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Abstract— With the rapid development of technology and
the proliferation of uncrewed aerial systems (UAS), there is
an immediate need for security solutions. Toward this end, we
propose the use of a multi-robot system for autonomous and
cooperative counter-UAS missions. In this paper, we present the
design of the hardware and software components of different
complementary robotic platforms: a mobile uncrewed ground
vehicle (UGV) equipped with a LiDAR sensor, an uncrewed
aerial vehicle (UAV) with a gimbal-mounted stereo camera for
air-to-air inspections, and a UAV with a capture mechanism
equipped with radars and camera. Our proposed system
features 1) scalability to larger areas due to the distributed
approach and online processing, 2) long-term cooperative
missions, and 3) complementary multimodal perception for
the detection of multirotor UAVs. In field experiments, we
demonstrate the integration of all subsystems in accomplishing
a counter-UAS task within an unstructured environment. The
obtained results confirm the promising direction of using multi-
robot and multi-modal systems for C-UAS.

I. INTRODUCTION

The capabilities, speed, size, and widespread use of small
uncrewed aerial vehicles (UAVs) [1] offer countless op-
portunities for their beneficial use [2]. Nevertheless, they
also present a security concern that must be addressed.
Intruders of protected airspace, i.e., airborne UAVs that are
not authorized to be in the airspace, must be countered
in a safe and noninvasive manner in order to protect the
area of interest, especially when public safety is at risk.
Typical venues, where counter-UAS (C-UAS) systems would
help ensure safety, include public gathering places, airports,
hospitals, power plants, prisons, and so forth [3], [4].
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Fig. 1: Field test of a heterogeneous multi-robot system for autonomous
cooperative C-UAS missions. In this version of the pursuit-evasion game,
agents cooperate in ground-to-air and air-to-air missions. Each agent, the
patroller UGV, the pursuer UAV, and the interceptor UAV have their sensors
and estimators that together provide a multimodal perception of the intruder
UAV.

Potential intruders, especially multirotor vehicles, have a
small cross-section and are difficult to detect reliably with
purely ground-based systems (e.g., radar or electro-optical).
Ground-based sensors are static and suffer from interference
with the earth, vegetation, and other structures that obscure
objects at low altitudes. Adding sensors to mobile UAV plat-
forms improves detection accuracy and reliability by bringing
onboard sensors closer to the target while reducing the
signal-to-noise ratio. This is the idea behind the international
collaborative project Mobile Adaptive/Reactive Counter UAS
System (MARCUS), which combines complementary robotic
platforms on the ground and in the air to form a cooperative
autonomous multi-robot system, as shown in Fig. 1. By
working together and sharing information to accomplish a
specific task, multi-robots demonstrate better performance
and are more robust, reliable, and go beyond the efforts
of individual robots. Therefore, the proposed MARCUS
framework provides an innovative solution to this global
problem and includes three main elements: (i) detection, (ii)
tracking, and (iii) mitigation of the intruder with no or little
collateral damage. In addition to using multiple different
robotic platforms to complement their advantages and create
a long-term energy-efficient system, we also develop a mul-
timodal perception to detect and localize potential intruders.
Multimodal sensing exhibits superior performance compared
to uni-modal by being more information-dense, more robust
to changes in dynamic and unstructured environments, and
ultimately more accurate and reliable.

This paper reports the detailed design and development
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of the robotic platforms, the integration of subsystems and
various sensing modalities, and reports the results of field
tests that confirm a reliable and robust solution to ensure
the safety of the airspace. The remainder of the paper is
organized as follows: Section II formulates the problem of
the pursuit-evasion game, while Section III describes the
technical details of the design and construction of the robotic
platforms applied in the proposed framework. Section IV
describes multimodal perception in detail, along with a brief
description of the high-level control algorithms. Section V
presents the findings and results of the field tests and the
fully integrated end-to-end mission.

A. Related Work

Out of concern for public safety, national security and
individual privacy [3], the C-UAS problem has been ad-
dressed through several approaches, with ground-based so-
lutions still being the predominant application. Vision-based
UAV detection and classification have been addressed in [5],
[6], [7], [8], [9]. A novel approach to generate a synthetic
aerial dataset for UAV detection, considering the imaging
conditions specific for air-to-air, namely long-range detection
and detection under changing illumination, is developed in
[10]. Other sensing technologies commonly used by C-UAS
include radio frequency (RF) [11], acoustic, optical (IR),
LiDAR [12], and radar (3 MHz - 300 GHz) [13]. While
most air-based solutions assume that early detection of the
intruder is done by an external system [14], [15] and have
limited deployment duration due to limited flight time [5],
[6], [7], [8], [9], [16], we present a complete long-term end-
to-end solution from initial ground-based detection to air-to-
air inspection and mitigation.

In our previous work, we proposed an air-to-air approach
focusing on the tracking component. Using stochastic reach-
ability, we demonstrate a globally optimal solution to the
path planning problem of a single pursuer in pursuit of a non-
adversarial stochastic target [15]. A similar indoor approach
is described in [16] where a pursuer UAV autonomously
detects and tracks a small UAV in a GPS-denied environ-
ment. Once a small UAV has been identified as a threat by
the counter system, the next step is mitigation, which can
include various measures such as warning, control, disrup-
tion, disabling, and destruction. These actions are executed
by various mitigators or interceptors such as [4],

a) Nonphysical: RF/GNSS jamming, spoofing, high-
power microwaves, and lasers.

b) Physical: Nets, projectiles, collision UAVs, and ea-
gles.

As MARCUS’ goal is neutralizing a micro UAV with
minimal or no collateral damage, it utilizes an air-to-air
interception method described in Section IV-C. Specifically,
MARCUS integrates a unique and autonomous flying net
capable of safely capturing micro UAVs. Catching drones
with nets are discussed in [17], [18], [19]. The authors in
[20] used a cylindrical net with a large cross-section at any
angle of approach by combining it with a predictive control
law for air-to-air interception.

Finally, a novel bio-inspired interception approach that
can be leveraged for C-UAS is described in [21], [22].
Also, swarm-based and multi-drone neutralization systems,
as described in this paper and in [23], [13], [24], can
take advantage of cooperative sensing, team coordination,
deployment flexibility, and robustness. However, in contrast
to the above approaches, we cross the boundaries from
simulation and theory to real-world deployment and report
our results and findings on integration and field testing.

II. PROBLEM FORMULATION AND PRELIMINARIES

The problem addressed in this paper is a complex variant
of the pursuit-evasion game (PEG), as shown in Fig. 1. Our
system consists of five types of agents: target, intruder, pa-
troller, pursuer, and interceptor. The target in this PEG is not
the robot, but the center of the protected area, which makes
it a target-guarding problem. The intruder is an unknown
multirotor aerial vehicle that enters protected airspace. The
intruder is non-cooperative but its intent is unknown, as it
could be a stray vehicle or a threat. The patroller is a ground
vehicle equipped with a sensing system for long-term patrols
over the protected area. The second agent capable of sensing
the intruder is the pursuer, a UAV for air-to-air inspection and
verification of a possible intruder. Finally, the interceptor is
a UAV for fast and safe interception of the intruder. The
complexity of the presented problem arises not only from
the number of different agents and their roles but also from
the need for cooperation between the agents.

Our scenario takes place in a predefined region of interest,
as shown in Fig. 4. The number of agents of each type can be
scaled to achieve the desired coverage. Each agent type has
a unique role in mission accomplishment. They complement
each other to provide the best coverage and sensing by taking
into account operating time and efficiency. The operating
time of the developed robotic platforms is given in Table I.
In concert, the proposed system can be used for long-term
deployments with minimal maintenance and intervention.
The developed framework can handle an unlimited number
of intruders over time but assumes one intruder at a time.
To deal with multiple intruders at once, the system can be
scaled to include more interceptors and pursuer UAVs, with
each pursuer-interceptor pair able to mitigate one intruder at
a time. The intruder belongs to the classification of micro
multirotor UAVs with a wingspan of less than 50 cm [25]
and a weight of less than 2 kg [26] making it difficult to
detect by sensor technologies.

TABLE I: Operating time of robots developed for the MARCUS project.

Agent Patroller UGV Pursuer UAV Interceptor UAV
Operating time 10 hours 25 mins 10 mins

III. HETEROGENEOUS MULTI-ROBOT SYSTEM

In this section, we present details of cooperative au-
tonomous robots in our heterogeneous framework. Each
robot is equipped with a different set of sensors to take full
advantage of the specific platform. The presented robots use
the Robot Operating System (ROS) as middleware, which
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is the basis for the interoperability of our system. Details of
the hardware components and low-level control are presented
below.

A. UGV for Long-term Patrols

In the framework developed for the MARCUS project, the
patroller agent is implemented using a mobile UGV platform.
The goal of the patroller is to operate over long periods and
perform initial detection of potential intruders. We selected
the Pioneer 3-AT, a mobile platform with two motors on
each side connected with timing belts, allowing skid-steer,
all-terrain operation. The Pioneer is controlled by Pixhawk
running ArduRover autopilot software, and Jetson Xavier NX
as the onboard computer. The patroller is equipped with an
Ouster OS0-128 LiDAR mounted on a Directed Perception
Pan-Tilt Unit (PTU). The LiDAR has 128 beams with a 90-
degree vertical field of view (FOV) and 2048 readings at
10Hz in each 360-degree scan. The UGV is powered by
5 separate batteries that provide long-term operation in the
range of 10 hours.

B. UAV for Inspection and Verification

The pursuer UAV is a mid-sized quadrotor with full
onboard computation, designed and built specifically for the
MARCUS project. It has a 91 cm wingspan and is controlled
by a Pixhawk Cube Orange flight controller equipped with a
full sensor suite and Arducopter software. The full autonomy
software stack runs on the NVIDIA Jetson Xavier NX. The
Jetson receives stereo image data from a Stereolabs Zed
Mini camera mounted on a custom two-axis gimbal being
stabilized by two servo motors. The pursuer UAV has a flight
time of about 25 minutes and can reach speeds of more than
95 kilometers per hour.

C. UAV for Interception

For the safe mitigation of an intruder, a custom hexacopter
UAV was built with a specialized catching mechanism. A
catching mechanism is mounted on the top of the UAV,
consisting of a structural net to transfer the energy of the
impact to its six arms made from carbon fiber, which were
designed to absorb the impact optimally. On top of the
structural net, there is a second, thinner net that entangles
the propellers of the intruder UAV during a catch. Point
clouds generated by two Texas Instruments AWR1843AOP
millimeter-wave radars in different configurations and images
from a Flir Chameleon3 color camera are processed by
the onboard computer, an NVIDIA Jetson Xavier NX. The
sensors and computing unit are protected by a 3D-printed
dome covered with plexiglass. The whole system allows for
a flight time of approximately 10 minutes.

D. Ground Station

A cooperative mission of our multi-robot system is mon-
itored via a graphical user interface (GUI), as shown in Fig.
2. The presented GUI is tailored for C-UAS operation, but
is generally used for various operations of multiple UAVs,
as explained in [2]. A human operator can track the state

of each robot (e.g., idle, tracking, or approach) and observe
their GPS locations on a preloaded offline map. Since all
algorithms are computed online, the robots report only the
most relevant information to the ground station. The final
output of the sensing algorithms is transmitted to the ground
station and displayed on the map as the GPS location of the
detected intruder.

Fig. 2: Graphical user interface for multi-robot cooperative C-UAS opera-
tion.

The developed system can operate fully autonomously or
follow a human-in-the-loop (HITL) approach. The difference
lies in two points of human interaction that serve as an
additional layer of safety when the agents interact. The
human operator can only confirm or deny the transition to
the next robot in the mission. To make an informed decision,
our GUI provides the cropped RGB image of the detected in-
truder which is transmitted from the pursuer UAV. The visual
detection of the intruder provides rich data and is the most
important aspect of human-machine interaction provided by
our GUI. In our experiments, we use the HITL approach,
and this would most likely also be the case in industrial
applications due to safety and regulatory requirements there.
This feature can be turned off by disabling the two human
interaction points for a fully autonomous mission.

IV. SENSING AND MITIGATION

In this section, we describe three principal components of
C-UAS: detection, tracking, and mitigation. Detection refers
to processing sensor data and analyzing it to extract valuable
information, such as whether an intruder is in a protected
area and where it is located. Each of our robots has this
component and is based on different sensor data. In this way,
we take advantage of different sensor modalities to increase
the probability of detecting possible intruders. The next step
is to track the intruder over a longer time to get a better
insight into its intentions and the necessary information to
plan future actions. Once we have all this, we proceed to
mitigation by safely removing the risk while ensuring no or
minimal damage. The overall software architecture and data
flow are visualized in Fig. 3, while a detailed description is
given in the following subsections.

A. LiDAR-based Detection

Initial detection of intruders is accomplished by analyzing
point clouds from a LiDAR sensor mounted on a pan-tilt
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Fig. 3: Overview of the software architecture and data flow for a cooperative
robotic system with multi-modal perception. The yellow color highlights the
sensors and the blue color highlights the decision part of the system. Only
the most important components are shown.

unit (PTU). The patroller runs a waypoint mission on the
outer boundaries of the protected area, as shown in Fig.
4. The patroller stops at each waypoint to scan and search
for possible intruders. The Ouster OS0-128 has a vertical
angular resolution of 0.7°, resulting in a vertical distance
between two beams of 61cm at a distance of 50m, which is
the maximum range reported by the manufacturer. This gap
provides enough space for micro UAVs to avoid detection.
For this reason, we constantly tilt the LiDAR sensor during
the scanning phase using the PTU.

Fig. 4: Waypoint mission of the patroller UGV equipped with LiDAR sensor.

We narrow the azimuth window of the LiDAR to 120◦

to reduce the amount of data to be processed. We also
increase the signal strength to 3x to improve the detection

probability. The other parameters of the sensor are set to
default values. The first step is to preprocess the point cloud
to filter out data that is outside of our protected airspace.
On the filtered point cloud, we detect intruders by applying
the Euclidean clustering algorithm. The output clusters are
considered candidates for further inspection by the pursuer
UAV. To transform the cluster detections into GPS data,
we define three coordinate frames: a global frame LG, a
patroller’s body frame LB , and a sensor frame LS . The
3D position of detected intruder in sensor frame (LiDAR
mounted on a PTU unit) is pS

i = (xi, yi, zi). Based on the
rotation data obtained from the PTU encoders and known
translation, we define the transformation matrix TS

B from
frame LS to frame LB to obtain the intruder’s position in the
body frame pB

i = TS
BpS

i . The patroller’s pose in the global
frame is computed by the on-board localization sensors and
can be written as a transformation matrix TB

G. Finally, the
detected intruder’s position in the global frame is:

pB
i = TB

GTS
BpS

i , (1)

which is then converted to GPS coordinates by knowing the
GPS position of LG origin, and reported to the pursuer UAV
and graphical interface.

B. Vision-based Detection and Tracking

Upon successful detection by the LiDAR sensor, the
pursuer UAV starts its mission and begins the search, which
is accomplished by a time-optimal trajectory [27]. The
trajectory is in the form of a spiral, oriented towards the
reported location and narrowing inward (see Fig. 5). The
position reported by LiDAR is only used to cue the pursuer
UAV to an approximate location, as it has its detection
system for a more detailed investigation. Searching over a
larger area and then moving closer to the reported location
increases the likelihood of detecting the intruder even if it
changes position, which is very likely. During the search,
the convolutional neural network (CNN) processes the right
image of the stereo pair. In this work, we deploy YOLOv4
Tiny trained on the synthetic dataset described in [10] and
fine-tuned it on a smaller subset of real images.

Fig. 5: The pursuer UAV (A) in spiral search for the intruder (B) after
receiving initial detection from the patroller UGV (C).

If an intruder is detected, we filter the depth data based
on the techniques described in [6] to remove noise and
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ensure reliable measurements for control. As shown in Fig.
3, the output of CNN detection and depth filtering is then
used to reconstruct the 3D position of the intruder using
the pinhole camera model. The linear Kalman filter with
the constant velocity model is then used for visual object
tracking (VOT). The output of VOT is fed to the position-
based visual servoing to navigate the pursuer towards the
intruder. Our goal is to keep the intruder in the center
of the image, slightly above the horizon and at a certain
distance. The distance is determined empirically (6 m) as a
tradeoff between having enough space for UAV maneuvers
without collisions and obtaining reliable sensor readings
(which correlate with distance). Based on the sensor inputs
and the data received from the other robots, the state of the
pursuer is controlled by a finite state machine. The pursuer
UAV sends the GPS location of the intruder to the interceptor
UAV in response to the request to intercept it and waits
for the interceptor to respond that it is approaching for safe
mitigation.

C. Mitigation

The interceptor autonomously takes off and moves below
the received GPS position, where the images of the upward-
directed camera are processed by a CNN based on YoloV4
Tiny architecture, similar to the one mentioned in Section
IV-B. This model was trained to detect multirotors in an
overexposed sky from below the intruder UAV looking
upwards. Furthermore, the two radars search for any objects
in their field of view. Upon detection of the intruder by both
image and radars, an Extended Kalman filter with a constant
velocity model estimates the relative 3D position and velocity
of the intruder. It uses pre-filtered image coordinates and
derivatives from the detection, a pre-filtered distance given
by the radars, and IMU data to model the egomotion of the
interceptor. The planner takes the estimate of the intruder’s
position as an input to its policy with the following goals:
keeping the intruder in the center of the sensor’s field of view,
maintaining zero relative horizontal velocity, and ensuring
that a given following distance is held to the target. The
planner then outputs body rate and thrust commands which
are fed to the UAV’s flight controller. Once the interceptor is
following the intruder safely and the operator has requested
a catch, the planner reduces its distance to the intruder whilst
maintaining it in the center of the field of view and keeping
the relative horizontal velocity at zero. Finally, once the
relative distance is small enough, a last high thrust command
is sent to capture the intruder by entangling the propellers
in the net, thus neutralizing the intruder without damaging
it. Once the catch has been completed, the interceptor safely
returns to a predesignated location, with the intruder secured
in its net.

V. FIELD EXPERIMENTS

In parallel with the development of the hardware, the
software components were tested in the ROS-compatible
physics simulator called Gazebo. Each robotic platform and
its sensor module were developed independently. After the

initial development in simulation, a series of extensive field
experiments were conducted to test each software component
and robotic platform. Integration of the entire system was
performed in the field. In the following, we report the results
of the field experiments and the integration of the developed
system.

A. Ground-to-air Sensing

The first objective of our mission is to patrol the area
and constantly scan in search of potential intruders to ensure
secure airspace. We define an area of interest and plan
a waypoint mission on its boundaries, as seen in Fig. 4,
to provide better coverage as the probability of detection
decreases with the distance from the sensor. We run multiple
experiments with the described setup using Skydio 2+ as an
intruder (wingspan of 30 cm) and draw some conclusions.

Fig. 6: Detection of the intruder in the point cloud data received from the
LiDAR sensor mounted on the PTU. The white square indicates a positive
detection.

In general, LiDAR scans provide a large amount of high-
precision data, but sparse data, which is especially evident
when the objects in the scene are small or farther away
from the sensor. This is the case with C-UAS systems which
must be able to detect micro UAVs (with a wingspan of
less than 50 cm [25]). To compensate for the gaps between
laser beams at a given location, the ground-based LiDAR
constantly tilts and scans at different angles. In the field
experiments presented in Table II, where the intruder hovers
in place, we show that tilting leads to more detection hits
at longer distances from the target (Experiments 1 through
3). By moving the LiDAR sensor with the PTU unit, we
overcome the problem of gaps between beams and effectively
increase the detection range for small objects. At shorter
distances (experiment 4), no tilting leads to more hits, as
the detection hits line up quickly. In Fig. 6, we can see that
the PTU unit with the mounted Ouster sensor is tilted with
respect to the base of the patroller UGV, while the point
cloud data is transformed into the body frame of the robot.
Since we have only one class of objects and assume that
everything in the airspace is either known in advance or is a
potential candidate for closer inspection, each output of the
clustering is a candidate for the pursuer UAV.

Another important aspect of LiDAR-based detection is
the reflectivity of an object’s surface material. We tested
two different materials in outdoor environment, one is matte
plastic and the other is aluminum. As expected based on the
reflectivity properties of these materials, matte plastic shows
lower reflectivity and reduces the likelihood of detection,
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TABLE II: Effect of LiDAR sensor tilting on detection range and number
of detection hits.

Expt. No. Tilting No. of detections Distance to intruder[m]

1 Yes 26 20.6782No 14

2 Yes 434 21.1131No 2

3 Yes 322 21.1033No 0

4 Yes 25 6.9727No 225

while aluminum material shows high reflectivity. Since the
accuracy of LiDAR-based detection depends on the material
properties of the intruder, it is advantageous to couple LiDAR
with another modality that is independent of it.

B. Air-to-air Inspection

Fig. 7: RGB-D detection from the stereo camera onboard the pursuer UAV.
The top row shows the CNN-based detection, and the bottom row shows
the filtered depth image where the blue pixels represent the selected depth
measurements. For both experiments, we use micro UAVs: the Skydio 2+
on the left and the DJI Mavic Pro on the right.

To complement the sparse and accurate detections from the
ground-based LiDAR sensor, the pursuer UAV is utilizing
a stereo camera. The stereo camera provides dense RGB-
D data at a shorter range and requires high computational
resources to provide accurate depth measurements. The depth
sensing range is 12 m. By using a shape-based object
representation achieved with synthetically generated data, we
can detect the shape of the intruder from very far away,
resulting in only a few pixels in the image. The detector is
capable of detecting micro UAVs up to a distance of about
30 m, at which moment the intruder occupies only 0.01% of
the pixels in the image. If the intruder leaves the camera’s
field-of-view or is too far away to be detected, we can re-
detect it again and continue visual tracking, as shown in Fig.
8.

Based on extensive experiments (more than 15 hours of
autonomous flight time), we report that the pursuer UAV
can track and follow the intruder moving at up to 2 m/s with
a 100% success rate, regardless of whether the intruder is
either moving away, moving toward it or simply hovering.
At higher speeds, our pursuer can track the receding intruder
in most cases (tested at 4 m/s), but when the intruder moves

toward the pursuer, the pursuer tries to avoid a collision and
thus usually loses sight of the intruder. Besides repeatability,
the other important feature of air-to-air inspection is the
generalization of different possible UAV models. In the
conducted experiments, we alternately use Skydio 2+ and
DJI Mavic Pro as intruders. As can be seen in Fig. 7, the
developed system can detect, inspect, and track the two
mentioned micro UAVs.

Fig. 8: Visual detection as a function of distance from the intruder. The blue
line is the ground-truth distance between the pursuer and the intruder UAV,
measured from GPS. The green areas denote confident visual detection and
tracking. We designed the experiment to show detection over range, and
re-detection in case the intruder leaves the field of view and moves too far
away. Initially, the intruder is detected at a short distance (first green area),
and then it leaves the field of view, causing the tracking to stop. When the
intruder re-enters the field of view, the tracking continues. The intruder then
moves away from the pursuer UAV, and our system continuously tracks the
intruder in the image space by exploiting spatial and temporal information.
At a distance of about 30 m, it is no longer possible to track the intruder.
Then the intruder starts coming back, and we re-detect him again at almost
the same distance as last seen.

C. Mitigation

The refined estimate of the intruder’s GPS position is used
by the interceptor UAV to fly autonomously to a position
where it can detect and track the target on its own. Once this
is the case the interceptor only relies on its two radars, the
color camera, and IMU to plan body rate and thrust outputs in
a local frame. GPS is only used for geofencing. This makes
the system robust against GPS drift since the critical part of
following and catching the intruder UAV is independent of
GPS and a drift of a few meters is acceptable for geofencing
as well as for flying below the estimated intruder’s GPS
position. Detection on the RGB data produces a reliable 2D
position up to a distance of 30 meters at a rate of 35Hz for
a micro UAV of 30 cm in size.

For the follow and catch maneuvers where the relative
distance goes from more than ten meters to zero meters in a
short time, an exact distance estimate is needed from a sensor
that can handle different as well as changing distances. A
single radar can only be in a given configuration, in this
case, a short-range or a long-range configuration. Using two
radars, one in each configuration, enables a longer range
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Fig. 9: Image detection of DJI Mavic Pro. The output of the detection
module is depicted in green with a bounding box and the dot representing
the intruder’s position estimated by the radars. The red dot is the combined
estimate after being filtered by the extended Kalman filter.

and better measurement resolution over the entire combined
range. This double-radar setup can detect a micro UAV like
the DJI Mavic Pro from a distance of half a meter up to
a distance of fourteen meters. In Fig. 9 one can find an
example of detection output and a filtered 2D estimate of
the intruder UAV. In field tests, this setup was able to follow
a DJI Mavic Pro and a Skydio 2+ flying linear and circular
trajectories at non-constant speeds whilst keeping a relative
distance of seven meters. In eight tests a hovering intruder
UAV was successfully caught seven times without causing
any additional damage to it.

D. End-to-end Mission

In this section, we report the results of an end-to-end
mission of a heterogeneous cooperative multi-robot system
with multi-modal sensing. In preparation for the full cooper-
ative mission, partial integrations were also performed, from
patroller UGV to pursuer UAV and from pursuer UAV to
interceptor UAV. In the full mission, three different robots
operate autonomously and in a distributed manner, cooperat-
ing by sharing only essential information. The trajectories
of the successful end-to-end mission are shown in Fig.
10. The trajectories of the cooperative robots are reported
by GPS, while the trajectory of the intruder is detected
by LiDAR and a stereo camera. As described earlier, the
patroller monitored the area of interest and, once it detected a
potential intruder, called the pursuer UAV for closer inspec-
tion and to provide visual feedback to the ground station.
The pursuer UAV approached starting position, planned the
search trajectory around the reported position, and began
searching. As demonstrated in this experiment, the intruder
moved during the transition from ground to air sensing.
Our system was able to account for this and successfully
detect the intruder’s new position. The pursuer continuously
tracked the intruder and waited for confirmation to proceed.
When the operator confirmed from the ground station that
the intruder posed a potential risk, the interceptor UAV
was deployed to safely retrieve the intruder. The interceptor
approached the last known position of the hovering intruder
and refined the position information using the fusion of
radar and camera measurements. Finally, the interceptor UAV
successfully and safely caught the intruder. The video of field

integration and tests is available at https://youtu.be/
cKGf-VWZANY.

E. Discussion

Our results show that the synergy of different robots
and sensor technologies in C-UAS solutions is a promising
direction to achieve a scalable and long-term solution with
multiple layers of detection technology. While previous re-
search has focused on single-platform C-UAS solutions, we
have explored the possibilities of multi-robot systems where
each agent is specialized in a particular task. The results
show that the developed system can be used for long-term
missions (see Table I), which is not possible in solutions
with only one defender UAV. Another important aspect of
the developed solution is the safe mitigation of intruders,
which is usually not the case with physical mitigators [4].

For flying objects in protected airspace that are not in-
truders, such as birds or kites, LiDAR-based detection would
not be able to distinguish them from intruders. The vision-
based detection algorithm, on the other hand, can distinguish
multirotor UAVs from other flying objects. The greater the
distance to the object, the more difficult the problem becomes
as the visual features are less visible. In contrast to the
situation described above, LiDAR performs better than a
camera in low-light conditions. This confirms that coupling
different sensors for the same task improves robustness as
they complement each other. LiDAR-based detection is not
common in C-UAS solutions because the cross-section of
the intruders is very small, resulting in sparse LiDAR data.
We address this problem by two measures: We constantly
move the sensor to compensate for the gaps between the laser
beams, and we use a mobile platform instead of a static one
to increase the chance of getting closer to the intruder by
patrolling. One of the limitations of our system is the range
and resolution of the LiDAR sensor. Therefore, other types of
LiDAR sensors with higher vertical angular resolution should
be investigated, and the lower vertical field of view could be
compensated with our approach of mounting the LiDAR on
the PTU.

VI. CONCLUSION AND FUTURE WORK

In this work, we demonstrated the capabilities of a hetero-
geneous multi-robot system for cooperative autonomous mis-
sions to secure airspace. We developed and integrated multi-
modal perception using LiDAR, stereo camera, radar, and
mono camera as sensors for detecting multirotor UAVs. We
conducted extensive field tests and show that the proposed
system is a suitable solution for long-term C-UAS operations
with close-range air-to-air inspection and safe mitigation of
intruders.

The positive results of this study allow for future research
that can investigate the scaled system with multiple agents of
each type. We will continue to improve the range and speed
limits of our systems by investigating new hardware options
and optimizing the developed algorithms.
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Fig. 10: Cooperative end-to-end mission in field experiments of a heterogeneous autonomous multi-robot system. The left image shows a 3D view, the
right image a top-down view. The trajectories of the cooperative robots are reported by their GPS sensors, while the trajectory of the intruder is detected
by multi-modal perception onboard the cooperative robots.
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