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Abstract

Reasoning in the presence of idiomatic expres-
sions (IEs) remains a challenging frontier in
natural language understanding (NLU). Unlike
standard text, the non-compositional nature of
an [E makes it difficult for model comprehen-
sion, as their figurative or non-literal mean-
ing usually cannot be inferred from the con-
stituent words alone. It stands to reason that
in these challenging circumstances, pre-trained
language models (PTLMs) should make use of
the surrounding context to infer additional in-
formation about the IE. In this paper, we investi-
gate the utilization of said context for idiomatic
reasoning tasks, which is under-explored rel-
ative to arithmetic or commonsense reason-
ing (Liu et al., 2022; Yu et al., 2023). Prelimi-
nary findings point to a surprising observation:
general purpose PTLMs are actually negatively
affected by the context, as performance almost
always increases with its removal. In these sce-
narios, models may see gains of up to 3.89%.
As aresult, we argue that only IE-aware models
remain suitable for idiomatic reasoning tasks,
given the unexpected and unexplainable man-
ner in which general purpose PTLMs reason
over IEs. Additionally, we conduct studies to
examine how models utilize the context in vari-
ous situations, as well as an in-depth analysis
on dataset formation and quality." Finally, we
provide some explanations and insights into the
reasoning process itself based on our results.

1 Introduction

In natural language, there are many methods to
express canonical stories, ideas, or scenarios in
a succinct and fluent manner. One such method
is through the use of idiomatic expressions (IEs),
which are a form of multi-word expression (MWE)
that carry a figurative, or non-compositional, mean-
ing (Moon, 1998; Cacciari and Tabossi, 2014). IE
comprehension remains a challenging frontier in
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Figure 1: Visualization of the IE reasoning scenario
with context (top) and without context (bottom). We hy-
pothesize that models should be making use of context
hints (highlighted in blue) to help comprehend the IE
(highlighted in red).

natural language processing (NLP), with the chal-
lenge arising from this non-compositional aspect
of an IE (Stowe et al., 2022; Tayyar Madabushi
et al., 2021; Sag et al., 2002). This refers to the fact
that the figurative meanings of many IEs cannot
be inferred from the constituent words alone. One
such example would be the IE “squaring the cir-
cle", where its meaning “to handle things/resolve"
cannot be inferred from the IE’s individual words.

Given the recent advances in PTLMs (Vaswani
et al., 2017; Almazrouei et al., 2023; Touvron et al.,
2023; OpenAl, 2023), it was commonly understood
that transformer models’ excellent performance on
a variety of natural language understanding (NLU)
tasks was attributable to an improved reasoning
process, specifically one that is more aligned with
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humans (Schramowski et al., 2022; Dasgupta et al.,
2023; Wei et al., 2022). Indeed, recent work on
explanatory reasoning and chain-of-thought only
served to cement this notion for many PTLMs (Wei
et al., 2022; Wang et al., 2023; Shi et al., 2023).
Thus, it stands to reason that for IE-related tasks,
PTLMs would also comprehend idioms in a manner
similar to humans (i.e. it should utilize the context
to help build a better understanding of the IE (Lev-
orato and Cacciari, 1992; Cain et al., 2009; Ortony
et al., 1978; Chiara Levorato et al., 2004)). This
paradigm is represented in the top half of Figure 1,
where we would expect a model to gain a better
understanding of the idiom “‘squaring the circle"
by looking at the surrounding context. Specifically,
phrases like “the only way" and “send in troops”,
would help indicate that a situation is being re-
solved or handled. For such a difficult IE, removing
the contexts, as seen in the bottom half of Figure 1,
would make it nearly impossible for a model to un-
derstand what “squaring the circle" actually means.
Theoretically, reasoning without the context should
be much more difficult, as there are no contextual
clues to help build its understanding. This logic is
also motivated by our understanding of the distribu-
tional hypothesis, i.e. words with similar meanings
should appear in similar contexts (Harris, 1954),
and thus provide an aid for IE comprehension.

Several aspects of IE reasoning have been the
focus of recent studies, which investigated tech-
niques for IE comprehension via idiomaticity de-
tection (Zeng and Bhat, 2021; Zhou et al., 2023a;
Liu, 2019), representation (Zeng and Bhat, 2022,
2023; Skvorc et al., 2022; Hashimoto and Tsu-
ruoka, 2016; Adewumi et al., 2022; Liu and Hwa,
2017), and the use of structured knowledge such
as knowledge graphs and knowledge bases (Zeng
et al., 2023; Wang et al., 2019).

Our work uses a first-principles approach to ex-
amine context utilization in the presence of IEs.
We chose to proceed with a data-driven approach,
keeping models constant while only focusing on
changes to the data samples themselves, thus guar-
anteeing that any differences in performance are
directly attributable to how we modified the data.
Note that our study is focused on analyzing the
linguistic reasoning capabilities, specifically fig-
urative reasoning, of models, which is an under-
explored aspect of reasoning compared to arith-
metic or commonsense reasoning (Liu et al., 2022;
Yu et al., 2023). Our contributions are as follows:

(1) We demonstrate that for IE-related tasks,

PTLMs surprisingly perform better in the absence
of some, if not all, of the context, reaching gains of
up to 3.89%. This refutes the idea that PTLM per-
formance, at least in the IE setting, is attributable
to a more human-like reasoning process.

(2) Naturally, this leads to subsequent avenues of
thought concerned with understanding what exact
factors these models use when reasoning over IEs.
We perform additional analyses in order to under-
stand how PTLMs perform better without context.

(3) We argue that general PTLMs may struggle
for idiomatic tasks, and that IE-aware models ex-
hibit behaviors more consistent with a human-like
reasoning process. We also call for better dataset
formation in idiomatic reasoning.

2 Experimental Setup

In our work, we investigate how PTLMs utilize the
context for two distinct tasks: idiomatic NLI and
idiomatic continuation acceptability. Note that the
number of tasks at our disposal is limited due to the
dearth of available IE reasoning datasets. The tasks,
setups, and models are described in the following
subsections.

2.1 Tasks

Idiomatic NLI is very similar to conventional NLI,
with the only difference being the presence of an
IE within each sample. Recall that in NLI, the
objective for a PTLM, given two texts (a premise
and hypothesis), is to determine whether the mean-
ing of both texts are in entailment or in contra-
diction (Williams et al., 2018). The correct infer-
ence in this task is thus contingent upon a solid
comprehension of both texts, as well as the IE
itself. For our investigations, we utilize the IM-
PLI dataset for the idiomatic NLI task (Stowe
et al., 2022). After balancing, the IMPLI dataset
contains 13,650 training samples split evenly be-
tween both classes, taken over the silver split of
the entire dataset (which in turn draws from IE-
focused corpora) (Haagsma et al., 2020; Zhou et al.,
2021; Korkontzelos et al., 2013). Inference is done
on the gold split, which consists of 1,157 hand-
crafted samples, of which 528 are entailment and
629 are non-entailment. Specifically, the 629 non-
entailment samples are further categorized into 254
normal non-entailment samples and 375 antonym
non-entailment samples (where the meanings of
both texts are direct opposites of each other).
Idiomatic continuation acceptability requires
slightly more than just comprehension of the IE,



but also an understanding of how the IE interacts
more deeply within a given context. In this case,
the model receives two texts per sample. The first
text is known as the narrative, which contains mul-
tiple sentences to build up a story or setting, and
also contains a target IE. The other text is known
as the continuation, and is a candidate sentence
that would supposedly appear next in the narra-
tive. The objective of any model in this setting is
to determine whether the candidate is an accept-
able continuation sentence for the given narrative.
As an example, consider the following narrative:
“It’s not a bad sensation, but the type I experience
when Noah rests an arm around my shoulder when
we’re walking down the street, or when he places
a hand on the small of my back when he guides
me through a crowded room. It’s like a large cape
drawn around me, making me feel safe and wanted.
Making me feel included. I stagger back. My
legs hit the stool, and I lower myself down onto
it. Scanning the room, I see people from every
walk of life." The model should then understand
that a sentence such as “There were people clearly
from a high class, laden in lavish clothes, as well as
young college-aged students with frayed t shirts" is
an acceptable continuation, as it reflects the mean-
ing of the IE accurately and fits the narrative con-
text of a crowded room. In our paper, we take
these samples from the FigurativeNarrativeBench-
mark dataset (Chakrabarty et al., 2022a). Note that
each sample of the FigurativeNarrativeBenchmark
dataset contains three texts: a narrative, a correct
candidate continuation, and an incorrect candidate
continuation. We take each sample from the dataset
and transform it into two idiomatic continuation
acceptability examples: one that pairs the narra-
tive with the correct continuation, and another that
pairs the same narrative with the incorrect contin-
uation. After dataset transformation, we end up
with 6,408 training samples and 3,084 test sam-
ples, where both sets of samples are evenly split
between the two classes. Note that we chose these
datasets as they represent the newest state-of-the-
art benchmarks for their tasks, and thus their results
should be representative of PTLM performance in
IE reasoning scenarios. Results for other IE reason-
ing datasets, such as FLUTE (Chakrabarty et al.,
2022b), can be found in Appendix C.

2.2 Setup

The pertinent question in both scenarios is given as
follows: what constitutes “context” in each task?

For idiomatic NLI, we define the context in a
sample as the set of common words that are shared
between both the premise and the hypothesis, and
also are not part of the IE itself. Referring to the
example in Figure 1, our context would be the fol-
lowing: the only way of to Moscow’s sat-
isfaction would be to send in troops. Obviously
the non-context words are those that constitute the
IE in the premise, and the corresponding words
in the hypothesis. Context removal would simply
discard the context from both the premise and the
hypothesis, with our new sample defined as fol-
lows: <Premise: Squaring the circle. Hypothesis:
Handling things.> In addition to context removal,
we may also define context shuffling, which simply
takes all the context words in each sample and ran-
domly permutes them (while leaving the placement
and order of the IE’s words intact).

For idiomatic continuation acceptability, the
length of the narrative text in each sample lends
itself towards different types of context removal.
We define the context here in two manners: senten-
tial context and extra-sentential context. Sentential
context refers to the non-IE words that are a part
of the sentence containing the IE. Extra-sentential
context refers to the other sentences in the narrative
that do not contain the targeted IE. Thus, context re-
moval here refers to the removal of extra-sentential
context, while total context removal refers to the
removal of both the extra-sentential context as well
as the sentential context. Similar to the idiomatic
NLI task, context shuffling simply takes all the
context words (both sentential and extra-sentential
context) and randomly permutes them (while leav-
ing the placement and order of the IE’s words in-
tact). We also perform studies examining percent-
age removal, which simply removes a percentage
of words from the narrative. This may be done by
removing words from the front of the narrative, as
typically the IE appears near the end of the narra-
tive (thus we remove the furthest words first). Note
that we do not examine random removal, as it could
introduce additional grammatical errors during the
inference process.

2.3 Models

BART denotes the pre-trained BART-large model,
with 400M parameters (Lewis et al., 2020).
BART-IEKG denotes an IE-aware BART-large
model, which was injected with knowledge from
the IEKG knowledge base. We take this model
from (Zeng et al., 2023).



BART-MNLI denotes a BART-large model that
has been fine-tuned on the MNLI dataset (Williams
et al., 2018). We derive this model in the manner
described by (Zeng et al., 2023).
BART-MNLI-IEKG denotes the state-of-the-art
BART-large model. It takes the BART-MNLI
model and injects it with knowledge from the IEKG
knowledge base. We take this model from (Zeng
et al., 2023).

Mistral denotes a pre-trained Mistral-7B model,
with 7B parameters (Jiang et al., 2023).
Mistral-FT takes the Mistral model and fine-tunes
the classification head.

PIER+ denotes the best performing checkpoint
of an [E-aware BART-base model (140M param-
eters) (Lewis et al., 2020). This model has been
optimized to learn the best embeddings for IE rep-
resentation. We take this model from (Zeng and
Bhat, 2023).

The BART models were chosen to provide
a comparison against [E-aware models, as seen
in (Zeng et al., 2023; Zeng and Bhat, 2023, 2022).
We chose Mistral due to its superior performance
against Llama-2 (Jiang et al., 2023).

As a quick note, models that were trained
on MNLI (i.e. BART-MNLI and BART-MNLI-
IEKG) were not evaluated on the FigurativeNarra-
tiveBenchmark, as that task is different from NLI.

3 Results & Discussion

Our results are demonstrated for the idiomatic NLI
setting as well as the idiomatic narrative continua-
tion acceptability task. Note that individual model
hyperparameters are described in detail in Ap-
pendix D. Additionally, please refer to Appendix A
to see the full results on each dataset per model.

3.1 Effect of Context Removal

[ Model [ Acc. [ ContextKept [ Gain |
BART 77.79% 60% +0.59%
BART-IEKG | 78.02% 90% +0.17%
Mistral 49.64% 20% +0.55%
Mistral-FT 63.20% 80% +0.42%
PIER+ 65.50% 90% +0.42%

Table 1: A comparison of different models’ best per-
formance on the FigurativeNarrativeBenchmark dataset
with a percentage of the original context.

We find that general PTLMs tend to perform bet-
ter with some form of context removal, while IE-
aware models typically degrade without contexts.
Figure 2 illustrates this dichotomy on the IMPLI
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Figure 2: Visualization of the performance gain without
context for various models on the IMPLI dataset.

dataset, as general PTLMs such as BART, BART-
MNLI, and Mistral-FT demonstrate significant
gains in performance without the context, reaching
as high as 3.89%. The gains for BART and BART-
MNLI are statistically significant (90% confidence).
Conversely, [E-aware models such as BART-IEKG
and PIER+ exhibit the opposite behavior, losing as
much as 2.24% in performance. This phenomenon
seems to disappear with regards to the Figurative-
NarrativeBenchmark dataset, where according to
Figure 3, almost all models perform worse with-
out context. Without extra-sentential context, the
performance drops of IE-aware models (BART-
IEKG, PIER+) are statistically significant (90%
confidence). Without any context, the performance
drops further. Even in this scenario though, IE-
aware models such as BART-IEKG exhibit the
largest degradation in performance, which suggests
that the model possesses the highest utilization of
context for its reasoning capabilities. Addition-
ally, these results do not paint a full picture on this
dataset, as we see from Table 1 that performance
gains can still be observed with partial removal of
the context. Once again, even in this perspective,
IE-aware models exhibit the lowest performance
gain (0.17% for BART-IEKG) while typically keep-
ing a higher percentage of the original text (90%
for both BART-IEKG and PIER+).

3.2 Effect of Shuffled Context

As another method of analyzing context utilization,
we were interested in observing the sensitivity of
models towards shuffled context. In this regard, we
see that models do display some sensitivity to con-
text shuffling, with mixed results. General PTLMs
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Figure 3: Visualization of the performance gain without extra-sentential context (left) and without any context
(right) for various models on the FigurativeNarrativeBenchmark dataset.

[ Model [ IMPLI | FigurativeNarrativeBenchmark |
BART 3.19% -7.19%
BART-IEKG -1.98% -8.01%
BART-MNLI -8.55% N/A
BART-MNLI-IEKG | -6.05% N/A
Mistral 0.60% 1.23%
Mistral-FT 0.61% -6.75%
PIER+ -1.29% -3.37%

Table 2: A comparison of different models’ performance gain when the context is shuffled.

such as BART, Mistral, and Mistral-FT still display
performance gains when the context is shuffled for
the IMPLI dataset, as seen in Table 2, with Mistral
exhibiting this behavior on the FigurativeNarra-
tiveBenchmark dataset as well. However, IE-aware
models such as BART-IEKG and PIER+ still dis-
play much higher sensitivity towards context shuf-
fling, with both models illustrating performance
drops on both datasets. Additionally, BART-IEKG
exhibits the largest drop on the FigurativeNarra-
tiveBenchmark at over 8%.

3.3 Replacing IEs with Randomly Generated
Strings

Additionally, we were interested in testing how
well models utilized the context when faced with
unknown words. The motivation here is that with
randomly generated strings, this ensures that mod-
els have no pre-existing understanding of the string.
As a result, PTLMs must reason over the context
in order to comprehend this randomly generated
string. From Figure 4, it is interesting to note that
the general trends observed in Figure 2 still hold in

this setting. Only IE-aware models (BART, BART-
MNLI-IEKG, PIER+) exhibit performance drops
without the context, which suggests that these mod-
els relied on the context to help build an under-
standing of these unknown, randomly generated
strings. On the other hand, general PTLMs con-
tinue to exhibit performance gains without the con-
text, even though they could not possibly have
any pre-existing understanding of the string itself.
While most of these gains are moderate, it is sur-
prising that Mistral-FT can achieve a 5.10% in-
crease in performance (statistically significant at
95% confidence). Model behavior on the Figura-
tiveNarrativeBenchmark dataset is more consistent
with our expectation, as seen in Figure 5. Here,
most models demonstrate some usage of the con-
text, as the performance drops without any context
are much larger compared to Figure 2, with the
results for BART, BART-IEKG, and PIER+ being
statistically significant (99% confidence). Once
again, however, I[E-aware models like BART-IEKG
displayed the highest drops in performance, losing
up to 17.77% with total context removal. Even
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Figure 4: Visualization of the performance gain without
context for various models on the IMPLI dataset. Note
that the IEs in the dataset have been replaced with ran-
domly generated strings.

when replacing the IEs with randomly generated
strings, our results illustrate that IE-aware models
display a much higher utilization of context com-
pared to general PTLMs.

3.4 Effect of Idiomaticity

Another point of interest was determining the non-
compositional nature of the idioms in our datasets.
One plausible hypothesis for the under-utilization
of context is that the meaning of the IEs in our data
is easily inferred from just its constituent words.
If that was the case, then general PTLMs might
ignore the context since the expression itself pro-
vides a sufficient understanding of the idiom. How-
ever, this scenario does not appear to be the case.
We found that the average idiomaticity of IEs in
IMPLI to be around 84.64%, while for Figurative-
NarrativeBenchmark this number is even higher
at 88.31%. We were able to extract an IE’s id-
iomaticity score from the MAGPIE dataset, where
larger values indicated that the IE was more fig-
urative (Haagsma et al., 2020). As a result, the
high idiomaticity of the idioms would indicate that
the IEs are highly figurative, and so their meaning
cannot be reasonably inferred from just a literal
reading of the expression. Therefore, even in situa-
tions which would necessitate a general PTLM to
use contextual information, the model still neglects
to utilize the context.

3.5 Case Studies

To understand why some models displayed such
low context utilization, we performed a few case

studies into the model behavior as well as dataset
quality.

One potential explanation for why general
PTLMs perform better without context is that these
models are defaulting to their pre-training knowl-
edge, rather than using the surrounding context to
actually reason (Longpre et al., 2021). Perhaps in
these scenarios, the model would be able to fo-
cus purely on the IE in order to recall a better
understanding of it. If this were true, we would
expect that models perform better without context
for higher frequency IEs (those that occur more
often in pre-training corpora). We were able to
collect frequency counts for about 200 samples of
the IMPLI dataset. These frequencies are noted
from the Corpus of Contemporary American En-
glish (COCA), which contains approximately 1.1B
words (Davies, 2010). From Figure 6, our find-
ings show that models actually perform better with
context on higher frequency IEs, while perform-
ing better without context for lower frequency IEs.
Clearly then, it is not the case that these models
have a pre-existing understanding of the IE.

Another potential explanation could be due to
dataset artifacts. In this case, perhaps these artifacts
are biasing models towards the incorrect inference,
such that removing the context would remove these
artifacts, hence increasing performance. We per-
form a study similar to that of (McCoy et al., 2019;
Poliak et al., 2018), and find that for certain la-
bels of the IMPLI dataset, it could be a case of
particular words biasing model inference. From Ta-
ble 3, words such as “thumb" and “tune" may well
be biasing model predictions for the entailment
class. However, the evidence remains far from con-
clusive, as this still does not provide an explana-
tion for the performance on other datasets, such as
FigurativeNarrativeBenchmark and FLUTE, which
do not have skewed artifacts in the data (as these
datasets are balanced and well-formed). For ad-
ditional dataset analyses, please refer to the Ap-
pendix B.

4 Related Work

4.1 Context Usage in Transformers

Prior work has demonstrated that transformer-
based models do not make optimal use of the con-
text in a variety of tasks. In long context processing,
even state-of-the-art models such as GPT-3.5 show
poor context utilization in tasks such as question-
answering retrieval, especially when the pertinent



5.0

2.5

i 198 35

B -
= .

- With Context)

No Context

I
o
=)

-10.0

Performance Difference (6

-12.51

-15.0

-16.44

- With Context)
(=}

No Context

Performance Difference (6

T T T
- x
& S&
& g & €
& &

Model

L3
“ZP)\ 4

<} v x
& &F V‘é Q\«f‘
& & &F
& &

Model

Figure 5: Visualization of the performance gain without extra-sentential context (left) and without any context
(right) for various models on the FigurativeNarrativeBenchmark dataset. Note that the IEs in the dataset have been

replaced with randomly generated strings.

Entailment Non-Entailment Antonym

Word | P(LTW) [ Frequency Word [ P(LTW) [ Frequency | Word [ P(L1W) [ Frequency
thumb 1.00 4 turn 0.36 4 light 0.46 6
tune 0.86 6 break 0.35 8 see 0.44 4
round 0.80 4 give 0.35 9 terms 0.43 6
rule 0.75 6 board 0.33 4 stand 0.42 5
mind 0.60 6 throw 0.33 4 under 0.42 5
open 0.57 4 someone 0.32 11 over 0.42 5
set 0.57 4 as 0.31 4 behind 0.42 5
have 0.57 4 make 0.30 7 hand 0.41 9
time 0.57 8 do 0.29 5 strength 0.40 4
fall 0.57 8 face 0.29 5 play 0.40 4

Table 3: An overview of how indicative words within the IMPLI dataset correspond to particular class labels. These
results are displayed for the top 10 words, in terms of highest probabilities with class label P(L | W), for each
class. The results have been filtered to exclude common words such as “a" and “the", and are lower-bounded by a

frequency of at least 4.

information cannot easily be found at the begin-
ning or end of the context (Liu et al., 2023). Gener-
ally these models do not utilize this context un-
less the exact answer can be found (Sun et al.,
2021). Models may only make some use of senten-
tial context, as studies shown for the minimal-pair
paradigm (MPP) acceptability task demonstrate
that models are sensitive to only a few select con-
textual features (Sinha et al., 2023). Other studies
have demonstrated the fact that PTLMs are sur-
prisingly invariant towards context perturbations
such as shuffling, or deleting all words except for
nouns, in some instances these perturbations re-
move less than 15% of usable information for these
models (Papadimitriou et al., 2022; O’Connor and
Andreas, 2021). Our approach extends upon prior

work, as we demonstrate scenarios where models
can improve performance by making no utilization
of the context, as we remove it entirely. We use
these results to then argue that only IE-aware mod-
els remain suitable for IE reasoning tasks. Our ad-
ditional studies affirm the poor sensitivity of these
general PTLMs to context perturbations, such as
shuffling, and we go further by also examining
whether dataset features may be an indirect cause
of this peculiar reasoning behavior.

4.2 Idiomatic Expression Reasoning

Previous research has utilized many techniques
towards improving PTLMs’ IE reasoning capa-
bilities. These include better datasets, embed-
ding representations, and training schemes. Tra-
ditional IE datasets include MAGPIE (Haagsma
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et al., 2020) and PIE (Zhou et al., 2021), as well
as older datasets such as SemEval5b (Korkontze-
los et al., 2013), which all provide the backbone
for many IE-related tasks. More recent datasets
include IMPLI (Stowe et al., 2022) and Figurative-
NarrativeBenchmark (Chakrabarty et al., 2022a),
amongst others (Chakrabarty et al., 2022b; Tay-
yar Madabushi et al., 2021). Structured knowl-
edge bases have also been proposed to help im-
prove PTLMs’ IE capabilities, most recently with
IEKG (Zeng et al., 2023). Other approaches ex-
amine and improve upon IE embedding representa-
tions (Zeng and Bhat, 2022, 2023; Tan and Jiang,
2021; Adewumi et al., 2022; Liu and Hwa, 2017;
Skvorc et al., 2022), which lead to improvements
in downstream tasks. Different training methods
may also be proposed for better IE representa-
tions (Hashimoto and Tsuruoka, 2016) or for down-
stream performance (Zhou et al., 2023a,b). Our
approach is not directly concerned with modifying
or improving the IE reasoning process, but attempt-
ing to understand how these models utilize context
in the presence of IEs. We believe that our results
can be complementary to current efforts to improve
IE reasoning, and can serve as an informative aid
for future research.

4.3 Transformer Attention Utilization

Previous work has usually taken an alternative
avenue when investigating the inference process,
specifically through observing a model’s attention
mechanism. Indeed, there is a long debate about
the explanatory abilities of attention (Jain and Wal-
lace, 2019; Wiegreffe and Pinter, 2019; Bibal et al.,
2022), and whether researchers can learn anything
about the inference process by examining atten-
tion weights and maps. The consensus appears
to be that attention does reflect the inference pro-
cedure in some manner, but the specific effects
are unknown (Serrano and Smith, 2019). Unlike
prior research, our work examines context utiliza-
tion through a data-driven perspective, by altering
the data samples themselves and keeping models
fixed. In this manner, we can ensure that observed
changes in performance arise from a direct result of
how we perturbed the data. We believe our context
utilization studies can provide a complementary
viewpoint on interpreting the reasoning process.

5 Conclusions

In this paper, we refute the hypothesis that PTLMs
utilize the context when reasoning in the presence

of IEs. We extend upon the work of others, and
demonstrate that not only are models not sensi-
tive to contexts, but in fact, models do not need
any context at all. For difficult IE reasoning tasks,
we demonstrate this peculiarity in the idiomatic
NLI and narrative continuation acceptability tasks,
where we see performance gains despite removing
context words from the data samples. We perform
our experiments across a range of model complex-
ities from 140M to 7B parameters. Our results,
which showcase poor context utilization for gen-
eral PTLMs, demonstrate a need for a closer ex-
amination of the inference process. Future work
should examine additional factors within the model
or datasets that may cause low context utilization,
methods to improve context utilization, and also
extend our analysis to other domains within NLU.

6 Limitations

The scope of our paper focuses on the reasoning
behavior of PTLMs for English IE reasoning tasks.
We examined context utilization only for the IE
setting, as opposed to generally as a whole. This is
because in non-IE settings the formulation becomes
less well-defined. Indeed, in general usage it is less
clear what should constitute as context in those sce-
narios. Are we talking about the most informative
words in a sample, and if so, how would one go
about defining informativeness (since this notion
will vary depending on the downstream applica-
tion)? While there have been some attempts at for-
mulating this notion (Montariol et al., 2019; Haru-
tyunyan et al., 2021; Schick and Schiitze, 2019),
this is an open question that we believe to be best
left for future work.

Another limitation of our study was the lack
of compute resources, which inhibited us from
fully fine-tuning the largest PTLMs. However,
we attempted to address this issue by including
the newest state-of-the-art models such as Mistral-
7B (Jiang et al., 2023). However, with our current
resources, we were unable to fully fine-tune the
model for our task. Nevertheless, we believe its
out-of-the-box performance, as well as its perfor-
mance with a fine-tuned classification head, should
serve as an important baseline indicator of why
even state-of-the-art PTLMs remain inadequate in
the IE reasoning setting. Of course, future work
would also showcase our results for a larger number
of state-of-the-art PTLMs in addition to Mistral.

Finally, for our study we utilized classification-
style tasks in English. Due to the scarce nature



of IE datasets, we stuck to English datasets. We
believe that due to the universal nature of IE rea-
soning required for any IE-related task, our results
are sufficient to demonstrate the inconsistencies
between expected PTLM reasoning behavior and
their actual behavior. Nonetheless, it would be ben-
eficial for future work to include a wider suite of
tasks and languages, and investigate the context
utilization phenomenon for NLU tasks as a whole.

7 Ethics Statement

Note that we do not create any new models or
datasets in our work, nor did we collect any data
from users, as we are focused instead on analyzing
current model behavior on downstream applica-
tions. Our studies are conducted on IE reasoning
tasks for transformer models, which are intended
to measure semantic analysis. We made sure to
utilize only publicly available and peer-reviewed
datasets to ensure quality control and safeguard
against inputting data that contains toxicity or sen-
sitive information. The results from these studies
are intended to help guide future research and fur-
ther analyses into how transformer models utilize
the context.

In our paper, we included several studies into
dataset quality, and investigated whether artifacts
in the data could be a potential explanation for poor
context utilization. Thus, our results do investigate
various potential artifacts in the dataset, specifically
how it influences the model inference process. We
do not explicitly study the biases present however,
as we were interested specifically in the context uti-
lization of these models in IE reasoning scenarios.

It is imperative that the findings from our paper
are not misused for models and datasets deployed
in the real-world. Techniques such as context re-
moval and context shuffling should never be imple-
mented in actuality, as these methods only serve to
provide an insight and analysis towards a better un-
derstanding of how models perform IE reasoning.
They should instead be used to help guide future
analyses and studies into model behavior.

Finally, we did not perform extensive pre-
training or fine-tuning of models that would result
in a sizeable environmental impact. Please refer
to Appendix E for a description of our compute
resources and the scale of our experiments.
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A Full Task Results

Note that any statistically significant results are
noted in the caption for each figure/table. Addition-
ally, we also report the confidence level.

A.1 Effect of Context Removal

Tables 8 and 9 present the complete breakdown
of our results for each model. We see that gen-
eral PTLMs typically gain performance without the
context, while the opposite is usually true for IE-
aware models (for the IMPLI dataset). Recall that
while models appear to lose performance with con-
text removal on the FigurativeNarrativeBenchmark
dataset, we know from Table 1 that these models
can still perform better with partial removal of the
context. Interestingly, we note that the performance
across classes for the IMPLI dataset appears more
even after removing the context, whilst the oppo-
site is true for the FigurativeNarrativeBenchmark
dataset.

A.2 FigurativeNarrativeBenchmark
Percentage Removal Results

We provide the full results for the FigurativeNarra-
tiveBenchmark dataset with a percentage removal
of the context words. The results for BART, BART-
IEKG, Mistral, Mistral-FT, and PIER+ can be
found in Tables 10, 11, 12, 13, and 14, respec-
tively. Importantly, [E-aware models must typically
retain a larger portion of the original context than
general purpose PTLMs.

A.3 Effect of Shuffled Context

We provide the comprehensive performance on
each dataset when the context has been shuffled,
seen from Table 16. As we saw, for the most part
performance increases in the shuffled context set-
ting for general PTLMs, with BART-MNLI being
an exception. After shuffling, general PTLMs per-
form more evenly across each class, while for the
FigurativeNarrativeBenchmark this is dependent
on the model.

A.4 Replacing IEs with Randomly Generated
Strings

Here we see the full table of results when replacing
the IE in the dataset with a randomly generated
string. For the IMPLI dataset, from Table 17, not
only do general PTLMs like BART, BART-MNLLI,
Mistral, and Mistral-FT perform better without the
context, but their performance splits across each
class somehow become more balanced without con-
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Figure 7: A histogram of frequency counts for idioms
found in the IMPLI dataset (~200 samples).

text. While most models exhibit a performance
drop for the FigurativeNarrativeBenchmark, Mis-
tral surprisingly displays performance gain, as seen
in Table 18. It is also interesting to note how the
performance across each class changes without the
context, with most models generally heavily biased
towards predicting that a continuation is accept-
able. This runs contradictory with the IMPLI re-
sults, where models tend to perform more evenly
across classes without context. This behavior rep-
resents a potentially interesting avenue for further
investigation.

B Dataset Exploration

In this section we take a closer examination of var-
ious dataset properties, and observe whether there
may be additional artifacts and noise present that
could bias the model away from utilizing the con-
text correctly. Note that we present these results
for the IMPLI dataset, as both the FLUTE and Fig-
urativeNarrativeBenchmark datasets do not exhibit
these imbalances between the labels.

From Table 5, we see that generally the non-
entailment samples outnumber the entailment sam-
ples at all settings, when observing the length of the
idiom (in characters). These trends are also seen
in Table 6, where we compared how the sample
labels were distributed versus the idiom multiplic-
ity, i.e. the number of times that idiom appears in
the dataset. Additionally, Table 4 illustrates that
even narrative length is skewed towards the non-
entailment samples. This in and of itself is quite pe-
culiar, given that in our studies, entailment perfor-
mance tends to be better than non-entailment per-
formance regardless of the task. These results also
conflict with Table 3, which suggest that dataset



Label | <10 | <20 | <30 | <40 | <50 | <60 | <70 | <80 | <90 | <100 | >100
E 45 145 148 103 41 27 12 3 2 1 1
NE 64 174 181 117 50 27 11 3 1 1 0

Table 4: A comparison of the distribution of labels on the IMPLI dataset versus the sample length (in terms of

characters).

Label | <10 | <20 | <30 | <
E 103 382 42 1
NE 118 451 59 1

Table 5: A comparison of the distribution of labels on
the IMPLI dataset versus the idiom length (in terms of
characters).

Label [ <2 [ <4 [ <6 <8< >10
E | 126 | 178 | 111 | 32 3 2
NE | 122 | 242 | 159 | 41 | 11 | 17

Table 6: A comparison of the distribution of labels on
the IMPLI dataset versus the idiom multiplicity. Note
that idiom multiplicity refers to the number of times the
idiom appears in the dataset. For example, an idiom
with multiplicity 2 means that two different samples
contained that same idiom.

[ Model [ LR [ Batch Size | Weight Decay |
BART 1.37e-5 32 0.01
BART-IEKG 1.31 32 0.01
Mistral N/A 8 N/A
Mistral-FT 2e-5 8 0.01
PIER+ 2e-5 32 0.01

Table 7: A listing of the specific set of hyperparam-
eters utilized by each model for the FigurativeNarra-
tiveBenchmark dataset (to two significant figures). Note
that LR denotes learning rate.

artifacts cannot adequately explain general PTLMs’
low context utilization in these scenarios. It may be
the case that there are other, less obvious, spurious
features that the model may be influenced by when
making inference.

C FLUTE Dataset

In this section we performed our context utilization
experiments on the FLUTE dataset (Chakrabarty
et al., 2022b). From Table 15, it seems that most
models do exhibit a drop in performance without
context, with the notable exception being Mistral-
FT, which improves by 3.20%. However, note that
the tiny size of the dataset, which only contains
1,768 training samples and 250 test samples, indi-
cates that these results may not be generalizable.
Nonetheless, the peculiar performance of models
such as Mistral-FT indicates that there may still be
sup-optimal context utilization exhibited by these
models.

D Hyperparameter Setup

For the IMPLI experiments, we ran all non-Mistral
models with the same set of hyperparameters as
found in (Zeng et al., 2023), in order to provide
a direct and easy comparison between different
context settings. Specifically, we utilized a learning
rate of 2e-5, with a batch size of 32, and a weight
decay of 0.01. For the Mistral models on the IMPLI
dataset, we simply changed the batch size to 8, in
order to accommodate our compute requirements.
Note that we used these same parameters for our
results on the FLUTE dataset as well, with the
exception of BART, which used a batch size of 8
instead of 32. Peculiarly, we found that BART fails
with a batch size of 32, as it would always predict
entailment (this is especially strange since FLUTE
is a perfectly balanced dataset across all splits).
For the FigurativeNarrativeBenchmark dataset,
we chose specialized optimal hyperparameters for
each non-Mistral model, as we found that certain
models were liable to degenerate into a majority
classifier under particular hyperparameter settings
(i.e. predicting 100% on one class and 0% on an-
other class), which is unexpected, given that Figura-



With Context Without Context

Model Acc. [ EAcc. [ NEAcc. | ANT Acc. Acc. [ EAcc. [ NEAcc. | ANT Acc.
BART 57.22% | 94.89% | 46.85% 11.20% 61.02% | 82.01% | 70.47% 24.80%
BART-IEKG 64.56% | 97.35% | 52.36% 26.67% 62.58% | 86.36% | 68.50% 25.07%
BART-MNLI 77.87% | 96.78% | 34.65% 80.53% 81.76% | 87.50% | 53.94% 92.53%
BART-MNLI-IEKG | 81.16% | 96.59% | 65.75% 69.87% 81.50% | 84.47% | 76.77% 80.53%
Mistral 46.50% | 81.06% 15.75% 18.67% 44.51% | 74.43% 16.93% 21.07%
Mistral-FT 49.09% | 82.01% 18.90% 23.20% 52.38% | 34.47% | 61.81% 71.12%
PIER+ 56.78% | 89.39% | 53.54% 13.07% 54.54% | 85.23% | 46.06% 17.07%

Table 8: A comparison of different models on the IMPLI dataset with and without context. Note that E stands for
entailment, NE stands for non-entailment, and ANT stands for antonym non-entailment. The performance gains for
BART and BART-MNLI are statistically significant (90% confidence).

‘With Full Context With Sentential Context ‘With No Context
Model Acc. [ CCAcc. [ IC Acc. Acc. [ CCAcc. [ IC Acc. Acc. [ CCAcc. [ IC Acc.
BART 77.20% | 80.03% | 74.38% | 75.68% | 84.50% | 66.86% | 66.34% | 79.12% | 53.63%
BART-IEKG | 77.85% | 78.60% | 77.11% | 76.07% | 82.49% | 69.71% | 61.96% | 92.41% | 31.45%
Mistral 49.09% | 7691% | 21.27% | 48.51% | 79.31% 17.77% | 50.26% | 96.37% 4.15%
Mistral-FT 62.78% | 66.34% | 59.39% | 62.22% | 56.81% | 67.57% | 50.16% | 99.09% 1.23%
PIER+ 65.08% | 66.80% | 63.36% | 62.09% | 73.22% | 51.04% | 60.54% | 74.90% | 46.24%

Table 9: A comparison of different models on the FigurativeNarrativeBenchmark dataset with full context, with
sentential context only, and removing all context. Note that CC stands for the correct class, and IC for the incorrect
class. The performance drops for BART-IEKG and PIER+ with only sentential context are statistically significant
(90% confidence). The performance drops without any context are all statistically significant (99% confidence).

[ Acc. [ CCAcc. [ IC Acc. | Percentage Kept |
77.27% | 80.22% | 74.32% 90%
77.66% | 80.54% | 74.77% 80%
77.76% | 80.87% | 74.71% 70%
77.79% | 81.13% | 74.45% 60%
76.52% | 81.13% | 71.92% 50%
76.65% | 81.78% | 71.53% 40%
75.81% | 83.33% | 68.22% 30%
71.85% | 82.43% | 61.22% 20%
66.47% | 80.16% | 52.79% 10%

Table 10: A comparison of performance on the Figu-
rativeNarrativeBenchmark dataset for the BART-large

model.

[ Acc. [ CCAcc. [ IC Acc. | Percentage Kept |
78.02% | 78.99% | 77.04% 90%
77.27% | 78.60% | 76.01% 80%
77.59% | 79.44% | 75.88% 70%
77.04% | 79.51% | 74.71% 60%
76.46% | 80.80% | 74.12% 50%
76.72% | 80.54% | 72.83% 40%
75.71% | 82.23% | 69.20% 30%
71.98% | 81.97% | 62.00% 20%
64.69% | 82.68% | 46.69% 10%

Table 11: A comparison of performance on the Figu-
rativeNarrativeBenchmark dataset for the BART-IEKG

model.

[ Acc. [ CCAcc. | IC Acc. | Percentage Kept |
49.35% | 77.89% | 20.82% 90%
48.74% | 77.76% | 19.65% 80%
49.38% | 79.38% 19.33% 70%
49.19% | 80.48% | 18.03% 60%
49.22% | 80.35% 17.96% 50%
49.25% | 80.29% | 18.29% 40%
49.29% | 81.52% 17.06% 30%
49.64% | 82.88% | 16.41% 20%
48.80% | 87.48% | 10.12% 10%

Table 12: A comparison of performance on the Figura-
tiveNarrativeBenchmark dataset for the Mistral model.

[ Acc. [ CCAcc. | IC Acc. | Percentage Kept |
62.35% 65.37% 59.40% 90%
63.20% | 65.82% | 60.44% 80%
62.91% | 65.11% | 60.89% 70%
62.29% | 63.04% | 61.74% 60%
61.64% | 60.70% | 62.58% 50%
61.84% | 58.43% | 65.18% 40%
60.83% | 57.52% | 64.20% 30%
60.18% | 63.55% | 56.74% 20%
54.02% | 73.48% | 34.50% 10%

model.

Table 13: A comparison of performance on the Figu-
rativeNarrativeBenchmark dataset for the Mistral-FT



[ Acc. [ CCAcc. [ IC Acc. | Percentage Kept |

65.50% | 67.38% | 63.62% 90%
64.69% | 67.06% | 62.32% 80%
64.27% | 67.12% | 61.54% 70%
64.23% | 69.00% | 59.47% 60%
63.62% | 70.43% | 56.87% 50%
63.88% | 73.15% | 54.60% 40%
62.52% | 73.15% | 51.88% 30%
62.22% | 73.99% | 50.45% 20%
60.02% | 73.67% | 46.30% 10%

Table 14: A comparison of performance on the Figura-
tiveNarrativeBenchmark dataset for the PIER+ model.

tiveNarrativeBenchmark is a fully balanced dataset.
These hyperparameters can be found in Table 7. We
computed these hyperparameters by performing a
grid search, constraining the learning rate between
le-5 and 5e-35, choosing between a batch size of 4,
8, 16, 32, and 64.

Note that for all experiments, we set the random
seeds to 42.

E Software & Model Implementation

Note that the models we utilized are mostly found
and implemented in the Transformers library from
Huggingface (Wolf et al., 2020). For a proprietary
model such as PIER+, we utilized the code and
implementation found in their paper and repository.

Most of our experiments used a single Nvidia
A100 GPU, which had 80 GB of GPU memory.
Note that as the focus of our paper was not on
training/fine-tuning models or achieving state-of-
the-art, the majority of our experiments were not
compute intensive, and were capable of running
within several hours.

Finally, we recognize that some of the techniques
and methods we used in our study may yet prove
fruitful for future studies and analyses. As a result,
we have made our code publicly available, which
implements our techniques.



With Context Without Context

Model Acc. [ EAcc. [ NE Acc. Acc. [ EAcc. [ NE Acc.
BART 94.00% | 92.80% | 95.20% | 88.00% | 88.00% | 88.00%
BART-IEKG 95.20% | 95.20% | 95.20% 91.60% | 96.00% 87.20%

BART-MNLI 95.20% | 92.80% | 97.60% | 92.80% | 91.20% | 94.40%
BART-MNLI-IEKG | 97.60% | 96.00% | 99.20% | 94.00% | 94.40% | 93.60%

Mistral 48.80% | 95.20% | 2.40% | 47.20% | 84.80% | 9.60%
Mistral-FT 58.40% | 55.20% | 61.60% | 62.00% | 45.60% | 78.40%
PIER+ 73.60% | 80.00% | 67.20% | 74.00% | 84.80% | 63.20%

Table 15: A comparison of different models on the FLUTE dataset. Note that E stands for entailment samples, and
NE for the non-entailment samples. The performance drops for BART and BART-MNLI-IEKG are statistically
significant (95% confidence).

IMPLI FigurativeNarrativeBenchmark
Model Acc. | EAcc. [ NEAcc. | ANT Acc. Acc. | CCAcc. | IC Acc.
BART 60.41% | 91.48% | 48.43% 24.53% 70.01% | 74.25% 65.76%
BART-IEKG 62.58% | 95.27% 52.78% 27.20% 69.84% 70.30% 69.39%
BART-MNLI 69.32% | 95.83% | 33.46% 78.40% N/A N/A N/A
BART-MNLI-IEKG | 75.11% | 93.75% 64.96% 68.27% N/A N/A N/A
Mistral 47.10% | 70.45% 16.93% 19.47% 50.32% | 60.44% 40.21%
Mistral-FT 49.70% | 60.42% 24.41% 26.40% 56.03% 36.32% 75.75%
PIER+ 55.49% | 87.31% | 52.36% 11.73% 61.71% | 55.51% 68.03%

Table 16: A comparison of different models’ performance when the context is shuffled. Note that E stands for
entailment, NE stands for non-entailment, and ANT stands for antonym non-entailment (IMPLI dataset). Note
that CC stands for the correct class, and IC for the incorrect class (FigurativeNarrativeBenchmark dataset). The
performance drops for BART-MNLI and BART-MNLI-IEKG on IMPLI are statistically significant (99% confidence).
All performance drops on FigurativeNarrativeBenchmark are significant (99% confidence).

With Context Without Context
Model Acc. [ EAcc. [ NEAcc. | ANT Acc. Acc. [ EAcc. [ NEAcc. | ANT Acc.
BART 58.25% | 90.34% 54.33% 15.73% 59.03% | 75.57% 71.65% 27.20%
BART-IEKG 59.55% | 91.10% | 50.39% 21.33% 57.22% | 83.90% | 66.14% 13.33%

BART-MNLI 55.66% | 83.33% | 21.65% 39.73% 57.39% | 55.68% | 53.54% 62.40%
BART-MNLI-IEKG | 62.49% | 78.22% | 57.87% 43.47% 60.50% | 65.53% | 75.98% 42.93%

Mistral 47.10% | 80.30% | 16.54% 21.33% 48.06% | 69.70% | 26.77% 32.00%
Mistral-FT 48.57% | 88.26% | 15.35% 15.20% 53.67% | 42.99% | 63.78% 61.87%
PIER+ 57.56% | 81.44% | 64.17% 19.47% 55.66% | 75.95% | 61.02% 23.47%

Table 17: A comparison of different models on the IMPLI dataset. Note that E stands for entailment, NE stands for
non-entailment, and ANT stands for antonym non-entailment. The IEs in the dataset have all been replaced with
randomly generated strings. The performance gain for Mistral-FT is statistically significant (95% confidence).

With Full Context With Sentential Context ‘With No Context
Model Acc. [ CCAcc. [ IC Acc. Acc. [ CCAcc. [ IC Acc. Acc. [ CCAcc. [ IC Acc.

BART 71.04% | 73.35% | 68.74% | 66.54% | 82.10% | 50.97% | 54.60% | 90.34% | 18.87%
BART-IEKG | 69.91% | 73.54% | 66.28% | 65.99% | 80.61% | 51.36% | 52.14% | 95.27% | 9.01%
Mistral 48.67% | 77.82% | 19.46% | 48.90% | 81.39% | 1634% | 49.84% | 95.14% | 4.60%
Mistral-FT | 59.24% | 58.75% | 59.79% | 57.26% | 45.53% | 69.13% | 50.16% | 98.90% 1.43%
PIER+ 63.94% | 66.21% | 61.61% | 60.44% | 73.93% | 46.95% | 58.11% | 75.29% | 40.99%

Table 18: A comparison of different models on the FigurativeNarrativeBenchmark dataset. Note that CC stands
for the correct class, and IC for the incorrect class. The IEs in the dataset have all been replaced with randomly
generated strings. The performance drops for BART, BART-IEKG, and PIER+ are all statistically significant (99%
confidence).
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