

¹ **Fast and Slow Mixing of the Kawasaki Dynamics on Bounded-Degree Graphs**

³ **Aiya Kuchukova**

⁴ School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA

⁵ **Marcus Pappik**

⁶ Hasso Plattner Institute, University of Potsdam, Germany

⁷ **Will Perkins**

⁸ School of Computer Science, Georgia Institute of Technology, Atlanta, GA, USA

⁹ **Corrine Yap**

¹⁰ School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA

¹¹ **Abstract**

¹² We study the worst-case mixing time of the global Kawasaki dynamics for the fixed-magnetization
¹³ Ising model on the class of graphs of maximum degree Δ . Proving a conjecture of Carlson, Davies,
¹⁴ Kolla, and Perkins, we show that below the tree uniqueness threshold, the Kawasaki dynamics
¹⁵ mix rapidly for all magnetizations. Disproving a conjecture of Carlson, Davies, Kolla, and Perkins,
¹⁶ we show that the regime of fast mixing does not extend throughout the regime of tractability for
¹⁷ this model: there is a range of parameters for which there exist efficient sampling algorithms for
¹⁸ the fixed-magnetization Ising model on max-degree Δ graphs, but the Kawasaki dynamics can
¹⁹ take exponential time to mix. Our techniques involve showing spectral independence in the fixed-
²⁰ magnetization Ising model and proving a sharp threshold for the existence of multiple metastable
²¹ states in the Ising model with external field on random regular graphs.

²² **2012 ACM Subject Classification** Mathematics of computing → Probability and statistics; Theory
²³ of computation → Randomness, geometry and discrete structures

²⁴ **Keywords and phrases** ferromagnetic Ising model, fixed-magnetization Ising model, Kawasaki
²⁵ dynamics, Glauber dynamics, mixing time

²⁶ **Digital Object Identifier** 10.4230/LIPIcs.APPROX/RANDOM.2024.56

²⁷ **Related Version** *Full Version*: <https://arxiv.org/abs/2405.06209> [36]

²⁸ **Funding** *Marcus Pappik*: supported by the HPI Research School on Data Science and Engineering

²⁹ *Will Perkins*: supported in part by NSF grant CCF-2309708

³⁰ *Corrine Yap*: supported in part by NIH grant R01GM126554

³¹ **Acknowledgements** The authors thank Zongchen Chen and Marcus Michelen for very helpful
³² discussions.

³³ **1 Introduction**

³⁴ The Ising model on a finite graph $G = (V, E)$ is the following probability distribution on
³⁵ $\Omega = \{+1, -1\}^V$:

$$\mu_{G, \beta, \lambda}(\sigma) = \frac{\lambda^{|\sigma|^+} e^{\beta m_G(\sigma)}}{Z_G(\beta, \lambda)} \quad (1)$$

³⁷ where $|\sigma|^+ = |\{\sigma^{-1}(+1)\}|$ is the number of vertices assigned a $+1$ spin under σ which we call
³⁸ the *size* of σ , and $m_G(\sigma)$ is the number of monochromatic edges in G under the 2-coloring
³⁹ given by $\sigma \in \Omega$. The measure $\mu_{G, \beta, \lambda}$ is called the *Gibbs measure* on G with *inverse temperature*
⁴⁰ $\beta \geq 0$ and *external field* $\lambda \geq 0$. The normalizing constant $Z_G(\beta, \lambda) = \sum_{\sigma \in \Omega} \lambda^{|\sigma|^+} e^{\beta m_G(\sigma)}$

© Aiya Kuchukova, Marcus Pappik, Will Perkins and Corrine Yap;

licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).

Editors: Amit Kumar and Noga Ron-Zewi; Article No. 56; pp. 56:1–56:24

 Leibniz International Proceedings in Informatics

LIPICS Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

56:2 Fast and Slow Mixing of the Kawasaki Dynamics

41 is the *partition function* of the Ising model. Throughout this paper, we focus on the
42 *ferromagnetic* case, $\beta \geq 0$, in which agreeing spins on edges are preferred.

43 Spin models on graphs are the source of many interesting computational problems.
44 Questions about the tractability of approximate counting (estimating the partition function)
45 and approximate sampling (from the Gibbs distribution) are studied extensively.

46 In the case of the ferromagnetic Ising model, Jerrum and Sinclair [35] showed that there
47 is a polynomial-time approximation algorithm on all graphs at all temperatures, and Randall
48 and Wilson [42] gave an efficient sampling algorithm.

49 In other cases, such as the anti-ferromagnetic Ising model ($\beta < 0$) and the hard-core model
50 of weighted independent sets, approximate counting and sampling can be computationally
51 hard (e.g., no polynomial-time algorithm exists unless NP=RP). For the class \mathcal{G}_Δ of graphs
52 of maximum degree Δ , these two models exhibit *computational thresholds*: as the activity or
53 external field parameter λ varies, there is a sharp threshold between tractability (efficient
54 approximate counting and sampling) and intractability (NP-hardness) [28, 46–48]. Moreover,
55 the critical value $\lambda_c = \lambda_c(\Delta, \beta)$ is the phase transition point of the corresponding model on
56 the infinite Δ -regular tree \mathbb{T}_Δ (more precisely, it is the threshold for the *uniqueness of Gibbs*
57 *measure* on \mathbb{T}_Δ , a notion which we discuss shortly). Thus there is a remarkable connection
58 between computational thresholds and statistical physics phase transitions. Even further,
59 the threshold λ_c has recently been shown to be a *dynamical threshold*: it is the threshold
60 for rapid mixing of the Glauber dynamics, a natural Markov chain for sampling from spin
61 models like the Ising or hard-core models, on graphs in \mathcal{G}_Δ [2, 15, 41, 48]. So in these cases,
62 three different thresholds (computational, dynamical, uniqueness on the tree) coincide.

63 A very similar picture has emerged for the model of a uniformly random independent set
64 of a given size. For the class of graphs \mathcal{G}_Δ , there is a critical density $\alpha_c(\Delta)$ so that if $\alpha < \alpha_c$,
65 there are efficient algorithms to approximately count and sample independent sets of density
66 α , while if $\alpha > \alpha_c$ no such algorithms exist unless NP=RP [22]. Jain, Michelen, Pham, and
67 Vuong [33] recently proved that this computational threshold α_c also marks the dynamical
68 threshold—for $\alpha < \alpha_c$, the natural “down-up” random walk on independent sets of a given
69 size mixes rapidly. The threshold $\alpha_c(\Delta)$ is closely connected to a uniqueness threshold on
70 the tree: it is the smallest expected density of an independent set in the hard-core model on
71 $G \in \mathcal{G}_\Delta$ at activity $\lambda_c(\Delta)$.

72 Returning to the ferromagnetic Ising model ($\beta \geq 0$), the picture is fundamentally different
73 and not completely understood. While there is no computational threshold (there are efficient
74 algorithms for all parameters) one can still ask about the relationship between uniqueness
75 and dynamical thresholds. The natural dynamics in this setting are the *Glauber dynamics*,
76 a Markov chain on the state space Ω with stationary distribution $\mu_{G, \beta, \lambda}$ which at each
77 step chooses a uniformly random vertex and updates its spin according to the conditional
78 distribution given the spins of its neighbors. For the case $\lambda = 1$ (“no external field”) the
79 dynamical threshold has been identified, and it coincides with the uniqueness threshold. For
80 $\Delta \geq 3$, let the *critical inverse temperature* of the Ising model on \mathbb{T}_Δ be denoted by

$$81 \quad \beta_u(\Delta) := \ln \left(\frac{\Delta}{\Delta - 2} \right).$$

82 The value $\beta_u(\Delta)$ is the Gibbs uniqueness threshold for the Ising model (with $\lambda = 1$) on \mathbb{T}_Δ
83 (see e.g. [6] and below in Section 2.1 for a precise definition). Mossel and Sly [40] proved that
84 for $0 \leq \beta < \beta_u$ and any λ , the Glauber dynamics are rapidly mixing for any $G \in \mathcal{G}_\Delta$. This
85 threshold in β is sharp due to the analysis of the random Δ -regular graph in [23, 31]: for
86 $\beta > \beta_u$ and $\lambda = 1$, the Glauber dynamics for the Ising model take exponential time to mix.

87 For general $\lambda \geq 0$, in the regime $\beta > \beta_u$, the threshold landscape is not as well understood.
 88 Note that the model is symmetric around $\lambda = 1$ by swapping the role of + and - spins and
 89 so for each threshold, its inverse is also a threshold; for clarity we will define thresholds for
 90 the case $\lambda \geq 1$. Let $\lambda_u(\Delta, \beta)$ be the Gibbs uniqueness threshold of the ferromagnetic Ising
 91 model on \mathbb{T}_Δ ; that is, λ_u is the smallest $\lambda_0 \geq 1$ so that there is a unique Gibbs measure for
 92 the Ising model on \mathbb{T}_Δ with inverse temperature β and external field λ , for all $\lambda > \lambda_0$ (again
 93 see [6] and Section 2.1 for details). The value of λ_u can be given implicitly as the solution to
 94 an equation involving Δ, β , and λ . Unlike in the above mentioned examples, while λ_u marks
 95 a phase transition on the tree, it does not mark a computational transition (since sampling
 96 from the ferromagnetic Ising model is tractable on all graphs and all parameters) and it has
 97 not been established as a dynamical threshold (though this also has not been ruled out).
 98 Below in Theorem 2 we show that the worst-case mixing time of Glauber dynamics over \mathcal{G}_Δ
 99 is exponential when $|\log \lambda| < \log \lambda_u$.

100 The complementary result (fast mixing of the Glauber dynamics for $G \in \mathcal{G}_\Delta$ when
 101 $|\log \lambda| > \log \lambda_u$) is not known to hold. Instead, sufficient conditions for fast mixing have
 102 been given that require λ to be somewhat larger than λ_u . An interesting insight is that
 103 upper bounds on the dynamical threshold are often connected to zero-freeness of the map
 104 $\lambda \mapsto Z_G(\beta, \lambda)$ considered as a complex polynomial. Throughout this paper, we particularly
 105 focus on the *analytic threshold* $\lambda_a(\Delta, \beta)$, defined by the following requirement: for all $G \in \mathcal{G}_\Delta$,
 106 every compact $D \subset (\lambda_a(\Delta, \beta), \infty)$ and every partial spin assignment $\tau_U : U \rightarrow \{-1, +1\}$,
 107 $U \subset V$ it holds that $Z_G^{\tau_U}(\beta, \lambda)$ (the partition function restricted to configurations that are
 108 consistent with τ_U) is non-zero for all λ in some uniform complex neighborhood of D . A
 109 formal definition of λ_a is given in Section 2.5. In contrast to the uniqueness threshold,
 110 $\lambda_a(\Delta, \beta)$ has not been determined. It is known that $\lambda_a(\Delta, \beta) \geq \lambda_u(\Delta, \beta)$ and the best known
 111 upper bound is

$$112 \quad \lambda_a(\Delta, \beta) \leq \min \left\{ \frac{(\Delta - 2)e^{2\beta} - \Delta}{e^{\beta(2-\Delta)}}, e^{\beta\Delta} \right\} =: \bar{\lambda}_a. \quad (2)$$

113 The first expression in the minimum of (2) was proven by Shao and Sun [44], and the second
 114 bound of $e^{\beta\Delta}$ (which is smaller than the first expression for $\Delta \geq 4$ and β large enough) was
 115 proven by Shao and Ye [45].

116 It turns out that this analytic threshold λ_a is closely related to the dynamical threshold.
 117 More precisely, Chen, Liu, and Vigoda [17] proved that the first bound in (2) can be
 118 used to define a regime in which the ferromagnetic Ising model satisfies ℓ_∞ -independence
 119 (see Section 2.4), a stronger version of spectral independence that implies rapid mixing of
 120 Glauber dynamics. Their derivation of the threshold used techniques similar to those of
 121 Shao and Sun [44] which resulted in coinciding bounds, but a more systematic connection
 122 was provided by Chen, Liu and Vigoda in [16]. They showed that for a broad class of spin
 123 systems, sufficiently strong zero-freeness assumptions imply ℓ_∞ -independence. With small
 124 adjustments, we use their technique to argue that the ferromagnetic Ising model satisfies
 125 ℓ_∞ -independence for all $|\log \lambda| > \log \lambda_a(\Delta, \beta)$ (see Theorem 22).

126 The main focus of this paper is on dynamical thresholds of the *fixed-magnetization* Ising
 127 model with inverse temperature β and magnetization η . The magnetization (per vertex) of
 128 an Ising configuration σ is $\eta(\sigma) := \frac{\sum_{v \in V(G)} \sigma_v}{|V(G)|}$. A configuration σ of magnetization η has
 129 size (number of +1 spins) exactly $k = \lfloor n \frac{\eta+1}{2} \rfloor$. We denote by Ω_k the configurations of size k .

130 The fixed-magnetization Ising model with inverse temperature $\beta \geq 0$ and magnetization
 131 $\eta \in [-1, 1]$ is then a probability distribution defined similarly to (1) but on Ω_k , where

56:4 Fast and Slow Mixing of the Kawasaki Dynamics

132 $k = \lfloor n \frac{\eta+1}{2} \rfloor$, as

133
$$\hat{\mu}_{G,\beta,\eta}(\sigma) = \frac{e^{\beta m_G(\sigma)}}{\hat{Z}_{G,\eta}(\beta)},$$

134 where

135
$$\hat{Z}_{G,\eta}(\beta) = \sum_{\sigma \in \Omega_k} e^{\beta m_G(\sigma)}$$

136 is the fixed-magnetization partition function. Here we use floors to avoid restricting to values
137 of η where $n \frac{\eta+1}{2}$ is an integer. The distribution $\hat{\mu}_{G,\beta,\eta}$ is exactly that of $\mu_{G,\beta,\lambda}$ conditioned
138 on the event $\{\sigma \in \Omega_k\}$. Note that the external field plays no role in the fixed-magnetization
139 model since $\lambda^{|\sigma|+}$ is constant on Ω_k .

140 In statistical physics, the fixed-magnetization Ising model is the *canonical ensemble* while
141 the Ising model is the *grand canonical ensemble*. The fixed-magnetization model on lattices
142 is studied in, e.g., [13, 24], where interesting geometric behavior is described; the behavior of
143 the Kawasaki dynamics (the natural analogue of Glauber dynamics) on \mathbb{Z}^d has been studied
144 extensively in, e.g., [9–11, 38]. Here we focus on dynamical behavior over the class of all
145 graphs of maximum degree Δ .

146 To understand algorithmic and dynamical thresholds in the fixed-magnetization Ising
147 model, we need to define some further parameters. The mean magnetization of the + measure
148 on \mathbb{T}_Δ (explained in detail in Section 2.1) is

149
$$\eta_{\Delta,\beta,\lambda}^+ := \tanh(L^* + \operatorname{artanh}(\tanh(L^*) \tanh(\beta/2)))$$

150 where L^* is the largest solution to

151
$$L = \log(\lambda) + (\Delta - 1)\operatorname{artanh}(\tanh(L) \tanh(\beta/2)).$$

152 We are specifically interested in the following three quantities:

153
$$\eta_c(\Delta, \beta) = \eta_{\Delta,\beta,1}^+ \quad \eta_u(\Delta, \beta) = \eta_{\Delta,\beta,\lambda_u}^+ \quad \eta_a(\Delta, \beta) = \eta_{\Delta,\beta,\lambda_a}^+.$$

154 For $\beta > \beta_u$, we have $0 < \eta_c < \eta_u \leq \eta_a$. It is not known if the last inequality is strict or not
155 (just as it is not known if $\lambda_a = \lambda_u$).

156 Carlson, Davies, Kolla, and Perkins [12] showed recently that the fixed-magnetization
157 Ising model exhibits quite different algorithmic behavior than the Ising model: it exhibits
158 a computational threshold. In particular, for $\beta < \beta_u$ and any η , as well as for $\beta > \beta_u$ and
159 $|\eta| > \eta_c$, there are efficient approximate counting and sampling algorithms for the Ising
160 model at fixed mean magnetization η on \mathcal{G}_Δ , while for $\beta > \beta_u$ and $|\eta| < \eta_c$, there are no
161 such algorithms unless NP=RP. Thus β_u and η_c mark the computational threshold in the
162 fixed-magnetization Ising model.

163 Here we study dynamical thresholds for the fixed-magnetization Ising model on \mathcal{G}_Δ .
164 Given a distribution, one candidate for an efficient approximate sampling algorithm is a
165 Markov chain whose stationary distribution is our target distribution, but the efficiency of
166 this algorithm depends on the mixing time. Recall that the mixing time of a Markov chain is
167 the number of steps, in the worst-case over initial distribution, required for a Markov chain
168 to reach 1/4 total variation distance of its stationary distribution (see Section 2.4 for a formal
169 definition). As mentioned above, the natural dynamics associated to the fixed-magnetization
170 Ising model are the *Kawasaki dynamics*, which is a reversible Markov chain on Ω_k . At each
171 step of the chain, a +1 vertex and a -1 vertex are chosen uniformly at random and have

172 their spins swapped with a probability depending on the ratio of the Ising probabilities of the
 173 two configurations. This is sometimes referred to as the *global* Kawasaki dynamics, whereas
 174 the *local* Kawasaki dynamics restrict to swapping spins of neighboring vertices.

175 Our main contributions concern the *mixing time* of the Kawasaki dynamics. Taking
 176 $\|\mu - \nu\|_{\text{TV}} := \sup_{A \in \mathcal{A}} |\mu(A) - \nu(A)|$ to be the total variation distance between probability
 177 distributions μ and ν on a probability space (Ω, \mathcal{A}) , the mixing time of a Markov chain on Ω
 178 that has transition matrix P and stationary distribution π is

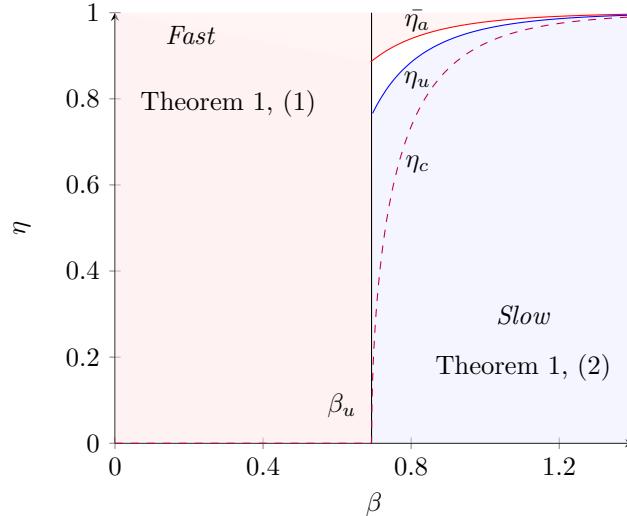
$$179 \quad \tau_{\text{mix}} := \inf \left\{ t : \max_{x \in \Omega} \|P^t(x, \cdot) - \pi\|_{\text{TV}} \leq \frac{1}{4} \right\}.$$

180 Resolving one conjecture of Carlson, Davies, Kolla, and Perkins and disproving another
 181 (part (i) and (ii) respectively of [12, Conjecture 1]), we establish thresholds in the mean
 182 magnetization for fast and slow mixing of the Kawasaki dynamics on \mathcal{G}_Δ .

183 ▶ **Theorem 1.** *For the Kawasaki dynamics, the following two statements hold:*

- 184 (1) *If $0 \leq \beta < \beta_u$ or if $\beta > \beta_u$ and $|\eta| > \eta_a$, then the Kawasaki dynamics for $\hat{\mu}_{G, \beta, \eta}$ have*
 185 *mixing time $O(|V(G)|^2)$ for all $G \in \mathcal{G}_\Delta$.*
- 186 (2) *There exists a sequence of graphs $G_n \in \mathcal{G}_\Delta$ with $|V(G_n)| \rightarrow \infty$ such that for $\beta > \beta_u$ and*
 187 *$|\eta| < \eta_u$, the Kawasaki dynamics for $\hat{\mu}_{G, \beta, \eta}$ have mixing time $\exp(\Omega(|V(G_n)|))$ on G .*

188 Fast mixing of the dynamics for all η when $\beta < \beta_u$ was conjectured in [12]. The slow
 189 mixing for some $\eta > \eta_c$ disproves the conjecture from [12] asserting the coincidence of the
 190 algorithmic and dynamical thresholds. If it were established that $\lambda_a(\Delta, \beta) = \lambda_u(\Delta, \beta)$ then
 191 Theorem 1 would give the sharp dynamical threshold for the fixed-magnetization model. It
 192 is an interesting question to understand the dynamical threshold in both the Ising model
 193 and fixed-magnetization Ising model if instead it holds that $\lambda_u < \lambda_a$.



194 □ **Figure 1** Sketch of the phase space for the fixed-magnetization model on \mathcal{G}_Δ when $\Delta = 4$, where
 195 $\bar{\eta}_a = \eta_{\Delta, \beta, \bar{\lambda}_a}$

196 A diagram of the computational and dynamical thresholds for the fixed-magnetization
 197 Ising model is given in Figure 1.

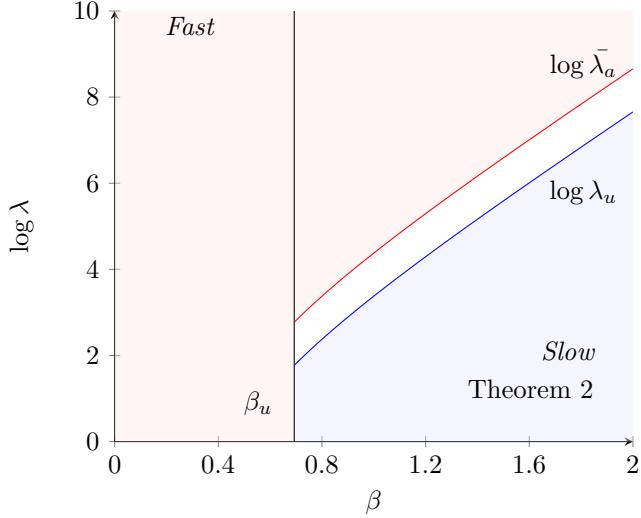
198 Towards the proof of Theorem 1,(2), we establish that the Glauber dynamics for the Ising
 199 model on the random Δ -regular graph takes exponential time to mix when $\beta > \beta_u$ and λ is
 200 in the non-uniqueness regime for \mathbb{T}_Δ .

56:6 Fast and Slow Mixing of the Kawasaki Dynamics

199 ► **Theorem 2.** Fix $\Delta \geq 3$, $\beta > \beta_u(\Delta)$, and $|\log \lambda| < \log \lambda_u(\Delta, \beta)$. Let G be a uniformly
200 random Δ -regular graph on n vertices. Then with high probability as $n \rightarrow \infty$, the mixing
201 time of the Glauber dynamics for the Ising model on G is $e^{\Theta(n)}$.

202 This theorem complements the result of Can, van der Hofstad, and Kumagai [8] showing
203 that when $|\log \lambda| > \log \lambda_u$, with high probability over the random regular graph the mixing
204 time of the Glauber dynamics is $O(n \log n)$; they conjectured that the mixing time is
205 exponential when $|\log \lambda| < \log \lambda_u$, which Theorem 2 confirms.

206 Theorem 2 also fills in more of the picture for dynamical thresholds in the Ising model on
207 graphs in \mathcal{G}_Δ ; see Figure 2.



■ **Figure 2** Sketch of the phase space for the Ising model Glauber dynamics on the random Δ -regular graph when $\Delta = 4$.

208 Before we give an overview of our proof techniques, we state some open questions. Our
209 first question is concerned with the relation between the analytic threshold and the uniqueness
210 threshold for the Ising model.

211 ► **Question 3.** Does $\lambda_a(\Delta, \beta) = \lambda_u(\Delta, \beta)$?

212 If the answer is yes, then by the results above we would have a complete characterization of
213 the dynamical thresholds in the Ising and fixed magnetization Ising models on \mathcal{G}_Δ .

214 Next we conjecture the following improvement of part (1) of Theorem 1.

215 ► **Conjecture 4.** If $0 \leq \beta < \beta_u$ or if $\beta > \beta_u$ and $|\eta| > \eta_a$, then the Kawasaki dynamics for
216 $\hat{\mu}_{G, \beta, \eta}$ are optimally mixing: the mixing time is in $O(|V(G)| \cdot \log(|V(G)|))$ for all $G \in \mathcal{G}_\Delta$.

217 The analogous statement for independent sets is proved in [33] by proving a log-Sobolev
218 inequality for the down-up walk with constant $\Omega(1/n)$.

219 While we focus on global Kawasaki dynamics in this paper, we suggest that our results
220 also apply to the local dynamics. Note that for studying local Kawasaki dynamics, it makes
221 sense to assume that G is connected. In this case, we believe that a Markov chain comparison
222 argument as in [26] can be used to show that the mixing times of the local and global
223 dynamics only differ by a polynomial factor. While our slow mixing result for the global
224 dynamics uses identical copies of disjoint random graphs, our arguments should still apply if

225 they are connected with a sparse set of edges. As a consequence, both slow and rapid mixing
 226 from Theorem 1 would carry over. A full proof of this is left for future work.

227 **1.1 Overview of Techniques**

228 The proofs of Theorems 1 and 2 involve several different ingredients, including local central
 229 limit theorems, spectral independence, and first- and second-moment methods for spin models
 230 on random graph. We give an overview of the techniques here.

231 **1.1.1 Fast Mixing**

232 At a high level, the proof of Theorem 1, (1) follows the strategy used by Jain, Michelen,
 233 Pham, and Vuong [33] to show fast mixing for the down-up walk on independent sets of
 234 density less than $\alpha_c(\Delta)$.

235 In order to derive an upper bound on the mixing time of the Kawasaki dynamics for the
 236 fixed-magnetization Ising model, we prove that the spectral gap of the associated transition
 237 matrix is bounded below by $\Omega(1/n)$. To achieve this, we study a related down-up Ising walk
 238 on Ω_k while arguing that the respective spectral gaps of the Kawasaki dynamics and the
 239 down-up walk are within a constant factor of each other. This allows us to make use of recent
 240 literature that relates the spectral gap of a down-up walk to spectral independence [1, 2, 14].

241 Informally speaking, spectral independence captures the idea that for most pairs of
 242 vertices $v, w \in V$, the spins assigned to v and w by a random configuration from $\hat{\mu}_{G, \beta, \eta}$ are
 243 almost independent. While spectral independence for the Ising model has been studied before
 244 by Chen, Liu, and Vigoda [17], no comparable result exists for the fixed-magnetization model.
 245 To derive the required spectral independence property, we follow an approach introduced
 246 in [33] to analyze the down-up walk for fixed-size independent sets. The idea is to choose λ
 247 such that a random configuration from $\mu_{G, \beta, \lambda}$ has expected magnetization per vertex close
 248 to η . We then view $\hat{\mu}_{G, \beta, \eta}$ as $\mu_{G, \beta, \lambda}$ conditioned on the desired magnetization.

249 We use this perspective to show that $\hat{\mu}_{G, \beta, \eta}$ satisfies ℓ_∞ -independence as follows:

- 250 (1) An extremal combinatorics result on the magnetization of the Ising model from [12]
 251 shows that for any $G \in \mathcal{G}_\Delta$, the value of λ that achieves expected magnetization η
 252 satisfies $|\log \lambda| > \log \lambda_a$ if $|\eta| > \eta_a$. This allows us to use an approach by Chen, Liu, and
 253 Vigoda [16] to derive $O(1)$ - ℓ_∞ -independence for the Ising model for all such λ based on
 254 our zero-freeness assumption.
- 255 (2) We next show that the probability under $\mu_{G, \beta, \lambda}$ of drawing a configuration with exactly
 256 the correct magnetization is sufficiently large, and that this probability does not change
 257 significantly after conditioning on the spin of a vertex. For the former, a lower bound
 258 of $\Theta(1/\sqrt{n})$ can be derived from existing local central limit theorems for the expected
 259 number of +1 spins [12]. For the latter, we perform a similar analysis to [33] and use an
 260 Edgeworth expansion to prove that conditioning on the spin of a vertex changes this
 261 probability by at most $O(n^{-3/2})$. For both results it is crucial that the Ising model
 262 satisfies sufficiently strong zero-freeness assumptions for all considered λ .

263 The above discussion indicates how we obtain spectral independence for $\hat{\mu}_{G, \beta, \eta}$. The bulk
 264 of our work comes from leveraging this to derive a lower bound on the spectral gap of the
 265 down-up walk. This requires us to prove that spectral independence also holds when an
 266 arbitrary vertex set $U \subset V$ with $|U| < k$ is fixed (or *pinned*) to have spin +1. Such pinnings
 267 interfere with the proof strategy above for several reasons. First of all, pinning vertices to +1
 268 decreases the λ that we need to choose to obtain the desired magnetization η . In particular,
 269 if we aim for $\eta > \eta_a$, this might cause the required value of λ to leave the regime in which

270 zero-freeness (and ℓ_∞ -independence) for the Ising model is guaranteed. We circumvent this
 271 by observing that the Kawasaki dynamics is symmetric under swapping $+1$ and -1 spins.
 272 Hence, it suffices to consider $\eta < -\eta_a$, and an application of the FKG inequality ensures that
 273 we only need to consider $\lambda < 1/\lambda_a(\Delta, \beta)$ for all relevant pinnings.

274 The second difficulty is that once the number of free vertices $k - |U|$ becomes sub-linear
 275 in n , both the local central limit theorem and the Edgeworth expansion can fail. Similar
 276 to [33], we solve this issue by using the localization framework by Chen and Eldan [14], which
 277 allows us to factorize the spectral gap of the down-up walk into the spectral gaps of two
 278 Markov chains that are easier to analyze. The first chain is a generalization of the down-up
 279 walk that updates $\Theta(n)$ vertices in each step, and we can analyze its spectral gap based on
 280 the spectral independence result described above using the local-to-global framework for
 281 local spectral expanders [1, 2, 15, 17]. The second walk is a simple down-up walk but with
 282 a set of vertices $U \subset V$ pinned to $+1$. In particular, we need to show that there is some
 283 $\alpha > 0$ (depending on β and Δ) such that for $k - |U| \leq \alpha n$, the spectral gap of such a pinned
 284 down-up walk is bounded below by $\Omega(1/n)$.

285 For bounding the spectral gap of the pinned walk, we use a coupling argument. Specifically,
 286 we construct a suitable metric on the state space such that the distance between two coupled
 287 copies of the Markov chain contracts in expectation in each step. For the independent set
 288 model studied in [33], such a contracting coupling is well known, appearing in the original
 289 “path coupling” paper of Bubley and Dyer [7]. In contrast, for the fixed-magnetization Ising
 290 model, no such result exists, and the default choice of coupling (sometimes called the identity
 291 coupling) and metric (the number of vertices on which both configurations differ) does not
 292 exhibit the desired contraction. Roughly speaking, this is because the ferromagnetism can
 293 cause certain types of disagreements to increase the probability that new disagreements are
 294 created. We overcome this problem by studying a refined metric, which assigns different
 295 weights to “good” and “bad” disagreements in a way that guarantees that distances under
 296 this new metric decrease in expectation under the coupling, thus establishing the desired
 297 bound on the spectral gap.

298 1.1.2 Slow Mixing

299 For the slow mixing results, we leverage the connection between the Ising model on the
 300 infinite tree \mathbb{T}_Δ and the behavior of the model on a uniformly random Δ -regular graph. In
 301 the relevant range of parameters ($\beta > \beta_u$, $1 < \lambda < \lambda_u$) there are two distinct Ising Gibbs
 302 measures on \mathbb{T}_Δ , the “plus measure” and the “minus measure.” On the random graph these
 303 two Gibbs measures manifest themselves as a dominant and subdominant metastable state:
 304 sets of configurations for which the Glauber dynamics take exponential time to escape from.
 305 The existence of multiple metastable states immediately shows slow mixing of the Glauber
 306 dynamics (Theorem 2), and we then use this to construct a graph on which the Kawasaki
 307 dynamics is slow mixing, proving Theorem 1,(2).

308 To do this, we exhibit the existence of a bottleneck in the state space of the model on a
 309 Δ -regular graph H constructed as the disjoint union of several copies of a random Δ -regular
 310 graph. We define two different subsets of configurations of the fixed-magnetization Ising
 311 model on H : in the set of configurations S_1 , each copy of the random graph comprising H
 312 has magnetization η ; in the set S_2 , some copies have magnetization approximately $\eta_+ > \eta$
 313 and some copies have magnetization approximately $\eta_- < \eta$ (chosen in such a way that their
 314 average is η). We then show that a third set S_3 separates S_1 and S_2 (under single-step
 315 updates of the Kawasaki dynamics) and carries exponentially less probability mass in the
 316 fixed-magnetization Ising model than either S_1 or S_2 . Via a standard conductance argument

317 this proves exponentially slow mixing of the Kawasaki dynamics.

318 Bounds on the weights of the sets S_1, S_2 , and S_3 will follow from the existence of the
 319 metastable states on the random graph. One metastable state consists of configurations with
 320 magnetization close to $\eta_{\Delta,\beta,\lambda}^+$ and the other consists of configurations with magnetization
 321 close to $\eta_{\Delta,\beta,\lambda}^-$. That is, the two metastable states are in correspondence with the two distinct
 322 extremal Gibbs measures on \mathbb{T}_Δ (which is why $\lambda < \lambda_u$ is crucial).

323 Identifying the metastable states follows from determining which states (organized ac-
 324 cording to their magnetizations) contribute significantly to the partition function $Z_G(\beta, \lambda)$
 325 of the Ising model on the random Δ -regular graph. A first guess about how much each
 326 state contributes to $Z_G(\beta, \lambda)$ would be to take the expected contribution. The exponential
 327 order of this expectation is captured by a function $f_{\Delta,\beta,\lambda}(\eta)$. From [29], we know that
 328 the critical points of this function correspond to fixed points of a recursion on \mathbb{T}_Δ , and
 329 that the second-moment method can be used to lower bound the contribution of the state
 330 with magnetization η , where η is the maximum of $f_{\Delta,\beta,\lambda}(\eta)$. This suffices to determine
 331 the dominant state of the Ising model on the random graph (as was done in much greater
 332 generality by Dembo and Montanari in [23]).

333 To identify subdominant metastable states, however, we need to analyze the contribution
 334 of states with magnetization η when η is a local maximum of $f_{\Delta,\beta,\lambda}(\eta)$. For this we follow
 335 the approach of [19] utilizing non-reconstruction in planted models. While their setting is
 336 the q -state Potts model for $q \geq 3$, many of their results can be translated to our context of
 337 the external-field Ising model. We discuss their techniques in greater detail in Section 3.2
 338 and in the full paper [36].

339 When we construct the graph H as the union of random graphs, we also must understand
 340 how the behavior of the fixed-magnetization Ising model relates to that of the Ising model.
 341 To do this, we give a new and simple argument in Section 3.2 to bound the probability of
 342 hitting a given magnetization in the Ising model.

343 Interestingly, while the graph on which we show slow mixing is the union of random
 344 regular graphs, the behavior of the Kawasaki dynamics on a single copy of the random
 345 regular graph can be very different. Recently, Bauerschmidt, Bodineau, and Dagallier [4]
 346 (see also [5]) showed that the local Kawasaki dynamics for the fixed-magnetization Ising
 347 model mixes in time $O(n \log^6 n)$ on random Δ -regular graphs at all magnetizations when
 348 $\beta < 1/(8\sqrt{\Delta - 1})$. In particular, when Δ is sufficiently large this regime of fast mixing
 349 includes parameters outside the tree uniqueness phase, i.e. inside the range of parameters
 350 for which we prove exponentially-slow mixing in the worst case over graphs in \mathcal{G}_Δ .

351 1.2 Outline

352 In Section 2, we collect preliminary results that will be used in our proofs. In Section 3 we
 353 give a more detailed overview on our main steps for proving Theorem 1 and Theorem 2. In
 354 particular, in Section 3.1, we discuss our fast-mixing result, Theorem 1,(1), and in Section 3.2
 355 we discuss our slow-mixing results, Theorem 1,(2) and Theorem 2. All proofs and more
 356 details can be found in the full version of the paper [36].

357 2 Preliminaries

358 Throughout the paper and unless otherwise stated, we will make the following assumptions:
 359 $\Delta \geq 3$ is fixed, $\beta \geq 0$, $G = (V, E) \in \mathcal{G}_\Delta$, and $n = |V|$.

360 We will often switch between notation of η for the magnetization per vertex and $k =$
 361 $\lfloor \frac{\eta+1}{2} n \rfloor$ for the number of +1 spins in such a configuration. We will thus abuse notation and

56:10 Fast and Slow Mixing of the Kawasaki Dynamics

362 write $\hat{\mu}_{G,\beta,k}$ for $\hat{\mu}_{G,\beta,\eta}$ and $\hat{Z}_{G,k}(\beta)$ for $\hat{Z}_{G,\eta}(\beta)$ when it makes things more clear. We will
363 also on occasion drop G and β from the subscripts of our Gibbs measure notation as well as
364 the subscripts and argument of our partition function notation when G and β do not play a
365 role in the proofs.

366 2.1 Ising Model on the Infinite Tree

367 Let \mathbb{T}_Δ denote the infinite Δ -regular tree. Since it has infinitely many vertices, one cannot
368 define the Ising model on \mathbb{T}_Δ via (1). Instead, the Dobrushin-Lanford-Ruelle equations can
369 be used to define “infinite-volume Gibbs measures” for the Ising model and other spin models
370 on infinite graphs. This approach says that a probability measure μ on $\{\pm 1\}^{V(\mathbb{T}_\Delta)}$ is a Gibbs
371 measure for the Ising model at inverse temperature β and external field λ if the conditional
372 measure on any finite set of vertices given a configuration on the complement is the Ising
373 model defined by (1) with the appropriate boundary conditions. See [30] for more details.

374 A main question about Gibbs measures on infinite graphs is whether for a given spec-
375 cification of parameters (i.e. β and λ in the Ising case) and a given infinite graph G there
376 is a unique Gibbs measure or multiple distinct Gibbs measures. The transition between
377 uniqueness and non-uniqueness as a parameter varies marks a phase transition.

378 Understanding uniqueness and non-uniqueness of the Ising model on \mathbb{T}_Δ is relatively
379 simple because of monotonicity and the FKG inequality. There are two extreme infinite-
380 volume Gibbs measures in the sense of maximizing or minimizing the probability that a fixed
381 vertex of \mathbb{T}_Δ gets a $+1$ spin: the “+ measure” on \mathbb{T}_Δ is the Gibbs measure realized by taking
382 a weak limit of finite-volume Gibbs measures on depth N truncations of \mathbb{T}_Δ with boundary
383 vertices assigned $+1$ spins; the “- measure” is the weak limit of finite-volume measures with
384 boundary vertices receiving -1 spins.

385 The quantities $\eta_{\Delta,\beta,\lambda}^+$ and $\eta_{\Delta,\beta,\lambda}^-$ are the respective expectations of σ_v (for any fixed v in
386 \mathbb{T}_Δ) under these two Gibbs measures. The quantities can be calculated as solutions to fixed
387 point equations (see e.g. [6]), giving

$$388 \eta_{\Delta,\beta,\lambda}^+ = \tanh(L^* + \operatorname{artanh}(\tanh(L^*) \tanh(\beta/2)))$$

389 where L^* is the largest solution to

$$390 L = \log(\lambda) + (\Delta - 1)\operatorname{artanh}(\tanh(L) \tanh(\beta/2)).$$

391 The following proposition summarizes information about $\eta_{\Delta,\beta,\lambda}^+$, $\eta_{\Delta,\beta,\lambda}^-$ and Gibbs unique-
392 ness that we will use (all follow from the results in [6]).

393 ▶ **Proposition 5.** *Fix $\Delta \geq 3$.*

- 394 ■ *There is uniqueness of Gibbs measure for the Ising model with parameters β, λ on \mathbb{T}_Δ if
395 and only if $\eta_{\Delta,\beta,\lambda}^+ = \eta_{\Delta,\beta,\lambda}^-$.*
- 396 ■ *For $\beta \leq \beta_u(\Delta) = \ln\left(\frac{\Delta}{\Delta-2}\right)$, there is uniqueness for all λ .*
- 397 ■ *For $\beta > \beta_u(\Delta)$ there is $\lambda_u > 1$ so that there is uniqueness if and only if $|\log \lambda| > \log \lambda_u$.*
- 398 ■ *$\eta_{\Delta,\beta,\lambda}^+$ is continuous and strictly increasing in λ on the interval $[1, \infty)$. In particular,
399 recall that $\eta_c(\Delta, \beta) = \eta_{\Delta,\beta,1}^+$ and $\eta_u(\Delta, \beta) = \eta_{\Delta,\beta,\lambda_u}^+$; then for every $\eta \in [\eta_c, \eta_u]$ there is
400 $\lambda \in [1, \lambda_u]$ so that $\eta_{\Delta,\beta,\lambda}^+ = \eta$.*

401 Finally, it will be important to bound the expected magnetization in the Ising model for
402 given β, λ and any $G \in \mathcal{G}_\Delta$. The bound is an extremal result proved in [12].

403 ▶ **Theorem 6** ([12, Theorem 3]). *For $G \in \mathcal{G}_\Delta$, $\lambda \geq 1$, and $\beta \geq 0$,*

$$404 \mathbb{E}_{\sigma \sim \mu_{G,\beta,\lambda}} [\eta(\sigma)] \leq \eta_{\Delta,\beta,\lambda}^+.$$

405 2.2 Pinned Models

406 For the fast-mixing argument, we will frequently consider pinned versions of our models,
 407 meaning conditioned on some subset of vertices having been assigned a particular spin. For
 408 $U \subset V$, we call a function $\tau_U : U \rightarrow \{+1, -1\}$ a *pinning* on U . We write $\Omega^{\tau_U} = \{\sigma \in \Omega \mid$
 409 $\forall u \in U : \sigma(u) = \tau_U(u)\}$ for the set of Ising configurations on G that agree with τ_U on U .
 410 The *Ising partition function with pinning* τ_U is defined as

$$411 Z_G^{\tau_U}(\beta, \lambda) = \sum_{\sigma \in \Omega^{\tau_U}} \lambda^{|\sigma|^+} e^{\beta m_G(\sigma)},$$

412 and the *Ising model under pinning* τ_U is defined by Gibbs measure

$$413 \mu_{G, \beta, \lambda}^{\tau_U}(\sigma) = \frac{\mathbb{1}_{\sigma \in \Omega^{\tau_U}} \lambda^{|\sigma|^+} e^{\beta m_G(\sigma)}}{Z_G^{\tau_U}(\beta, \lambda)}.$$

414 Note that for $\lambda > 0$, it holds that $\mu_{\beta, \lambda}^{\tau_U}$ is a well-defined probability distribution with support
 415 Ω^{τ_U} . We allow for the case $U = \emptyset$, which is equivalent to the unpinned Ising model. Often,
 416 τ_U will be the constant $+1$ function on U , in which case we write Ω^U , Z_G^U and $\mu_{\beta, \lambda}^U$.

417 Analogously to the Ising model, we will also impose pinnings on the fixed-magnetization
 418 model. To this end, set $\Omega_k^{\tau_U} = \{\sigma \in \Omega_k : \forall u \in U : \sigma(u) = \tau_U(u)\}$ and define the
 419 *fixed-magnetization partition function with pinning* τ_U as

$$420 \hat{Z}_{G, k}^{\tau_U}(\beta) = \sum_{\sigma \in \Omega_k^{\tau_U}} e^{\beta m_G(\sigma)}.$$

421 The *fixed-magnetization Ising model under pinning* τ_U is a probability measure with support
 422 $\Omega_k^{\tau_U}$ defined by

$$423 \hat{\mu}_{G, \beta, k}^{\tau_U}(\sigma) = \frac{\mathbb{1}_{\sigma \in \Omega_k^{\tau_U}} e^{\beta m_G(\sigma)}}{\hat{Z}_{G, k}^{\tau_U}(\beta)}.$$

424 Throughout the paper, we assume $|\tau_U|^+ \leq k$ so that the expression above is well-defined. As
 425 with the Ising model, we write Ω_k^U , $\hat{Z}_{G, k}^U$ and $\hat{\mu}_{G, \beta, k}^U$ when τ_U is the constant $+1$ function.

426 2.3 Kawasaki Dynamics, Down-up Walk, and Glauber Dynamics

427 Here we formally define the three Markov chains that we will analyze. Our main object of
 428 study is the Kawasaki dynamics for the fixed-magnetization Ising model. For this, we fix a
 429 size k where $1 \leq k \leq |V| - 1$.

- 430 ▶ **Definition 7** (Kawasaki dynamics). *The Kawasaki dynamics on Ω_k is a Markov chain*
 431 $\mathcal{K}_{\beta, k} = (X_t)_{t \geq 0}$ *given by the following update rule:*
- 432 1. *Pick $u \in X_t^{-1}(+1)$ and $w \in X_t^{-1}(-1)$ uniformly at random, and set $X \in \Omega_k$ such that*
 433 *$X(v) = X_t(w)$, $X(w) = X_t(v)$, and $X(u) = X_t(u)$ for $u \neq v, w$.*
- 434 2. *Set $X_{t+1} = X$ with probability $\min \left\{ 1, \frac{\hat{\mu}_{G, \beta, k}(X)}{\hat{\mu}_{G, \beta, k}(X_t)} \right\}$, and set $X_{t+1} = X_t$ otherwise.*

435 In other words, the Kawasaki dynamics chooses two vertices with opposite spins and
 436 swaps their spins with probability proportional to the change in monochromatic edges.

437 For proving fast mixing of the Kawasaki dynamics, we use the down-up walk on the $+1$
 438 spins as a proxy for our analysis. Here we will also need to consider the Markov chain under
 439 plus pinnings.

56:12 Fast and Slow Mixing of the Kawasaki Dynamics

440 ► **Definition 8** (Down-up walk with plus pinnings). For $U \subset V$ and with $|U| < k$ we define the
441 +1-down-up walk on Ω_k^U as a Markov chain $\mathcal{P}_{\beta,k}^U = (Y_t)_{t \geq 0}$, given by the following update
442 rule:
443 1. Pick $v \in Y_t^{-1}(+1) \setminus U$ uniformly at random and set $W = Y_t^{-1}(+1) \setminus \{v\}$.
444 2. Draw Y_{t+1} from $\hat{\mu}_{G,\beta,k}^W$.
445 We write $\mathcal{P}_{\beta,k}$ if $U = \emptyset$.

446 The following observation is easy to check.

447 ► **Observation 9.** $\mathcal{K}_{\beta,k}$ and $\mathcal{P}_{\beta,k}$ are ergodic and reversible with respect to $\hat{\mu}_{\beta,k}$. Moreover,
448 there is a constant $C \geq 1$ that only depends on Δ and β such that for all $\sigma_1 \neq \sigma_2$

$$449 \frac{1}{C} \cdot \mathcal{P}_{\beta,k}(\sigma_1, \sigma_2) \leq \mathcal{K}_{\beta,k}(\sigma_1, \sigma_2) \leq C \cdot \mathcal{P}_{\beta,k}(\sigma_1, \sigma_2).$$

450 Lastly, we also consider the Glauber dynamics for the Ising model.

451 ► **Definition 10** (Glauber dynamics). The Glauber dynamics on Ω is a Markov chain $(X_t)_{t \geq 0}$,
452 given by the following update rule:

- 453 1. Pick $v \in V(G)$ uniformly at random.
454 2. For $u \neq v$, set $X_{t+1}(u) = X_t(u)$, and sample $X_{t+1}(v)$ from the marginal distribution at v
455 conditioned on $X_{t+1}(N(v))$.

456 2.4 Mixing Times

457 Our goal in analyzing the Kawasaki dynamics is to understand the *mixing time* of this
458 Markov chain. Given two probability distributions μ and ν on probability space (Ω, \mathcal{A}) , let

$$459 \|\mu - \nu\|_{\text{TV}} := \sup_{A \in \mathcal{A}} |\mu(A) - \nu(A)|$$

460 be the *total variation distance* between μ and ν . For a Markov chain on Ω with transition
461 matrix P and unique stationary distribution π , we may then define

$$462 d(t) := \max_{x \in \Omega} \|P^t(x, \cdot) - \pi\|_{\text{TV}}.$$

463 ► **Definition 11.** The mixing time is

$$464 \tau_{\text{mix}} = \inf \left\{ t : d(t) \leq \frac{1}{4} \right\}.$$

465 See, e.g., [37] for background on Markov chains and mixing times. We use several different
466 techniques to analyze the mixing time of the Kawasaki dynamics, which we now describe.

467 2.4.1 Upper Bounds on Mixing Time

468 A common way to upper-bound the mixing time of a reversible Markov chain P is by lower-
469 bounding its spectral gap, which can be defined via the following variational characterization.

470

471 ► **Definition 12.** Let P be a transition matrix that is reversible with respect to π . We denote
472 by $\text{gap}(P)$ the spectral gap (or Poincaré constant) of P , which is defined as the largest
473 constant γ such that $\gamma \text{Var}_\pi(f) \leq \mathcal{E}_P(f, f)$ for any function $f : \Omega \rightarrow \mathbb{R}$, where $\text{Var}_\pi(f)$ is the
474 variance of f with respect to π and \mathcal{E}_P is the Dirichlet form of P , given by

$$475 \mathcal{E}_P(f, g) = \frac{1}{2} \sum_{x,y \in \Omega} (f(x) - f(y))(g(x) - g(y))P(x, y)\pi(x) \quad f, g : \Omega \rightarrow \mathbb{R}.$$

476 Using this characterization of the spectral gap, we have the following observation.

477 **► Observation 13.** *Suppose P_1 and P_2 are transition matrices that are both reversible with
478 respect to π . If there are constants $\alpha_1, \alpha_2 > 0$ such that $\alpha_1 \cdot P_1(x, y) \leq P_2(x, y) \leq \alpha_2 \cdot P_1(x, y)$
479 for all $x \neq y$, then $\alpha_1 \cdot \text{gap}(P_1) \leq \text{gap}(P_2) \leq \alpha_2 \cdot \text{gap}(P_1)$.*

480 On account of Observation 9, this allows us to study the spectral gap of the down-up walk
481 $\mathcal{P}_{\beta,k}$ instead of the Kawasaki dynamics $\mathcal{K}_{\beta,k}$.

482 An upper bound on the mixing time of an ergodic, reversible Markov chain with transition
483 matrix P can be obtained from its spectral gap via the following standard relationship
484 (see [37, Theorem 12.4]):

$$485 \quad \tau_{\text{mix}} \leq \text{gap}(P)^{-1} \cdot \log \left(\frac{4}{\min_{x \in \Omega} \pi(x)} \right).$$

486 There are various ways to obtain bounds on the spectral gap of a Markov chain, one of
487 which is to construct a contracting coupling. For a transition matrix P , we say that a Markov
488 chain $(X_t, Y_t)_{t \geq 0}$ on $\Omega \times \Omega$ is a *coupling* of P with itself if each of the marginal processes
489 $(X_t)_{t \geq 0}$ and $(Y_t)_{t \geq 0}$ is a Markov chain with transition matrix P . We use this notion to bound
490 the spectral gap.

491 **► Theorem 14** ([37, Theorem 13.1]). *Suppose Ω is finite and let $(X_t, Y_t)_{t \geq 0}$ be a coupling
492 of P with itself. If there is a constant $c > 0$ and a function $\rho : \Omega \times \Omega \rightarrow \mathbb{R}_{\geq 0}$ such that
493 $\rho(x, y) = 0$ if and only if $x = y$, and for all $t \in \mathbb{Z}_{\geq 0}$ it holds that*

$$494 \quad \mathbb{E}[\rho(X_{t+1}, Y_{t+1}) \mid X_t, Y_t] \leq (1 - c)\rho(X_t, Y_t),$$

495 then the spectral gap of P is at least c .

496 We will use Theorem 14 to show that the down-up walk $\mathcal{P}_{\beta,k}^U$ has a spectral gap of $\Omega(1/k)$
497 whenever $k - |U| \leq \alpha n$ for some α depending on Δ and β . In particular, by the symmetry
498 of the Kawasaki dynamics under swapping all spins, this proves a spectral gap of $\Omega(1/k)$ for
499 $\mathcal{K}_{\beta,k}$ if $k \leq \alpha n$ or $k \geq (1 - \alpha)n$, but it does not cover the full regime of Theorem 1,(1).

500 To prove the full result of Theorem 1,(1), we prove that $\hat{\mu}_{\beta,k}^U$ satisfies spectral independence
501 for suitable $k \in \mathbb{N}$ and sets $U \subset V$. Spectral independence is a property of the stationary
502 distribution π of a Markov chain, and it was recently used to bound the spectral gap and
503 prove rapid mixing of various chains [1, 2, 14, 15, 17, 33]. For the following discussion of spectral
504 independence, we restrict ourselves to distributions on $\Omega = 2^V$ where V is some finite set
505 (e.g., the vertices of a graph). Note that this encompasses both the fixed-magnetization Ising
506 model as well as the Ising model, by associating $S \in \Omega$ with the Ising configuration that maps
507 all vertices in S to +1. In this setting, we adopt the following notation: for a distribution π
508 on Ω , a subset S drawn from π , and $v \in V$, we write $\pi(v)$ for the probability that $v \in S$ and
509 $\pi(\bar{v})$ for the probability that $v \notin S$. We extend this to conditional probabilities, writing for
510 example $\pi(v \mid \bar{u})$ for the probability that $v \in S$ given $u \notin S$.

511 **► Definition 15.** *The influence matrix of a distribution π on 2^V is the matrix $M_\pi \in \mathbb{R}^{n \times n}$
512 with entries*

$$513 \quad M_\pi[u, v] = \begin{cases} 0 & \text{if } \pi(u) = 0 \\ \pi(v \mid u) - \pi(v) & \text{otherwise} \end{cases}$$

514 Using this definition of M_π , the definition of spectral independence of π is as follows.

515 ► **Definition 16.** A probability distribution π on 2^V is called C -spectrally independent (for
 516 $C \geq 0$) if the largest eigenvalue of M_π is at most C .

517 Since directly bounding the largest eigenvalue of M_π is usually challenging, a common
 518 approach is to bound the ℓ_∞ -norm of M_π instead. This leads to the stronger notion of
 519 ℓ_∞ -independence.

520 ► **Definition 17.** A probability distribution π on 2^V is C - ℓ_∞ -independent (for $C \geq 0$) if

$$521 \quad \|M_\pi\|_\infty := \max_{u \in V} \sum_{v \in V} |M_\pi[u, v]|$$

522 is at most C .

523 ► **Remark 18.** There are various definitions of the pairwise influence matrix in the literature
 524 [2, 15, 17]. For spin systems with two possible states for each vertex (such as the Ising model),
 525 pairwise influence is commonly defined as $M_\pi[u, v] = \pi(v \mid u) - \pi(v \mid \bar{u})$. However, note that
 526 switching between the two definitions only changes the spectral radius by some constant
 527 factor, provided that $\pi(v)$ is uniformly bounded away from 0 and 1. Since this is the case
 528 for the Ising model, given that $\lambda > 0$, existing spectral independence results such as [17]
 529 carry over to our definition. Moreover, Definition 15 is arguably more natural for canonical
 530 ensembles, such as the fixed-magnetization Ising model, as it relates more directly to local
 531 spectral expansion of the associated simplicial complex (see [36] for details).

532 There are different ways to derive bounds on the spectral gap of a Markov chain from
 533 spectral independence. The most popular approach is the use of *local-to-global theorems*,
 534 which are applicable whenever the Markov chain in question can be represented as a down-up
 535 walk on a suitable weighted simplicial complex [1, 2, 15, 17]. Local-to-global theorems allow
 536 us to express the spectral gap of the down-up walk in terms of spectral gaps of local walks
 537 on the complex, which can then be related to the spectrum of the pairwise influence matrix.

538 A more recent framework was introduced by Chen and Eldan [14] and uses *localization
 539 schemes*. A localization scheme maps a probability distribution π on Ω to a localization
 540 process—a random sequence of probability measures that interpolates between π and a
 541 random Dirac measure. Via the localization process, a localization scheme gives rise to a
 542 Markov chain with stationary distribution π . Provided that the localization process exhibits
 543 a property called “approximate conservation of variance,” this can be used to bound the
 544 spectral gap of the associated Markov chain. For a broad class of localization schemes,
 545 approximate conservation of variance follows if all measures along the localization process
 546 exhibit spectral independence. Since we are studying the fixed-magnetization Ising model, we
 547 are particularly concerned with distributions π on Ω_k . In this setting, the canonical choice
 548 for a localization scheme is the subset simplicial-complex localization (see [14, Example 5]),
 549 and the natural associated Markov chain is the down-up walk $\mathcal{P}_{\beta, k}$.

550 The main difficulty in applying the above frameworks in our setting is that they usually
 551 assume $O(1)$ -spectral independence of the pinned distributions $\hat{\mu}_{\beta, k}^U$ for all $U \subset V$ with
 552 $0 \leq |U| \leq k - 1$. Unfortunately, we will not be able to derive spectral independence for all
 553 such U . Moreover, for the localization framework, it is not clear if the subset simplicial-
 554 complex localization allows us to derive approximate conservation of variance from spectral
 555 independence. To overcome these difficulties, we use an argument similar to that of Jain,
 556 Michelen, Pham and Vuong [33]. We combine the techniques above as follows: first, we use
 557 a localization scheme to show that for any $\ell \leq k - 1$, the spectral gap of $\mathcal{P}_{\beta, k}$ is bounded
 558 below by the product of the spectral gap of the pinned down-up walk $\mathcal{P}_{\beta, k}^U$ for any $U \subset V$
 559 with $|U| = \ell$ and the spectral gap of the (k, ℓ) -down-up walk, a modified version of $\mathcal{P}_{\beta, k}$ that

560 resamples $k - \ell$ plus spins in each step. Choosing ℓ such that $k - \ell \leq \alpha n$ for some suitable
 561 $\alpha > 0$, we can use a coupling argument as discussed before to show that $\text{gap}(\mathcal{P}_{\beta,k}^U) \in \Omega(1/k)$
 562 for every $U \subset V$ with $|U| = \ell$. To lower-bound the spectral gap of the (k, ℓ) -down-up walk,
 563 we use a local-to-global theorem by Chen, Liu and Vigoda [15]. This only requires us to
 564 show that $\hat{\mu}_{\beta,k}^W$ satisfies $O(1)$ -spectral independence for all $W \subset V$ with $k - |W| \geq \alpha' n$ for
 565 some $0 < \alpha' < \alpha$. The range of k for which we can show this $O(1)$ -spectral independence
 566 leads to the magnetization range given in Theorem 1,(1).

567 2.4.2 Lower Bounds on Mixing Time

568 To prove slow mixing, we exhibit the existence of a bottleneck in the state space, a set of
 569 configurations which separates two parts of the state space and carries an exponentially
 570 smaller probability in the stationary distribution than either of the two parts. The following
 571 lemma captures a simple form of this argument, often phrased in terms of *conductance*, for
 572 proving lower bounds on the mixing times of Markov chains.

573 **► Lemma 19.** *Let $(X_t)_{t \geq 0}$ be a Markov chain on the state space Ω with stationary distribution
 574 π . Suppose there exists disjoint sets $S_1, S_2, S_3 \subset \Omega$ so that the following hold:*
 575

- *For the chain to pass from S_2 to S_1 it must pass through S_3 ;*
- *$\pi(S_1) \geq \pi(S_2)$*
- *$\pi(S_3) \leq e^{-\Omega(n)}\pi(S_2)$.*

 578 *Then the mixing time of the chain (X_t) is $\exp(\Omega(n))$.*

579 The statement is an immediate corollary of, e.g., [25, Claim 2.3].

580 To prove Theorem 2, we define S_1, S_2, S_3 to be sets of configurations with certain
 581 magnetizations. S_1 will be those configurations whose magnetization per vertex is close to
 582 that of the plus measure on \mathbb{T}_Δ (when $\lambda > 1$); S_2 will be those whose magnetization per vertex
 583 is close to that of the minus measure; and S_3 will be configurations whose magnetization is
 584 just larger than that of S_2 .

585 To prove Theorem 1,(2), we consider a graph H made up of disjoint copies of a random
 586 regular graph. We define S_1 to be the set of configurations with magnetization η on each copy;
 587 S_2 will be a set of configurations with magnetization η_+ on some copies and η_- on others,
 588 for $\eta_- < \eta < \eta_+$, such that the overall magnetization is η . Again S_3 will be a neighborhood
 589 of S_2 . In both cases, the main work will be in verifying the conditions of Lemma 19.

590 2.5 Thresholds for Zero-Freeness and Spectral Independence

591 The definition of $\lambda_a(\Delta, \beta)$ is based on viewing the Ising partition function as a polynomial in
 592 the (complex) variable λ . We write $\mathcal{N}(z, \delta)$ for the open ball of radius $\delta > 0$ around $z \in \mathbb{C}$.

593 **► Definition 20 (Absolute zero-freeness).** *Given $\beta \geq 0$, $\Delta \in \mathbb{N}$, $\lambda > 0$ and $\delta > 0$, we say that
 594 the Ising model is absolutely δ -zero-free at activity λ if for all graphs $G \in \mathcal{G}_\Delta$, all pinnings
 595 τ_U with $U \subseteq V$ and all $\lambda' \in \mathcal{N}(\lambda, \delta)$ it holds that $Z_G^{\tau_U}(\beta, \lambda') \neq 0$.*

596 We now define $\lambda_a(\Delta, \beta)$ as follows.

597 **► Definition 21.** *For $\Delta \in \mathbb{N}$ and $\beta \geq \beta_u(\Delta)$ we set $\lambda_a(\Delta, \beta)$ to be the smallest $\lambda_a \geq 1$ such
 598 that for every compact set $D \subset (\lambda_a, \infty)$ there is some $\delta > 0$ such that for all $\lambda \in D$ the Ising
 599 model is absolutely δ -zero-free at λ .*

600 An important implication of absolute zero-freeness is given in the following theorem. Its
 601 proof follows a similar argument to those in [16] while using the ferromagnetism of the model

56:16 Fast and Slow Mixing of the Kawasaki Dynamics

602 and Montel's theorem (see [49]) to avoid the requirement of multivariate zero-freeness. The
603 proof can be found in the full version of the paper [36].

604 ► **Theorem 22.** *Fix $\beta \geq 0$ and $\Delta \in \mathbb{N}$. Let $D \subset \mathbb{R}_{>0}$ be compact and assume there is some
605 $\delta > 0$ such that the ferromagnetic Ising model is absolutely δ -zero-free at every $\lambda \in D$. Then,
606 there is some constant $C > 0$, only depending on D , λ , β and Δ , such that for all $\lambda \in D$,
607 $G \in \mathcal{G}_\Delta$ and all pinning τ_U it holds that $\hat{\mu}_{G,\beta,\lambda}^{\tau_U}$ is C - ℓ_∞ -independent.*

608 3 Main Statements and Proof Structure

609 We briefly state the most important steps for showing Theorem 1. All proofs and intermediate
610 steps are omitted and can be found in the full version of the paper [36].

611 3.1 Rapid Mixing

612 We start with discussing our proof of the rapid mixing result in part (1) of Theorem 1. The
613 structure of the entire proof is illustrated in Figure 3.

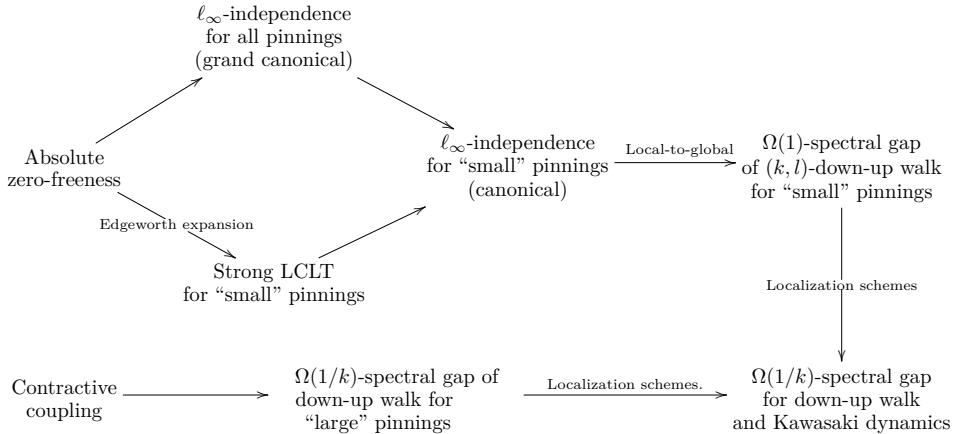


Figure 3 The structure of the rapid mixing proof

614 All results in this subsection are given in the context of the following assumptions.

615 ► **Condition 23.** 1. Let $\beta \geq 0$, and let $D \subset \mathbb{R}_{>0}$ be compact such that there is some $\delta > 0$
616 for which the Ising model is absolutely δ -zero-free for all $\lambda \in D$. Further, let $\lambda \in D$.
617 2. Let $\alpha \in [0, 1)$, let $U \subset V$ with $|U| \leq \alpha n$ and let τ_U be a pinning of U .
618 3. Let $\sigma \sim \mu_{\beta, \lambda}^{\tau_U}$ and let $X = |\sigma|^+$.

619 Our first step is to show that zero-freeness implies a strengthened version of a local central
620 limit theorem for X via Edgeworth expansion. Using similar arguments as Jain, Michelen,
621 Pham and Vuong [33] for the hard-core model, we obtain the following result.

622 ► **Theorem 24.** *Suppose Condition 23 holds. Let $d \in \mathbb{N}$ and let $\ell \in \mathbb{R}$ such that $\mathbb{E}[X] + \ell \in$
623 $\mathbb{Z}_{\geq 0}$. Set $s = \sqrt{\text{Var}(X)}$ and $\beta_j = \frac{\kappa_j(X)}{j!s^j}$ for all $j \in \mathbb{N}$, and write $H_k(\cdot)$ for the k^{th} Hermite
624 polynomial. It holds that*

$$625 \mu_{\beta, \lambda}^{\tau_U}(X - \mathbb{E}[X] = \ell) = \frac{e^{-\frac{\ell^2}{2s^2}}}{\sqrt{2\pi}s} \left(1 + \sum_{r \geq 3} H_r(\ell/s) \sum_{k_3, \dots, k_{2d+1}} \prod_{j=3}^{2d+1} \frac{\beta_j^{k_j}}{k_j!} \right) + O(n^{-d})$$

626 where the inner sum is over tuples $k_3, \dots, k_{2d+1} \in \mathbb{Z}_{\geq 0}$ such that $\sum_j k_j \cdot j = r$ and $\sum_j k_j \cdot$
 627 $\frac{j-2}{2} \leq d$, and the implied constants depend only on $\Delta, \beta, \delta, D, d$ and α .

628 Our next ingredient is to use zero-freeness to obtain a stability result for the cumulants
 629 of X under adding vertices to the pinning. Writing $\kappa_j(X)$ for the j th cumulant of X , we
 630 have the following statement.

631 **► Lemma 25.** Suppose Condition 23 holds. Let $v \in V \setminus U$, and let $\tau_U, +_v$ denote the pinning
 632 on $U \cup \{v\}$ that maps v to $+1$ and all other vertices $u \in U$ to $\tau_U(u)$. Let $X^+ = |\sigma'|^+$ for
 633 $\sigma' \sim \mu_{\beta, \lambda}^{\tau_U, +_v}$. For all $j \in \mathbb{N}$ it holds that $|\kappa_j(X^+) - \kappa_j(X)| = O(1)$ with implied constants
 634 only depending on Δ, β, δ, D and j .

635 The analog of Lemma 25 for the hard-core model was proven in [33]. However, their arguments
 636 are tailored to the hard-core model and do not apply in our setting. Instead, we provide a
 637 more general argument based on an application of Montel's theorem that is inspired by [43].

638 Using Theorem 24 and Lemma 25, we get the following stability result for the probability
 639 of having exactly k vertices assigned to $+1$.

640 **► Lemma 26.** Suppose Condition 23 holds and assume further that $|U| + 1 \leq \alpha n$. Let
 641 $k \in \mathbb{Z}_{\geq 0}$ be such that $|\mathbb{E}[X] - k| \leq L$ for some $L \in \mathbb{R}_{\geq 0}$. For all $v \in V \setminus U$ it holds that

$$642 \mu_{\beta, \lambda}^{\tau_U}(X = k) = \Theta(n^{-1/2}), \quad (3)$$

$$643 \left| \mu_{\beta, \lambda}^{\tau_U}(X = k) - \mu_{\beta, \lambda}^{\tau_U}(X = k \mid \sigma(v) = +1) \right| = O(n^{-3/2}) \quad (4)$$

644 with implied constants depending only on $\Delta, \beta, \delta, D, L$ and α .

645 Next, recall that by Theorem 22 zero-freeness implies ℓ_∞ -independence for the ferromagnetic
 646 Ising model. Combining this with Lemma 26 for a suitable λ , we get the following
 647 ℓ_∞ -independence result for the fixed magnetization model.

648 **► Theorem 27.** Assume $0 \leq \beta < \beta_u(\Delta)$ and $\gamma \in (0, 1/2]$, or $\beta \geq \beta_u(\Delta)$ and $\gamma \in (0, \frac{1-\eta_a}{2})$
 649 for $\eta_a = \eta_a(\Delta, \beta)$. For all $k := \gamma n \in \mathbb{N}$, all $\alpha \in [0, \gamma)$ and $U \subset V$ with $|U| \leq \alpha n$ it holds that
 650 $\hat{\mu}_{\beta, k}^U$ is C - ℓ_∞ -independent for a constant C depending only on Δ, β, γ and α .

651 Using Theorem 27, we can apply a local-to-global theorem from [15] to show that for every
 652 $k - \ell \in \Theta(n)$ the spectral gap of the (k, ℓ) -down-up walk is in $\Omega(1)$. However, to get the
 653 desired spectral gap for $\mathcal{P}_{\beta, k}$ (and $\mathcal{K}_{\beta, k}$), we require one last ingredient, which is to show
 654 that the spectral gap of the pinned down-up walk $\mathcal{P}_{\beta, k}^U$ is in $\Omega(1/n)$ whenever $k = \gamma n$ and
 655 $U \subset V$ are such that $k - |U|$ is small enough.

656 In the setting of fixed-size independent sets studied in [33], such a result was previously
 657 known due to Theorem 14 and a path coupling by Bubley and Dyer [7]. In contrast, a
 658 straightforward application of path coupling with the Hamming metric does not work in our
 659 setting. Instead, we introduce a modified metric on the state space that takes into account
 660 how likely a disagreement is to spread, which allows us to prove the following result.

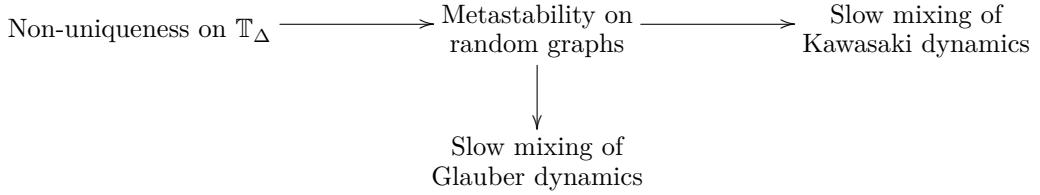
661 **► Lemma 28.** Let $G \in \mathcal{G}_\Delta$ with n sufficiently large. There exists some $\alpha = \alpha(\Delta, \beta) > 0$
 662 such that for all $0 < k \leq n/2$ and all $U \subset V$ with $0 < k - |U| \leq \alpha n$ it holds that $\mathcal{P}_{\beta, k}^U$ has
 663 spectral gap $\Omega(1/k)$ with constants depending on β and Δ .

664 We can now proceed to sketch our proof of the rapid mixing part of Theorem 1. We first
 665 note that the Kawasaki dynamics Markov chain is invariant under swapping all spins (i.e. the
 666 mapping $\sigma \mapsto -\sigma$), allowing us to focus on $k \leq n/2$ (or equivalently the magnetization regime

667 $\eta \leq 0$). Moreover, by Observation 9 it suffices to prove the desired spectral gap for the down-
 668 up walk $\mathcal{P}_{\beta,k}$ for the respective values of k . Using a localization schmeme, we argue that the
 669 spectral gap of $\mathcal{P}_{\beta,k}$ is bounded below by the product of $\inf_{U \in (\mathcal{V}_\ell)} \text{gap}(\mathcal{P}_{\beta,k}^U)$ and the spectral
 670 gap of the (k, ℓ) -down-up walk. By Lemma 28, we know that $\inf_{U \in (\mathcal{V}_\ell)} \text{gap}(\mathcal{P}_{\beta,k}^U) \in \Omega(1/k)$
 671 whenever ℓ is such that $k - \ell \leq \alpha n$ for some $\alpha = \alpha(\Delta, \beta) > 0$. Moreover, by Theorem 27 and
 672 a local-to-global theorem from [15], we can derive a $\Omega(1)$ spectral gap for the (k, ℓ) -down-up
 673 walk. Combining both concludes our rapid mixing proof.

674 3.2 Metastability and Slow Mixing

675 In this section we prove slow-mixing results for both the Ising Glauber dynamics and fixed
 676 magnetization Kawasaki dynamics when $\beta > \beta_u(\Delta)$ and $|\log \lambda| < \log \lambda_u$ and $|\eta| < \eta_u$
 677 respectively. The structure of the proof is illustrated below in Figure 4.



674 **Figure 4** The structure of the slow mixing proof

678 **Note:** As in the previous section, both perspectives of fixed magnetization per vertex η and
 679 fixed size k will be useful in our arguments. We will use $Z_{G,\eta}(\beta, \lambda)$ (where we sometimes
 680 drop the parameters β and λ for convenience) to denote the contribution to the Ising model
 681 partition function $Z_G(\beta, \lambda)$ from configurations of magnetization η . The notation $Z_{G,k}(\beta, \lambda)$
 682 will mean the contributions to $Z_G(\beta, \lambda)$ from configurations of size k . When $k = \lfloor n^{\frac{\eta+1}{2}} \rfloor$, we
 683 have $Z_{G,\eta} = Z_{G,k}$ and will use the notations interchangeably.

684 Our goal is to understand how configurations of different magnetizations typically con-
 685 tribute to the partition function $Z_G(\beta, \lambda)$ when G is a random Δ -regular graph. To start, we
 686 shift to a slightly different model called the *configuration model*, which we will denote \mathbf{G} . To
 687 generate a graph from this model for a given Δ and n , take Δ copies of $[n]$ and a uniformly
 688 random perfect matching on the Δn vertices, and then identify the copies corresponding
 689 to the same vertex. This gives a random Δ -regular multigraph, and it is well-known that
 690 properties holding with high probability for the configuration model also hold with high
 691 probability for the uniform random Δ -regular graph when Δ is constant [34].

692 We say the model has multiple *metastable states* if the function $\lim_{n \rightarrow \infty} \frac{1}{n} \mathbb{E} \log Z_{G,\eta}(\beta, \lambda)$
 693 has more than one local maximum as η varies. A first attempt at understanding this
 694 phenomenon would be to look at the first moment, and understand the local maxima of

$$695 \quad f_{\Delta,\beta,\lambda}(\eta) := \lim_{n \rightarrow \infty} \frac{1}{n} \log \mathbb{E} Z_{G,\eta}(\beta, \lambda) \tag{5}$$

696 as a function of η (with the crucial distinction between the two functions being the inter-
 697 change of the expectation and logarithm).

698 Using computations similar to those found in [18, 19, 29], we can derive an expression
 699 for $f_{\Delta,\beta,\lambda}(\eta)$. We then proceed by studying the the maxima of $f_{\Delta,\beta,\lambda}(\eta)$ as a one-variable
 700 function with respect to η . By a result in [29] (following [27, 41]), we know that the critical

701 points of $f_{\Delta,\beta,\lambda}(\eta)$ correspond exactly to fixed points of the *tree recursion* for the Ising model
 702 on \mathbb{T}_Δ , which are the solutions to the equation

$$703 \quad R = \frac{\lambda(Re^\beta + 1)^{\Delta-1}}{(R + e^\beta)^{\Delta-1}}. \quad (6)$$

704

705 **Theorem 29** ([29, Theorem 9, Lemma 11]). *There is a 1-to-1 correspondence between the*
 706 *fixed points of the tree recursion given in (6) and the critical points of $f_{\Delta,\beta,\lambda}(\eta)$. Moreover,*
 707 *the stable fixed points of the tree recursion given in (6) are in 1-to-1 correspondence with*
 708 *Hessian local maxima of $f_{\Delta,\beta,\lambda}(\eta)$.*

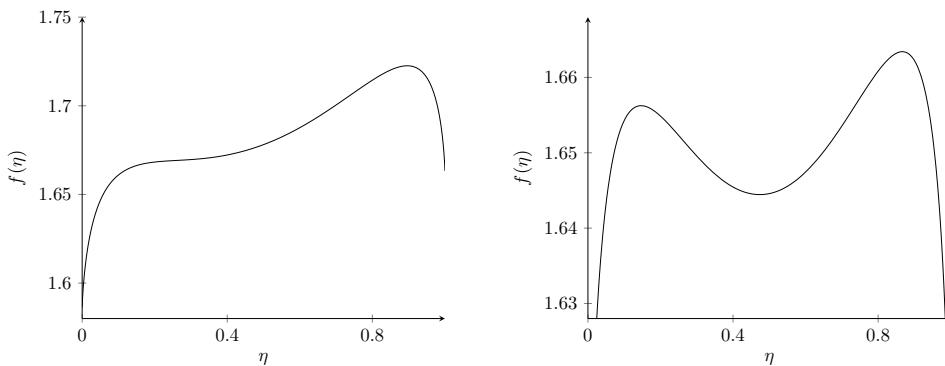
709 Recall that a fixed point is *stable* if the absolute value of the derivative at that point is less
 710 than 1. A local maximum is a *Hessian local maximum* if the Hessian is negative definite at
 711 that point. In particular, as our functions are univariate (after fixing Δ, β, λ), this is simply
 712 saying that the second derivative is negative which implies the existence of a local maximum.

713 For the above theorem to be useful, we need to understand the solutions of (6).

714 **Proposition 30.** *For $\beta > \beta_u$, the following hold:*

- 715 (1) *If $|\log \lambda| > \log \lambda_u$, then (6) has a unique fixed point. It is stable and hence corresponds*
 716 *to the global maximizer of $f_{\Delta,\beta,\lambda}$. This maximizer is $\eta_{\Delta,\beta,\lambda}^+ = \eta_{\Delta,\beta,\lambda}^-$.*
- 717 (2) *If $|\log \lambda| = \log \lambda_u$, then (6) has two distinct fixed points, one of which is stable and*
 718 *corresponds to the global maximizer of $f_{\Delta,\beta,\lambda}$. The other corresponds to an inflection*
 719 *point of $f_{\Delta,\beta,\lambda}$.*
- 720 (3) *If $|\log \lambda| < \log \lambda_u$, then (6) has three distinct fixed points. The largest and the smallest*
 721 *are both stable, corresponding to the only two local maxima of $f_{\Delta,\beta,\lambda}$. When $\lambda > 1$,*
 722 *$\eta_{\Delta,\beta,\lambda}^+$ is the unique global maximizer; when $\lambda < 1$, $\eta_{\Delta,\beta,\lambda}^-$ is the unique global maximizer;*
 723 *when $\lambda = 1$ then $\eta_{\Delta,\beta,\lambda}^+, \eta_{\Delta,\beta,\lambda}^-$ are both global maximizers.*

724 Portions of this statement have been shown in, for example, [29, 30, 32], and we give a
 725 complete proof in [36]. An illustration of $f_{\Delta,\beta,\lambda}(\eta)$ is given in Figure 5; the left plot appears
 726 for $\lambda > \lambda_u$ (Case 1 above) and the right plot appears for $1 < \lambda < \lambda_u$ (Case 3 above).



727 **Figure 5** Sketch of the function $f_{\Delta,\beta,\lambda}(\eta)$ for $\Delta = 4$, $\beta = \ln(2) + 0.1$, and
 728 (left) $\lambda = 1.08$, (right) $\lambda = 1.01$.

727 While the behavior described in part (3) suggests metastability, Proposition 30 is only
 728 about the expected partition function, and we will need to show that multiple local maxima

56:20 Fast and Slow Mixing of the Kawasaki Dynamics

729 exist with high probability over the random graph. This will involve showing a lower bound
730 on the partition function at the two local maxima and an upper bound everywhere else.

731 Via Markov's inequality, the next statement gives a high probability approximate upper
732 bound on $Z_{G,\eta}(\lambda)$.

733 ▶ **Lemma 31.** *Fix $\beta \geq 0, \lambda > 0$. With probability $1 - o(1)$ over the random Δ -regular graph
734 G on n vertices, it holds for every η that*

$$735 \quad Z_{G,\eta}(\lambda) \leq n^2 \cdot \mathbb{E}Z_{G,\eta}(\lambda).$$

736 We further prove lower bounds on $Z_{G,\eta}$ for values of η which are local maxima. For a
737 global maximum, this was proved in [29] via the second moment method.

738 ▶ **Theorem 32** ([29, Theorem 8]). *Fix $\lambda > 0$ and suppose that η is a global maximizer of
739 $f_{\Delta,\beta,\lambda}$. With probability $1 - o(1)$ over the random Δ -regular graph G on n vertices,*

$$740 \quad Z_{G,\eta}(\lambda) \geq \frac{1}{n} \mathbb{E}Z_{G,\eta}(\lambda).$$

741 We prove the following corresponding statement for the local maximizers.

742 ▶ **Proposition 33.** *Fix $\lambda > 0$ and suppose that η is a local maximizer of $f_{\Delta,\beta,\lambda}$. For any
743 $\zeta > 0$, with probability $1 - o(1)$ over the random Δ -regular graph G on n vertices,*

$$744 \quad Z_{G,\eta}(\lambda) \geq e^{-\zeta n} \mathbb{E}[Z_{G,\eta}(\lambda)].$$

745 The proof of Proposition 33 follows the template of Coja-Oghlan, Galanis, Goldberg, Ravelo-
746 manana, Štefankovič, and Vigoda [19] in proving metastability in the zero-field ferromagnetic
747 Potts model (which in turn used ideas from [3, 21]). The argument involves various techniques
748 such as studying the *planted model*, *Nishimori identities* [20], and *non-reconstruction of*
749 *broadcasting processes* [19, 29, 39], and it is presented in the full paper [36]. We can now
750 sketch the proofs of our slow mixing results.

751 Slow mixing of Glauber Dynamics

752 We start with sketching our proof of Theorem 2. Let $\beta > \beta_u(\Delta), \lambda \in [1, \lambda_u)$, and $G \sim \mathbf{G}$.
753 Let $\eta = \eta_{\Delta,\beta,\lambda}^+$, the mean magnetization of the root of \mathbb{T}_Δ under the $+$ boundary conditions
754 with external field λ , and let $\eta_- = \eta_{\Delta,\beta,\lambda}^-$, the same but under the $-$ boundary conditions.

755 As η and η_- are global and local maximizers of $f_{\Delta,\beta,\lambda}$, there are $\epsilon > 0$ and $\delta > 0$ so that:

- 756 1. $\mathbb{E}[Z_{G,\eta'}(\lambda)] \leq e^{-\delta n} \mathbb{E}[Z_{G,\eta}(\lambda)]$ for all η' such that $|\eta' - \eta| > \epsilon$.
- 757 2. $\mathbb{E}[Z_{G,\eta'}(\lambda)] \leq e^{-\delta n} \mathbb{E}[Z_{G,\eta_-}(\lambda)]$ for all η' such that $|\eta' - \eta_-| \in (\epsilon, 2\epsilon)$.

758 Next, we sketch how we construct the configuration sets S_1, S_2, S_3 for applying Lemma 19,
759 where we assume here for simplicity that the magnetization η can actually be realized on G .

760 For $\epsilon > 0$ as above, we set:

761 S_1 : configurations with magnetization η

762 S_2 : configurations with magnetization in $[\eta_- - \epsilon, \eta_- + \epsilon]$

763 S_3 : configurations with magnetization in $[\eta_- - 2\epsilon, \eta_- - \epsilon] \cup (\eta_- + \epsilon, \eta_- + 2\epsilon]$.

764 First, note that the Glauber dynamics starting in S_2 must pass through S_3 to reach S_1 .
765 Abbreviating $\mu_{G,\beta,\lambda}$ as μ , we can use Lemma 31, Theorem 32 and Property 1 from above

766 to show that $\mu(S_2) < \mu(S_1)$ a.a.s. over G . Similarly, using Proposition 30, Property 2 and
767 Proposition 33 yields $\mu(S_3) \leq e^{-\Omega(n)} \mu(S_2)$ a.a.s. Hence, applying Lemma 19, we conclude
768 that the mixing time of Glauber dynamics on G is $\exp(\Omega(n))$.

769 **Slow Mixing of the Kawasaki Dynamics**

770 We proceed with sketching the proof of part (2) of Theorem 1. Let $\beta > \beta_u(\Delta)$. We consider
 771 a graph H consisting of m identical copies G_1, G_2, \dots, G_m of a random Δ -regular graph G
 772 from \mathbf{G} , where m is determined later based on η . We will separately consider the cases of
 773 $|\eta| \in (\eta_c, \eta_u)$ and $|\eta| \leq \eta_c$, and assume without loss of generality that $\eta > 0$.

774 We start with the case $\eta \in (\eta_c, \eta_u)$. By Proposition 5, there exists $\lambda_\eta \in (1, \lambda_u)$ such that
 775 $\eta = \eta_{\Delta, \beta, \lambda_\eta}^+$. For $\lambda_+ \in (\lambda_\eta, \lambda_u)$, set $\eta_+ = \eta_{\Delta, \beta, \lambda_+}^+$ and $\eta_- = \eta_{\Delta, \beta, \lambda_+}^-$. In particular, note that
 776 we may choose λ_+ such that there are $m, \ell \in \mathbb{N}$ with $\ell < m$ and $m\eta = \ell\eta_+ + (m - \ell)\eta_-$,
 777 where m is used for constructing H . Further, observe that η is the global maximizer of
 778 $f_{\Delta, \beta, \lambda_\eta}$ and that η_+ and η_- are the global and local maximizers of $f_{\Delta, \beta, \lambda_+}$. Hence, there are
 779 $\epsilon > 0$ and $\delta > 0$ so that:

- 780 1. $\mathbb{E}[Z_{G, \eta'}(\lambda_\eta)] \leq e^{-\delta n} \mathbb{E}[Z_{G, \eta}(\lambda_\eta)]$ for all η' such that $|\eta' - \eta| > \epsilon$.
- 781 2. $\mathbb{E}[Z_{G, \eta'}(\lambda_+)] \leq e^{-\delta n} \mathbb{E}[Z_{G, \eta_+}(\lambda_+)]$ for all η' such that $|\eta' - \eta_+| \in (\epsilon, 2\epsilon)$.
- 782 3. $\mathbb{E}[Z_{G, \eta'}(\lambda_+)] \leq e^{-\delta n} \mathbb{E}[Z_{G, \eta_-}(\lambda_+)]$ for all η' such that $|\eta' - \eta_-| \in (\epsilon, 2\epsilon)$.

783 As for proving slow mixing of Glauber dynamics, we aim for applying Lemma 19. To sketch
 784 the construction of S_1, S_2, S_3 , we again assume here for simplicity that a magnetization
 785 of η can be realized on each subgraph G_i . Given a configuration, we write η_{G_i} for the
 786 magnetization on subgraph G_i . We then take the following subsets of configurations on H
 787 with overall magnetization η :

- 788 $S_1: \eta_{G_i} = \eta$ for all $1 \leq i \leq m$,
 789 $S_2: \eta_{G_i} \in [\eta_+ - \epsilon, \eta_+ + \epsilon]$ for all $i \leq \ell$ and $\eta_{G_i} \in [\eta_- - \epsilon, \eta_- + \epsilon]$ for all $i > \ell$,
 790 $S_3: \eta_{G_i} \in [\eta_+ - 2\epsilon, \eta_+ + \epsilon]$ for all $i \leq \ell$ and $\eta_{G_i} \in [\eta_- - \epsilon, \eta_- + 2\epsilon]$ for all $i > \ell$, and
 791 there exists $i \leq \ell$ with $\eta_{G_i} \in [\eta_+ - 2\epsilon, \eta_+ - \epsilon]$ or $i > \ell$ with $\eta_{G_i} \in [\eta_- + \epsilon, \eta_- + 2\epsilon]$.

792 Note that the Kawasaki dynamics have to pass through S_3 to get from S_2 to S_1 . Moreover,
 793 abbreviating $\hat{\mu}_{H, \beta, k}$ as $\hat{\mu}$, we can use Theorem 32, Lemma 31 and Property 1 to show that
 794 $\hat{\mu}(S_1) \geq \hat{\mu}(S_2)$, and we can use Lemma 31, Properties 2 and 3, Theorem 32 and Proposition 33
 795 to show that $\hat{\mu}(S_3) \leq e^{-\Theta(n)} \hat{\mu}(S_2)$ a.s.s. Hence, applying Lemma 19, we conclude that the
 796 mixing time of Kawasaki dynamics on H is $\exp(\Omega(n))$.

797 In the case that $0 < \eta \leq \eta_c$, we require a slightly different argument since we cannot apply
 798 Proposition 5 to η . Instead, we argue that for all $\eta \in (0, \eta_c]$ we can choose $\delta' > 0$ sufficiently
 799 small such that for all $\eta_+ \in (\eta_c, \eta_c + \delta')$ and $\eta_- = \eta_{\Delta, \beta, \lambda_{\eta_+}}^-$ it holds that $\eta_- < \eta < \eta_+$. In
 800 particular, we may choose η_+ such that $m\eta = \ell\eta_+ + (m - \ell)\eta_-$ for some $m, \ell \in \mathbb{N}, \ell < m$.
 801 We then define S_1, S_2, S_3 (again with some slight simplification here) by

- 802 $S_1: \eta_{G_i} \in [\eta_- - \epsilon, \eta_- + \epsilon]$ for all $i \leq m - \ell$ and $\eta_{G_i} \in [\eta_+ - \epsilon, \eta_+ + \epsilon]$ else,
 803 $S_2: \eta_{G_i} \in [\eta_+ - \epsilon, \eta_+ + \epsilon]$ for all $i \leq \ell$ and $\eta_{G_i} \in [\eta_- - \epsilon, \eta_- + \epsilon]$ else,
 804 $S_3: \eta_{G_i} \in [\eta_+ - 2\epsilon, \eta_+ + \epsilon]$ for all $i \leq \ell$ and $\eta_{G_i} \in [\eta_- - \epsilon, \eta_- + 2\epsilon]$ else, and there
 805 exists $i \leq \ell$ with $\eta_{G_i} \in [\eta_+ - 2\epsilon, \eta_+ - \epsilon]$ or $i > \ell$ with $\eta_{G_i} \in [\eta_- + \epsilon, \eta_- + 2\epsilon]$.

806 By symmetry, we have $\hat{\mu}(S_1) = \hat{\mu}(S_2)$ and by the same arguments as before it holds that
 807 $\hat{\mu}(S_3) \leq e^{-\Theta(n)} \hat{\mu}(S_2)$. Applying Lemma 19 then gives the desired result.

808

 References

- 809 1 Vedat Levi Alev and Lap Chi Lau. Improved analysis of higher order random walks and
 810 applications. In *Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
 811 Computing*, pages 1198–1211, 2020. doi:10.1145/3357713.3384317.

- 812 2 Nima Anari, Kuikui Liu, and Shayan Oveis Gharan. Spectral independence in high-dimensional
 813 expanders and applications to the hardcore model. *SIAM Journal on Computing*, 0(0):FOCS20–
 814 1, 2021. doi:10.1137/20M1367696.
- 815 3 Victor Bapst and Amin Coja-Oghlan. Harnessing the Bethe free energy. *Random structures &*
 816 *algorithms*, 49(4):694–741, 2016. doi:10.1002/rsa.20692.
- 817 4 Roland Bauerschmidt, Thierry Bodineau, and Benoit Dagallier. Kawasaki dynamics beyond
 818 the uniqueness threshold. *arXiv preprint arXiv:2310.04609*, 2023. doi:10.48550/arXiv.2310.
 819 04609.
- 820 5 Roland Bauerschmidt, Thierry Bodineau, and Benoit Dagallier. Stochastic dynamics and
 821 the Polchinski equation: an introduction. *arXiv preprint arXiv:2307.07619*, 2023. doi:
 822 10.48550/arXiv.2307.07619.
- 823 6 Rodney J Baxter. *Exactly solved models in statistical mechanics*. Elsevier, 2016.
- 824 7 Russ Bubley and Martin Dyer. Path coupling: A technique for proving rapid mixing in Markov
 825 chains. In *Proceedings 38th Annual Symposium on Foundations of Computer Science*, pages
 826 223–231. IEEE, 1997. doi:10.1109/SFCS.1997.646111.
- 827 8 Van Hao Can, Remco van der Hofstad, and Takashi Kumagai. Glauber dynamics for Ising
 828 models on random regular graphs: cut-off and metastability. *ALEA*, 18(1):1441–1482, 2021.
 829 doi:10.30757/ALEA.v18-52.
- 830 9 N Cancrini and F Martinelli. On the spectral gap of Kawasaki dynamics under a mixing
 831 condition revisited. *Journal of Mathematical Physics*, 41(3):1391–1423, 2000. doi:10.1063/1.
 832 533192.
- 833 10 N Cancrini, F Martinelli, and C Roberto. The logarithmic Sobolev constant of Kawasaki
 834 dynamics under a mixing condition revisited. *Annales de l’Institut Henri Poincaré (B)
 835 Probability and Statistics*, 38(4):385–436, 2002. doi:10.1016/S0246-0203(01)01096-2.
- 836 11 Nicoletta Cancrini, F Cesi, and F Martinelli. The spectral gap for the Kawasaki dynamics at low
 837 temperature. *Journal of statistical physics*, 95:215–271, 1999. doi:10.1023/A:1004581512343.
- 838 12 Charlie Carlson, Ewan Davies, Alexandra Kolla, and Will Perkins. Computational thresholds
 839 for the fixed-magnetization Ising model. In *Proceedings of the 54th Annual ACM SIGACT
 840 Symposium on Theory of Computing*, pages 1459–1472, 2022. doi:10.1145/3519935.3520003.
- 841 13 Raphaël Cerf and Ágoston Pisztora. On the Wulff crystal in the Ising model. *Annals of
 842 probability*, pages 947–1017, 2000. doi:10.1214/aop/1019160324.
- 843 14 Yuansi Chen and Ronen Eldan. Localization schemes: A framework for proving mixing bounds
 844 for Markov chains. In *2022 IEEE 63rd Annual Symposium on Foundations of Computer
 845 Science (FOCS)*, pages 110–122. IEEE, 2022. doi:10.1109/FOCS54457.2022.00018.
- 846 15 Zongchen Chen, Kuikui Liu, and Eric Vigoda. Optimal mixing of Glauber dynamics: Entropy
 847 factorization via high-dimensional expansion. In *Proceedings of the 53rd Annual ACM SIGACT
 848 Symposium on Theory of Computing*, pages 1537–1550, 2021. doi:10.1145/3406325.3451035.
- 849 16 Zongchen Chen, Kuikui Liu, and Eric Vigoda. Spectral independence via stability and
 850 applications to holant-type problems. In *2021 IEEE 62nd Annual Symposium on Foundations of
 851 Computer Science (FOCS)*, pages 149–160. IEEE, 2022. doi:10.1109/FOCS52979.2021.00023.
- 852 17 Zongchen Chen, Kuikui Liu, and Eric Vigoda. Rapid mixing of Glauber dynamics up
 853 to uniqueness via contraction. *SIAM Journal on Computing*, 52(1):196–237, 2023. doi:
 854 10.1137/20M136685X.
- 855 18 Amin Coja-Oghlan, Charilaos Efthymiou, and Samuel Hetterich. On the chromatic number
 856 of random regular graphs. *Journal of Combinatorial Theory, Series B*, 116:367–439, 2016.
 857 doi:10.1016/j.jctb.2015.09.006.
- 858 19 Amin Coja-Oghlan, Andreas Galanis, Leslie Ann Goldberg, Jean Bernoulli Ravelomanana,
 859 Daniel Štefankovič, and Eric Vigoda. Metastability of the Potts ferromagnet on random
 860 regular graphs. *Communications in Mathematical Physics*, pages 1–41, 2023. doi:10.1007/
 861 s00220-023-04644-6.

- 862 20 Amin Coja-Oghlan, Florent Krzakala, Will Perkins, and Lenka Zdeborová. Information-
863 theoretic thresholds from the cavity method. In *Proceedings of the 49th Annual ACM SIGACT*
864 *Symposium on Theory of Computing*, pages 146–157, 2017. doi:10.1145/3055399.3055420.
- 865 21 Amin Coja-Oghlan, Philipp Loick, Balázs F Mezei, and Gregory B Sorkin. The Ising antifer-
866 romagnet and max cut on random regular graphs. *SIAM Journal on Discrete Mathematics*,
867 36(2):1306–1342, 2022. doi:10.1137/20M137999X.
- 868 22 Ewan Davies and Will Perkins. Approximately counting independent sets of a given size in
869 bounded-degree graphs. *SIAM Journal on Computing*, 52(2):618–640, 2023. doi:10.1137/
870 21M1466220.
- 871 23 Amir Dembo and Andrea Montanari. Ising models on locally tree-like graphs. *Ann. Appl.*
872 *Probab.*, 20(1):565–592, 2010. doi:10.1214/09-AAP627.
- 873 24 Roland Lvovich Dobrushin, Roman Kotecký, and Senya Shlosman. *Wulff construction: a*
874 *global shape from local interaction*, volume 104. American Mathematical Society Providence,
875 1992.
- 876 25 Martin Dyer, Alan Frieze, and Mark Jerrum. On counting independent sets in sparse graphs.
877 *SIAM Journal on Computing*, 31(5):1527–1541, 2002. doi:10.1137/S0097539701383844.
- 878 26 Martin Dyer, Leslie Ann Goldberg, Mark Jerrum, and Russell Martin. Markov chain comparison.
879 *Probability Surveys*, 3(none):89 – 111, 2006. doi:10.1214/154957806000000041.
- 880 27 Andreas Galanis, Qi Ge, Daniel Štefankovič, Eric Vigoda, and Linji Yang. Improved inapprox-
881 imability results for counting independent sets in the hard-core model. *Random Structures &*
882 *Algorithms*, 45(1):78–110, 2014. doi:10.1002/rsa.20479.
- 883 28 Andreas Galanis, Daniel Štefankovič, and Eric Vigoda. Inapproximability of the partition
884 function for the antiferromagnetic Ising and hard-core models. *Combinatorics, Probability and*
885 *Computing*, 25(4):500–559, 2016. doi:10.1017/S0963548315000401.
- 886 29 Andreas Galanis, Daniel Štefankovič, Eric Vigoda, and Linji Yang. Ferromagnetic Potts model:
887 Refined #BIS-hardness and related results. *SIAM Journal on Computing*, 45(6):2004–2065,
888 2016. arXiv:<https://doi.org/10.1137/140997580>, doi:10.1137/140997580.
- 889 30 Hans-Otto Georgii. *Gibbs measures and phase transitions*, volume 9. Walter de Gruyter, 2011.
- 890 31 Antoine Gerschenfeld and Andrea Montanari. Reconstruction for models on random graphs.
891 In *48th Annual IEEE Symposium on Foundations of Computer Science (FOCS’07)*, pages
892 194–204. IEEE, 2007. doi:10.1109/FOCS.2007.58.
- 893 32 Heng Guo and Pinyan Lu. Uniqueness, spatial mixing, and approximation for ferromagnetic
894 2-spin systems. *ACM Transactions on Computation Theory (TOCT)*, 10(4):1–25, 2018.
895 doi:10.1145/3265025.
- 896 33 Vishesh Jain, Marcus Michelen, Huy Tuan Pham, and Thuy-Duong Vuong. Optimal mixing of
897 the down-up walk on independent sets of a given size. In *2023 IEEE 64th Annual Symposium*
898 *on Foundations of Computer Science (FOCS)*, pages 1665–1681. IEEE, 2023. doi:10.1109/
899 FOCS57990.2023.00101.
- 900 34 Svante Janson, Tomasz Łuczak, and Andrzej Rucinski. *Random graphs*. John Wiley & Sons,
901 2011.
- 902 35 Mark Jerrum and Alistair Sinclair. Polynomial-time approximation algorithms for the Ising
903 model. *SIAM Journal on computing*, 22(5):1087–1116, 1993. doi:10.1137/0222066.
- 904 36 Aiya Kuchukova, Marcus Pappik, Will Perkins, and Corrine Yap. Fast and slow mixing of
905 the kawasaki dynamics on bounded-degree graphs. *arXiv preprint arXiv:2405.06209*, 2024.
906 doi:10.48550/arXiv.2405.06209.
- 907 37 David A Levin and Yuval Peres. *Markov chains and mixing times*, volume 107. American
908 Mathematical Soc., 2017.
- 909 38 Sheng Lin Lu and Horng-Tzer Yau. Spectral gap and logarithmic Sobolev inequality for
910 Kawasaki and Glauber dynamics. *Communications in Mathematical Physics*, 156(2):399–433,
911 1993. doi:10.1007/BF02098489.

- 912 **39** Fabio Martinelli, Alistair Sinclair, and Dror Weitz. Fast mixing for independent sets, colorings,
 913 and other models on trees. *Random Structures & Algorithms*, 31(2):134–172, 2007. doi:
 914 [10.1002/rsa.20132](https://doi.org/10.1002/rsa.20132).
- 915 **40** Elchanan Mossel and Allan Sly. Exact thresholds for Ising–Gibbs samplers on general graphs.
 916 *The Annals of Probability*, 41(1):294–328, 2013. doi:[10.1214/11-AOP737](https://doi.org/10.1214/11-AOP737).
- 917 **41** Elchanan Mossel, Dror Weitz, and Nicholas Wormald. On the hardness of sampling independent
 918 sets beyond the tree threshold. *Probability Theory and Related Fields*, 143(3-4):401–439, 2009.
 919 doi:[10.1007/s00440-007-0131-9](https://doi.org/10.1007/s00440-007-0131-9).
- 920 **42** Dana Randall and David Wilson. Sampling spin configurations of an Ising system. In
 921 *Symposium on Discrete Algorithms: Proceedings of the tenth annual ACM-SIAM symposium
 922 on Discrete algorithms*, pages 959–960, 1999. doi:[10.1145/314500.314945](https://doi.org/10.1145/314500.314945).
- 923 **43** Guus Regts. Absence of zeros implies strong spatial mixing. *Probability Theory and Related
 924 Fields*, pages 1–21, 2023. doi:[10.1007/s00440-023-01190-z](https://doi.org/10.1007/s00440-023-01190-z).
- 925 **44** Shuai Shao and Yuxin Sun. Contraction: A unified perspective of correlation decay and
 926 zero-freeness of 2-spin systems. *Journal of Statistical Physics*, 185:1–25, 2021. doi:[10.1007/s10955-021-02831-0](https://doi.org/10.1007/s10955-021-02831-0).
- 927 **45** Shuai Shao and Xiaowei Ye. From zero-freeness to strong spatial mixing via a christoffel-darboux
 928 type identity. *arXiv preprint arXiv:2401.09317*, 2024. doi:[10.48550/arXiv.2401.09317](https://doi.org/10.48550/arXiv.2401.09317).
- 929 **46** Allan Sly. Computational transition at the uniqueness threshold. In *2010 IEEE 51st Annual
 930 Symposium on Foundations of Computer Science*, pages 287–296. IEEE, 2010. doi:[10.1109/FOCS.2010.34](https://doi.org/10.1109/FOCS.2010.34).
- 931 **47** Allan Sly and Nike Sun. Counting in two-spin models on d-regular graphs. *Annals of Probability*,
 932 42(6):2383–2416, 2014. doi:[10.1214/13-AOP888](https://doi.org/10.1214/13-AOP888).
- 933 **48** Dror Weitz. Counting independent sets up to the tree threshold. In *Proceedings of the
 934 thirty-eighth annual ACM symposium on Theory of computing*, pages 140–149, 2006. doi:
 935 [10.1145/1132516.1132538](https://doi.org/10.1145/1132516.1132538).
- 936 **49** Lawrence Zalcman. Normal families: new perspectives. *Bulletin of the American Mathematical
 937 Society*, 35(3):215–230, 1998. doi:[10.1090/S0273-0979-98-00755-1](https://doi.org/10.1090/S0273-0979-98-00755-1).