5 (i.e. chance accuracy) if H,, is true. For
Bayesian estimation, priors must be placed on the parameters of the beta distribution «, f and on
the prevalence y, but these priors can be weakly or non-informative, such as a y~Uniform(0, 1)
prior for H; prevalence.

Once the model and prior distributions are specified, the posterior distribution for each
parameter — representing beliefs about plausible parameter values after conditioning on the
observed data — is given by Bayes’ rule. A normalizing constant for the posterior distribution (i.e.
to make it sum to 1) for a given parameter cannot usually be derived in closed form, but the
posterior can be sampled from without knowing the normalizing constant using Markov-Chain
Monte Carlo (Hoffman & Gelman, 2014).

To specify the above model, we had to (a) know what the likelihood of the data was under
the null hypothesis (e.g. k;~Binomial (1,5, 0.5)), (b) know what the likelihood of the data was,
given some effect size (e.g. accuracy) was under the alternative hypothesis, (c) have a prior
describing plausible values for that effect size (e.g. between 0.5 and 1), and (d) know how to
program the custom model and approximate posterior distributions for its parameters in a
probabilistic programming framework such as PyMC or Stan that will perform posterior sampling
for us (Gelman et al., 2015; Patil et al., 2010). We simply do not always have these ingredients.
Often, even the shape of the null distribution is not known a priori — e.g. the same situations where
one might use a non-parametric test in the NHST framework. Moreover, it is not practical to
assume all researchers have the combination of domain and technical knowledge to implement
such an ad hoc statistical model for their own, idiosyncratic dataset. If there were, however, a way
to transform observed data from arbitrary distributions into a distribution we always know enough
about to model this way — much like users of NHST can almost always resort to a non-parametric
test — then researchers would not need to write their own software for each use case.

2. The p-curve mixture model
2.1. p-curves

Since p-values most commonly appear in the setting of null hypothesis significance testing
(NHST), it may be unconventional to think of them as random variables. Indeed, in studies in
which only one p-value is computed or multiple p-values are computed on the same data, thus are
not independent observations, it would not be useful to think of them this way. However, when a
test is repeated multiple times on independent samples, then the independent p-values are indeed
random variables with a probability distribution. This sort of distribution, called a p-curve, has
been leveraged to study and correct for the effects of publication bias in the meta-analysis literature
(Simonsohn et al., 2014a, 2014b, 2015).

Under the null hypothesis, a p-curve is always Uniform(0, 1); this fact is built into the logic
of NHST, since the p-value can only fall under the significance level a just a proportion of the
time for any arbitrary a. Under the alternative hypothesis, the p-curve becomes increasingly left
skewed the larger the effect size or sample size (see Figure 1). One can derive an exact p-curve for
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a given statistical test, such as the #-test, as a function of the effect size and sample size (Simonsohn
et al., 2014a). Usefully, such an approach can be used to recover an effect size merely from
repeated p-values as has been done in meta-analysis (Simonsohn et al., 2014b).
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Figure 1: A probability distribution for p-values. Describing the likelihood of p-values from repeated, independent
tests of an effect with size §, these p-curves — specified by Equation 1 — are valid probability distributions that integrate
to one over the interval (0, 1). When the null hypothesis is true (§ = 0), the p-curve is equivalent to the standard
uniform distribution.

However, since the “sample size” is not always well-defined for a within-subject study
(e.g. consecutive trials in a task or neuroimaging measurement may not be independent
observations), we specify a general p-curve in Equation 1 that depends on a single effect size
parameter § using the standard normal probability density function ¢ and cumulative distribution
function ¢.

(™1 —p) - &)
(¢t (1 —p)) (1)

p ~ f(p,8) where f(p,5) =

The use of the normal distribution in our specification does not entail that our model will
work only with normally distributed data — unless you happen to be using a Z-test with sample
size one, in which case this p-curve is indeed exact — as we will verify in our simulations. It should
be duly noted though that, without a sample size parameter, the “effect size” parameter in our
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model is abstract/unitless and should only be compared across identical experiments (same number
of trials, design, etc.). However, this unitless effect size parameter can be converted back into
meaningful units by taking the calculating the area under the p-curve distribution up to (i.e.
cumulative distribution function at) some p = «, which is interpreted as the power of a within-
subject NHST at significance level a.

2.2. Mixtures of p-curves

Now that we have a probability distribution that can describe how p-values are distributed given
an effect size, we can incorporate it into a mixture model — which can then be applied whenever
per-subject p-values can be computed using NHST within each subject, regardless of the original
distribution of the data. As in our previous mixture model, subjects show an effect (i.e. H; is true)
with probability/prevalence y. If H; is true for subject i, then their p-value is distributed according
to p;~f (p;, 6), as defined in Equation 1, for some unitless effect size §. If instead H, is true, then
pi~f (pi, 0) or equivalently p; ~Uniform(0,1).

Before performing Bayesian inference given a set of observed p-values, one needs to assign
prior distributions to ¥y and §. In all simulations and examples in this manuscript, we will use an
uninformative y~Uniform(0,1) prior for the prevalence of H; and a weakly informative prior of
6~Exponential(2/3). The latter was chosen as it results in a prior 90% highest-density interval
for within-subject power (at significance level a = 0.05) of roughly [0.05, 0.95], and is this
relatively close to a uniform prior over within-subject power. Note that a flat prior, instead of an
exponential prior, would allow unreasonably high values of 6 and would not be “uninformative”
in this case. Our exponential prior, per our simulations, performs well across a variety of cases.

2.3. Between-group differences

p-curve mixtures can be used to estimate the difference in prevalence and in (unitless) within-
subject effect size between two independent groups of subjects. This is useful, for example, in a
between-subject experimental design with random assignment, or when comparing experimental
results between two distinct populations (e.g. men and women, liberal and conservatives,
Westerner and Easterners, etc.).

If the groups are independent, and thus group differences can be treated as fixed effects,
then it is appropriate to estimate the difference by fitting p-curve mixture models to each of the
two populations separately, drawing samples from the parameters of both model posteriors (see
Estimation and Software), and subtracting the samples between the groups’ models to
approximate samples from the posterior of the difference. We use this approach in our EEG
simulations, as well as in Example B and its accompanying code notebook.

2.4. Within-group differences

Differences in prevalence and effect size can also be estimated within a group, if one has conducted
two tests per subject with alternative hypotheses H; and H,. One may find it useful to do so if they
have measured the same effect in two within-subject experimental conditions (i.e. an experiment
designed to test for an interaction effect) or if they want to assess whether showing one effect
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makes it more or less likely that the same subject shows some other effect (e.g. whether above-
chance performance on one task is more or less prevalent than above-chance performance on
another task). It may even be used when a researcher wants to know if subjects who pass some
manipulation check are more or less likely to show an effect of interest — an alternative to outlier
rejection that does not require binary thresholding but is instead uncertainty-weighted.

In this case, unlike in the between-group case, models cannot be estimated separately for
each test, since subjects are observed in both tests and thus observations are not independent. In
this joint model, each subject either shows no effect in either test (denoted k,, = 1), just the H;
effect (denoted k,o = 1), just the H, effect (ky; = 1), or both effects (k;; = 1). koo, k19, ko1, and
k,, are Categorical/Multinomial(1) distributed with probabilities 8, 819, 81, 611, respectively.
The prevalence of H,, then, is y; = 6,9 + 641 and of H, is y, = 0y; + 61;. The conditional
probability that H, is true for a subject given that H, is true is P(H,|H;) = 6;,/y; and vice versa.
We place a minimally informative Dirichlet(1, 1, 1, 1) prior (a common default) on the 8’s.

This extended model is actually somewhat difficult to implement, as the discrete latent
variables k must be marginalized out analytically to ensure robust sampling from the posterior
during estimation. We have provided, as for the basic p-curve mixture model, a user-friendly
wrapper around our optimized implementation (see Estimation and Software).

2.5. Estimation and Software

Posterior distributions for all parameters in a p-curve mixture model can be approximated by
drawing thousands of samples from the posterior (we use 5,000 in our simulations and examples)
using a No-U-Turn sampler or other Markov Chain Monte Carlo sampler (Hoffman & Gelman,
2014). This procedure would be laborious to program by hand, but fortunately a number of
“probabilistic programming” frameworks can perform this sampling for you, which makes the p-
curve mixture model quite simple to implement for those already familiar with Bayesian modeling
(Gelman et al., 2015; Patil et al., 2010); our implementation uses PyMC for posterior sampling.
Posterior samples can be summarized using the posterior mean/expectation (estimated as the mean
of the posterior samples and the 95% (or whatever percent) highest density interval (HDI), which
is the smallest interval such that there is a 95% posterior probability the estimated parameter falls
within that interval.

We expect most researchers who could benefit from p-curve mixture modeling may not be
familiar with probabilistic programming or Bayesian statistics in general. To this end, we built a
user-friendly interface to our model implementation so that p-curve mixture models can be fit and
summarized in just a few lines of code. This interface is available as a Python package called
p2prev, which can be downloaded from the PyPI package server, from GitHub, or from Zenodo
(see Data and Code Availability). We provide documentation and code examples (corresponding
to the examples in this paper) along with the package; some examples use the package interface
(for beginners) and some implement the model directly in PyMC (for advanced users who may
want to modify the model).

3. The Binomial model
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To illustrate the advantages of p-curve mixture models, we also implement a version of
Ince et al.’s (2021) Binomial model for estimating population prevalence (Ince et al., 2021),
extended to accommodate uncertainty about within-subject power/effect size. In this model, the
probability of rejecting the null hypothesis for each subject is T = (1 —y)a + y(1 — B), given
the prevalence y, the Type I error rate @, and the Type II error rate § of the within-subject NHST.
The observed number of rejections k out of n subjects, then, is k~Binomial(n, ).

Ince et al. (2021) note that, if values of , § are fixed, then 7 is a deterministic function of
y. Instead of estimating the multilevel model they estimate the posterior distribution of  given
observed k, which can be calculated analytically if a m~Beta(1,1) = Uniform(0,1) prior is used
for  (due to the “conjugacy” property of the beta and binomial distributions). They then solve for
the implied posterior of prevalence y algebraically. However, the Type II error rate f — a function
of the within-subject effect size — is usually not known a priori. Ince et al., then, simply set § = 0
(i.e. within-subject power equals 1), such that their prevalence estimates are, in fact, a lower bound
on the true prevalence — which is only a tight lower bound when statistical power is effectively
100%.

The Binomial model can easily be extended to the setting where £ is unknown by putting
uniform priors on both  and y directly, then approximating their joint posterior distribution using
Markov Chain Monte Carlo (Hoffman & Gelman, 2014), as we do for our p-curve model.
Intuitively, it seems like this would yield the same benefits as our p-curve mixture model —
namely, simultaneous estimation of population prevalence and within-subject power/effect size.
However, this is not the case; the fact that the model considers the binary outcomes of the subject-
level NHST as observations instead of the unthresholded p-values results in a likelihood in which

an observed S = 0.5 could be (almost) equivalently well explained by y =1, = 0.5, by y =

0.5, 8 = 0, resulting in joint posterior distributions of y, § that are near-symmetric about the line
y = 1 — B. As a result, the posterior expectation of y and of (1 — ) both tend toward the same
value — the average of the true power and prevalence — as n increases, rather than tending toward
their respective ground truths. As we will illustrate in Example C, changing the significance level
a can also change the binary outcomes of the within-subject NHSTs thus changing the observed
k, which can lead to drastically different posterior estimates when n is small. Ideally, an estimator
would not be so sensitive to the value of an arbitrary parameter.

The extended Binomial model can be used for between-group comparisons of prevalence
or within-subject power in the same manner we described for the p-curve mixture model (see
Between-group differences), and we compared the sensitivity of that approach using the two
models in our simulations. Ince et al. (2021) also describe an analog approach to estimating within-
group differences, but we did not implement that version of their model here.

4. Bayesian model comparison

An advantage of framing the problem of estimating prevalence and effect size as inferring on the
parameters of a generative model is that the model can be compared using the full suite of Bayesian
model comparison tools. In particular, the null (all Hy) model, the alternative (all H;), and the
mixture (some subjects H, and others H; ) can all be compared, as all of these models are described
by p-curve likelihoods. Critically, this allows a researcher to perform Bayesian hypothesis testing
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to assess whether the population distribution of an effect is indeed heterogenous. Notably, since
the prevalence is a proportion, the posterior HDI will never contain 0 nor 1; thus, the mere fact the
HDI excludes these values cannot be used as evidence for population heterogeneity. Only model
comparison can be used to support claims about the presence of absence of population
heterogeneity when the HDI is close to these boundaries.

One approach to Bayesian model comparison is to estimate the leave-one-(subject)-out
cross-validated posterior likelihood of the data, which can be computed — with an uncertainty
estimate — efficiently using Pareto-smoothed importance sampling or PSIS (Vehtari et al., 2017,
2024). Intuitively, the model under which the likelihood of the held-out data is the highest is also
the most likely to explain new data. “Weights” can be computed for each model which are, roughly
speaking, a probability that each model will predict new observations better than the other models
(Vehtari et al., 2017). Because this method of model comparison is both computationally efficient
and relatively numerically stable, we have incorporated it into the p2prev package so that users
can estimate leave-one-out likelihoods and model weights with just a couple of lines of code.

However, the PSIS approach’s emphasis on prediction may not always be desirable. If, for
example, the true prevalence of an effect is zero, a p-curve mixture model should estimate a
posterior prevalence near zero, resulting in posterior predictions quite similar to those of the H,-
only model. PSIS may not differentiate between these edge cases as well as Bayes Factors, which
quantify how much the prior odds on which model is correct (rather than most predictive) should
be updated given the observed data. We estimate Bayes Factors by nesting the Hy-only, H;-only,
and H,y/H;-mixture models within a single, hierarchical model with a Categorical prior over
models (Kruschke, 2014). This nested model is numerically difficult to sample from due to the
discrete latent variable, which can require troubleshooting the sampler; consequently, we provide
a code example for estimating Bayes Factors in PyMC (corresponding to Example C) but do not
build this method into the p2prev package itself as we cannot pick default sampler settings that
will work in all cases. It should be noted that Bayes factors can be sensitive to the effect size (§)
prior, so researchers should ensure their choice of & prior does not unduly affect their results if
they deviate from validated default priors.

In cases where the population distribution is indeed heterogenous, the H,/H;-mixture
model should be sufficiently distinguishable from the Hy-only and H; -only models using the PSIS
method. In cases where the sample size is very small or if one wishes to support a claim that either
the H,-only or the H,-only model is true, we recommend using Bayes Factors instead as predictive
criteria may not discriminate the models. In addition, for an approach that is agnostic to the effect
size under H;, researchers can also test the Hy-only model in the frequentist framework by
combining p-values across subjects into a “global” p-value using Fisher’s method, Simes method,
or related approaches (Ganju & Ma, 2017).

5. Simulations
5.1. Prevalence estimation benchmark with classification accuracies

In this set of simulations, we aimed to benchmark the prevalence estimation performance of the p-
curve mixture model and of the Binomial model across various sample sizes in a setting in which
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within-subject statistical power to detect an effect using NHST was less than 100%. To this end,
we simulated (1) a setting in which within-subject power was low (~0.6) but prevalence was high
(~.95) and (2) a setting in which those were flipped and power was high (~.95%) and prevalence
was low (~0.6). We performed 1,000 simulations at every sample size from n = 3 to n = 60, spaced
by 3.

We also wanted to stress-test the p-curve mixture model by introducing some everyday
violations of its assumptions. The way we have specified the p-curve mixture model is such that
all subjects for which H; are modeled as having the same effect size §. We intend this to be
interpreted as the “average effect size given H;,” but we would like to verify that our specification
can tolerate mild over-dispersion of effect size. Consequently, we simulated 50 trials from subjects
with within-subject classification accuracies, for subjects in which H; was true, were drawn from
a distribution with (1) mean 0.65 + 0.01 SD in the low-power setting and (2) mean 0.75 + 0.01 SD
in the high-power setting. We computed p-values for each subject using a permutation test to show
that the within-subject NHST used to generate p-values does not need to make normality
assumptions or even be parametric, despite the presence of the normal density function in Equation
1. This choice is also motivated by the fact that it is common to evaluate classification performance
using permutation tests when one has estimated out-of-sample accuracies by cross-validation, such
as in multivoxel pattern analysis in neuroimaging where it is assumed the assumptions of the
binomial test are violated (Valente et al., 2021).

On each simulation, we compute the posterior expectation of the population prevalence
and the width of the 95% HDI (smaller means less uncertainty) under both the p-curve and
Binomial models, and we compute the frequentist false coverage rate of the HDI at each sample
size, which is the proportion of simulations in which the HDI contained the true prevalence. While
Bayesian HDIs do not provide coverage rate guarantees like frequentist confidence intervals, it is
nonetheless a desirable property when a 95% HDI achieves a false coverage rate near or less than
5% in practice, which can be evaluated by simulation (Gelman & Carlin, 2014).

5.2. Within- and between-group difference estimation with EEG data

In this set of simulations, we aimed to assess the sensitivity of the p-curve model for
detecting between- and within-group differences in population prevalence and in within-subject
effect size with realistically noisy data. We compare the p-curve model’s sensitivity to that of
group-level null hypothesis significance testing, though NHST does not differentiate between
prevalence and within-subject effect size contributions to detected changes in the group mean
effect size. In the between-group simulation, we also compared the model’s ability to differentiate
between changes in prevalence and effect size to that of the Binomial model.

We simulated electroencephalographic (EEG) event related potential (ERP) data by
adapting the simulation code used by Sassenhagen and Draschkow, in which a simulated ERP is
inserted into background noise that has been cut out of a real EEG recording (Sassenhagen &
Draschkow, 2019). This approach ensures that the noise properties reflect that of realistic EEG
data. On each simulation, we simulated 100 trials of EEG data (50 per condition) for each of 30
subjects per group. We assigned each subject to H, or H; with probability equal to the population
prevalence y = 0.45, and we inserted an ERP into one condition of H; subjects’ data, which we
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adjusted the size of until the power of a within-subject NHST (at significance level 0.05) was also
approximately 0.45. As is the gold-standard in the EEG literature, we computed within-subject p-
values with an independent-samples cluster-based permutation test which tests for an effect
anywhere across all electrodes and timepoints while controlling the familywise error rate (Maris
& Oostenveld, 2007). Naturally, the cluster-level test statistic in this NHST does not have a simple
distribution under the null hypothesis — EEG data is subject to substantial noise that is
autocorrelated across both electrodes and time — so this is meant to be a strong demonstration of
the power of p-curve mixture models where it would be impractical to construct a parametric
Bayesian mixture model.

In each between-subject simulation, we simulated another group of 30 subjects with either
higher H; prevalence (0.45->0.95) or higher within-subject power (0.47->0.96), which was
achieved by increasing the magnitude of the simulated ERP. For each within-subject simulation,
we generated another 100 trials per subject with similarly increased power or prevalence for some
test H,, ensuring that H, is true for all subjects in which H; was true. This latter scenario reflects
how most ERP studies would be designed; a 2x2 design in which one factor is designed to isolate
an ERP component of interest (i.e. compute a difference wave), and another factor (i.e. an
experimental manipulation) is meant to induce a change in that ERP component.

We perform 1,000 simulations of each of those four contrasts. We then quantify how
sensitive the models’ posterior probability of a prevalence increase across groups/conditions is at
correctly identifying prevalence increases without false alarming on power increases and vice
versa, using the area under the receiver-operator characteristic curve (AUROC) and the true
positive rate at a 5% false positive rate. We also apply a group-level NHST on each simulation,
first computing the subjects’ difference waves (average of 50 trials in one condition minus the
average of the 50 trials in the other condition) and inputting them into an independent samples
cluster-based permutation test for the between-group simulations and into a paired cluster-based
permutation test for the within-group simulations (Maris & Oostenveld, 2007).

6. Examples

We also describe examples that demonstrate the utility of the p-curve mixture modeling on real
data. In Example A (see Results), we reproduce the custom mixture model we used in a previous
study in which we tested (cardiac) interoceptive accuracy (Veillette, Gao, et al., 2024), and we
compare the resultant prevalence estimates to those obtained from a p-curve mixture model. In
Example B, we apply p-curve mixture models to a published dataset on absolute pitch (AP)
memory (Hedger et al., 2020), evaluating whether the effect of tonal language experience on pitch
memory is dichotomous (i.e. tonal language affects whether one has AP) or grated (i.e. language
experience effects pitch recognition accuracy, given that one already has AP). Lastly, Example C
illustrates how meaningful prevalence inferences can be made — albeit with high uncertainty —
from only a handful of densely sampled subjects, applying p-curves for estimation and model
comparison in an increasingly common “precision neuroimaging” setting (Poldrack, 2017). In
Example D, we estimate within-subject prevalence differences, and conditional prevalences of one
hypothesis given another, for EEG decoding results — both for decodable information throughout
the whole epoch and across time. We also estimate within-subject power.
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7. Data and Code Availability

The raw datasets used in our examples are available at the open data repositories documented in
the papers in which these data were originally reported (Hedger et al., 2020; Veillette, Chao, et al.,
2024; Veillette et al., 2023; Veillette, Gao, et al., 2024). However, we also provide smaller,
preprocessed versions of these datasets sufficient to replicate our examples in the same repository
as our code. Our GitHub repository (https://github.com/john-veillette/p2prev) contains the source
code for the p2prev package, tutorial examples including the examples in this paper, and code to
reproduce our simulations. The GitHub repository will be continually updated while we make
improvements to p2prev and its documentation, but all stable releases of the p2prev source code
and accompanying tutorial code are permanently archived on Zenodo, with a digital object
identifier (DOI) that always leads to the most recent release
(https://zenodo.org/doi/10.5281/zenodo.11459064) as well as a unique DOI for each release (e.g.
the version used for the simulations in this report, p2prev v0.0.2). The p2prev package can also be
installed from the PyPI package server using Python’s “pip”’ command.

Results
Example A: Interoception

In a previous study, we used a custom mixture model to estimate the population prevalence of
those who can feel their own heart beating (Veillette, Gao, et al., 2024). Subjects saw two circles
pulsing, side-by-side, on the screen in front of them; one circle was synchronized to their cardiac
systole (the phase in which blood pressure increases following a heart contraction, triggering
baroceptors in the arteries) and the other pulsed exactly anti-phase. Subjects were asked, on each
trial, to guess which circle was synchronized to their heartbeat sensations.

As described in Methods: Bayesian mixture models for prevalence estimation, we
originally modeled the number of correct trials k; for each subject i as k;~Binomial (14, 0.5)
under H, and as k;~Binomial(nys, ;) for some accuracy k; € (0.5,1.0) under H;, and we
sampled from the posterior of that mixture model given the observed k;’s from 54 subjects to
obtain an estimate of the prevalence of H; in the sampled population (i.e. above-chance

interoceptive accuracy). The posterior expectation for the prevalence of cardiac perceivers was
0.11 (95% HDI: [0.01, 0.21]).

Now, with p-curve mixture models, we can estimate the same quantity without constructing
and programming a custom model. Converting the subjects’ accuracies to p-values using a one-
tailed binomial test and then plugging those p-values into the p2prev package yielded a nearly
identical posterior (M = 0.10, 95% HDI: [0.01, 0.20], see Figure 2c¢). It is also possible to estimate
the per-subject probability of H; in both models — this was, in fact, what we were actually trying
to do in the original study — and we find even these per-subject probabilities are almost the same
in the two models (see Figure 2d). Still, it is worth noting one disadvantage of the p-curve model:
the custom mixture model yields an effect size estimate in units of accuracy, while the p-curve
model only gives an uninterpretable, unitless effect size (although that effect size parameter can
be converted into a statistical power at a chosen significant level).
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Figure 2: Null hypothesis significance tests as transformations of variables. (a) In a previous study, we estimated
the prevalence of above-chance performers on a discrimination task by modeling the distribution of subjects’
accuracies as a mixture between a Binomial distribution for subjects for whom H, was true (at-chance accuracy) and
a Beta-Binomial distribution for subjects in which H, was true (above-chance accuracy). (b) We could have instead
converted the accuracies to p-values using a binomial test and modeled the distribution of p-values as a mixture
between two p-curves. (c) Both models result in almost identical posterior distributions for the population prevalence
and (c) identical per-subject posterior probabilities of H.

Prevalence estimation benchmark

Like essentially all Bayesian estimators, the p-curve mixture model’s posterior mean is a biased
estimator; it is heavily influence by the posterior distribution when the sample size is small but

gets closer to the true prevalence as n increases (see Figure 3a). The Binomial prevalence model
(Ince et al., 2021), however, is unable to distinguish between population prevalence and within-
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subject power, so its posterior mean converges near the average of the two as the number of
subjects increases.
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Figure 3: p-curve mixture model outperforms state-of-the-art when within-subject power is not known. In all
panels, dots reflect the mean across all simulations and bars contain the values from 95% of simulations. (a) The p-
curve mixture model’s expected population prevalence (a.k.a. posterior mean) gets closer to the true prevalence as it
observes more data, but the Binomial model cannot differentiate between prevalence and within-subject power, so its
posterior mean converges somewhere between the two. (b) The p-curve’s highest density interval (HDI), which
contains 95% of posterior probability, shrinks as the model is given more data, reflecting greater certainty, but the
Binomial model’s HDI width is lower-bounded by the difference between power and prevalence. The p-curve mixture
model maintains a false coverage rate (proportion of simulations in which the true prevalence is not contained in the
HDI) comparable to that of a frequentist confidence interval.

The p-curve mixture model gets (justifiably) less uncertain when it has more data; that is,
the interval that contains 95% of the posterior probability (95% HDI) shrinks as the number of
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subjects gets larger (see Figure 3b). Conversely, as the Binomial model cannot distinguish between
high-prevalence/low-power and low-prevalence/high-power, its HDI is almost never smaller than
the difference between power and prevalence. Thus, after some time, additional data ceases to be
useful to the Binomial model, but the p-curve mixture model continues to learn from new data.
Notably, the p-curve mixture model, though it does not come with a false-coverage rate guarantee
like a frequentist method would, yields 95% HDIs that achieve empirically strong false coverage
rates near or below 5% much like a frequentist 95% confidence interval.

Sensitivity to between- and within-group differences in EEG data
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Figure 4: p-curve mixture models can detect and discriminate between differences in effect prevalence and
effect size between groups or conditions. (a) We simulated EEG data by inserting a simulated evoked response into
background noise from a real EEG recording. (b) On each simulation, we simulated two groups of p-values for within-
subject tests of the evoked response, manipulating either the prevalence of the evoked response, on left, or its
magnitude in those who show the effect, on right. The model was highly sensitive at detecting prevalence or effect
size differences between independent groups of subjects, on top, or between two within-subject conditions, on bottom.
False positives, here, refers to mistaking a prevalence increase for a power/effect size increase or vice versa. (c) The
detection rate at the 5% false positive rate is compared to the sensitivity of a group-level NHST with significance level
0.05. In contrast to the normative interpretation of a significant difference in group mean, NHST was highly sensitive
to changes in prevalence but less sensitive to changes in effect size than p-curve mixtures. In the within-group case,
there is no apparent sensitivity cost to using p-curve mixtures, which can dissociate between differences in prevalence
and within-subject power/effect size.

The p-curve mixture model was highly sensitive to changes in population prevalence and in within-
subject effect size in our simulation (see Figure 4). The model is sensitive to between- or within-
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group differences in prevalence or in within-subject power without mistaking one for the other
(see Figure 4b). Moreover, while significant differences in the group mean effect size are often
interpreted as differences in within-subject effect size, NHST was highly sensitive to changes in
the population prevalence (see Figure 4c). Actually, p-curve models outperformed NHST at
detecting changes in within-subject effect size, likely because the p-curve model’s effect size
estimate isolates those subjects who actually show the effect — implicitly serving the function of
outlier removal but without imposing an arbitrary threshold.

It is worth noting that, while the p-curve mixture models obtained strong sensitivity at a
5% false positive rate (see Figure 4c¢), the cutoff at which this 5% rate was obtained — that is, the
posterior probability of a prevalence or power increase at or above which one would say that there
is, in fact, an increase in prevalence or power — is not necessarily 95%. In our simulations, the
posterior probability threshold that yielded a 5% false positive rate for differences in effect size
was roughly 95% (0.958 and 0.962 for between- and within-groups respectively), but was much
lower for differences in prevalence (0.846 and 0.752 respectively). This is not a bad thing; actually,
it is a hallmark of high specificity. Our posterior probability of a prevalence difference is
insensitive to changes in within-subject effect size, which is what we want. The true Bayesian
approach would be to simply report to posterior probabilities, but pragmatically some researchers
may indeed have a specific reason to care about frequentist false positive rates. Such a researcher
could always take a brute-force approach — at the cost of computation — and use the p-curve
model’s posterior probability as the test statistic for a permutation test, and thus obtain a frequentist
p-value for prevalence or effect size differences, though we think this is not usually necessary.

Example B: Pitch Perception

Absolute pitch (AP) — the ability to recognize musical notes by their pitch alone -- is generally
cited as quite rare with only 1 in 10,000 demonstrating this; even trained musicians normally
require the aid of a reference note (Takeuchi & Hulse, 1993). A common claim in the literature is
that experience speaking a tonal language increases the likelihood that one will develop absolute
pitch. However, studies tend to dichotomize subjects into AP and non-AP groups based on whether
they exceed some threshold accuracy. The number of subjects who exceed any binary threshold,
regardless of whether it was set arbitrarily or by some statistical criteria, is in principle a function
not just of the prevalence of AP but also of the pitch-labelling accuracy of those subjects who do
have AP. Thus, an alternative explanation for a higher proportion of tonal language speakers
clearing some threshold is an increase in effect size, not in prevalence.

In a previous study (Hedger et al., 2020), we collected behavioral judgments in a pitch-
labeling task from a large sample of online participants — many of whom were attracted,
unconventionally, by an article in the Wall Street Journal (Mitchell, 2017). Here, we analyze that
dataset to estimate the difference in AP prevalence and in within-subject effect size. We first input
the one-tailed p-values given by a binomial test on subjects’ accuracies into p2prev to fit a p-curve
mixture model on the full sample, estimating a prevalence of 0.53 (95% HDI: [0.46, 0.61]). It is
important to note that prevalence estimates are always for the sampled population, which is usually
not the general population. Here, our subjects opted to take an online quiz to see if they have AP
after reading about it in a newspaper article, so our prevalence estimates likely refer to a population
that has self-selected for believing they are above-chance at naming musical notes.
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Then, we fit p-curve mixture models to tonal language speakers and other subjects
separately, and we subtract posterior samples between groups to approximate the posterior of the
difference (see Methods 2.5). This results in a 95% highest density interval of [-0.02, 0.35] for the
prevalence increase as a result of speaking a tonal language — not evidence against a prevalence
increase by any means but the HDI does still contain zero as a plausible difference. Interestingly,
however, the HDI for the within-subject effect size substantially departs from zero (95% HDI:
[0.18, 1.22]), which is fairly strong evidence that tonal language experience increases the within-
subject effect size given that a subject already has AP, seemingly in contrast to how the effect of
tonal language is framed in the literature.

Of course, the dataset on which we did this analysis is quite idiosyncratic, so we do not
mean to suggest that the AP literature should reevaluate its canon based merely on Example B in
a methods paper. However, while our Introduction and simulation results warn against
interpreting differences in the mean effect size as effect size differences per se, this example nicely
illustrates that putative prevalence differences may also turn out to be accounted for by effect size
differences when subjected to additional statistical scrutiny. Theoretical assumptions should
always be evaluated explicitly, and p-curve mixture models provide a broadly applicable tool for
doing so.

Example C: Precision fMRI

It is becoming increasingly common in the neuroimaging literature to collect lots of data from very
few subjects, rather than a bit of data from many subjects as in a traditional group study. This
“precision neuroscience’ approach allows one to detect within-subject effects that would wash out
in a group average due to poor spatiotemporal alignment across subjects or other idiosyncrasies in
the functional organization of the brain (Poldrack, 2017). However, as such studies tend to forgo
group-mean inference in favor of within-subject statistics, the extent to which results should be
expected to generalize to the population is usually left to be inferred by the reader. While some
researchers have suggested effects strong enough to be observed in a single subject should be
assumed to be nearly universal (Dosenbach & Gordon, 2023), this inference is contradicted by the
empirical observation that large effect sizes tend to be associated with more rather than less
heterogeneity (Olsson-Collentine et al., 2020). Such generalization claims would be substantiated
empirically if explicitly support using prevalence statistics and inference. Indeed, since these
densely sampled studies already perform significance testing within each subject — just as required
for a p-curve mixture model — some researchers have already proposed that prevalence statistics
are the best way to combine results across subjects (Ince et al., 2022).

In a recent study, we collected 100 minutes of fMRI data (as part of a longer experiment)
from 4 subjects while they performed a motor task in an MRI scanner and we recorded their hand
movements via motion tracking (Veillette, Chao, et al., 2024). We attempted to predict subjects’
continuous brain activity from the internal representations of a computational model that performs
the same motor task in a biomechanical simulation, aiming to approximate the “inverse kinematic”
computation required to generate muscle movement activations that will move the hand to a target
position. We obtained out-of-sample R? values from this theoretically-motivated model and from
a control model, and we compared R?’s non-parametrically using threshold-free cluster
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enhancement to obtain a familywise error rate (FWER) corrected p-value for every voxel in cortex
(Smith & Nichols, 2009). As suggested by Ince and colleagues, the lowest FWER-corrected p-
value across all voxels can be used as a “global” p-value for the presence of an effect anywhere in
the brain (Ince et al., 2021). Similarly, the lowest FWER-corrected p-value in a region of interest
(with FWER correction across the whole brain, not just that ROI) is a p-value for the presence of
an effect in that region. This allows researchers to abstract over spatial misalignment when
aggregating results across subjects.

The smallest FWER-corrected p-values across cortex for each subject were 0.00060,
0.02999, 0.04939, and 0.94601, so we could reject the null hypotheses that our theoretical model
does not outperform the control model in % subjects at significance level « = 0.05 or in Y4 subjects
at significance level @ = 0.01. Consequently, when we applied the Binomial prevalence model,
we obtained totally different estimates depending on whether we used a = 0.05 (prevalence =
0.721, 95% HDI: [0.382, 1.00]) or @« = 0.01 (prevalence = 0.504, 95% HDI: [0.114, 0.993]). Our
discomfort with this estimator’s dependence on an arbitrary parameter is what motivated us to
develop p-curve mixture models in the first place. When we put our p-values into p2prev, we
estimated a prevalence of 0.610 (95% HDI: [0.224, 0.972]). As seen in Figure 3, the 0.610 posterior
expectation is likely not very meaningful at such a small sample size; however, the HDI bounds
maintain strong false coverage rate properties even at very low sample sizes and are thus
informative.

While three of our subjects had low within-subject p-values, one subject had a much higher
p-value. Is this enough evidence to suggest that the subject showed no effect, or is it the case that
we were just underpowered to detect it? Do we even have enough evidence to support that our
subjects with low p-values do show an effect or were they statistical flukes? P-curve models can
help with this as well, as we can compare our mixture model to p-curves for the null and alternative
hypothesis alone. When we calculated Bayes Factors (see Methods 4: Bayesian Model
Comparison), we obtained BF =42.03 when comparing the mixture model vs. the Hy-only model,
indicating that the observed data were more than 42 times more likely under the mixture model in
which the null hypothesis is always true. This is strong evidence that our subjects indeed show an
effect. When we compare the mixture model to the H; -only model, on the other hand, we obtained
a much lower Bayes Factor of BF = 3.86. While evidence leans in favor of the mixture model,
indicating that a model in which not all subjects express the effect can explain the high p-value
better than the H;-only model, the evidence is not resounding. (For reference, some journals
require Bayes Factors of at least 10 to support claims, though this is somewhat arbitrary). Of
course, evidence should not be resounding; we only saw one low p-value! Nevertheless, we obtain
informative results even with a small sample size, and Bayesian model comparison provided a
rigorous way to collectively evaluate our within-subject results without requiring us to use an
arbitrary a threshold.

Example D: EEG Decoding

In a recent study with 25 subjects, we used functional electrical stimulation (FES) of arm muscles
to usurp subjects' intentional motor control in a response time task (Veillette et al., 2023). By
carefully timing the latency of FES to preempt subjects’ volitional movements, we were able to
elicit electrically-actuated finger movements that, under controlled timing conditions, subjects
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either claim they themselves caused the movement or that they did not cause the movement. We
accomplished this using an adaptive procedure that, for each subject, estimated and simulated at
the FES latency at which subjects responded — when asked after each trial whether they or the FES
caused the button press in the reaction time task. The timing was set so that that subjects reported
that they caused the movement on roughly 50% of trials. This approach created balanced sets of
trials subjects perceived as self- or other-caused, so that their sense of agency (SoA) could be
decoded from their EEG.

While we reported group-averaged results in the original study (Veillette et al., 2023), as
is standard, in analysis of the data we noted substantial heterogeneity in how subjects responded
to the adaptive procedure. In some subjects, the adaptive procedure honed in on their threshold
early and FES remained at that threshold latency for the rest of the experiment. In these subjects,
a within-subject logistic regression predicting agency judgments from FES latency would return
significant results, as subjects were highly sensitive to deviations from their threshold. However,
other subjects’ thresholds seemed to slowly shift over time throughout the experiment; in these
subjects, the same logistic regression would yield non-significant results, as the same 50/50
response distribution was observed across a range of latencies. With p-curve mixture models, we
can now better assess how decoding of agency judgments from EEG is related to this behavioral
difference.

Using a within-group prevalence model, we can model the joint probability of subjects'
agency judgments being sensitive to FES latency around their threshold (i.e. are “stable-threshold
subjects” vs. “unstable-threshold subjects”) and of agency judgments being decodable from their
EEG — for which we computed a p-value for the 10-fold cross-validated decoding AUROC using
a permutation test at each time-point in the epoch following FES onset. As described by Ince et al.
(2021), we can perform prevalence inference at each time in the EEG epoch, or we can take the
lowest familywise error rate corrected p-value across subjects as a “global” p-value testing the null
hypothesis that agency judgments are not decodable from their EEG at any point. Familywise error
rates corrected p-values were compute using the maximum statistic method (Nichols & Holmes,
2002). Using the lowest familywise error rate corrected p-value in this way satisfies the
assumptions of the p-curve mixture model, as its null distribution is uniform, but this would not
necessarily be the case for, say, a false discovery rate corrected p-value.

Using the within-group p-curve model described in Methods, we estimate the prevalence
of behavioral sensitivity of agency judgments to FES latency — over the whole epoch — as 0.655
(95% HDI: [0.473, 0.870]) and that of decodable agency judgments as 0.922 (95% HDI: [0.831,
0.996]), with evidence for a prevalence difference of 0.268 (95% HDI: [0.054, 0.479]). Logically,
as the prevalence of decodable agency judgments exceeds that of the behavioral sensitivity effect,
we can already conclude that above-chance decoding performance can be achieved for both
behavioral phenotypes. However, our within-group prevalence model also allows these conditional
probabilities to be estimated explicitly. The prevalence of EEG-decodable agency judgments
among stable-threshold subjects is estimated as 0.942 (95% HDI: [0.835, 1.000]) and among
unstable-threshold subjects is 0.881 (95% HDI: [0.668, 1.000]), without strong evidence for a
difference (0.061, 95% HDI [-0.169, 0.321]). However, just because there is not a difference in
prevalence across the whole EEG epoch does not mean there is no difference at all. We can also
calculate the conditional prevalences across time as seen in Figure 5.
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Figure 5: Prevalence estimation across time with EEG decoding results. (a) The group-mean and single subject
decoding performance time courses for predict agency judgments from the EEG as described in Example D. (b) The
posterior for the population prevalence of decodable agency judgments at any point in the epoch. (c) The prevalences
of decodable agency judgments at specific times in the EEG relative to electrical muscle stimulation, with posterior
means for both total prevalences and prevalences conditional on the behavioral effect, and 95% HDIs for total
prevalence. (d) The posterior prevalence difference conditional on the behavioral effect at 0.033 seconds, showing
stable-threshold subjects have a higher prevalence of decodable information at this time.

As seen in Figure Sc, the prevalences conditional on being a stable-threshold or unstable-
threshold subject can be computed at each time following stimulation, and a posterior difference
can be estimated. For example, at 0.033 seconds after stimulation, just after the initial cortical
response — which is expected at around 20 milliseconds for stimulation on the wrist (Anziska &
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Cracco, 1981) — decodable information is already present in a majority of stable-threshold subjects
(0.820, 95% HDI: [0.588, 1.000]). However, unstable-threshold subjects are less likely to show
decodable information at this time point (prevalence = 0.361, 95% HDI: [0.022, 0.688]; difference
= 0.458, 95% HDI: [0.016, 0.861]). In other words, the neural responses to muscle stimulation
tend to predict agency judgments earlier in stable-threshold subjects, speculatively reflecting
increased sensitivity to low-level sensorimotor mismatches.

Notably, while it is possible that bifurcating subjects based on their judgment stability
might allow group-mean approaches to detect a behavior-contingent difference in mean decoding
performance, the prevalence estimation approach is able to support the claim that decodable
information is absent at this time in a higher proportion of unstable-threshold subjects. As
information-based measurement such as decoding accuracies are known to show significantly
above-chance group-mean performance even when decoding is only achievable in a minority of
subjects (Allefeld et al., 2016), it is unlikely group-mean approaches — even those that can support
null results in principle, such as equivalence tests or Bayes factors — could ever support such a
finding unless prevalence were actually zero. Indeed, for this same reason, significant group-mean
decoding results actually do not generally support the claim that decoding is possible in a majority
of subjects; formal prevalence inference is required to assess the population generalization of any
“multivariate pattern analysis” (MVPA) study, though this fact is frequently ignored in the
literature (Allefeld et al., 2016; Hirose, 2021). This can be seen in Figure 5, however, as significant
group-mean decoding performance precedes the time at which we can conclude that prevalence
exceeds 50% of the population. Conversely, the group-averaged time courses in Figure 5a may
give the impression that decoding time courses are smooth, but there are numerous instances where
we can conclude the prevalence of decodable information is well below 100% in Figure 5c. This
indicated that individual decoding time courses are heterogenous, which is not at all obvious from
looking at the single subject time courses, which could easily be dismissed as noise around a
population mean.

Finally, as out-of-sample prediction in common cross-validation schemes are not identically and
independently distributed due to dependence across folds (Dietterich, 1998), and thus decoding
performance metrics tend not to follow a known distribution, performing power analyses for
MVPA studies is challenging even among other neuroimaging studies. As p-curve effect size
estimates, though uninterpretable in-and-of-themselves, can be easily converted into within-
subject power estimates at any false positive rate (see Methods: 2.1), we can report within-subject
power estimates post hoc, which can be extremely useful for planning future research. In this
example, the within-subject power for detecting above-chance decoding at any point over the EEG
epoch at significance level 0.05 is 0.956 (95% HDI: [0.918, 0.988]). Note that, in addition to
providing a valid point estimate, our approach yields a credible interval (or full posterior) for the
within-subject power; in contrast, post hoc power estimates for group-mean NHSTs are essentially
useless, providing no information beyond that given by the p-value itself (Althouse, 2021).

Discussion

When we began developing p-curve mixture models, we were anticipating they would be applied
primarily to dense sampling studies, offering only modest benefits over prevalence estimation
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methods that require the power of within-subject tests to be near 100% (Ince et al., 2021). It is
important to note, however, that we obtain strong performance even when (simulated) subjects
have fairly low trial counts; 50 trials per condition in an EEG as experiment, as in our simulations,
is certainly quite modest. Moreover, we were surprised to learn that p-curve mixture models can,
in some cases, be applied without any loss in sensitivity compared to group-level null hypothesis
significance testing, as in our within-group difference simulations where we even saw sensitivity
gains (see Figure 4c). Applying these models instead of, or in addition to, traditional NHST can
provide a more complete description of effect distributions within and across populations — a
critical tool, we believe, for a time in which population heterogeneity in both psychological traits
and functional brain organization are increasingly discussed (Henrich et al., 2010; Poldrack, 2017).

Indeed, a strong limitation of existing methods for prevalence estimation has been that they
only provide lower bounds on the population prevalence (Allefeld et al., 2016; Ince et al., 2021),
or otherwise require neraly 100% statistical power to yield accurate estimates of the true
prevalence (Ince et al., 2021). As such, prevalence estimation in the behavioral sciences has been
primarily geared toward studies explicitly designed to achieve very high within-subject power
(Ince et al., 2022). Our novel approach provides an estimate of prevalence regardless of the within-
subject power of a study and can thus be applied to datasets from experiments originally designed
to test for differences in group means. This wide applicability allows researchers to easily quantify,
with appropriate uncertainty, the proportion of the population to which their findings are expected
to represent. This metric may provide crucial insight into how well-suited basic science findings
are for translation to clinical settings, and empirical prevelance measurements could shed light on
the causes of non-replications as researchers debate the role of generalizablity in precipitating the
replication crisis (Bolger et al., 2019; Botella et al., 2019; Grandy et al., 2017; Moreau & Corballis,
2019; Olsson-Collentine et al., 2020).

It should be kept in mind, however, that prevalence estimates only pertain to the population
from which the study sample was drawn; metaanlaytic findings seem to suggest that some fields
of behavioral science — such as brain training, video gaming, mindset, and stereotype threat
research — are particularly prone to produce treatment effect distributions with multiple modes that
would not be well captured by a p-curve mixture model (Moreau, 2021). In this vein, while
quantifying prevalence is an easy practice for empirical researchers to adopt in the interest of
improving the precision and scope of their claims, it may only be the first step required to assess
generalization in a research program aiming to design meaningful interventions or influence public
policy (Bryan et al., 2021).

Many subfields in the behavioral and biological sciences carry unchecked assumptions
about what their group mean differences really, well, mean. By providing a user-friendly interface
to p-curve mixture models with our p2prev software package, we hope to facilitate the use of
Bayesian mixture models so that scientists can rigorously evaluate these assumptions. Doing so
need not necessarily entail collecting new data or adjusting experimental designs; our method is
well-suited to glean novel insights from existing datasets — as illustrated by some of the worked
examples in this paper. As such, we hope p-curve mixture models work their way into the
experimentalist’s toolkit.
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