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SUMMARY

We present the bulk depolymerization of poly(methyl methacrylate)
(PMMA) at significantly lower temperatures than previously re-
ported methods through the incorporation of thermolytically labile
end-groups via reversible-deactivation radical polymerization
(RDRP). The combination of a-end N-hydroxyphthalimide esters
and u-end trithiocarbonates allows for near-quantitative depoly-
merization of PMMA in the bulk, with >90% methyl methacrylate
(MMA) recovery for subsequent repolymerization. This depolymer-
ization methodology enables catalyst- and solvent-free reversion
to monomer on a multigram scale at temperatures up to 250!C
lower than current industrial methods. These reactions are per-
formed in an efficient and high-yielding manner, establishing a
viable route to depolymerize PMMA on large scales.

INTRODUCTION

As the demand for plastics continues to rise, a concomitant increase in plastic waste
has been observed.1 In the United States, less than 10% of plastic waste is recycled;
therefore, new recycling strategies have become imperative to reduce the negative
impact on the environment.2–4 Current industrial efforts to recycle polymers are
generally directed toward thermomechanical recycling, which typically yields
lower-quality materials with reduced mechanical properties.1,5,6 Another promising
means of recycling plastic waste involves chemical recycling, a method that can
recycle or upcycle polymeric materials via chemical stimuli to degrade polymers
to original or higher value materials.7 This method is particularly appealing because
the recovered starting material can be re-polymerized to create a variety of poly-
meric materials with desired mechanical properties. Poly(ethylene terephthalate)
(PET), for example, can be chemically recycled by hydrolysis, alcoholysis, or aminol-
ysis of the backbone ester bond.8,9 The resulting compounds can then be used to
regenerate similar, if not identical, polymeric materials. In this case, chemical recy-
cling methods of PET rely on the reactivity of ester functional groups within the poly-
mer backbone.

Polymers synthesized by chain-growth polymerization of vinyl monomers are desir-
able due to the robustness imparted by their all-carbon backbones; however, the
stability of carbon–carbon bonds renders the polymers exceptionally stable and
difficult to revert to monomer, ultimately making chemical recycling prohibitively
difficult. Methods to degrade vinyl-based polymers have centered around the incor-
poration of a monomer that introduces heteroatoms to facilitate degradation.10–14

This has been achieved through the radical ring opening of cyclic acetals or

THE BIGGER PICTURE

This work addresses challenges of
waste recyclability in response to
the call to action proposed in the
industry, innovation, and
infrastructure section of the
United Nations’ Sustainable
Global Goal Initiatives. The mass
production of commodity plastics
has outpaced the development of
waste remediation of these
products, creating an imbalance
within production and waste life
cycles. We illustrate how polymers
prepared via reversible-
deactivation radical
polymerization (RDRP) can be
thermally triggered to
depolymerize back to monomer,
with the recovered monomer
being amenable to
repolymerization to generate
virgin polymer. This
depolymerization strategy may
further incentivize the translation
of RDRP techniques for industrial
polymer synthesis. In addition to
current commodity plastic
production, emerging fields such
as 3D printing and lithography are
positioned to adopt recyclable
materials into their production
methods to close the gap in life
cycle circularity of polymer
materials.
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thiolactones to incorporate degradable linkages in an otherwise all-carbon back-
bone.14–16 Other reports include the incorporation of monomers that are capable
of generating backbone radicals to induce degradation through b-cleavage.17–20

Recent methods have included the statistical incorporation of phthalimide (Phth)
methacrylate/acrylate monomers capable of accepting an electron from a photoca-
talyst to initiate a cascade reaction that liberates CO2 to induce backbone degrada-
tion.20,21 Although the aforementioned reports involve a side-chain trigger to effi-
ciently cleave carbon–carbon backbone polymers, depolymerization from chain
ends has emerged as an appealing approach to address the chemical recyclability
of these all-carbon backbone polymers.22

Poly(methyl methacrylate) (PMMA) is a polymer with an all-carbon backbone pro-
duced via chain-growth polymerization. PMMA is a commercial thermoplastic with
wide applications as a glass substitute in aircraft, automotive, and construction in-
dustries. The production of PMMA currently resides at >4 million tons per year,
with usage expected to reach nearly 6 million tons by 2027.23 The increase in indus-
trial use of PMMA can be attributed to its high mechanical strength and low density
compared to glass; however, less than 10% of PMMA is recycled annually.23 Current
methods of depolymerizing PMMA are achieved at high temperatures, ranging from
375!C to 500!C, with monomer collected via a distillation process. However, the
recovered monomer is generally only achieved with limited purity. The quantity of
MMA recovered is also highly dependent on depolymerization methodology.24 To
increase efficiency andmonomer purity, high dilution can be used to reduce the ceil-
ing temperature (Tc) of PMMA. This has been achieved with polymers synthesized via
reversible addition-fragmentation chain transfer (RAFT) polymerization and atom
transfer radical polymerization (ATRP). Although RAFT polymerization and ATRP
are normally used to synthesize polymers with controlled molecular weights, low dis-
persities, and well-defined architectures, recent reports have shown that activation
of the chain ends inherent to these polymerization methods at elevated tempera-
tures can trigger depolymerization.25–35

Initial reports by Gramlich and Ouchi demonstrated that the use of labile bonds on
the chain ends of PMMA synthesized by RAFT polymerization and ATRP could be
used to induce depolymerization through C–S cleavage or halide abstraction.36,37

More recently, Anastasaki demonstrated that terminal thiocarbonylthio chain ends
could yield near-quantitative solution depolymerization under highly dilute condi-
tions by exploiting chain-end C–S bond homolysis at temperatures as low as
120!C.38 Our group demonstrated that depolymerization could be dramatically
accelerated, at even lower temperatures (e.g., 100!C), by increasing C–S bond
cleavage via photolysis. We also established that the Tc of PMMA in dioxane at
5 mM of repeat units resides near 85!C.39 Anastasaki also demonstrated that light
could be used to accelerate depolymerization by utilizing an excess of eosin Y via
a single electron transfer (SET) process to enhance the rate of terminal bond photol-
ysis.40 In another study, Matyjaszewski reported that polymethacrylate polymers
synthesized via ATRP can also be depolymerized by leveraging the labile carbon–
halogen bond on the polymer chain. Activation of the halogen chain end could be
achieved with various copper halide salts, and more concentrated polymer solutions
(0.7 M in monomer units) could be employed by increasing the temperature
(>170!C) to selectively distill monomer.41–43 Although the goal of increasing depo-
lymerization efficiency of PMMA has been achieved, the requirements of high dilu-
tion and/or the necessity for catalysts may be prohibitory for widespread adoption
of reversible-deactivation radical polymerization (RDRP) synthetic methodologies
for enabling reversion to high-purity monomer. Block copolymer lithography, in
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addition to increasing material recyclability, is also an appealing potential applica-
tion in which microphase-separated PMMA regions can be selectively depolymer-
ized to achieve nanopatterned materials.44

Reducing, or altogether removing, solvents and catalysts required to reduce the Tc
of PMMAmay further simplify industrial-scale and commercially relevant depolymer-
izations. Bulk thermal-initiated depolymerization of PMMA usually requires temper-
atures greater than 375!C and produces a variety of undesirable byproducts that
requires further purification of the resulting monomer. Herein, we demonstrate
new synthetic approaches to generate PMMA amenable to efficient reversion to
MMA by capitalizing on labile chain ends. This approach can be performed on the
gram scale without catalyst or solvent. The depolymerization of PMMA prepared
by these RDRP techniques can achieve up to 92% reversion to monomer at temper-
atures 250!C lower than those currently applied on an industrial scale. Key to our
approach is the selection of chain-end functional groups that generate terminal rad-
icals above the boiling point of MMA, thus favoring reversion to monomer under
non-equilibrium conditions.45,46

RESULTS AND DISCUSSION

Our pursuit to find chain ends capable of achieving high degrees of depolymerization
began by exploring various u-end thiocarbonylthio functional groups on PMMA
prepared via RAFT polymerization (Figure 1A). Specifically, PMMA was prepared
by RAFT polymerization with 2-cyanoprop-2-yl dithiobenzoate (PMMA-DTB-H,
6.1 kg/mol), cyanopropyl-2-yl(4-methoxy) dithiobenzoate (PMMA-DTB-OMe,
5.9 kg/mol), 2-cyanopropyl-2-yl(4-cyano) dithiobenzoate (PMMA-DTB-CN, 5.5 kg/mol),
2-cyanopropan-2-yl N-methyl-N-(pyridin-4-yl)carbamodithioate (PMMA-DTC, 8.1 kg/
mol), and 4-cyano-4-[(dodecylsulfanylthiocarbonyl) sulfanyl] pentanoic acid (PMMA-
TTC, 5.3 kg/mol) (Figures 1B and 2). Molecular weights were maintained
withinG1.5 kg/mol to reduce the effects of chain length on the extent of depolymeriza-
tion. The thermal stability of the RAFT polymer end-groups was then investigated via
thermogravimetric analysis (TGA) to determine the onset temperature of depolymeriza-
tion, which we defined as the temperature at which 95% of the mass remains (T95)
(Table S1). Although the temperature for the onset of depolymerization depended on
heating rate, lower rampratesof5!C/min–10!C/minwere found tohave themost repeat-
able onset temperatures of depolymerization (Figure S1). It was observed that the T95 for
functionalizedPMMAranged from148!CforPMMA-TTCto186!CforPMMA-DTB-OMe.
PMMA without the RAFT-derived end-groups (PMMA-H) was considerably more stable
and did not degrade until temperatures near 376!C (Table S1). Notably, the highest
extent of depolymerization was observed with the PMMA-TTC, which reached 42%
mass loss until a plateau was observed in the TGA trace. By contrast, the PMMA-DTC
achieved 28% depolymerization, whereas the dithiobenzoyl-terminated polymers
(PMMA-DTB-H, -CN, -OMe) only reached 4%–7%depolymerization before an observed
plateau in theTGA trace (Figure2).When investigating the reducedextentofdepolymer-
ization for the PMMA-DTB samples, 1H nuclearmagnetic resonance (NMR) spectroscopy
providedevidenceofapredominant side reaction that competedwithdepolymerization.
Themajor byproducts after thermal treatment weredetermined tobealkene-terminated
PMMA, attributed to the Chugaev-elimination pathway that can occur with thiocarbo-
nylthio functionalgroupsatelevated temperatures (FiguresS2andS3).47–50 Interestingly,
this terminal alkene group enabled a second onset of depolymerization to occur near
310!C (Figure S4). These results agree with previous TGA data reported by Kudryavtsev
et al. in which trithiocarbonate-terminated PMMAalso demonstrated a higher degree of
depolymerization relative to DTB-terminated PMMA.51
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In addition to RAFT polymerization, ATRP is one of the most widely used RDRP tech-
niques and generally leads to polymers that are white or colorless, a potential advan-
tage over the yellow- or pink-colored thiocarbonylthio moieties that remain in RAFT-
generated polymers.52–55 A variety of ATRP-derived chain ends were explored to
examine the thermolytic capacity for depolymerization (Figure 1C). Ethyl a-bromo
isobuturate (EBIB), a commonly used ATRP initiator, was used to polymerize MMA
by supplemental activator and reducing agent (SARA) ATRP.56 Thermal treatment
of the synthesized PMMA-Br exhibited an onset of depolymerization at 285!C, but
only "12% depolymerization was observed (Figure 3). PMMA-Br subsequently un-
derwent treatment with sodium iodide via the Finkelstein reaction to substitute the
terminal bromine with iodine. Although a lower onset temperature of depolymeriza-
tion was observed at 272!C, the extent of depolymerization was only slightly
increased to 14%. Due to the lack of efficient depolymerization achieved through
thermolysis of the u-halogen chain ends, we turned our attention to synthesizing
PMMA with labile bonds on their a-chain ends. This was achieved by preparing an
ATRP initiator containing an N-hydroxy Phth ester. Subsequent polymerization of
MMA by SARA ATRP provided the desired polymer (Phth-PMMA-Br) with controlled
molecular weight and low dispersity (Figure S5). Analysis of the Phth-PMMA-Br by
TGA showed up to 65% depolymerization, with the T95 occurring near 220!C

A

B C

Figure 1. Chemical recycling of PMMA to MMA utilizing labile end-groups

(A) Initiation of depolymerization from a-chain ends, u-chain ends, or a combination of the two.

(B and C) This strategy can be applied to polymers derived from (B) reversible addition-

fragmentation chain transfer (RAFT) polymerization and (C) atom transfer radical polymerization

(ATRP).
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(Table S1). Unlike the other ATRP-derived polymers, depolymerization can be pri-
marily attributed to thermolysis stemming from decarboxylation of the Phth ester
and subsequent loss of isobutylene from thea-chain end of PMMA (Figures 1A and3).

Given the successful depolymerization attributed to the Phth and TTC end-groups,
we prepared a Phth-functional RAFT agent to access polymers that contained
thermally labile moieties on both chain ends. We reasoned that more efficient
depolymerization may be enabled by the higher concentration of thermally
sensitive end-groups. A thiocarbonylthio compound (i.e., 1,3-dioxoisoindolin-2-yl
2-(((dodecylthio)carbonothioyl)thio)-2-methylpropanoate) (Phth-TTC) was prepared
by esterifying 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid (DDMAT)
with N-hydroxyphthalimide (Figures S6 and S7). The resulting Phth-TTC was subse-
quently used to polymerizeMMA via photoiniferter polymerization, a polymerization
method that enables high retention of the thiocarbonylthio moiety during polymer-
ization to produce (Phth-PMMA-TTC, 5.4 kg/mol, Ð = 1.13) (Figure 4A).57–63 Inter-
estingly, unlike the trithiocarbonate precursor in which the R-group is generally
not ideal for polymerization of methacrylate monomers (i.e., resulting in high disper-
sities and poor molecular weight control), the Phth-TTC provided a well-controlled
polymerization (Figure S8). We attribute this to the electron-withdrawing nature of
the Phth moiety facilitating more efficient b-cleavage of the R-group.33,64 Gratify-
ingly, the combination of both chain ends in Phth-PMMA-TTC resulted in a much
higher final extent of depolymerization (92%) compared with 42% for PMMA-TTC
or 65% for Phth-PMMA-Br (Table S1). These data suggest that polymers capable
of a- and u-initiated depolymerization offer a promising route toward enhancing
the efficiency of bulk depolymerizations.

We then examined the effect of molecular weight on the final extent of depolymer-
ization (Figures 4A and 4B; Table S1). PMMA-TTC, Phth-PMMA, and Phth-PMMA-
TTC polymers were prepared, ranging in molecular weight from 5.0 to 980 kg/
mol. All of the polymers were subjected to a ramp rate of 10!C/min over a temper-
ature range of 20!C–500!C. The extent of depolymerization was calculated by TGA
as the mass loss observed up to the plateau region prior to the degradation temper-
ature at 376!C. In addition to this method, the extent of depolymerization could also
be calculated by subjecting polymer samples to an isothermal hold at 220!C for 2 h

Figure 2. Extent of PMMA depolymerization utilizing RAFT end-groups

(A) Thermogravimetric analysis (TGA) traces of poly(methyl methacrylate) (PMMA) with various u-

chain ends derived from reversible addition-fragmentation chain transfer (RAFT) polymerization.

(B) The extent of depolymerization of PMMA to methyl methacrylate (MMA) monomer as a function

of u-end-group identity, as determined by the extent of depolymerization prior to the plateaus in

which no further mass loss is observed. Depolymerization experiments were performed in

triplicate. Structures of studied RAFT agents are detailed in Figure 1B.
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(Figure S9). The values determined by these two methods differed by less than 4%.
The extent of depolymerization for low molecular weight PMMA-TTC reached up to
43%; however, polymer samples with higher molecular weights near 100 kg/mol
achieved only 20% depolymerization. The Phth-PMMA polymers exhibited a similar
trend in which low molecular weight polymers could achieve up to 65% depolymer-
ization, but higher molecular weight polymers approaching 100 kg/mol achieved
only 48% depolymerization. As mentioned previously, the combination of both
chain ends in Phth-PMMA-TTC polymers resulted in the highest degrees of depoly-
merization. The Phth-PMMA-TTC polymers demonstrated a similar trend in which
low molecular weight polymers could achieve up to 92% depolymerization, but
higher molecular weight polymers approaching 100 kg/mol achieved only 62%
depolymerization. To further probe the limitations of depolymerizing highmolecular
weight polymers, we employed photoiniferter polymerization to achieve ultrahigh
molecular weight (UHMW) polymers, a class of materials that have garnered partic-
ular recent interest.65–67 As such, a 980 kg/mol Phth-PMMA-TTC was synthesized,
and 41% depolymerization was observed. These results suggest that the extent of
depolymerization decreases with molecular weight, which is consistent with the re-
sults from depolymerizing under highly dilute conditions (Figure S9).68

TGA analysis of the difunctional polymer indicated there were two separate onsets of
depolymerization, the first at 150!C attributed to initiation from theu-end TTC and the
second at 220!C from the a-end Phth (Figure 5A; Table S1). Evidence for two separate
mechanisms of chain-end-initiated depolymerization was further supported by the re-
sults of two separate, parallel isothermal holds, one at 180!C and the other 290!C for
20min each. Analysis of the quantity of depolymerization via size-exclusion chromatog-
raphy (SEC) indicated a mass loss of roughly 40%, which we attribute to depolymeriza-
tion from the u-end initiated by C–S thermolysis (Figure 5B, orange trace). The
isothermal hold at 290!C resulted in 92% mass loss, 40% attributed to depolymeriza-
tion from the u-end TTC and an additional 52%, which we attribute to depolymeriza-
tion induced by cleavage of the a-end Phth group (Figure 5B, blue trace). The final
polymer byproduct was observed as a polymer of the same molecular weight as the
starting polymer (Figure 5B, gray trace and S10). All methods in the determination of
the extent of depolymerization were in good agreement and differed no more than
5% between SEC analysis, TGA analysis, and 1H NMR analysis (Figure S11).

Figure 3. Extent of PMMA depolymerization utilizing ATRP end-groups

(A) Thermogravimetric analysis traces of poly(methyl methacrylate) (PMMA) with various a/u-chain

ends derived from atom-transfer radical polymerization (ATRP).

(B) The extent of depolymerization of PMMA to methyl methacrylate (MMA) monomer as a function

of end-group identity, as determined by the extent of depolymerization prior to the plateaus in

which no further mass loss is observed. Depolymerization experiments were performed in

triplicate. Structures of the studied ATRP initiators are detailed in Figure 1C.
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TGA-tandemmass spectrometry (TGA-MS) provided valuable insight into the mech-
anism of chain-end-initiated depolymerization by allowing analysis of the products
liberated during thermal treatment (Figure 5C). Most importantly, throughout depo-
lymerization the major product observed corresponded to that of the isotopes of
MMA monomer (Figure 5C; Table S2). The generated byproducts helped to confirm
our hypothesis that two separate onsets of depolymerization occur for the difunc-
tional Phth-PMMA-TTC. For example, when Phth-PMMA-TTC was heated from
20!C to 500!C at a rate of 10!C/min, an ion fragment at 76 g/mol, indicating the
release of CS2, was detected at 170!C. This result suggests that higher temperatures
near 170!C promote C–S homolysis to a PMMA radical, which readily depolymerizes
and a TTC radical adduct that degrades to CS2 and dodecane thiol.69,70 Further-
more, at 244!C ion fragments of 162 g/mol (Phth) were observed, which suggests
cleavage from the a-chain end. A subsequent increase in MMA generation was
observed indicating a second onset of depolymerization. From previous work, we
hypothesize that the Phth group undergoes a decarboxylative degradation pathway
with subsequent release of an isobutylene unit to generate a tertiary methacroyl
radical capable of initiating depolymerization (Figure 1). Tracking ion fragments cor-
responding to CO2 showed an increase in intensity at the second onset of depoly-
merization, corresponding to decarboxylation of the Phth ester (Figure S12). During
both onsets of depolymerization, no MMA byproduct or dimer was observed. By
contrast, unfunctionalized PMMA-H was found to require significantly higher tem-
peratures to induce depolymerization (>376!C) as determined by TGA-MS. Degrad-
ing PMMA-H at 400!C led to ion fragments that correspond to MMA, but numerous
byproducts were also present (Figure S13; Table S2). A significant mass peak at 102

A

B

Figure 4. Depolymerization dependence on molecular weight

(A) Structures of PMMA with various a/u end-groups.

(B) Examination of the dependence of the percent depolymerization on molecular weight (Mn) for u

(red), a (blue), and a/u (purple) functionalized PMMA. PMMA of various molecular weights and end-

groups were analyzed by TGA in which a heating rate of 10!C/min over a range of 20!C–500!C was

used. The extent of depolymerization was determined by the percent mass loss up until the

observed plateau prior to the degradation temperature of 376!C.
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g/mol corresponding to methyl pyruvate was observed, indicating that depolymer-
ization initiated at higher temperatures generates undesired byproducts. Other
masses at 90–99, 102–114, and 126 g/mol were also observed as distinct byproducts
that were not present in TGA-MS spectra for functionalized PMMA samples
(Table S2). Similar results have been shown by Marcantoni et al. in which unfunction-
alized PMMA was degraded to monomer and as many as six other contaminant by-
products.24 These six contaminant byproducts were not detected via 1H NMR anal-
ysis of the recovered monomer from PMMA-TTC, Phth-PMMA, or Phth-PMMA-TTC
samples.

To demonstrate the viability of this PMMA depolymerization methodology for
monomer recovery, we explored the bulk depolymerization of gram-scale quantities
of PMMA-TTC (5.5 kg/mol), Phth-PMMA-Br (50 kg/mol), and Phth-PMMA-TTC
(5.4 kg/mol) (Figure 6A). The bulk polymers were heated to 210!C–220!C and
held for 1 h under vacuum to maximize monomer recovery (Figure 6B). Theoretical
yields were determined by comparing the mass of the recovered monomer with
the maximum mass loss during depolymerization observed by TGA. As expected,
the monofunctional PMMA-TTC yielded the lowest reversion to monomer (43%
mass loss, 94% theoretical yield, 0.35 mL MMA recovered). In comparison,
Phth-PMMA-Br demonstrated modest monomer recovery (62% mass loss, 87%
theoretical yield, 0.48 mL MMA recovered) (Figure 6C). Lastly, the difunctional
Phth-PMMA-TTC yielded the highest reversion to monomer (92% mass loss, 88%
theoretical yield, 0.93 mL MMA recovered). The remaining polymer products also

A

B

C

Figure 5. Depolymerization of PMMA utilizing telechelic end-groups for reversion to monomer

(A) Thermogravimetric analysis (TGA) of difunctional Phth-PMMA-TTC with hashmarks representing the corresponding scans in (C).

(B) Size-exclusion chromatography traces of a 5.4 kg/mol difunctional Phth-PMMA-TTC relative to a 298 kg/mol polystyrene standard after two parallel

isothermal holds at 180!C and 290!C.

(C) TGA-tandemmass spectrometry scans of a 5.4 kg/mol difunctional Phth-PMMA-TTC with key masses highlighted in orange. Ion fragment masses are

detailed in Table S2.
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contained byproducts from end-group degradation, such as Phth products and do-
decanethiol, indicating that thermolytically active chain ends underwent thermolysis
to initiate depolymerization but were not distilled with the generated MMA (Fig-
ure S14). Terminal alkene peaks were observed in the Phth-PMMA and Phth-
PMMA-TTC byproducts, in addition to the PMMA-TTC Chugaev-elimination prod-
uct, suggesting that disproportionation occurs on the a-end as well (Figures S14–
S16). Regardless, the resulting monomer from all bulk depolymerizations had high
degrees of purity (Figures 6D, S18, and S19). In all three cases, monomer could be
repolymerized to polymer without further purification (Figure S20). Although the tel-
echelic Phth-PMMA-TTC material exhibited the highest monomer recovery, it is
important to note that the Phth-PMMA may have the broadest utility because the
material is colorless and transparent (Figure 6C). Solvent-cast films of the low molec-
ular weight Phth-PMMA also demonstrated a high degree of transparency and lack
of color relative to the TTC-containing materials (Figure S21), suggesting that these
polymers may be useful for applications where colorless materials are desired.
Furthermore, differential scanning calorimetry (DSC) analysis showed that the end-
functional polymers had similar glass transition temperatures (Tgs) to that of unfunc-
tionalized PMMA (Figure S22).

The shape and breadth of polymer molecular weight distributions (MWDs) have sig-
nificant influence on material properties of the polymers, such as processability and
mechanical strength.71,72 Although many recent reports have focused on tailoring
initiation or using flow-mediated strategies to tune the MWD, the most widely
usedmethod to achieve different MWDs is through the physical blending of different
polymers.72–77 We hypothesized that by blending polymers with activatable chain
ends (Phth-PMMA-TTC) and those without activatable chain ends (PMMA-H), the
MWD could be further tuned through selective depolymerization. MWD tuning
was achieved through the skew customization by unzipping layered polymer traces
(SCULPT) method. As such, we examined how a set of three different polymers could
be used to selectively skew the number-average molecular weight (Mn) toward a
lower Mn, higher Mn, and inward toward a central Mn distribution. Two difunctional
polymers (Phth-PMMA-TTC, 5.4 kg/mol, Ð = 1.13, 19.8 kg/mol, Ð = 1.30) were
blended with an unfunctionalized polymer (PMMA-H, 12.0 kg/mol, Ð = 1.01) in
various quantities to achieve mixed polymer distributions (Figure 7). Time points

A

B C

D

Figure 6. Bulk depolymerization of PMMA to MMA

(A) Bulk depolymerization setup of PMMA to MMA.

(B) Image of the bulk polymer and the recovered MMA.

(C) Synthesized PMMA bearing different end-groups with quantity of monomer recovered after bulk depolymerization.

(D) 1H NMR spectrum of the recovered MMA.
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were taken at 0, 20, and 40 min to observe the suppression of the polymer trace
associated with Phth-PMMA-TTC by SEC. In examining the ability to skew toward
a low Mn distribution, a 1:1 weight mixture of functionalized Phth-PMMA-TTC
(19.8 kg/mol, Ð = 1.30) and unfunctionalized PMMA-H (12.0 kg/mol, Ð = 1.01)
was prepared to yield a final polymer blend with a broadened MWD (14.7,
kg/mol, Ð = 1.18). An isothermal hold of the polymer blend at 290!C resulted in
depolymerization of the Phth-PMMA-TTC to yield a final monomodal polymer distri-
bution (11.8, kg/mol, Ð = 1.05) that closely resembled that of the initial PMMA-H
trace (Figure 7A). To analyze the possibility to skew toward a higherMn, a 1:1 weight
mixture of the Phth-PMMA-TTC (5.4 kg/mol, Ð = 1.13) and PMMA-H (12 kg/mol,
Ð = 1.01) was prepared yielding a final polymer blend with a broadened MWD
(7.34 kg/mol, Ð = 1.32). In this case, an isothermal hold at 290!C resulted in near-
quantitative disappearance of the low Mn difunctional Phth-PMMA-TTC to yield a
final monomodal polymer distribution with a higherMn (11.1 kg/mol, Ð = 1.06) (Fig-
ure 7B). Finally, to demonstrate the ability to skew toward a central Mn distribution
through the SCULPT method, a blend containing 1:1:1 of both difunctional
(5.5 kg/mol, Ð = 1.13 and 19.8 kg/mol, Ð = 1.30) and the unfunctionalized
PMMA-H (12 kg/mol, Ð = 1.01) was prepared yielding a final polymer blend with a
broadened MWD (8.3 kg/mol, Ð = 1.46). A final narrowed monomodal distribution
(11.3 kg/mol, Ð = 1.07) was achieved after an isothermal hold at 290!C,
demonstrating the viability to selectively depolymerize both high- and low-molecu-
lar-weight chains while retaining a pre-determined, unfunctionalized central distri-
bution (Figure 7C). In all three instances, depolymerization of the functionalized
peak shoulders yielded nearly identical polymer traces to that of the unfunctional-
ized PMMA-H. We envision the SCULPT process to serve as a methodology to
tune MWD for targeted material properties in future work.

Conclusions

The use of thermally labile chain ends for the bulk depolymerization of PMMA could
facilitate the translation of PMMA synthesized by RDRP methods to industry by clos-
ing the life cycle circularity of polymeric materials. Our work demonstrates that
RDRP-generated polymers are capable of undergoing thermally initiated depropa-
gation at onset temperatures significantly lower than unfunctionalized PMMA. The
u-end trithiocarbonate and a-end Phth polymers resulted in the greatest extent of
depolymerization at 42% and 65%, respectively. By utilizing a difunctional

Figure 7. SCULPT depolymerization to monomodal polymer distributions

Size-exclusion chromatography (SEC) traces displaying the ability to depolymerize (A) blends with high molecular weight shoulders, (B) blends with low

molecular weight shoulders, and (C) both high and low molecular weight shoulders from polymer blends, through their activatable chain ends with time.

The unfunctionalized PMMA-H (12.0 kg/mol, Ð = 1.01) polymer trace is represented as a dotted line as a reference to the final molecular weight

distributions achieved via the skew customization by unzipping layered polymer traces (SCULPT) method.
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photoiniferter, we installed both the trithiocarbonate and Phth chain ends on PMMA
to achieve even higher degrees of depolymerization of 92%. Both end-groups facil-
itated reversion to monomer on the gram scale at 190!C–250!C lower than that
required for unfunctionalized PMMA. We then examined the effect of molecular
weight on the final extent of depolymerization and showed that even UHMW difunc-
tional PMMA can achieve up to 41% depolymerization, setting a precedent for the
ability to depolymerize a vast array of molecular weights. TGA-MS enabled observa-
tion of the ion fragments that correspond to the byproducts of chain-end cleavage,
offering insight into mechanisms involving chain-end-initiated depolymerization.
Furthermore, high-purity monomer was recovered and repolymerized without
further purification. Lastly, our SCULPT process demonstrates that blended poly-
mers can be selectively depolymerized to skew MWD, providing promise for end-
of-life tuning of physical properties and monomer recovery in mixed polymer
systems.
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