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Abstract11

We study the worst-case mixing time of the global Kawasaki dynamics for the Ąxed-magnetization12

Ising model on the class of graphs of maximum degree ∆. Proving a conjecture of Carlson, Davies,13

Kolla, and Perkins, we show that below the tree uniqueness threshold, the Kawasaki dynamics14

mix rapidly for all magnetizations. Disproving a conjecture of Carlson, Davies, Kolla, and Perkins,15

we show that the regime of fast mixing does not extend throughout the regime of tractability for16

this model: there is a range of parameters for which there exist efficient sampling algorithms for17

the Ąxed-magnetization Ising model on max-degree ∆ graphs, but the Kawasaki dynamics can18

take exponential time to mix. Our techniques involve showing spectral independence in the Ąxed-19

magnetization Ising model and proving a sharp threshold for the existence of multiple metastable20

states in the Ising model with external Ąeld on random regular graphs.21
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1 Introduction33

The Ising model on a Ąnite graph G = (V, E) is the following probability distribution on34

Ω = ¶+1, −1♢V :35

µG,β,λ(σ) =
λ♣σ♣+

eβmG(σ)

ZG(β, λ)
(1)36

where ♣σ♣+ = ♣¶σ−1(+1)♢♣ is the number of vertices assigned a +1 spin under σ which we call37

the size of σ, and mG(σ) is the number of monochromatic edges in G under the 2-coloring38

given by σ ∈ Ω. The measure µG,β,λ is called the Gibbs measure on G with inverse temperature39

β ≥ 0 and external Ąeld λ ≥ 0. The normalizing constant ZG(β, λ) =
∑

σ∈Ω λ♣σ♣+

eβmG(σ)
40
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56:2 Fast and Slow Mixing of the Kawasaki Dynamics

is the partition function of the Ising model. Throughout this paper, we focus on the41

ferromagnetic case, β ≥ 0, in which agreeing spins on edges are preferred.42

Spin models on graphs are the source of many interesting computational problems.43

Questions about the tractability of approximate counting (estimating the partition function)44

and approximate sampling (from the Gibbs distribution) are studied extensively.45

In the case of the ferromagnetic Ising model, Jerrum and Sinclair [35] showed that there46

is a polynomial-time approximation algorithm on all graphs at all temperatures, and Randall47

and Wilson [42] gave an efficient sampling algorithm.48

In other cases, such as the anti-ferromagnetic Ising model (β < 0) and the hard-core model49

of weighted independent sets, approximate counting and sampling can be computationally50

hard (e.g., no polynomial-time algorithm exists unless NP=RP). For the class G∆ of graphs51

of maximum degree ∆, these two models exhibit computational thresholds: as the activity or52

external Ąeld parameter λ varies, there is a sharp threshold between tractability (efficient53

approximate counting and sampling) and intractability (NP-hardness) [28, 46Ű48]. Moreover,54

the critical value λc = λc(∆, β) is the phase transition point of the corresponding model on55

the inĄnite ∆-regular tree T∆ (more precisely, it is the threshold for the uniqueness of Gibbs56

measure on T∆, a notion which we discuss shortly). Thus there is a remarkable connection57

between computational thresholds and statistical physics phase transitions. Even further,58

the threshold λc has recently been shown to be a dynamical threshold: it is the threshold59

for rapid mixing of the Glauber dynamics, a natural Markov chain for sampling from spin60

models like the Ising or hard-core models, on graphs in G∆ [2, 15,41,48]. So in these cases,61

three different thresholds (computational, dynamical, uniqueness on the tree) coincide.62

A very similar picture has emerged for the model of a uniformly random independent set63

of a given size. For the class of graphs G∆, there is a critical density αc(∆) so that if α < αc,64

there are efficient algorithms to approximately count and sample independent sets of density65

α, while if α > αc no such algorithms exist unless NP=RP [22]. Jain, Michelen, Pham, and66

Vuong [33] recently proved that this computational threshold αc also marks the dynamical67

thresholdŮfor α < αc, the natural Şdown-upŤ random walk on independent sets of a given68

size mixes rapidly. The threshold αc(∆) is closely connected to a uniqueness threshold on69

the tree: it is the smallest expected density of an independent set in the hard-core model on70

G ∈ G∆ at activity λc(∆).71

Returning to the ferromagnetic Ising model (β ≥ 0), the picture is fundamentally different72

and not completely understood. While there is no computational threshold (there are efficient73

algorithms for all parameters) one can still ask about the relationship between uniqueness74

and dynamical thresholds. The natural dynamics in this setting are the Glauber dynamics,75

a Markov chain on the state space Ω with stationary distribution µG,β,λ which at each76

step chooses a uniformly random vertex and updates its spin according to the conditional77

distribution given the spins of its neighbors. For the case λ = 1 (Şno external ĄeldŤ) the78

dynamical threshold has been identiĄed, and it coincides with the uniqueness threshold. For79

∆ ≥ 3, let the critical inverse temperature of the Ising model on T∆ be denoted by80

βu(∆) := ln



∆

∆ − 2



.81

The value βu(∆) is the Gibbs uniqueness threshold for the Ising model (with λ = 1) on T∆82

(see e.g. [6] and below in Section 2.1 for a precise deĄnition). Mossel and Sly [40] proved that83

for 0 ≤ β < βu and any λ, the Glauber dynamics are rapidly mixing for any G ∈ G∆. This84

threshold in β is sharp due to the analysis of the random ∆-regular graph in [23, 31]: for85

β > βu and λ = 1, the Glauber dynamics for the Ising model take exponential time to mix.86
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For general λ ≥ 0, in the regime β > βu, the threshold landscape is not as well understood.87

Note that the model is symmetric around λ = 1 by swapping the role of + and − spins and88

so for each threshold, its inverse is also a threshold; for clarity we will deĄne thresholds for89

the case λ ≥ 1. Let λu(∆, β) be the Gibbs uniqueness threshold of the ferromagnetic Ising90

model on T∆; that is, λu is the smallest λ0 ≥ 1 so that there is a unique Gibbs measure for91

the Ising model on T∆ with inverse temperature β and external Ąeld λ, for all λ > λ0 (again92

see [6] and Section 2.1 for details). The value of λu can be given implicitly as the solution to93

an equation involving ∆, β, and λ. Unlike in the above mentioned examples, while λu marks94

a phase transition on the tree, it does not mark a computational transition (since sampling95

from the ferromagnetic Ising model is tractable on all graphs and all parameters) and it has96

not been established as a dynamical threshold (though this also has not been ruled out).97

Below in Theorem 2 we show that the worst-case mixing time of Glauber dynamics over G∆98

is exponential when ♣ log λ♣ < log λu.99

The complementary result (fast mixing of the Glauber dynamics for G ∈ G∆ when100

♣ log λ♣ > log λu) is not known to hold. Instead, sufficient conditions for fast mixing have101

been given that require λ to be somewhat larger than λu. An interesting insight is that102

upper bounds on the dynamical threshold are often connected to zero-freeness of the map103

λ 7→ ZG(β, λ) considered as a complex polynomial. Throughout this paper, we particularly104

focus on the analytic threshold λa(∆, β), deĄned by the following requirement: for all G ∈ G∆,105

every compact D ⊂ (λa(∆, β), ∞) and every partial spin assignment τU : U → ¶−1, +1♢,106

U ⊂ V it holds that ZτU

G (β, λ) (the partition function restricted to conĄgurations that are107

consistent with τU ) is non-zero for all λ in some uniform complex neighborhood of D. A108

formal deĄnition of λa is given in Section 2.5. In contrast to the uniqueness threshold,109

λa(∆, β) has not been determined. It is known that λa(∆, β) ≥ λu(∆, β) and the best known110

upper bound is111

λa(∆, β) ≤ min



(∆ − 2)e2β − ∆

eβ(2−∆)
, eβ∆



=: λ̄a . (2)112

The Ąrst expression in the minimum of (2) was proven by Shao and Sun [44], and the second113

bound of eβ∆ (which is smaller than the Ąrst expression for ∆ ≥ 4 and β large enough) was114

proven by Shao and Ye [45].115

It turns out that this analytic threshold λa is closely related to the dynamical threshold.116

More precisely, Chen, Liu, and Vigoda [17] proved that the Ąrst bound in (2) can be117

used to deĄne a regime in which the ferromagnetic Ising model satisĄes ℓ∞-independence118

(see Section 2.4), a stronger version of spectral independence that implies rapid mixing of119

Glauber dynamics. Their derivation of the threshold used techniques similar to those of120

Shao and Sun [44] which resulted in coinciding bounds, but a more systematic connection121

was provided by Chen, Liu and Vigoda in [16]. They showed that for a broad class of spin122

systems, sufficiently strong zero-freeness assumptions imply ℓ∞-independence. With small123

adjustments, we use their technique to argue that the ferromagnetic Ising model satisĄes124

ℓ∞-independence for all ♣ log λ♣ > log λa(∆, β) (see Theorem 22).125

The main focus of this paper is on dynamical thresholds of the Ąxed-magnetization Ising126

model with inverse temperature β and magnetization η. The magnetization (per vertex) of127

an Ising conĄguration σ is η(σ) :=

∑

v∈V (G)
σv

♣V (G)♣ . A conĄguration σ of magnetization η has128

size (number of +1 spins) exactly k = ⌊n η+1
2 ⌋. We denote by Ωk the conĄgurations of size k.129

The Ąxed-magnetization Ising model with inverse temperature β ≥ 0 and magnetization130

η ∈ [−1, 1] is then a probability distribution deĄned similarly to (1) but on Ωk, where131

APPROX/RANDOM 2024
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k = ⌊n η+1
2 ⌋, as132

µ̂G,β,η(σ) =
eβmG(σ)

ẐG,η(β)
,133

where134

ẐG,η(β) =
∑

σ∈Ωk

eβmG(σ)
135

is the Ąxed-magnetization partition function. Here we use Ćoors to avoid restricting to values136

of η where n η+1
2 is an integer. The distribution µ̂G,β,η is exactly that of µG,β,λ conditioned137

on the event ¶σ ∈ Ωk♢. Note that the external Ąeld plays no role in the Ąxed-magnetization138

model since λ♣σ♣+

is constant on Ωk.139

In statistical physics, the Ąxed-magnetization Ising model is the canonical ensemble while140

the Ising model is the grand canonical ensemble. The Ąxed-magnetization model on lattices141

is studied in, e.g., [13, 24], where interesting geometric behavior is described; the behavior of142

the Kawasaki dynamics (the natural analogue of Glauber dynamics) on Z
d has been studied143

extensively in, e.g., [9Ű11, 38]. Here we focus on dynamical behavior over the class of all144

graphs of maximum degree ∆.145

To understand algorithmic and dynamical thresholds in the Ąxed-magnetization Ising146

model, we need to deĄne some further parameters. The mean magnetization of the + measure147

on T∆ (explained in detail in Section 2.1) is148

η+
∆,β,λ := tanh (L∗ + artanh(tanh(L∗) tanh(β/2)))149

where L∗ is the largest solution to150

L = log(λ) + (∆ − 1)artanh(tanh(L) tanh(β/2)) .151

We are speciĄcally interested in the following three quantities:152

ηc(∆, β) = η+
∆,β,1 ηu(∆, β) = η+

∆,β,λu
ηa(∆, β) = η+

∆,β,λa
.153

For β > βu, we have 0 < ηc < ηu ≤ ηa. It is not known if the last inequality is strict or not154

(just as it is not known if λa = λu).155

Carlson, Davies, Kolla, and Perkins [12] showed recently that the Ąxed-magnetization156

Ising model exhibits quite different algorithmic behavior than the Ising model: it exhibits157

a computational threshold. In particular, for β < βu and any η, as well as for β > βu and158

♣η♣ > ηc, there are efficient approximate counting and sampling algorithms for the Ising159

model at Ąxed mean magnetization η on G∆, while for β > βu and ♣η♣ < ηc, there are no160

such algorithms unless NP=RP. Thus βu and ηc mark the computational threshold in the161

Ąxed-magnetization Ising model.162

Here we study dynamical thresholds for the Ąxed-magnetization Ising model on G∆.163

Given a distribution, one candidate for an efficient approximate sampling algorithm is a164

Markov chain whose stationary distribution is our target distribution, but the efficiency of165

this algorithm depends on the mixing time. Recall that the mixing time of a Markov chain is166

the number of steps, in the worst-case over initial distribution, required for a Markov chain167

to reach 1/4 total variation distance of its stationary distribution (see Section 2.4 for a formal168

deĄnition). As mentioned above, the natural dynamics associated to the Ąxed-magnetization169

Ising model are the Kawasaki dynamics, which is a reversible Markov chain on Ωk. At each170

step of the chain, a +1 vertex and a −1 vertex are chosen uniformly at random and have171
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their spins swapped with a probability depending on the ratio of the Ising probabilities of the172

two conĄgurations. This is sometimes referred to as the global Kawasaki dynamics, whereas173

the local Kawasaki dynamics restrict to swapping spins of neighboring vertices.174

Our main contributions concern the mixing time of the Kawasaki dynamics. Taking175

∥µ − ν∥TV := supA∈A ♣µ(A) − ν(A)♣ to be the total variation distance between probability176

distributions µ and ν on a probability space (Ω, A), the mixing time of a Markov chain on Ω177

that has transition matrix P and stationary distribution π is178

τmix := inf



t : max
x∈Ω

∥P t(x, ·) − π∥TV ≤ 1

4



.179

Resolving one conjecture of Carlson, Davies, Kolla, and Perkins and disproving another180

(part (i) and (ii) respectively of [12, Conjecture 1]), we establish thresholds in the mean181

magnetization for fast and slow mixing of the Kawasaki dynamics on G∆.182

▶ Theorem 1. For the Kawasaki dynamics, the following two statements hold:183

(1) If 0 ≤ β < βu or if β > βu and ♣η♣ > ηa, then the Kawasaki dynamics for µ̂G,β,η have184

mixing time O(♣V (G)♣2) for all G ∈ G∆.185

(2) There exists a sequence of graphs Gn ∈ G∆ with ♣V (Gn)♣ → ∞ such that for β > βu and186

♣η♣ < ηu, the Kawasaki dynamics for µ̂G,β,η have mixing time exp (Ω(♣V (Gn)♣)) on G.187

Fast mixing of the dynamics for all η when β < βu was conjectured in [12]. The slow188

mixing for some η > ηc disproves the conjecture from [12] asserting the coincidence of the189

algorithmic and dynamical thresholds. If it were established that λa(∆, β) = λu(∆, β) then190

Theorem 1 would give the sharp dynamical threshold for the Ąxed-magnetization model. It191

is an interesting question to understand the dynamical threshold in both the Ising model192

and Ąxed-magnetization Ising model if instead it holds that λu < λa.193

0 0.4 0.8 1.2
0

0.2

0.4

0.6

0.8

1

β

η

η̄a

ηu

ηc

βu

Fast

Theorem 1, (1)

Slow

Theorem 1, (2)

Figure 1 Sketch of the phase space for the Ąxed-magnetization model on G∆ when ∆ = 4, where
η̄a = η

∆,β,λ̄a

A diagram of the computational and dynamical thresholds for the Ąxed-magnetization194

Ising model is given in Figure 1.195

Towards the proof of Theorem 1,(2), we establish that the Glauber dynamics for the Ising196

model on the random ∆-regular graph takes exponential time to mix when β > βu and λ is197

in the non-uniqueness regime for T∆.198
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56:6 Fast and Slow Mixing of the Kawasaki Dynamics

▶ Theorem 2. Fix ∆ ≥ 3, β > βu(∆), and ♣ log λ♣ < log λu(∆, β). Let G be a uniformly199

random ∆-regular graph on n vertices. Then with high probability as n → ∞, the mixing200

time of the Glauber dynamics for the Ising model on G is eΘ(n).201

This theorem complements the result of Can, van der Hofstad, and Kumagai [8] showing202

that when ♣ log λ♣ > log λu, with high probability over the random regular graph the mixing203

time of the Glauber dynamics is O(n log n); they conjectured that the mixing time is204

exponential when ♣ log λ♣ < log λu, which Theorem 2 conĄrms.205

Theorem 2 also Ąlls in more of the picture for dynamical thresholds in the Ising model on206

graphs in G∆; see Figure 2.207

0 0.4 0.8 1.2 1.6 2
0

2

4

6

8

10

β

lo
g

λ

log λ̄a

log λu

βu

Fast

Slow

Theorem 2

Figure 2 Sketch of the phase space for the Ising model Glauber dynamics on the random ∆-regular
graph when ∆ = 4.

Before we give an overview of our proof techniques, we state some open questions. Our208

Ąrst question is concerned with the relation between the analytic threshold and the uniqueness209

threshold for the Ising model.210

▶ Question 3. Does λa(∆, β) = λu(∆, β)?211

If the answer is yes, then by the results above we would have a complete characterization of212

the dynamical thresholds in the Ising and Ąxed magnetization Ising models on G∆.213

Next we conjecture the following improvement of part (1) of Theorem 1.214

▶ Conjecture 4. If 0 ≤ β < βu or if β > βu and ♣η♣ > ηa, then the Kawasaki dynamics for215

µ̂G,β,η are optimally mixing: the mixing time is in O(♣V (G)♣ · log(♣V (G)♣)) for all G ∈ G∆.216

The analogous statement for independent sets is proved in [33] by proving a log-Sobolev217

inequality for the down-up walk with constant Ω(1/n).218

While we focus on global Kawasaki dynamics in this paper, we suggest that our results219

also apply to the local dynamics. Note that for studying local Kawasaki dynamics, it makes220

sense to assume that G is connected. In this case, we believe that a Markov chain comparison221

argument as in [26] can be used to show that the mixing times of the local and global222

dynamics only differ by a polynomial factor. While our slow mixing result for the global223

dynamics uses identical copies of disjoint random graphs, our arguments should still apply if224
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they are connected with a sparse set of edges. As a consequence, both slow and rapid mixing225

from Theorem 1 would carry over. A full proof of this is left for future work.226

1.1 Overview of Techniques227

The proofs of Theorems 1 and 2 involve several different ingredients, including local central228

limit theorems, spectral independence, and Ąrst- and second-moment methods for spin models229

on random graph. We give an overview of the techniques here.230

1.1.1 Fast Mixing231

At a high level, the proof of Theorem 1, (1) follows the strategy used by Jain, Michelen,232

Pham, and Vuong [33] to show fast mixing for the down-up walk on independent sets of233

density less than αc(∆).234

In order to derive an upper bound on the mixing time of the Kawasaki dynamics for the235

Ąxed-magnetization Ising model, we prove that the spectral gap of the associated transition236

matrix is bounded below by Ω(1/n). To achieve this, we study a related down-up Ising walk237

on Ωk while arguing that the respective spectral gaps of the Kawasaki dynamics and the238

down-up walk are within a constant factor of each other. This allows us to make use of recent239

literature that relates the spectral gap of a down-up walk to spectral independence [1, 2, 14].240

Informally speaking, spectral independence captures the idea that for most pairs of241

vertices v, w ∈ V , the spins assigned to v and w by a random conĄguration from µ̂G,β,η are242

almost independent. While spectral independence for the Ising model has been studied before243

by Chen, Liu, and Vigoda [17], no comparable result exists for the Ąxed-magnetization model.244

To derive the required spectral independence property, we follow an approach introduced245

in [33] to analyze the down-up walk for Ąxed-size independent sets. The idea is to choose λ246

such that a random conĄguration from µG,β,λ has expected magnetization per vertex close247

to η. We then view µ̂G,β,η as µG,β,λ conditioned on the desired magnetization.248

We use this perspective to show that µ̂G,β,η satisĄes ℓ∞-independence as follows:249

(1) An extremal combinatorics result on the magnetization of the Ising model from [12]250

shows that for any G ∈ G∆, the value of λ that achieves expected magnetization η251

satisĄes ♣ log λ♣ > log λa if ♣η♣ > ηa. This allows us to use an approach by Chen, Liu, and252

Vigoda [16] to derive O(1)-ℓ∞-independence for the Ising model for all such λ based on253

our zero-freeness assumption.254

(2) We next show that the probability under µG,β,λ of drawing a conĄguration with exactly255

the correct magnetization is sufficiently large, and that this probability does not change256

signiĄcantly after conditioning on the spin of a vertex. For the former, a lower bound257

of Θ(1/
√

n) can be derived from existing local central limit theorems for the expected258

number of +1 spins [12]. For the latter, we perform a similar analysis to [33] and use an259

Edgeworth expansion to prove that conditioning on the spin of a vertex changes this260

probability by at most O(n−3/2). For both results it is crucial that the Ising model261

satisĄes sufficiently strong zero-freeness assumptions for all considered λ.262

The above discussion indicates how we obtain spectral independence for µ̂G,β,η. The bulk263

of our work comes from leveraging this to derive a lower bound on the spectral gap of the264

down-up walk. This requires us to prove that spectral independence also holds when an265

arbitrary vertex set U ⊂ V with ♣U ♣ < k is Ąxed (or pinned) to have spin +1. Such pinnings266

interfere with the proof strategy above for several reasons. First of all, pinning vertices to +1267

decreases the λ that we need to choose to obtain the desired magnetization η. In particular,268

if we aim for η > ηa, this might cause the required value of λ to leave the regime in which269

APPROX/RANDOM 2024



56:8 Fast and Slow Mixing of the Kawasaki Dynamics

zero-freeness (and ℓ∞-independence) for the Ising model is guaranteed. We circumvent this270

by observing that the Kawasaki dynamics is symmetric under swapping +1 and −1 spins.271

Hence, it suffices to consider η < −ηa, and an application of the FKG inequality ensures that272

we only need to consider λ < 1/λa(∆, β) for all relevant pinnings.273

The second difficulty is that once the number of free vertices k − ♣U ♣ becomes sub-linear274

in n, both the local central limit theorem and the Edgeworth expansion can fail. Similar275

to [33], we solve this issue by using the localization framework by Chen and Eldan [14], which276

allows us to factorize the spectral gap of the down-up walk into the spectral gaps of two277

Markov chains that are easier to analyze. The Ąrst chain is a generalization of the down-up278

walk that updates Θ(n) vertices in each step, and we can analyze its spectral gap based on279

the spectral independence result described above using the local-to-global framework for280

local spectral expanders [1, 2, 15,17]. The second walk is a simple down-up walk but with281

a set of vertices U ⊂ V pinned to +1. In particular, we need to show that there is some282

α > 0 (depending on β and ∆) such that for k − ♣U ♣ ≤ αn, the spectral gap of such a pinned283

down-up walk is bounded below by Ω(1/n).284

For bounding the spectral gap of the pinned walk, we use a coupling argument. SpeciĄcally,285

we construct a suitable metric on the state space such that the distance between two coupled286

copies of the Markov chain contracts in expectation in each step. For the independent set287

model studied in [33], such a contracting coupling is well known, appearing in the original288

Şpath couplingŤ paper of Bubley and Dyer [7]. In contrast, for the Ąxed-magnetization Ising289

model, no such result exists, and the default choice of coupling (sometimes called the identity290

coupling) and metric (the number of vertices on which both conĄgurations differ) does not291

exhibit the desired contraction. Roughly speaking, this is because the ferromagnetism can292

cause certain types of disagreements to increase the probability that new disagreements are293

created. We overcome this problem by studying a reĄned metric, which assigns different294

weights to ŞgoodŤ and ŞbadŤ disagreements in a way that guarantees that distances under295

this new metric decrease in expectation under the coupling, thus establishing the desired296

bound on the spectral gap.297

1.1.2 Slow Mixing298

For the slow mixing results, we leverage the connection between the Ising model on the299

inĄnite tree T∆ and the behavior of the model on a uniformly random ∆-regular graph. In300

the relevant range of parameters (β > βu, 1 < λ < λu) there are two distinct Ising Gibbs301

measures on T∆, the Şplus measureŤ and the Şminus measure.Ť On the random graph these302

two Gibbs measures manifest themselves as a dominant and subdominant metastable state:303

sets of conĄgurations for which the Glauber dynamics take exponential time to escape from.304

The existence of multiple metastable states immediately shows slow mixing of the Glauber305

dynamics (Theorem 2), and we then use this to construct a graph on which the Kawasaki306

dynamics is slow mixing, proving Theorem 1,(2).307

To do this, we exhibit the existence of a bottleneck in the state space of the model on a308

∆-regular graph H constructed as the disjoint union of several copies of a random ∆-regular309

graph. We deĄne two different subsets of conĄgurations of the Ąxed-magnetization Ising310

model on H: in the set of conĄgurations S1, each copy of the random graph comprising H311

has magnetization η; in the set S2, some copies have magnetization approximately η+ > η312

and some copies have magnetization approximately η− < η (chosen in such a way that their313

average is η). We then show that a third set S3 separates S1 and S2 (under single-step314

updates of the Kawasaki dynamics) and carries exponentially less probability mass in the315

Ąxed-magnetization Ising model than either S1 or S2. Via a standard conductance argument316
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this proves exponentially slow mixing of the Kawasaki dynamics.317

Bounds on the weights of the sets S1, S2, and S3 will follow from the existence of the318

metastable states on the random graph. One metastable state consists of conĄgurations with319

magnetization close to η+
∆,β,λ and the other consists of conĄgurations with magnetization320

close to η−
∆,β,λ. That is, the two metastable states are in correspondence with the two distinct321

extremal Gibbs measures on T∆ (which is why λ < λu is crucial).322

Identifying the metastable states follows from determining which states (organized ac-323

cording to their magnetizations) contribute signiĄcantly to the partition function ZG(β, λ)324

of the Ising model on the random ∆-regular graph. A Ąrst guess about how much each325

state contributes to ZG(β, λ) would be to take the expected contribution. The exponential326

order of this expectation is captured by a function f∆,β,λ(η). From [29], we know that327

the critical points of this function correspond to Ąxed points of a recursion on T∆, and328

that the second-moment method can be used to lower bound the contribution of the state329

with magnetization η, where η is the maximum of f∆,β,λ(η). This suffices to determine330

the dominant state of the Ising model on the random graph (as was done in much greater331

generality by Dembo and Montanari in [23]).332

To identify subdominant metastable states, however, we need to analyze the contribution333

of states with magnetization η when η is a local maximum of f∆,β,λ(η). For this we follow334

the approach of [19] utilizing non-reconstruction in planted models. While their setting is335

the q-state Potts model for q ≥ 3, many of their results can be translated to our context of336

the external-Ąeld Ising model. We discuss their techniques in greater detail in Section 3.2337

and in the full paper [36].338

When we construct the graph H as the union of random graphs, we also must understand339

how the behavior of the Ąxed-magnetization Ising model relates to that of the Ising model.340

To do this, we give a new and simple argument in Section 3.2 to bound the probability of341

hitting a given magnetization in the Ising model.342

Interestingly, while the graph on which we show slow mixing is the union of random343

regular graphs, the behavior of the Kawasaki dynamics on a single copy of the random344

regular graph can be very different. Recently, Bauerschmidt, Bodineau, and Dagallier [4]345

(see also [5]) showed that the local Kawasaki dynamics for the Ąxed-magnetization Ising346

model mixes in time O(n log6 n) on random ∆-regular graphs at all magnetizations when347

β < 1/(8
√

∆ − 1). In particular, when ∆ is sufficiently large this regime of fast mixing348

includes parameters outside the tree uniqueness phase, i.e. inside the range of parameters349

for which we prove exponentially-slow mixing in the worst case over graphs in G∆.350

1.2 Outline351

In Section 2, we collect preliminary results that will be used in our proofs. In Section 3 we352

give a more detailed overview on our main steps for proving Theorem 1 and Theorem 2. In353

particular, in Section 3.1, we discuss our fast-mixing result, Theorem 1,(1), and in Section 3.2354

we discuss our slow-mixing results, Theorem 1,(2) and Theorem 2. All proofs and more355

details can be found in the full version of the paper [36].356

2 Preliminaries357

Throughout the paper and unless otherwise stated, we will make the following assumptions:358

∆ ≥ 3 is Ąxed, β ≥ 0, G = (V, E) ∈ G∆, and n = ♣V ♣.359

We will often switch between notation of η for the magnetization per vertex and k =360

⌊ η+1
2 n⌋ for the number of +1 spins in such a conĄguration. We will thus abuse notation and361
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write µ̂G,β,k for µ̂G,β,η and ẐG,k(β) for ẐG,η(β) when it makes things more clear. We will362

also on occasion drop G and β from the subscripts of our Gibbs measure notation as well as363

the subscripts and argument of our partition function notation when G and β do not play a364

role in the proofs.365

2.1 Ising Model on the InĄnite Tree366

Let T∆ denote the inĄnite ∆-regular tree. Since it has inĄnitely many vertices, one cannot367

deĄne the Ising model on T∆ via (1). Instead, the Dobrushin-Lanford-Ruelle equations can368

be used to deĄne ŞinĄnite-volume Gibbs measuresŤ for the Ising model and other spin models369

on inĄnite graphs. This approach says that a probability measure µ on ¶±1♢V (T∆) is a Gibbs370

measure for the Ising model at inverse temperature β and external Ąeld λ if the conditional371

measure on any Ąnite set of vertices given a conĄguration on the complement is the Ising372

model deĄned by (1) with the appropriate boundary conditions. See [30] for more details.373

A main question about Gibbs measures on inĄnite graphs is whether for a given spe-374

ciĄcation of parameters (i.e. β and λ in the Ising case) and a given inĄnite graph G there375

is a unique Gibbs measure or multiple distinct Gibbs measures. The transition between376

uniqueness and non-uniqueness as a parameter varies marks a phase transition.377

Understanding uniqueness and non-uniqueness of the Ising model on T∆ is relatively378

simple because of monotonicity and the FKG inequality. There are two extreme inĄnite-379

volume Gibbs measures in the sense of maximizing or minimizing the probability that a Ąxed380

vertex of T∆ gets a +1 spin: the Ş+ measureŤ on T∆ is the Gibbs measure realized by taking381

a weak limit of Ąnite-volume Gibbs measures on depth N truncations of T∆ with boundary382

vertices assigned +1 spins; the Ş− measureŤ is the weak limit of Ąnite-volume measures with383

boundary vertices receiving −1 spins.384

The quantities η+
∆,β,λ and η−

∆,β,λ are the respective expectations of σv (for any Ąxed v in385

T∆) under these two Gibbs measures. The quantities can be calculated as solutions to Ąxed386

point equations (see e.g. [6]), giving387

η+
∆,β,λ = tanh (L∗ + artanh(tanh(L∗) tanh(β/2)))388

where L∗ is the largest solution to389

L = log(λ) + (∆ − 1)artanh(tanh(L) tanh(β/2)) .390

The following proposition summarizes information about η+
∆,β,λ, η−

∆,β,λ and Gibbs unique-391

ness that we will use (all follow from the results in [6]).392

▶ Proposition 5. Fix ∆ ≥ 3.393

There is uniqueness of Gibbs measure for the Ising model with parameters β, λ on T∆ if394

and only if η+
∆,β,λ = η−

∆,β,λ.395

For β ≤ βu(∆) = ln
(

∆
∆−2



, there is uniqueness for all λ.396

For β > βu(∆) there is λu > 1 so that there is uniqueness if and only if ♣ log λ♣ > log λu.397

η+
∆,β,λ is continuous and strictly increasing in λ on the interval [1, ∞). In particular,398

recall that ηc(∆, β) = η+
∆,β,1 and ηu(∆, β) = η+

∆,β,λu
; then for every η ∈ [ηc, ηu] there is399

λ ∈ [1, λu] so that η+
∆,β,λ = η.400

Finally, it will be important to bound the expected magnetization in the Ising model for401

given β, λ and any G ∈ G∆. The bound is an extremal result proved in [12].402

▶ Theorem 6 ([12, Theorem 3]). For G ∈ G∆, λ ≥ 1, and β ≥ 0,403

Eσ∼µG,β,λ
[η(σ)] ≤ η+

∆,β,λ .404
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2.2 Pinned Models405

For the fast-mixing argument, we will frequently consider pinned versions of our models,406

meaning conditioned on some subset of vertices having been assigned a particular spin. For407

U ⊂ V , we call a function τU : U → ¶+1, −1♢ a pinning on U . We write ΩτU = ¶σ ∈ Ω ♣408

∀u ∈ U : σ(u) = τU (u)♢ for the set of Ising conĄgurations on G that agree with τU on U .409

The Ising partition function with pinning τU is deĄned as410

ZτU

G (β, λ) =
∑

σ∈ΩτU

λ♣σ♣+

eβmG(σ),411

and the Ising model under pinning τU is deĄned by Gibbs measure412

µτU

G,β,λ(σ) =
1σ∈ΩτU λ♣σ♣+

eβmG(σ)

ZτU

G (β, λ)
.413

Note that for λ > 0, it holds that µτU

β,λ is a well-deĄned probability distribution with support414

ΩτU . We allow for the case U = ∅, which is equivalent to the unpinned Ising model. Often,415

τU will be the constant +1 function on U , in which case we write ΩU , ZU
G and µU

β,λ.416

Analogously to the Ising model, we will also impose pinnings on the Ąxed-magnetization417

model. To this end, set ΩτU

k = ¶σ ∈ Ωk : ∀u ∈ U : σ(u) = τU (u)♢ and deĄne the418

Ąxed-magnetization partition function with pinning τU as419

ẐτU

G,k(β) =
∑

σ∈Ω
τU
k

eβmG(σ).420

The Ąxed-magnetization Ising model under pinning τU is a probability measure with support421

ΩτU

k deĄned by422

µ̂τU

G,β,k(σ) =
1σ∈Ω

τU
k

eβmG(σ)

ẐτU

G,k(β)
.423

Throughout the paper, we assume ♣τU ♣+ ≤ k so that the expression above is well-deĄned. As424

with the Ising model, we write ΩU
k , ẐU

G,k and µ̂U
G,β,k when τU is the constant +1 function.425

2.3 Kawasaki Dynamics, Down-up Walk, and Glauber Dynamics426

Here we formally deĄne the three Markov chains that we will analyze. Our main object of427

study is the Kawasaki dynamics for the Ąxed-magnetization Ising model. For this, we Ąx a428

size k where 1 ≤ k ≤ ♣V ♣ − 1.429

▶ DeĄnition 7 (Kawasaki dynamics). The Kawasaki dynamics on Ωk is a Markov chain430

Kβ,k = (Xt)t≥0 given by the following update rule:431

1. Pick u ∈ X−1
t (+1) and w ∈ X−1

t (−1) uniformly at random, and set X ∈ Ωk such that432

X(v) = Xt(w), X(w) = Xt(v), and X(u) = Xt(u) for u ̸= v, w.433

2. Set Xt+1 = X with probability min
{

1,
µ̂G,β,k(X)
µ̂G,β,k(Xt)

}

, and set Xt+1 = Xt otherwise.434

In other words, the Kawasaki dynamics chooses two vertices with opposite spins and435

swaps their spins with probability proportional to the change in monochromatic edges.436

For proving fast mixing of the Kawasaki dynamics, we use the down-up walk on the +1437

spins as a proxy for our analysis. Here we will also need to consider the Markov chain under438

plus pinnings.439
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▶ DeĄnition 8 (Down-up walk with plus pinnings). For U ⊂ V and with ♣U ♣ < k we deĄne the440

+1-down-up walk on ΩU
k as a Markov chain PU

β,k = (Yt)t≥0, given by the following update441

rule:442

1. Pick v ∈ Y −1
t (+1) \ U uniformly at random and set W = Y −1

t (+1) \ ¶v♢.443

2. Draw Yt+1 from µ̂W
G,β,k.444

We write Pβ,k if U = ∅.445

The following observation is easy to check.446

▶ Observation 9. Kβ,k and Pβ,k are ergodic and reversible with respect to µ̂β,k. Moreover,447

there is a constant C ≥ 1 that only depends on ∆ and β such that for all σ1 ̸= σ2448

1

C
· Pβ,k(σ1, σ2) ≤ Kβ,k(σ1, σ2) ≤ C · Pβ,k(σ1, σ2).449

Lastly, we also consider the Glauber dynamics for the Ising model.450

▶ DeĄnition 10 (Glauber dynamics). The Glauber dynamics on Ω is a Markov chain (Xt)t≥0,451

given by the following update rule:452

1. Pick v ∈ V (G) uniformly at random.453

2. For u ≠ v, set Xt+1(u) = Xt(u), and sample Xt+1(v) from the marginal distribution at v454

conditioned on Xt+1(N(v)).455

2.4 Mixing Times456

Our goal in analyzing the Kawasaki dynamics is to understand the mixing time of this457

Markov chain. Given two probability distributions µ and ν on probability space (Ω, A), let458

∥µ − ν∥TV := sup
A∈A

♣µ(A) − ν(A)♣459

be the total variation distance between µ and ν. For a Markov chain on Ω with transition460

matrix P and unique stationary distribution π, we may then deĄne461

d(t) := max
x∈Ω

∥P t(x, ·) − π∥TV.462

▶ DeĄnition 11. The mixing time is463

τmix = inf



t : d(t) ≤ 1

4



.464

See, e.g., [37] for background on Markov chains and mixing times. We use several different465

techniques to analyze the mixing time of the Kawasaki dynamics, which we now describe.466

2.4.1 Upper Bounds on Mixing Time467

A common way to upper-bound the mixing time of a reversible Markov chain P is by lower-468

bounding its spectral gap, which can be deĄned via the following variational characterization.469

470

▶ DeĄnition 12. Let P be a transition matrix that is reversible with respect to π. We denote471

by gap(P ) the spectral gap (or Poincaré constant) of P , which is deĄned as the largest472

constant γ such that γVarπ(f) ≤ EP (f, f) for any function f : Ω → R, where Varπ(f) is the473

variance of f with respect to π and EP is the Dirichlet form of P , given by474

EP (f, g) =
1

2

∑

x,y∈Ω

(f(x) − f(y))(g(x) − g(y))P (x, y)π(x) f, g : Ω → R.475
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Using this characterization of the spectral gap, we have the following observation.476

▶ Observation 13. Suppose P1 and P2 are transition matrices that are both reversible with477

respect to π. If there are constants α1, α2 > 0 such that α1 ·P1(x, y) ≤ P2(x, y) ≤ α2 ·P1(x, y)478

for all x ̸= y, then α1 · gap(P1) ≤ gap(P2) ≤ α2 · gap(P1).479

On account of Observation 9, this allows us to study the spectral gap of the down-up walk480

Pβ,k instead of the Kawasaki dynamics Kβ,k.481

An upper bound on the mixing time of an ergodic, reversible Markov chain with transition482

matrix P can be obtained from its spectral gap via the following standard relationship483

(see [37, Theorem 12.4]):484

τmix ≤ gap(P )−1 · log



4

minx∈Ω π(x)



.485

There are various ways to obtain bounds on the spectral gap of a Markov chain, one of486

which is to construct a contracting coupling. For a transition matrix P , we say that a Markov487

chain (Xt, Yt)t≥0 on Ω × Ω is a coupling of P with itself if each of the marginal processes488

(Xt)t≥0 and (Yt)t≥0 is a Markov chain with transition matrix P . We use this notion to bound489

the spectral gap.490

▶ Theorem 14 ([37, Theorem 13.1]). Suppose Ω is Ąnite and let (Xt, Yt)t≥0 be a coupling491

of P with itself. If there is a constant c > 0 and a function ρ : Ω × Ω → R≥0 such that492

ρ(x, y) = 0 if and only if x = y, and for all t ∈ Z≥0 it holds that493

E[ρ(Xt+1, Yt+1) ♣ Xt, Yt] ≤ (1 − c)ρ(Xt, Yt),494

then the spectral gap of P is at least c.495

We will use Theorem 14 to show that the down-up walk PU
β,k has a spectral gap of Ω(1/k)496

whenever k − ♣U ♣ ≤ αn for some α depending on ∆ and β. In particular, by the symmetry497

of the Kawasaki dynamics under swapping all spins, this proves a spectral gap of Ω(1/k) for498

Kβ,k if k ≤ αn or k ≥ (1 − α)n, but it does not cover the full regime of Theorem 1,(1).499

To prove the full result of Theorem 1,(1), we prove that µ̂U
β,k satisĄes spectral independence500

for suitable k ∈ N and sets U ⊂ V . Spectral independence is a property of the stationary501

distribution π of a Markov chain, and it was recently used to bound the spectral gap and502

prove rapid mixing of various chains [1,2,14,15,17,33]. For the following discussion of spectral503

independence, we restrict ourselves to distributions on Ω = 2V where V is some Ąnite set504

(e.g., the vertices of a graph). Note that this encompasses both the Ąxed-magnetization Ising505

model as well as the Ising model, by associating S ∈ Ω with the Ising conĄguration that maps506

all vertices in S to +1. In this setting, we adopt the following notation: for a distribution π507

on Ω, a subset S drawn from π, and v ∈ V , we write π(v) for the probability that v ∈ S and508

π(v) for the probability that v /∈ S. We extend this to conditional probabilities, writing for509

example π(v ♣ u) for the probability that v ∈ S given u /∈ S.510

▶ DeĄnition 15. The inĆuence matrix of a distribution π on 2V is the matrix Mπ ∈ R
n×n

511

with entries512

Mπ[u, v] =

{

0 if π(u) = 0

π(v ♣ u) − π(v) otherwise
513

Using this deĄnition of Mπ, the deĄnition of spectral independence of π is as follows.514
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▶ DeĄnition 16. A probability distribution π on 2V is called C-spectrally independent (for515

C ≥ 0) if the largest eigenvalue of Mπ is at most C.516

Since directly bounding the largest eigenvalue of Mπ is usually challenging, a common517

approach is to bound the ℓ∞-norm of Mπ instead. This leads to the stronger notion of518

ℓ∞-independence.519

▶ DeĄnition 17. A probability distribution π on 2V is C-ℓ∞-independent (for C ≥ 0) if520

∥Mπ∥∞ := max
u∈V

∑

v∈V

♣Mπ[u, v]♣521

is at most C.522

▶ Remark 18. There are various deĄnitions of the pairwise inĆuence matrix in the literature523

[2,15,17]. For spin systems with two possible states for each vertex (such as the Ising model),524

pairwise inĆuence is commonly deĄned as Mπ[u, v] = π(v ♣ u) − π(v ♣ u). However, note that525

switching between the two deĄnitions only changes the spectral radius by some constant526

factor, provided that π(v) is uniformly bounded away from 0 and 1. Since this is the case527

for the Ising model, given that λ > 0, existing spectral independence results such as [17]528

carry over to our deĄnition. Moreover, DeĄnition 15 is arguably more natural for canonical529

ensembles, such as the Ąxed-magnetization Ising model, as it relates more directly to local530

spectral expansion of the associated simplicial complex (see [36] for details).531

There are different ways to derive bounds on the spectral gap of a Markov chain from532

spectral independence. The most popular approach is the use of local-to-global theorems,533

which are applicable whenever the Markov chain in question can be represented as a down-up534

walk on a suitable weighted simplicial complex [1, 2, 15,17]. Local-to-global theorems allow535

us to express the spectral gap of the down-up walk in terms of spectral gaps of local walks536

on the complex, which can then be related to the spectrum of the pairwise inĆuence matrix.537

A more recent framework was introduced by Chen and Eldan [14] and uses localization538

schemes. A localization scheme maps a probability distribution π on Ω to a localization539

processŮa random sequence of probability measures that interpolates between π and a540

random Dirac measure. Via the localization process, a localization scheme gives rise to a541

Markov chain with stationary distribution π. Provided that the localization process exhibits542

a property called Şapproximate conservation of variance,Ť this can be used to bound the543

spectral gap of the associated Markov chain. For a broad class of localization schemes,544

approximate conservation of variance follows if all measures along the localization process545

exhibit spectral independence. Since we are studying the Ąxed-magnetization Ising model, we546

are particularly concerned with distributions π on Ωk. In this setting, the canonical choice547

for a localization scheme is the subset simplicial-complex localization (see [14, Example 5]),548

and the natural associated Markov chain is the down-up walk Pβ,k.549

The main difficulty in applying the above frameworks in our setting is that they usually550

assume O(1)-spectral independence of the pinned distributions µ̂U
β,k for all U ⊂ V with551

0 ≤ ♣U ♣ ≤ k − 1. Unfortunately, we will not be able to derive spectral independence for all552

such U . Moreover, for the localization framework, it is not clear if the subset simplicial-553

complex localization allows us to derive approximate conservation of variance from spectral554

independence. To overcome these difficulties, we use an argument similar to that of Jain,555

Michelen, Pham and Vuong [33]. We combine the techniques above as follows: Ąrst, we use556

a localization scheme to show that for any ℓ ≤ k − 1, the spectral gap of Pβ,k is bounded557

below by the product of the spectral gap of the pinned down-up walk PU
β,k for any U ⊂ V558

with ♣U ♣ = ℓ and the spectral gap of the (k, ℓ)-down-up walk, a modiĄed version of Pβ,k that559
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resamples k − ℓ plus spins in each step. Choosing ℓ such that k − ℓ ≤ αn for some suitable560

α > 0, we can use a coupling argument as discussed before to show that gap(PU
β,k) ∈ Ω(1/k)561

for every U ⊂ V with ♣U ♣ = ℓ. To lower-bound the spectral gap of the (k, ℓ)-down-up walk,562

we use a local-to-global theorem by Chen, Liu and Vigoda [15]. This only requires us to563

show that µ̂W
β,k satisĄes O(1)-spectral independence for all W ⊂ V with k − ♣W ♣ ≥ α′n for564

some 0 < α′ < α. The range of k for which we can show this O(1)-spectral independence565

leads to the magnetization range given in Theorem 1,(1).566

2.4.2 Lower Bounds on Mixing Time567

To prove slow mixing, we exhibit the existence of a bottleneck in the state space, a set of568

conĄgurations which separates two parts of the state space and carries an exponentially569

smaller probability in the stationary distribution than either of the two parts. The following570

lemma captures a simple form of this argument, often phrased in terms of conductance, for571

proving lower bounds on the mixing times of Markov chains.572

▶ Lemma 19. Let (Xt)t≥0 be a Markov chain on the state space Ω with stationary distribution573

π. Suppose there exists disjoint sets S1, S2, S3 ⊂ Ω so that the following hold:574

For the chain to pass from S2 to S1 it must pass through S3;575

π(S1) ≥ π(S2)576

π(S3) ≤ e−Ω(n)π(S2).577

Then the mixing time of the chain (Xt) is exp(Ω(n)).578

The statement is an immediate corollary of, e.g., [25, Claim 2.3].579

To prove Theorem 2, we deĄne S1, S2, S3 to be sets of conĄgurations with certain580

magnetizations. S1 will be those conĄgurations whose magnetization per vertex is close to581

that of the plus measure on T∆ (when λ > 1); S2 will be those whose magnetization per vertex582

is close to that of the minus measure; and S3 will be conĄgurations whose magnetization is583

just larger than that of S2.584

To prove Theorem 1,(2), we consider a graph H made up of disjoint copies of a random585

regular graph. We deĄne S1 to be the set of conĄgurations with magnetization η on each copy;586

S2 will be a set of conĄgurations with magnetization η+ on some copies and η− on others,587

for η− < η < η+, such that the overall magnetization is η. Again S3 will be a neighborhood588

of S2. In both cases, the main work will be in verifying the conditions of Lemma 19.589

2.5 Thresholds for Zero-Freeness and Spectral Independence590

The deĄnition of λa(∆, β) is based on viewing the Ising partition function as a polynomial in591

the (complex) variable λ. We write N (z, δ) for the open ball of radius δ > 0 around z ∈ C.592

▶ DeĄnition 20 (Absolute zero-freeness). Given β ≥ 0, ∆ ∈ N, λ > 0 and δ > 0, we say that593

the Ising model is absolutely δ-zero-free at activity λ if for all graphs G ∈ G∆, all pinnings594

τU with U ⊆ V and all λ′ ∈ N (λ, δ) it holds that ZτU

G (β, λ′) ̸= 0.595

We now deĄne λa(∆, β) as follows.596

▶ DeĄnition 21. For ∆ ∈ N and β ≥ βu(∆) we set λa(∆, β) to be the smallest λa ≥ 1 such597

that for every compact set D ⊂ (λa, ∞) there is some δ > 0 such that for all λ ∈ D the Ising598

model is absolutely δ-zero-free at λ.599

An important implication of absolute zero-freeness is given in the following theorem. Its600

proof follows a similar argument to those in [16] while using the ferromagnetism of the model601
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and Montel’s theorem (see [49]) to avoid the requirement of multivariate zero-freeness. The602

proof can be found in the full version of the paper [36].603

▶ Theorem 22. Fix β ≥ 0 and ∆ ∈ N. Let D ⊂ R>0 be compact and assume there is some604

δ > 0 such that the ferromagnetic Ising model is absolutely δ-zero-free at every λ ∈ D. Then,605

there is some constant C > 0, only depending on D, λ, β and ∆, such that for all λ ∈ D,606

G ∈ G∆ and all pinnings τU it holds that µ̂τU

G,β,λ is C-ℓ∞-independent.607

3 Main Statements and Proof Structure608

We brieĆy state the most important steps for showing Theorem 1. All proofs and intermediate609

steps are omitted and can be found in the full version of the paper [36].610

3.1 Rapid Mixing611

We start with discussing our proof of the rapid mixing result in part (1) of Theorem 1. The612

structure of the entire proof is illustrated in Figure 3.613

ℓ∞-independence
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''

Absolute
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99
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&&
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Local-to-global
//

Ω(1)-spectral gap
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for ŞsmallŤ pinnings

Localization schemes

��

Strong LCLT
for ŞsmallŤ pinnings

77

Contractive
coupling

//
Ω(1/k)-spectral gap of
down-up walk for
ŞlargeŤ pinnings

Localization schemes. //
Ω(1/k)-spectral gap
for down-up walk

and Kawasaki dynamics

Figure 3 The structure of the rapid mixing proof

All results in this subsection are given in the context of the following assumptions.614

▶ Condition 23. 1. Let β ≥ 0, and let D ⊂ R>0 be compact such that there is some δ > 0615

for which the Ising model is absolutely δ-zero-free for all λ ∈ D. Further, let λ ∈ D.616

2. Let α ∈ [0, 1), let U ⊂ V with ♣U ♣ ≤ αn and let τU be a pinning of U .617

3. Let σ ∼ µτU

β,λ and let X = ♣σ♣+.618

Our Ąrst step is to show that zero-freeness implies a strengthened version of a local central619

limit theorem for X via Edgeworth expansion. Using similar arguments as Jain, Michelen,620

Pham and Vuong [33] for the hard-core model, we obtain the following result.621

▶ Theorem 24. Suppose Condition 23 holds. Let d ∈ N and let ℓ ∈ R such that E[X] + ℓ ∈622

Z≥0. Set s =
√

Var(X) and βj =
κj(X)

j!sj for all j ∈ N, and write Hk(·) for the kth Hermite623

polynomial. It holds that624

µτU

β,λ(X − E[X] = ℓ) =
e− ℓ2

2s2

√
2πs



1 +
∑

r≥3

Hr(ℓ/s)
∑

k3,...,k2d+1

2d+1
∏

j=3

β
kj

j

kj !



 + O
(

n−d
)

625
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where the inner sum is over tuples k3, . . . , k2d+1 ∈ Z≥0 such that
∑

j kj · j = r and
∑

j kj ·626

j−2
2 ≤ d, and the implied constants depend only on ∆, β, δ, D, d and α.627

Our next ingredient is to use zero-freeness to obtain a stability result for the cumulants628

of X under adding vertices to the pinning. Writing κj(X) for the jth cumulant of X, we629

have the following statement.630

▶ Lemma 25. Suppose Condition 23 holds. Let v ∈ V \ U , and let τU ,+++v denote the pinning631

on U ∪ ¶v♢ that maps v to +1 and all other vertices u ∈ U to τU (u). Let X+ = ♣σ′♣+ for632

σ′ ∼ µτU ,+++v

β,λ . For all j ∈ N it holds that ♣κj(X+) − κj(X)♣ = O(1) with implied constants633

only depending on ∆, β, δ, D and j.634

The analog of Lemma 25 for the hard-core model was proven in [33]. However, their arguments635

are tailored to the hard-core model and do not apply in our setting. Instead, we provide a636

more general argument based on an application of Montel’s theorem that is inspired by [43].637

Using Theorem 24 and Lemma 25, we get the following stability result for the probability638

of having exactly k vertices assigned to +1.639

▶ Lemma 26. Suppose Condition 23 holds and assume further that ♣U ♣ + 1 ≤ αn. Let640

k ∈ Z≥0 be such that ♣E[X] − k♣ ≤ L for some L ∈ R≥0. For all v ∈ V \ U it holds that641

µτU

β,λ(X = k) = Θ(n−1/2), (3)642

∣

∣

∣µτU

β,λ(X = k) − µτU

β,λ(X = k ♣ σ(v) = +1)
∣

∣

∣ = O(n−3/2) (4)643

with implied constants depending only on ∆, β, δ, D, L and α.644

Next, recall that by Theorem 22 zero-freeness implies ℓ∞-independence for the ferromag-645

netic Ising model. Combining this with Lemma 26 for a suitable λ, we get the following646

ℓ∞-independence result for the Ąxed magnetization model.647

▶ Theorem 27. Assume 0 ≤ β < βu(∆) and γ ∈ (0, 1/2], or β ≥ βu(∆) and γ ∈ (0, 1−ηa

2 )648

for ηa = ηa(∆, β). For all k := γn ∈ N, all α ∈ [0, γ) and U ⊂ V with ♣U ♣ ≤ αn it holds that649

µ̂U
β,k is C-ℓ∞-independent for a constant C depending only on ∆, β, γ and α.650

Using Theorem 27, we can apply a local-to-global theorem from [15] to show that for every651

k − ℓ ∈ Θ(n) the spectral gap of the (k, ℓ)-down-up walk is in Ω(1). However, to get the652

desired spectral gap for Pβ,k (and Kβ,k), we require one last ingredient, which is to show653

that the spectral gap of the pinned down-up walk PU
β,k is in Ω(1/n) whenever k = γn and654

U ⊂ V are such that k − ♣U ♣ is small enough.655

In the setting of Ąxed-size independent sets studied in [33], such a result was previously656

known due to Theorem 14 and a path coupling by Bubley and Dyer [7]. In contrast, a657

straightforward application of path coupling with the Hamming metric does not work in our658

setting. Instead, we introduce a modiĄed metric on the state space that takes into account659

how likely a disagreement is to spread, which allows us to prove the following result.660

▶ Lemma 28. Let G ∈ G∆ with n sufficiently large. There exists some α = α(∆, β) > 0661

such that for all 0 < k ≤ n/2 and all U ⊂ V with 0 < k − ♣U ♣ ≤ αn it holds that PU
β,k has662

spectral gap Ω(1/k) with constants depending on β and ∆.663

We can now proceed to sketch our proof of the rapid mixing part of Theorem 1. We Ąrst664

note that the Kawasaki dynamics Markov chain is invariant under swapping all spins (i.e. the665

mapping σ 7→ −σ), allowing us to focus on k ≤ n/2 (or equivalently the magnetization regime666
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56:18 Fast and Slow Mixing of the Kawasaki Dynamics

η ≤ 0). Moreover, by Observation 9 it suffices to prove the desired spectral gap for the down-667

up walk Pβ,k for the respective values of k. Using a localization schmeme, we argue that the668

spectral gap of Pβ,k is bounded below by the product of infU∈(V
ℓ ) gap(PU

β,k) and the spectral669

gap of the (k, ℓ)-down-up walk. By Lemma 28, we know that infU∈(V
ℓ ) gap(PU

β,k) ∈ Ω(1/k)670

whenever ℓ is such that k − ℓ ≤ αn for some α = α(∆, β) > 0. Moreover, by Theorem 27 and671

a local-to-global theorem from [15], we can derive a Ω(1) spectral gap for the (k, ℓ)-down-up672

walk. Combining both concludes our rapid mixing proof.673

3.2 Metastability and Slow Mixing674

In this section we prove slow-mixing results for both the Ising Glauber dynamics and Ąxed675

magnetization Kawasaki dynamics when β > βu(∆) and ♣ log λ♣ < log λu and ♣η♣ < ηu676

respectively. The structure of the proof is illustrated below in Figure 4.677

Non-uniqueness on T∆
// Metastability on

random graphs
//

��

Slow mixing of
Kawasaki dynamics

Slow mixing of
Glauber dynamics

Figure 4 The structure of the slow mixing proof

Note: As in the previous section, both perspectives of Ąxed magnetization per vertex η and678

Ąxed size k will be useful in our arguments. We will use ZG,η(β, λ) (where we sometimes679

drop the parameters β and λ for convenience) to denote the contribution to the Ising model680

partition function ZG(β, λ) from conĄgurations of magnetization η. The notation ZG,k(β, λ)681

will mean the contributions to ZG(β, λ) from conĄgurations of size k. When k = ⌊n η+1
2 ⌋, we682

have ZG,η = ZG,k and will use the notations interchangeably.683

Our goal is to understand how conĄgurations of different magnetizations typically con-684

tribute to the partition function ZG(β, λ) when G is a random ∆-regular graph. To start, we685

shift to a slightly different model called the conĄguration model, which we will denote G. To686

generate a graph from this model for a given ∆ and n, take ∆ copies of [n] and a uniformly687

random perfect matching on the ∆n vertices, and then identify the copies corresponding688

to the same vertex. This gives a random ∆-regular multigraph, and it is well-known that689

properties holding with high probability for the conĄguration model also hold with high690

probability for the uniform random ∆-regular graph when ∆ is constant [34].691

We say the model has multiple metastable states if the function limn→∞
1
nE log ZG,η(β, λ)692

has more than one local maximum as η varies. A Ąrst attempt at understanding this693

phenomenon would be to look at the Ąrst moment, and understand the local maxima of694

f∆,β,λ(η) := lim
n→∞

1

n
logEZG,η(β, λ) (5)695

as a function of η (with the crucial distinction between the two functions being the interchange696

of the expectation and logarithm).697

Using computations similar to those found in [18, 19, 29], we can derive an expression698

for f∆,β,λ(η). We then proceed by studying the the maxima of f∆,β,λ(η) as a one-variable699

function with respect to η. By a result in [29] (following [27,41]), we know that the critical700



A. Kuchukova M. Pappik W. Perkins and C. Yap 56:19

points of f∆,β,λ(η) correspond exactly to Ąxed points of the tree recursion for the Ising model701

on T∆, which are the solutions to the equation702

R =
λ(Reβ + 1)∆−1

(R + eβ)∆−1
. (6)703

704

▶ Theorem 29 ([29, Theorem 9, Lemma 11]). There is a 1-to-1 correspondence between the705

Ąxed points of the tree recursion given in (6) and the critical points of f∆,β,λ(η). Moreover,706

the stable Ąxed points of the tree recursion given in (6) are in 1-to-1 correspondence with707

Hessian local maxima of f∆,β,λ(η).708

Recall that a Ąxed point is stable if the absolute value of the derivative at that point is less709

than 1. A local maximum is a Hessian local maximum if the Hessian is negative deĄnite at710

that point. In particular, as our functions are univariate (after Ąxing ∆, β, λ), this is simply711

saying that the second derivative is negative which implies the existence of a local maximum.712

For the above theorem to be useful, we need to understand the solutions of (6).713

▶ Proposition 30. For β > βu, the following hold:714

(1) If ♣ log λ♣ > log λu, then (6) has a unique Ąxed point. It is stable and hence corresponds715

to the global maximizer of f∆,β,λ. This maximizer is η+
∆,β,λ = η−

∆,β,λ.716

(2) If ♣ log λ♣ = log λu, then (6) has two distinct Ąxed points, one of which is stable and717

corresponds to the global maximizer of f∆,β,λ. The other corresponds to an inĆection718

point of f∆,β,λ.719

(3) If ♣ log λ♣ < log λu, then (6) has three distinct Ąxed points. The largest and the smallest720

are both stable, corresponding to the only two local maxima of f∆,β,λ. When λ > 1,721

η+
∆,β,λ is the unique global maximizer; when λ < 1, η−

∆,β,λ is the unique global maximizer;722

when λ = 1 then η+
∆,β,λ, η−

∆,β,λ are both global maximizers.723

Portions of this statement have been shown in, for example, [29, 30, 32], and we give a724

complete proof in [36]. An illustration of f∆,β,λ(η) is given in Figure 5; the left plot appears725

for λ > λu (Case 1 above) and the right plot appears for 1 < λ < λu (Case 3 above).726
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Figure 5 Sketch of the function f∆,β,λ(η) for ∆ = 4, β = ln(2) + 0.1, and
(left) λ = 1.08, (right) λ = 1.01.

While the behavior described in part (3) suggests metastability, Proposition 30 is only727

about the expected partition function, and we will need to show that multiple local maxima728
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56:20 Fast and Slow Mixing of the Kawasaki Dynamics

exist with high probability over the random graph. This will involve showing a lower bound729

on the partition function at the two local maxima and and upper bound everywhere else.730

Via Markov’s inequality, the next statement gives a high probability approximate upper731

bound on ZG,η(λ).732

▶ Lemma 31. Fix β ≥ 0, λ > 0. With probability 1 − o(1) over the random ∆-regular graph733

G on n vertices, it holds for every η that734

ZG,η(λ) ≤ n2 · EZG,η(λ) .735

We further prove lower bounds on ZG,η for values of η which are local maxima. For a736

global maximum, this was proved in [29] via the second moment method.737

▶ Theorem 32 ([29, Theorem 8]). Fix λ > 0 and suppose that η is a global maximizer of738

f∆,β,λ. With probability 1 − o(1) over the random ∆-regular graph G on n vertices,739

ZG,η(λ) ≥ 1

n
EZG,η(λ) .740

We prove the following corresponding statement for the local maximizers.741

▶ Proposition 33. Fix λ > 0 and suppose that η is a local maximizer of f∆,β,λ. For any742

ζ > 0, with probability 1 − o(1) over the random ∆-regular graph G on n vertices,743

ZG,η(λ) ≥ e−ζn
E[ZG,η(λ)] .744

The proof of Proposition 33 follows the template of Coja-Oghlan, Galanis, Goldberg, Ravelo-745

manana, Štefankovič, and Vigoda [19] in proving metastability in the zero-Ąeld ferromagnetic746

Potts model (which in turn used ideas from [3,21]). The argument involves various techniques747

such as studying the planted model, Nishimori identities [20], and non-reconstruction of748

broadcasting processes [19, 29, 39], and it is presented in the full paper [36]. We can now749

sketch the proofs of our slow mixing results.750

Slow mixing of Glauber Dynamics751

We start with sketching our proof of Theorem 2. Let β > βu(∆), λ ∈ [1, λu), and G ∼ G.752

Let η = η+
∆,β,λ, the mean magnetization of the root of T∆ under the + boundary conditions753

with external Ąeld λ, and let η− = η−
∆,β,λ, the same but under the − boundary conditions.754

As η and η− are global and local maximizers of f∆,β,λ, there are ϵ > 0 and δ > 0 so that:755

1. E[ZG,η′(λ)] ≤ e−δn
E[ZG,η(λ)] for all η′ such that ♣η′ − η♣ > ϵ.756

2. E[ZG,η′(λ)] ≤ e−δn
E[ZG,η−

(λ)] for all η′ such that ♣η′ − η−♣ ∈ (ϵ, 2ϵ).757

Next, we sketch how we construct the conĄguration sets S1, S2, S3 for applying Lemma 19,758

where we assume here for simplicity that the magnetization η can actually be realized on G.759

For ϵ > 0 as above, we set:760

S1 : conĄgurations with magnetization η761

S2 : conĄgurations with magnetization in [η− − ϵ, η− + ϵ]762

S3 : conĄgurations with magnetization in [η− − 2ϵ, η− − ϵ) ∪ (η− + ϵ, η− + 2ϵ].763

First, note that the Glauber dynamics starting in S2 must pass through S3 to reach S1.764

Abbreviating µG,β,λ as µ, we can use Lemma 31,Theorem 32 and Property 1 from above765

to show that µ(S2) < µ(S1) a.a.s. over G. Similarly, using Proposition 30, Property 2 and766

Proposition 33 yields µ(S3) ≤ e−Ω(n)µ(S2) a.a.s. Hence, applying Lemma 19, we conclude767

that the mixing time of Glauber dynamics on G is exp(Ω(n)).768



A. Kuchukova M. Pappik W. Perkins and C. Yap 56:21

Slow Mixing of the Kawasaki Dynamics769

We proceed with sketching the proof of part (2) of Theorem 1. Let β > βu(∆). We consider770

a graph H consisting of m identical copies G1, G2, . . . Gm of a random ∆-regular graph G771

from G, where is m is determined later based on η. We will separately consider the cases of772

♣η♣ ∈ (ηc, ηu) and ♣η♣ ≤ ηc, and assume without loss of generality that η > 0.773

We start with the case η ∈ (ηc, ηu). By Proposition 5, there exists λη ∈ (1, λu) such that774

η = η+
∆,β,λη

. For λ+ ∈ (λη, λu), set η+ = η+
∆,β,λ+

and η− = η−
∆,β,λ+

. In particular, note that775

we may choose λ+ such that there are m, ℓ ∈ N with ℓ < m and mη = ℓη+ + (m − ℓ)η−,776

where m is used for constructing H. Further, observe that η is the global maximizer of777

f∆,β,λη
and that η+ and η− are the global and local maximizers of f∆,β,λ+

. Hence, there are778

ϵ > 0 and δ > 0 so that:779

1. E[ZG,η′(λη)] ≤ e−δn
E[ZG,η(λη)] for all η′ such that ♣η′ − η♣ > ϵ.780

2. E[ZG,η′(λ+)] ≤ e−δn
E[ZG,η+(λ+)] for all η′ such that ♣η′ − η+♣ ∈ (ϵ, 2ϵ).781

3. E[ZG,η′(λ+)] ≤ e−δn
E[ZG,η−

(λ+)] for all η′ such that ♣η′ − η−♣ ∈ (ϵ, 2ϵ).782

As for proving slow mixing of Glauber dynamics, we aim for applying Lemma 19. To sketch783

the construction of S1, S2, S3, we again assume here for simplicity that a magnetization784

of η can be realized on each subgraph Gi. Given a conĄguration, we write ηGi
for the785

magnetization on subgraph Gi. We then take the following subsets of conĄgurations on H786

with overall magnetization η:787

S1 : ηGi
= η for all 1 ≤ i ≤ m,788

S2 : ηGi
∈ [η+ − ϵ, η+ + ϵ] for all i ≤ ℓ and ηGi

∈ [η− − ϵ, η− + ϵ] for all i > ℓ,789

S3 : ηGi
∈ [η+ − 2ϵ, η+ + ϵ] for all i ≤ ℓ and ηGi

∈ [η− − ϵ, η− + 2ϵ] for all i > ℓ, and790

there exists i ≤ ℓ with ηGi
∈ [η+ − 2ϵ, η+ − ϵ] or i > ℓ with ηGi

∈ [η− + ϵ, η− + 2ϵ].791

Note that the Kawasaki dynamics have to pass through S3 to get from S2 to S1. Moreover,792

abbreviating µ̂H,β,k as µ̂, we can use Theorem 32, Lemma 31 and Property 1 to show that793

µ̂(S1) ≥ µ̂(S2), and we can use Lemma 31, Properties 2 and 3, Theorem 32 and Proposition 33794

to show that µ̂(S3) ≤ e−Θ(n)µ̂(S2) a.s.s. Hence, applying Lemma 19, we conclude that the795

mixing time of Kawasaki dynamics on H is exp(Ω(n)).796

In the case that 0 < η ≤ ηc, we require a slightly different argument since we cannot apply797

Proposition 5 to η. Instead, we argue that for all η ∈ (0, ηc] we can choose δ′ > 0 sufficiently798

small such that for all η+ ∈ (ηc, ηc + δ′) and η− = η−
∆,β,λη+

it holds that η− < η < η+. In799

particular, we may choose η+ such that mη = ℓη+ + (m − ℓ)η− for some m, ℓ ∈ N, ℓ < m.800

We then deĄne S1, S2, S3 (again with some slight simpliĄcation here) by801

S1 : ηGi
∈ [η− − ϵ, η− + ϵ] for all i ≤ m − ℓ and ηGi

∈ [η+ − ϵ, η+ + ϵ] else,802

S2 : ηGi
∈ [η+ − ϵ, η+ + ϵ] for all i ≤ ℓ and ηGi

∈ [η− − ϵ, η− + ϵ] else,803

S3 : ηGi
∈ [η+ − 2ϵ, η+ + ϵ] for all i ≤ ℓ and ηGi

∈ [η− − ϵ, η− + 2ϵ] else, and there804

exists i ≤ ℓ with ηGi
∈ [η+ − 2ϵ, η+ − ϵ] or i > ℓ with ηGi

∈ [η− + ϵ, η− + 2ϵ].805

By symmetry, we have µ̂(S1) = µ̂(S2) and by the same arguments as before it holds that806

µ̂(S3) ≤ e−Θ(n)µ̂(S2). Applying Lemma 19 then gives the desired result.807
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