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ABSTRACT: We establish a synthetically convenient method to degrade polyacrylate homopolymers. Carboxylic acids are installed
along the polymer backbone by partial hydrolysis of the ester side chains, and then, in a one-pot sequential procedure, the carboxylic
acids are converted into alkenes and oxidatively cleaved. This process enables the robustness and properties of polyacrylates to be
maintained during their usable lifetime. The ability to tune the degree of degradation was demonstrated by varying the carboxylic
acid content of the polymers. This method is compatible with a wide range of polymers prepared from vinyl monomers through
copolymerization of acrylic acid with different monomers including acrylates, acrylamides, and styrenics.

Polyacrylates are regularly used in a number of applications
including packaging, paints, coatings, adhesives, and

sealants.1−10 One of the most attractive features of
polyacrylates is their durability, which arises from their
chemical stability. However, the robust nature of polymers
with all-carbon backbones often leads to the accumulation and
persistence of post-consumer polyacrylate waste in landfills or
oceans.11−14 Accordingly, it is projected that 11 billion metric
tons of plastic waste will amass in the environment by 2025.15
Although there are economic and environmental incentives for
recycling, there are limited options for treating discarded
plastics.16 Considerable efforts have focused on developing
methods to recycle polymethacrylate materials through
depolymerization back to monomers or triggering midchain
cleavage via the formation of backbone radicals.17−29 In
contrast, significantly less progress has been made toward
deconstructing polyacrylates.30
Presently, the primary strategy for synthesizing degradable

polyacrylates entails copolymerization of the acrylate with a
specialized cyclic comonomer through radical ring-opening
polymerization (RROP).31 For example, cyclic ketene acetal
(CKA) monomers allow installation of hydrolyzable ester
groups along the backbone.32−35 However, CKAs are less
reactive than acrylates, which often leads to compositional drift
during the copolymerization.32,35 Thus, scission of the labile
esters of the resultant polymers produces oligomeric or even
polymeric fragments with high dispersity. Thioesters or esters
can be installed along the backbone in a more statistical
manner through copolymerization with the macrocyclic
thionolactone dibenzo[c,e]oxepane-5-thione (DOT) or a
macrocyclic monomer that contains an allyl alkylsulfone
motif (Figure 1).36−40 Additionally, it recently was shown
that photolabile coumarin dimers can be installed in the main
chain to enable cleavage with UVB light.41
Although copolymerization with a cleavable monomer

effectively imparts degradability to polyacrylate backbones,
this approach is often synthetically challenging and may have

detrimental effects on the properties of the polymers prior to
deconstruction. For instance, preparation of degradable
acrylate copolymers by RROP generally requires synthesis of
a complex cyclic monomer and specific polymerization
conditions to ensure the comonomers have a similar
propensity to propagate by radical polymerization. An
additional drawback is that incorporation of hydrolyzable or
photolabile groups in the main chain inevitably impacts the
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Figure 1. Methods to degrade polyacrylate backbones.
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thermomechanical properties of polyacrylate materials and
decreases their stability and longevity.37,39 Therefore, it would
be beneficial to have a technique to efficiently degrade
polyacrylates without relying on nonacrylate comonomers.
Here, we present a strategy that involves hydrolysis, followed
by dehydrodecarboxylation of polyacrylate homopolymers, to
install cleavable alkene moieties in the backbone. In this way,
the structure and properties of polyacrylates will be preserved
during use, degradability can be introduced when the materials
are ready to be discarded, and the approach is directly
applicable to existing polyacrylates.
It has been reported that iridium, acridinium, or acridine

photocatalysts can be paired with cobaloxime, a cooperative
transition metal catalyst, to transform carboxylic acids into
olefins, in the absence of stoichiometric oxidants.42−48 When
decarboxylation is catalyzed by acridine, the acridine forms a
hydrogen-bond complex with the carboxylic acid and catalyzes
O−H-hydrogen atom transfer (HAT), removing the need for
the formation of carboxylates.48 The alkyl radicals generated by
decarboxylation then experience C−H-HAT with the cobalox-
ime to furnish alkenes. We previously implemented dual
catalysis by acridine and cobaloxime to afford external alkenes
in copolymers through decarboxylative elimination of meth-
acrylic acid (MAA) units.27 In the current work, we show that
acrylic acid (AA) copolymers provide direct access to acetylene
(A) copolymers, which are degradable.
Ozonolysis is the standard method for cleaving alkenes and

is extensively applied at many scales due to its operational
simplicity and broad substrate scope.49−52 Additionally,
ozonolysis is less expensive than protocols that involve
osmium tetroxide, ruthenium, or manganese catalysts and
avoids the generation of toxic transition metal waste.53−56

Besides serving as degradable macromolecular structures, A
copolymers with acrylate units also provide access to other
functional acrylate copolymers. We envision that the backbone
alkenes will be amenable to hydroesterification, hydro-
amination, hydration, hydrohalogenation, and other reac-
tions.57−60 Moreover, acrylate-A copolymers have better
solubility, processability, and stability than polyacetylene
(PA) homopolymers, indicating that, without any further
modification, they may function as valuable PA precursors and
derivatives.61,62
To evaluate the decarboxylative elimination of carboxylic

acid side chains to form internal alkenes in polymer backbones,
several copolymers containing approximately 20 mol % AA
were synthesized by reversible addition−fragmentation chain
transfer (RAFT) polymerization. We synthesized copolymers
of AA with methyl acrylate (MA),27 tert-butyl acrylate (tBA),
N,N-dimethylacrylamide (DMA), and styrene (S). In general,
in each of these copolymerizations, the comonomers were
consumed at similar rates, confirming that the AA units were
consistently incorporated throughout the polymer formation
(Figures S1−S3). The pseudo-first-order kinetic plots were
roughly linear, indicating that the copolymerizations had
constant radical concentrations. In addition, the proportional
relationships between the molecular weights and conversions
of the growing polymers, monomodal gel permeation
chromatography (GPC) traces, and low dispersities (1.12 to
1.29) illustrated that the polymerizations were controlled
(Table S1, Figures S1−S10). Although a controlled radical
polymerization is not necessary to synthesize copolymers with
AA units, narrow molecular weight distributions facilitate
assessment of chain scission.

With several AA copolymers in hand, we next examined
dehydrodecarboxylation of the copolymer of MA and AA
(P(MA-co-AA)19%). We found that the optimal reaction
conditions included 9-mesityl-2,7-dimethylacridine (A2, 12
mol %) and Co(dmgH)2PyCl (12 mol %) cocatalysts, a solvent
mixture of dichloromethane (DCM) and acetonitrile (MeCN),
and irradiation by a purple LED (395 nm) at room
temperature (fan cooling) (Table 1 and Figures S14−S15).

Analysis of the 1H NMR spectrum of the newly formed P(MA-
co-A)19% indicated that 74% of the carboxylic acids in the
precursor polymer were converted into alkenes (Table S2 and
Figure S16). It should be noted that, although only one isomer
of the alkenes formed is depicted in Figure 1 for simplicity,
another regioisomer is possible, as shown in Figure S13.
Further characterization of the dehydrodecarboxylation by
GPC demonstrated that the release of CO2 and H2 during the
reaction resulted in a decrease in the molecular weight of the
copolymer (Figure S31).
Various conditions for decarboxylative elimination were

evaluated to determine the optimized conditions described
above. First, no reaction occurred without light irradiation or
addition of a photocatalyst. Several different acridine
derivatives were assessed for their efficacy as photocatalysts.
Replacement of A2 with 9-mesitylacridine (A1) or 2,7-di-tert-
butyl-9-mesitylacridine (A3) resulted in lower degrees of
alkene formation in the copolymer. Gratifyingly, use of A2
instead of unsubstituted acridine led to disappearance of the
small high molecular weight shoulder, likely due to coupling,
that was present in the GPC trace of the decarboxylated MAA
copolymer (P(MA-co-MAA)22%) that was previously reported

Table 1. Optimization of the Dehydrodecarboxylation
Reaction

Polymer
Deviation from
Conditionsc

Mn,f
(g/mol)d Đf

Alkene Yield
(%)e

1a None 21,200 1.32 74
1 No light f f 0
1 No A2 f f 0
1 A1 instead of A2 21,300 1.63 48
1 A3 instead of A2 20,400 1.33 60
2b 8 mol % catalysts 21,100 1.25 Quant.

a1 is P(MA-co-AA)19%. b2 is P(MA-co-MAA)22%. cThe reaction was
conducted with A2 (12 mol %) and Co(dmgH)2ClPy (12 mol %) in a
mixture of DCM and MeCN (2 mL, 2:1 v/v%) under irradiation by
395 nm light for 15 h. dMn,f was the molecular weight of the polymers
after dehydrodecarboxylation. eThe degree of alkene formation was
estimated by 1H NMR spectroscopy. fNo reaction occurred.
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(Figures S17 and S34).27 This was likely due to the higher
turnover efficiency of A2.63 During dehydrodecarboxylation,
the carboxylic acid of the chain transfer agent was converted
into an alkene, while the trithiocarbonate was unchanged
(Figures S18 and S19).
After formation of P(MA-co-A)19%, which had cleavable

alkenes along the backbone, degradation of this copolymer by
ozonolysis was investigated (Figure 2). To cleave the
backbone, methanol was added to the reaction mixture at 0
°C, followed by ozone. Chain scission was complete in less
than 1 h, indicating that the oxidative cleavage was rapid.
P(MA-co-A)19% degraded into low molecular weight oligomers
(Figures S20 and S39). Notably, the dehydrodecarboxylated
polymer did not need to be purified prior to ozonolysis, greatly
simplifying the degradative protocol.
Once we effectively degraded the copolymer of MA and AA

containing 19 mol % AA, we went on to dehydrodecarboxylate
and degrade MA-AA copolymers with 1 and 10 mol % AA for
comparison (Figures 2 and S32−S33). Not surprisingly, we
found that the AA content in the precursor polymers impacted
the molecular weight of the degradation products. The GPC

trace of degraded P(MA-co-A)1% broadened, but did not fully
shift to a higher elution time, indicating that not all of the
chains were cleaved (Figure S40). While each of the chains of
the starting copolymer, on average, had 2 AA units, the
number of AA units per chain can vary. Thus, some chains did
not have any AA units, leading to an absence of labile alkenes
in those chains after dehydrodecarboxylation. In contrast,
degradation of P(MA-co-A)10% led to a much greater and
complete shift of the GPC trace, and P(MA-co-A)19% shifted
even further (Figure S41). These results indicate that the size
of the degradation products can be tuned by changing the AA
content of the precursor polymer.
We next applied our degradation approach to several other

vinyl copolymers containing AA units to demonstrate its
versatility. Dehydrodecarboxylation of P(tBA-co-AA)19% (Mn =
18.6 kg/mol) transformed 39% of the carboxylic acid side
chains into internal alkenes (Figure 3, S21−S22, and S35).
Although this polymer had a lower yield than P(MA-co-
AA)19%, the alkene content was sufficient to enable cleavage of
this copolymer into low molecular weight species (Figure S42).
P(DMA-co-AA)20% (Mn = 27.3 kg/mol) and P(S-co-AA)20%

Figure 2. Degree of degradation was tuned by varying the percentage of AA units in the precursor polymer. (A) Scheme illustrating sequential
dehydrodecarboxylation and ozonolysis of copolymers bearing carboxylic acids. (B) GPC traces of MA-AA copolymers with 1, 10, and 19 mol %
AA. (C) GPC traces of copolymers after dehydrodecarboxylation. (D) GPC plots of degradation products resulting from ozonolysis.

Figure 3. Degradation of copolymers of AA and several different vinyl monomers. (A) Scheme showing general conditions for degradation. GPC
traces of P(tBA-co-AA) (B), P(DMA-co-AA) (C), and P(S-co-AA) (D) before and after dehydrodecarboxylation and degradation.
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(Mn = 11.3 kg/mol) exhibited conversions of AA units to A
units of 66% and 71%, respectively, indicating that amide and
phenyl groups were tolerated by the reactions (Figures S23−
S26, and S36−S37). Accordingly, the dehydrodecarboxylated
structures of these precursors were successfully degraded by
ozonolysis (Figures S43−S44). The efficient degradation was
consistent with the uniform distribution of AA units
throughout the backbones of the initial copolymers synthesized
by RAFT. Characterization of the degradation product of P(S-
co-A)20% after workup indicated the presence of carboxylic acid
end groups (Figures S27 and S28). We envision that these
oligomers may be repolymerized to form biodegradable
polyesters, leading to upcycling. Likely, the A copolymers
may also be deconstructed through metathesis to furnish other
interesting repolymerizable macromonomers.64−66

Finally, we demonstrated that PMA homopolymers could be
degraded by introducing carboxylic acids along the backbone
by hydrolyzing esters of the MA units. Partial hydrolysis of
PMA was accomplished by heating with HCl and water and
produced a copolymer with 22 mol % AA (P(MA-co-AA)22%,
Mn = 44.4 kg/mol, Mp = 59.4 kg/mol) (Figures 4 and S11−
S12 and S29).67 We targeted a relatively low conversion of
esters into carboxylic acids since 19 mol % of AA permitted
degradation into small fragments. Still, the AA content can be
tuned by the hydrolysis time. As expected, the robust PMA
homopolymer, which lacked alkenes, did not exhibit any
reduction in molecular weight during ozone treatment,
confirming that chain scission did not occur. In contrast,
installation of alkene groups in the backbone of the hydrolyzed
copolymer enabled a decrease in molecular weight to an Mp of
around 1.3 kg/mol due to oxidative cleavage of the backbone
(Figures S30, S38, and S45−S46). Taken together, these data
suggest that our method may be applied to commercial
polyacrylates.
In summary, this work introduced a method to install

degradable units in highly stable polyacrylate homopolymers.
When applied to copolymers bearing AA units, dehydrode-
carboxylation yielded acrylate, acrylamide, and styrene

copolymers with internal alkenes under mild conditions.
Ozonolysis of the A copolymers effected chain scission, giving
rise to low-molecular-weight oligomers. The approach
described may degrade polyacrylates present in packaging,
adhesive, or coating materials. This work brings us one step
closer to combating the ever-increasing amount of vinyl plastic
waste polluting the environment.
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