An Empirical Study on the Usage of Mocking Frameworks in Apache

Software Foundation

Lu Xiao“, Keye Li¢, Erick Lim¢, Xiao Wang®, Chenhao Wei?, Tingting Yu? and Xiaoyin Wang®

4Stevens Institute of Technology, Castle Point Terrace, Hoboken, NJ 07030, United States
b University of Cincinnati, 2600 Clifton Ave, Cincinnati, OH 45221 United States
¢University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249 United States

ARTICLE INFO

Keywords:
software testing, mocking frameworks,
Apache open source projects

ABSTRACT

Mocking frameworks provide convenience APIs, which create mock objects, manipulate their be-
havior, and verify their execution, for the purpose of isolating test dependencies in unit testing.
Mustafa and Wang studied the usage of mocking frameworks based on 5000 GitHub projects. Our
study advances this understanding based on 193 Apache projects, which have different “demographic”
features from the 5000 GitHub projects—the average LOC of projects is 25K for GitHub and 165K
for Apache. Apache projects, such as Hadoop and Cassandra, are widely used in different domains and
systems. We found that 67% of the Apache projects use at least one mocking framework, in comparison
to the 23% on GitHub. Mockito and EasyMock are the most popular mocking frameworks—used in
more than 90% Apache projects—this is consistent for the GitHub projects. It is also worth noting that
12% Apache projects use Spring Framework for mocking web services, which is not found in GitHub
projects. Apache developers leverage the mocking APIs mostly (61.1%) for replacing external library
classes; in comparison, a smaller portion (39.4%) of mock objects in GitHub projects are for library
classes. Our study provides valuable empirical experience for practitioners regarding when and how
mocking frameworks are used in practice.

1. Introduction

Software testing is the process of verifying and val-
idating the functional and non-functional attributes of a
software system. Unit testing, the most fundamental phase
of software testing, targets at a software system as units,
typically as methods [1, 2, 3, 4, 5]. A unique challenge in
unit testing results from the inter-dependencies among the
units [1, 6]. That is, one unit usually has dependencies to
other units in the system, as well as to external systems
or third-party libraries. Therefore, it is inappropriate, and
often impractical, to test a system as completely separate
units without considering their dependencies. For example,
a unit of function under test (FUT) may depend on an
external database for data storage. This dependency hinders
the testing of the FUT. For instance the database may not
be deployed and ready for use; connecting to the database
may not be affordable in continuous testing; and bugs in the
database may cause interference to the testing and debugging
of the FUT.

In order to overcome these challenges, practitioners de-
vised a mechanism called mocking, which replaces test
dependencies of the FUT by creating mock objects [7, 8].
That is, developers create a faked object and control its
behavior to mimic the behavior of a dependency for the
testing purpose. For example, developers may leverage the
file system with hard-coded data items to replace the real
database [9]. Mocking helps to isolate dependencies and

B4 1xiao6@stevens.edu (L. Xiao); kli32estevens.edu (K. Li);
elimi@stevens.edu (E. Lim); xwang97@stevens.edu (X. Wang);
cwei7@stevens.edu (C. Wei); tingting.yu@uc.edu (T. Yu);
xiaoyin.wang@utsa.edu (X. Wang)

ORCID(S):

enforce true “unit" testing. Developers can test the system
as separate units in parallel, without having to wait for each
other. If the dependency is to an external system, such as
database or an http server, mocking helps to avoid the long
waiting time to access external resources, which could be
exorbitant in unit testing using the continuous testing and
integration flow. Furthermore, isolating test dependencies
through mocking can avoid bug interference in debugging
the FUT. Without mocking the dependencies, bugs outside
of the FUT can also cause test failures, making debugging
more confusing and less efficient.

There exist dedicated mocking frameworks, such as
Mockito, EasyMock, and PowerMock, for facilitating mock-
ing in Java projects. They provide convenient APIs for
creating mocking objects, manipulating the behaviors of the
mocking objects through method-stubbing, and verifying
the execution status and interactions of the mock objects.
Despite the various benefits of using these frameworks
for mocking, there are also debates regarding their usage,
focusing on when and how mocking frameworks should be
used. For example, one of the main concerns is the raised
bar for developers to contribute in open source projects,
and the lack of sufficient coverage in the current curriculum
of software testing. We found in our previous study [10]
that developers sometimes turn to inheritance as a way for
mocking since it is more intuitive for developers who are not
familiar with mocking frameworks.

There currently is limited knowledge regarding whether
and how mocking frameworks are used in practice. Related
empirical experience can benefit practitioners in learning
and adopting mocking frameworks in their projects. Mostafa
and Wang [11] conducted an empirical study on how mock-
ing frameworks are used in the github community. Their

Lu Xiao et al.: Preprint submitted to Elsevier

Page 1 of 11

An Empirical Study on the Usage of Mocking Frameworks in Apache Software Foundation

study focused on 5000 software projects from github. They
focused on three research questions:

e RQI: How popular are mocking frameworks? Are de-
velopers trying to mock most or all of dependencies?
They found that among the 5000 projects, 2,046 has
at least one test class. And 459 (23%) uses at least one
mocking framework. Projects using mocking frame-
works are larger in size, with 16KLOC as the median
size, than those which do not use mocking—with
8.4KLOC median size. frameworks. Overall, 17% of
dependencies are mocked by the software testers—
indicating only a small portion of all dependency
classes are mocked.

o RQ?2: What features of mocking frameworks are most
frequently used in the testing of open source software
projects? Mockito and EasyMock are the most widely
used. The top four most popular frameworks used
by projects on github include, Mockito, EasyMock,
JMock, and JMockit. Mostafa and Wang’s study [11]
investigated the most popular APIs from Mockito
and EasyMock. They found that software testers use
advanced APIs, such as verify and spy, for specifying
and verifying the interactions between the FUT and
the mock objects, instead of creating simple test stubs
or fake objects.

o RQ3: What types of dependencies developers tend to
mock? They found that software testers tend to use
60% of the mock objects for replacing source code
classes and the remaining 40% for library classes. The
most frequently mocked library classes are for han-
dling HTTP requests /responses, and content reposi-
tories.

This study answers the above questions focusing on
all Java projects hosted on the Apache Software Founda-
tion [12]. Apache is one of the largest open source commu-
nities in the world, hosting more than 350 projects imple-
mented in different languages, including Java, Python, C++
etc.. A total of 243 projects are implemented in Java. The
projects hosted on GitHub and Apache have very different
“demographics". Apache projects tend to be larger-scale
and more complicated. The average LOC of projects on
GitHub is 25K, while the average LOC on Apache is 165K.
Many Apache projects, such as Hadoop and Cassandra,
are widely used in different domains and systems, having
profound impacts to the society. While, many of the GitHub
projects are individually owned. We are motivated to reveal
whether and how mocking frameworks are differently in
Apache projects. This can help practitioners to achieve more
comprehensive understanding of how mocking frameworks
are used in practice, based on the different nature of projects.

Our work also extends Mostafa and Wang’s study [11]
by adding a fourth research question. Namely,

e RQ4: Do developers always use a mocking frame-
work when mocking is needed? If not, this may point

to opportunities where a mocking framework should
be properly used or potential limitations of exist-
ing mocking frameworks. Such understanding informs
practitioners when a mocking framework may not be
sufficient.

The rest of this paper is organized as follows. Section 2
discusses background information. Section 4 introduces our
study process. Section 5 elaborates the research questions
and our findings. Section 5.5 compares our findings with that
of Mostafa and Wang’s study. Section 6 discusses limitations
and threat to validity. Section 7 discusses related work.
Section 8 concludes this study.

2. Background
2.1. Motivating Example for Mocking

Figure 1 illustrates the concept of test dependencies in a
real-life scenario. In an E-commerce system, the Customer
Service module is responsible of providing various services
for customers, such as subscribing a new customer to the
system and sending an email confirmation. In fulfilling its
functions, it send requests to and receive responses from a
web server, which communicates with a SQL Database.

When testing the function of Customer Service module
as a unit, the tester must consider its dependencies to the
Web Server as well as the SQL Database. If these two depen-
dencies are not available, , e.g. the server and the database
are not deployed, the testers cannot test the functions of
Customer Service easily. If the tested function involved a
large amount of network data transmission, running the test
cases for Customer Service could lead to long waiting time
in the Continuous Integration Cycle. Finally, if the Web
Server or the SOL Database contains bugs, these bugs could
interfere the test cases of Customer Service—requiring extra
effort in the debugging of the Customer Service module.

Mock objects are designed to address the above chal-
lenges by isolating the function under test from its de-
pendencies. For example, as illustrated in Figure 2, in the
unit testing of the Customer Service module, the tester can
create a fake server to replace the dependency on the server.
More specifically, instead of accessing a real web server, the
Customer Service talks to a fake server, which mocks the
behavior of the real server in a controlled way, just for the
purpose of testing. For example, the fake server may always
return frue, indicating the request was successfully received
and processed. As such, the tester can focus on the function
under test with the help of the mock server.

2.2. Mocking Frameworks

There is a number of mocking frameworks which are
dedicated for creating, manipulating, and verifying mock
objects in unit testing. These frameworks provide a variety
of convenient APIs for three different aspects in mock-
ing: 1) creation of mock objects; 2) manipulation of the
behavior of mock objects; 3) verification of the interac-
tions with and status of mock objects. There are different
mocking frameworks for different programming languages,

Lu Xiao et al.: Preprint submitted to Elsevier

Page 2 of 11

An Empirical Study on the Usage of Mocking Frameworks in Apache Software Foundation

Request

A A
~| /
= Cistomer L }‘) \ SQL Request/Response
E SR serveies m N l
- SQL Database

g Web Server

Response #"

Figure 1: Test Dependencies on Web Server and SQL Database

SQL

{ Request/Response
\5 < t
Request/Response [3

Fake Server

Text Customer
E 0] Services

Figure 2: Dependency lIsolation by an Mock Object

23 sclass TestCustomerService {
@Test
2 public void testSubscribeCustomer() {
26 EmailManager emailManager = mock(EmailManager.class);
<|:' Motk {yockltc.when(emallManager.subscnbe()).thenAnswer(mvo > {

Arrange— [2

Emai ;
28 | endmal emailManager.sendEmail ()

return true;});
3 CustomerService myservice = new CustomerService();
il myservice.subscribeCustomer (emailManager) ;
32 myservice.emailCustomers (emailManager) ;
33 Mockito.verify(emailManager, Mockito.atLeastOnce()).subscribe();
A”e“‘[4 Mockito.verify (emailManager, Mockito.times(2)).sendEmail();}

Figure 3: Mocking by Mockito

such as Mockito [13], EasyMock [14], PowerMock [15]
and SpringframeworkMock [16] for Java; Mock [17] for
Python; NMock [18], Moq [19] for C#. These frameworks
are widely used in software projects to ease the process of
unit testing [20, 21, 22].

Figure 3 is the implementation of the motivating exam-
ple in the previous subsection, implemented following the
syntax of Mockito. The function under test (FUT) is the
CustomerService. The FUT depends on the EmailManager
deployed on an external web server for sending emails to
customers. In this example, we create a mock object of
EmailManager (line 26). And, we control the behavior of
EmailManager by stubbing its method subscribe and sendE-
mail (line 27 to 29). When acting the FUT, we pass the mock
object to isolate test dependency (line 31 and 32). Finally,
we use the verify function to check the execution of the two
stubbed methods (line 33 and 34).

3. Research Questions

We ask the following research questions to understand
the usage of mocking frameworks in Apache projects.

e RQI: How popular are mocking frameworks in Apache
projects? We analyzed the usage of the top four
most popular mocking frameworks in Apache Java
projects. We investigate the portion of test files that
using mocking frameworks and the number of mock
objects in each test files to understand if mocking

frameworks are widely used in test development of
Apache projects.

e RQ?2: What are the most frequently used mocking APIs
in the testing of Apache projects? We investigate the
top 10 most frequently used mocking APIs in the
two most popular mocking frameworks to understand
how developers use mocking frameworks in Apache
projects.

e RQ3: What types of dependencies developers tend
to mock in Apache projects? We analyzed the most
frequently mocked classes to understand whether de-
velopers tend to mock external library classes or the
classes in their own projects.

e RQ4: Do developers always use a mocking framework
when mocking is needed? We analyzed the number of
files that contain keyword Mock in their file name or
path but do not have dependencies to any mocking
frameworks. The goal is to understand are there any
files been used as mock object without using any
mocking frameworks. These files may indicate a sub-
optimal mock implementation and can be refactored
by using mocking frameworks.

4. Study Process

This study focuses on the open source projects hosted on
Apache Software Foundation. There are a total of 246 java
projects. In order to answer the above research questions, our
study process contains five main conceptual steps:

1. Step 1: Basic Data Collection: We collect basic project
information of the study subjects.

2. Step 2: Mock Frameworks Identification: We extract
imported libraries in each project, and manually verify
whether a mocking framework is used.

3. Step 3: Mock API Analysis. We extract and ana-
lyze the frequently used mocking APIs from different
mocking frameworks.

4. Step 4: Mock Dependency Analysis. We investigate
whether the mock objects are internal to a project, or
external libraries or resources.

5. Step 5: Sub-optimal Mock Identification. We iden-
tify cases where developers leverage the concept of
“mocking" without replying on a mocking framework.

We have publicized our scripts and intermediate data of
each step here https://github.com/RedRoach51/MockResearch.

4.1. Step 1: Basic Data Collection

Firstly, we collect the source code of each project by
cloning their git repository. We find that 33 projects do not
have a linked Git repository. In addition, in 4 projects, we
do not identify any test cases. Next, we import each project
to eclipse JDT [23], which resolves the bindings among the
software entities to prepare for the following-up analysis. We

Lu Xiao et al.: Preprint submitted to Elsevier

Page 3 of 11

An Empirical Study on the Usage of Mocking Frameworks in Apache Software Foundation

Table 1

Basic Information of Mock Usage Empirical Study Subjects
Basic Information Avg. Med. Max. Min.
#Java Files 1537 738 20760 17
#Test Files 524 189 11064 1
LOC 165443 | 76517 | 1574022 | 993
#Developers 110 44 2488 2
#Versions 56 36 584 0

cannot properly configure and compile 16 projects. There-
fore, our dataset actually contains a total of 193 projects.
We collect some basic measurements of these 193 projects,
including the number of Java source files, the number of
test files, the total LOC, the number of developers, and the
number of available versions. Note that the number of test
files is counted based on the import of Junit library [24]. If
a .java file imports the Junit APIs, we consider it as a test
file. Table 1 summarizes the average, median, maximal, and
minimal of these measurements of the 193 projects.

4.2. Step 2: Mock Framework Identification

If a software project uses a mocking framework, it has to
import the related APIs. Thus, in order to investigate whether
the 193 projects use exiting mocking frameworks, and what
are these frameworks, we extract all the API calls from each
test file in a project. We leverage the eclipse JDT to resolve
the bindings among software entities to retrieve the full name
space of each API. Next, we use a simple key word, “mock",
to search for all potentially related framework names. To
the best of our knowledge, the name space of well known
frameworks all contains this keyword, such as mockito,
easyMock, powerMock, etc.. Based on our observation, even
if it is not in the name of the framework, it appears as part
of the import name space. We use this method to search
for potential mocking frameworks to avoid missing ones
that we are familiar with. Finally, we manually review the
retrieved name spaces that match the search keyword. For
each identified item, we manually verify whether it is a
mocking framework by searching its information online. For
the confirmed mocking frameworks, we count and rank their
popularity in the 193 projects. This helps us to reveal which
mocking frameworks are most popular.

4.3. Step 3: Mock API Extraction and Analysis

In step 2, we have identified whether a project uses a
mocking framework, and which framework(s) are used in
each project. In step 3, we focus the most popular mocking
frameworks. It is of low value to investigate the APIs of a
uncommonly used mocking framework. Based on the con-
firmed mocking framework name spaces, we search for APIs
calls that match the framework namespace. For example,
Mockito’s APIs all start with org.mockito. We rank all the
APIs of each mocking framework based on their frequencies
being used across all the projects. In RQ2, we focus on the
top ranked APIs in the most popular mocking frameworks in
Apache software foundation.

4.4. Step 4: Mock Dependency Analysis

In this step, we focus on the object being mocked—
whether the mocked object is an external library or an
internal function, In order to achieve this goal, we first need
to understand what is the syntax for creating a mock object
using different frameworks. For this, we carefully review
the official documentation of each mocking framework, and
curate the APIs that can be used for mock object creations.
For instance, both Mockito and PowerMock uses mock().
By matching the mock object creation APIs, we identify
all the dependencies being mocked in a project. Next, we
retrieved the full name spaces of the mocked dependencies.
If a name space is consistent with that of the project, it
implies that the object is internal to the project. For example,
in PDFBox [25], all the internal objects have this name
space, “org.apache.PDFBox". In comparison, an external
dependency has a different name space from the project. We
assume that there may exist common external dependencies
that developers need to mock, such as a database or a
http server. Therefore, we further count the most frequently
mocked external dependencies.

4.5. Step 5: Sub-optimal Mock Analysis

In step 5, we aim to reveal whether developers leverage
the concept of mock without using any existing mocking
frameworks. It is possible that developers create mock ob-
jects using an informal approach, such as based on inheri-
tance or by creating the mock objects manually [10, 26]. We
believe that these cases may point to sub-optimal implemen-
tation of mock, due to various factors, such as lack of related
experience in using a mocking framework or even limitation
with an existing framework.

The heuristic we leverage in this step is that, we identify
test files with keyword “mock" in their names, but does not
import any APIs from existing mocking frameworks. Once
we identify such cases, we randomly select sample cases and
review how developers use the concept of “mock” without
a mocking framework. This helps us to understand gaps in
open source developers’ expertise and even gaps in existing
mocking frameworks. We acknowledge that it is possible that
developers may not always include the keyword “mock" in
such cases. Thus, we may not be able to retrieve all related
cases using the searching heuristic.

5. Study Results

5.1. RQ1: Popularity of Mocking Frameworks

We find that, in the 193 projects, 129 (67%) projects use
at least one mocking framework. This indicates that mocking
frameworks are commonly used in Apache projects.

In addition, Figure 4 shows the comparison of the LOC
for projects that use a mocking framework vs. projects that
do not use a mocking framework. The median size of the
projects with mocking frameworks is 122K LOC, comparing
to the median 77K LOC of all projects. This indicates that
larger projects are more likely to use a mocking framework
compared to smaller projects.

Lu Xiao et al.: Preprint submitted to Elsevier

Page 4 of 11

An Empirical Study on the Usage of Mocking Frameworks in Apache Software Foundation

Figure 4: Size Comparison between Projects Using Mocking
Frameworks with Projects Not Using Mocking Frameworks
(Use All Metrics Data)

Table 4
Proportion of Mocked Classes

Avg. Med. Max. | Min.
#Mocked Classes 3.2 2 67 1
#Dependency Classes 23.1 19 277 1
Proportion of Mocked Classes | 16.0% | 12.1% | 100% | 0.7%

10° 122438.0 Table 5
76517.0 Number of Mock Objects in Test Files
(@]
9 #Mock Objects | #Test Files (%)
1 1063 (27.7%)
10° 2 721 (18.8%)
3 460 (12.0%)
1 4 373 (9.7%)
5 222 (5.8%)
6 174 (4.5%)
10° 7 117 (3.1%)
8 106 (2.8%
All with Test Code Using Mock 9 87 ((2_3%))
10+ 512 (13.4%)
Table 6
Table 2 Top Ten Most Popular APIs In Mockito
Popularity of Mocking Frameworks AP Frequency Description
when 13332 Specify a method and enable stubbing.
Mocking Framework #Projects | % Projects | Acc. % Projects mock 10888 Create an empty mock object.

-) % any 4485 Argument matcher that match any arguments.
mockito 99 7% 7% verify 3609 Verify a specific behavior of the mock object.
easymock 36 28% 91% thenReturn 3287 Stub the return value for a non-void method
powermock 16 12% 92% times 1536 Verify exact number of invocations for the methods of a mock

. object
springframework 16 12% 94% a 1210 Check if argument value equals o @ given value
Others 8 6% 100% doReturn 1252 Stub the return value for any method.
spy. 734 Create a spy object.
Total 129 anylong 596 Argument matcher that match any Long fype arguments.

Multiple Mocking Frameworks | 56 (40%) |

Table 3
Usage of Mocking Frameworks in Test Files
Avg. Med. Max. Min.

Test Files 50.0 135 492 1
Proportion of Test Files | 10.2% | 6.05% | 62.17% | 0.03%

Table 2 shows the popularity of different mocking frame-
works. As we can see, among the 129 projects using mocking
frameworks, Mockito is the most popular—used in 95 (71%)
projects. EasyMock and PowerMock, ranking in the second
and the third place, are used in 27% and 12% projects,
respectively. As shown in the last column, the top 4 most
frequently used mocking frameworks together are used in
94% projects. It is worth noting that 54 (40%) projects use
more than one mocking frameworks.

Furthermore, we investigate how intensively are the
mocking frameworks used in the test files. The results are
shown in Table 3. On average, 50.0 (10.2%) of test files in a
project use mocking framework APIs. In other words, about
one in ten test files in the Apache projects uses a mocking
framework API. In most intense case, 62% of test files in a
project uses mocking framework APIs.

Summary: Mocking frameworks are widely used in
Apache Java projects—67% projects use a mocking
framework. On average, 10.2% test files in a project use
mocking framework APIs. It is worth to note that larger
projects are more likely to use mocking frameworks.
Mockito is the most popular mocking framework—as
77% projects are using it.

5.2. RQ2: Usage of Mocking Frameworks

In RQ2, we analyze the number of mock objects created
in a test file. Table 5 shows the percentage of test files that
create from one to more than ten mock objects. We find that
the majority (58.5%) of test files create three or less mocking
objects. However, in 13.4% test files, developers may create
more than ten mock objects. The implication is that there are
often multiple dependencies that developers need to isolate
for unit testing, and thus multiple mock objects are created.

We further analyze the most frequently used APIs. We
focus on Mockito and EasyMock, since they are used in 91%
of the 129 projects that use a mocking framework. Table 6
and Table 7 shows the top 10 most frequently used APIs in
Mockito and EasyMock, respectively.

For Mockito, the most frequently used API is when;
and for EasyMock, the second most frequently used API is
expect. These two APIs are for manipulating the behavior
of mock objects through method stubbing. This indicates
that mocking frameworks are not just used to create dummy
objects in a superficial way. Instead, developer control the

Lu Xiao et al.: Preprint submitted to Elsevier

Page 5 of 11

An Empirical Study on the Usage of Mocking Frameworks in Apache Software Foundation

Table 7 Table 9

Top Ten Most Popular APIs In EasyMock Most Frequently Mocked Library Classes
API Frequency Description Mocked Library Class Type Frequency
createMock 2668 Create an empty mock object without default returns. org.osgi.framework.BundIe modularization System 112
expect 2638 Specify a method and enable stubbing. .
andReturn 1067 Stub the return value for a method returns anything but void. Jlavax.servlet.http.HttpServIetRequest HTTP Request/Response 70
replay 891 Switch mock object to replay mode. javax.servlet.http.HttpServletResponse HTTP Request/Response 56
verify 425 Verify a specific behavior of the mock object. org.apache.hadoop.fs.FileSystem 10/File System 39
anyTimes 276 Expect a method of a mock object to be executed any times. org.apache.hc.core5.http.HttpConnection | HTTP Request/Response 38
expectLastCall 264 Stub the behavior of void methods org.osgi.framework.BundleContext modularization System 37
q 238 Expects an object equals to the given value org.osgt.t ’
andStubReturn 216 Specific the default return for a method java.io.File I0/File System 35
createNiceMock 5555 Create an empty mock object with default returns. org.slf4j.Logger Logging System 35
isA 138 Expects an object implementing the given class. java.sql.Connection Database 32

java.sql.ResultSet Database 32
Table 8

Library Class Mocks

Avg. Med. Max. | Min.

Table 10
Mock Files without Mocking Frameworks Dependencies

#Mocked Library Classes 25.4 9 622 0
Proportion of Library Classes | 61.1% | 65.2% | 100% | 0%

behavior of the mock objects through related APIs for serv-
ing the testing purposes.

APIs for creating mock objects, including mock in Mock-
ito and createNiceMock and createMock in EasyMock, are
also among the top 10 most frequently used APIs. The
implication is that practitioners should start with these APIs
with creating mock objects in the learning process, since
they are most frequently used.

Finally, APIs for checking the execution status and in-
teractions with mock objects are also in the top 10 most
popular list. For example, verify and times are two advanced
APIs in Mockito for verifying the certain behavior and invo-
cation number associated with the mock objects. Similarly,
the counter part APIs in EasyMock, namely, anyTimes and
verify, are also frequently used.

Summary: The majority (58.5%) of test files create 3
or less mocking objects. Developers are not simply use
mocking frameworks to create dummy mock objects.
Stub related methods are also among the most popu-
lar API—this indicates that developers frequently use
mocking frameworks to control the method behavior
of the mock objects. Verify is another popular API for
checking method execution status of the mock objects.

5.3. RQ3: Mocked Dependencies

Table 8 shows the number of mocked library depen-
dencies, as well as the percentage of mocked library de-
pendencies in all mocked dependencies. On average, the
majority (61.1%) of the mocked objects are for isolating
dependencies to external libraries. In some projects, this
percentage reaches 100%. This indicates that mocking is an
important way to isolate dependencies to external libraries.

Furthermore, Table 9 lists the most frequently mocked
external libraries. The results show that the most frequently
mocked library classes are related to Modularization Sys-
tem, HTTP request/response, Database, and IO/File System.
We imply that a key motivation for Apache developers to
use a mocking framework is to 1) Prevent interference from
external libraries (such like the concurrent nature of OSGI

Avg. | Med. | Max. | Min.
#Mock Files without Mocking Frameworks Dependencies 3.04 0 158 0
Proportion of Mock Files without Mocking Frameworks Dependencies | 0.6% | 0% 115% | 0%

framework) and 2) improve the testing performance through
avoiding accessing a real HTTP server, database, or file
system.

Summary: Developers from Apache projects tend to
mock more library classes (61.1%) than the classes
in their own package (38.9%). The most frequently
mocked library API is HTTP request/response, it indi-
cates that the common reason for mocking the library
classes is to prevent calling the real HTTP services and
improve testing performance.

5.4. RQ4: Mocks without Leveraging Mocking
Frameworks

Table 10 shows that, there are on average 3 files—and
up to 158 (11.5%) files—in a project that associate with
the concept of “mocking" without relying on any mocking
framework.

We randomly sampled 18 such cases to investigate how
and why developers use the concept of mocking without a
mocking framework. Figure 5 shows the classification of
these cases.

Figure 5: Classification of the 18 Sample Cases

All 18 Cases
Sub-Class as Mock Object Not for Test Dependency Isolation

— * MockShell
* MockOsgiContext
Can use Mockito Cannot use Mockito
— * ProviderMock
* VerticalCRSMock
Favor Mockito Favor Sub-class * MockMetrics

* MockPage
* StackManagerMock

* MockimageContext

Use JMocker [10] Manual Refactor
* StrutsMockServletContext
* MockClock

* ClusterStateMockUtil

* MockServletOutputStream + MessageArchiveMock « MockHttpServletRequest
* MockDocument * EventHubReceiverMock

* MockRepository

* MockServerCnxn

In 16 cases (the left child of the root node in Figure 5),
the developers use sub-classes as mock objects. That is, the

Lu Xiao et al.: Preprint submitted to Elsevier

Page 6 of 11

An Empirical Study on the Usage of Mocking Frameworks in Apache Software Foundation

developers create a sub-class and leverage method overrid-
ing to control the behavior of the sub-class for mocking
purposes. For example, MockServietOutputStream' is a sub-
class of ServletOutputStream. The former mocks the latter,
and alters the latter’s behavior by overriding the method
write for testing purpose.

Among these 16 cases that use inheritance for mocking,
11 cases can potentially use a mocking framework, such
as Mockito, to replace the sub-classes. However, only in
6 cases, using Mockito may be favored over sub-classing
to improve the quality of test cases. While in the other 5
cases, using inheritance for mocking may be favored, since
it is more convenient and tangible than using a mocking
framework, especially for developers who do not have in-
depth experience with a mocking framework.

As revealed in our prior work [10], using Mockito to
replace inheritance for mocking could make the test logic
more clear, easier to understand and maintain. For the 6 cases
that favor Mockito, we found that 4 cases can be refactored
automatically by our tool, JMocker [10], to replace the inher-
itance by using Mockito. These 4 cases are MockServietOut-
putStream, MockDocument 2 MockRepository 3. and Mock-
ServerCnxn *. The other 2 cases, MessageArchivesMock 5
and EventHubReceiverMock ©, can be refactored with some
manual effort based on our experience.

Among the other 5 cases that favor inheritance for
mocking, one case is a concrete-class, MocklmageContext 7,
which implements ImageContext. It is designed as a Single-
ton. The creation of a Singleton mock object using a mocking
framework is not as straight-forward as using inheritance. In
2 cases— StrutsMockServletContext® and MockClock’—the
sub-classes have a large number of references in test cases.
For example, sub-class StrutsMockServletContext is used in

1NIOCkServletOutputS[reamhttps://github.com/apache/shindig/blob/
8f3c3d5c77f5324bad56a5a62da28657fe9112a0/ java/social-api/src/test/
java/org/apache/shindig/social/core/oauth/MockServletOutputStream. java

2MockDocument https://github.com/apache/creadur-rat/blob/
008161c5b5¢c4119fc911004709cb089e11d974d8/apache-rat-core/src/test/
java/org/apache/rat/document/MockDocument. java

3hdockRﬁposﬁory https://github.com/apache/ace/blob/
3f878e4€99¢c003a92f20f4698b40bba5b719f67b/org. apache.ace.client.
repository/test/org/apache/ace/client/repository/impl/MockRepository.
java

4MockServerCnxn https://github.com/apache/zookeeper/blob/
c74658d398cdc1d207aa296ch6e20de@dfaec@3e/zookeeper-server/src/test/
java/org/apache/zookeeper/server/MockServerCnxn. java

5hdessage[\rchiveshdock https://github.com/apache/mina-vysper/
blob/master/server/extensions/xep@313-mam/src/test/java/org/apache/
vysper/xmpp/modules/extension/xep@313_mam/spi/MessageArchivesMock. java

6EventHubReceiverMock https://github.com/apache/storm/blob/
3f96c249cbc17ce062491bfbb39d484e241ab168/external/storm-eventhubs/
src/test/java/org/apache/storm/eventhubs/spout/EventHubReceiverMock.
java

7h40€k1nnage(:0ntext https://github.com/apache/
xmlgraphics-commons/blob/e817d9d5a3fe3b1b56fd9e6e288b3da90bdf9e60/
src/test/java/org/apache/xmlgraphics/image/loader/MockImageContext.
java

8StrutsMockServletContext https://github.com/apache/struts/
blob/49a4d6d5a11227314a5412935b31989fad3bffc9/core/src/test/java/org/
apache/struts2/views/jsp/StrutsMockServletContext. java

9MockClock https://github.com/apache/tez/blob/
2dcbe@bca22be89a797acd5f2228d91c4c112069/tez-dag/src/test/javalorg/
apache/tez/dag/app/MockClock. java

8 different test cases. Mock objects created using a mocking
framework are used within the scope of a test case or a test
class, where the mock objects are created. In comparison,
sub-class provides better reusability since it is accessible
in the scope of the entire project. In another 2 cases—
ClusterStateMockUtil'® and MockHttpServletRequest'' —
the sub-classes contain quite complicated logic, with many
attributes and overriding methods. Although creating such
mock objects using a mocking framework may still be
feasible, it is not as straight-forward and convenient as using
sub-classes.

In the remaining 5 cases of the 16 cases, it is not feasible
to replace inheritance by using a mocking framework due
to the limitations of existing mocking frameworks. More
specifically, 1) the sub-classes use special modifiers, includ-
ing ProviderMock '*> and Vertical CRSMock '3. They both
use modifier strictfp—which a mocking framework cannot
handle. 2) Two sub-classes inherit and implement multiple
classes, including MockMetrics '* and MockPage . This
indicates mocking multiple classes, which is not supported
by existing mocking frameworks. For example, MockPage
extends MockComponent and implements IRequestablePage
at the same time. And, 3) the sub-class contains static fields,
and also alters the behavior of equals() and hashCode(),
which cannot be handled using a mocking framework. This
case is StackManagerMock'®

In the last 2 cases (in the right child of the root node
in Figure 5)—MockShell '7 and MockOsgiContext '—the
concept of mocking is not intended to address test depen-
dency isolation as intended by the mocking frameworks.
More specifically, the class MockShell from project, Accu-
mulo, aggregates the class Shell as an attribute. The Mock-
Shell add more functions to Shell for testing purposes, such

10ClusterStateMockUtil https://github.com/apache/solr/blob/
73e64a959c93f721fd72e9d701cd8f3d925c9688/solr/core/src/test/org/
apache/solr/cloud/ClusterStateMockUtil. java

'MockHttpServletRequest https://gi thub. con/apache/wookie/blob/
b75542fc42ea081aaa8947549e368c31a797eaa4/wookie-server/src/test/java/
org/apache/wookie/tests/helpers/MockHttpServletRequest. java

12providerMock https://github.com/apache/sis/blob/
700b4574ff46a229b4a336bbab7ebf3e6b4f0093/core/sis-referencing/src/
test/java/org/apache/sis/internal/referencing/provider/ProviderMock.
java

3Vertical CRSMock https://github.com/apache/sis/blob/
5dbfe58a0fb7a804354db6c410280eb0a84288a1/core/sis-metadata/src/test/
java/org/apache/sis/test/mock/VerticalCRSMock. java

4MockMetrics https://github.com/apache/skywalking/blob/
f5b7¢c3e32d022973050340e64dc63835787f5ad8/0ap-server/exporter/src/
test/java/org/apache/skywalking/oap/server/exporter/provider/grpc/
MockMetrics. java

lSthCkPage https://github.com/apache/wicket/blob/
837f3c137bf39f26ddc3b8e939235cde@4e8c13d/wicket-core/src/test/java/
org/apache/wicket/MockPage. java

16StackManagerMock https://github.com/apache/ambari/blob/
24dbed27b9714c82835273758f0bceb3334b4ef2/ambari-server/src/test/java/
org/apache/ambari/server/stack/StackManagerMock. java

1"MockShell https://github.com/apache/accumulo/blob/
8b8a6f7339fdcfbf4118c6164eb47035d857f0d9/test/src/main/java/org/
apache/accumulo/test/shell/MockShell. java

1$MockOsgiContext https: //github.com/apache/stanbol/blob/
2fcf471b467fb84e59491f4c54bavad5924ab04a/ontologymanager/registry/src/
test/java/org/apache/stanbol/ontologymanager/registry/MockOsgiContext.
java

Lu Xiao et al.: Preprint submitted to Elsevier

Page 7 of 11

An Empirical Study on the Usage of Mocking Frameworks in Apache Software Foundation

as adding a set of assertion statements. The MockShell is
involved in integration test cases, such as ShellConfigIT, to
replace the original Shell, for the convenience of testing.
In the other case, MockOsgiContext from project, Stanbol,
simply provides a function called reset to reset a variable
called TcManager. This case is not mocking any other class
in the project. Thus, the concept of “mocking" is not always
used as intended for test dependency isolation.

Summary: There are up to 11.5% test files used as mock
object without relying on any mocking frameworks.
Some of these cases can be replaced by using a mocking
framework; while others point to the potential limita-
tions with existing mocking frameworks.

5.5. Comparison with Mostafa and Wang’s Study
This section compares our study results with that of the
Mostafa and Wang’s study:

Dataset Comparison: Mostafa and Wang’s study focused
on 5000 random selected open source projects in GitHub.
Many of these projects are relatively small-scale, and indi-
vidually owned. In comparison, our study focuses on 193
open source projects from Apache, many of which are large-
scale, popular in different problem domains, such as Hadoop
and Cassandra. Overall, the most distinctive feature of our
dataset is that the projects are in larger scale: The average
size of our study subjects is 164K LOC, comparing to 25K
LOC of the original study. We assume that project scale
could be an important factor that impacts whether and how
projects use mocking frameworks. Overall, we imply that
more complex projects are in greater need for the sophis-
ticated usage of a mocking framework. Following, we make
comparison between our study and Mostafa and Wang’s
study based on the three RQs.

Popularity of Mocking Frameworks: In Mostafa and
Wang’s study [11], about 23% projects use mocking frame-
works. In comparison, 67% of the Apache projects in our
study use mocking frameworks. We believe that this higher
adoption of mocking frameworks in our dataset is deter-
mined by the larger project scale—projects in our dataset,
on average, are more than six times the size of the projects
in the prior study. This confirms our conjecture that larger-
scale and more complicated projects are in greater need for
mocking frameworks.

It is also worth noting that 12% projects use springframe-
work [27], which is not found in Mostafa and Wang’s
study [11]. We find these 16 projects all use web services
such as Wink [28], a Java based framework that provides
functionality for communicating with RESTful Web ser-
vices and Struts [29], an open source MVC frameworks for
java web application. This indicates that web application
services tend to use springframework [27] as their mocking
framework. This suggests that the type of mocking frame-
works used by projects relates to the functionality of the
projects.

Usage of Mocking Frameworks: In RQ2, both our em-
pirical study and Mostafa and Wang’s study [11] analyzed
the top 10 most popular APIs in EasyMock and Mockito.
Both empirical studies show that the most frequently used
mocking APIs are related to method stubbing, mock creation
and behavior verification. This indicates that testers are not
use mocking frameworks to simply create dummy objects,
they frequently leverage the advanced mechanisms to control
the behavior of the mock objects as well as verifying the
interactions between mock objects and other production
classes.

Mocked Dependencies: Inour dataset, the majority (61.1%)
of the mocked objects are for replacing library classes. In
comparison, in the prior study, a smaller portion (39.4%)
of the mocked objects are for library classes. We believe
that this is relevant to the project domains. Our study
subjects contain many web applications such like Wink [28]
and Struts [29], which use springframework for mocking
web services. For example, Struts [29] is an open source
framework for creating Java web applications. Develop-
ers use springframework to mock HttpServletRequest and
HttpServletResponse as input and the expected outputs
to test various RESTful APIs. For these web application
projects, developers leverage springmock to prevent the in-
terference of unstable network and improve run-time testing
performance.

5.6. Study Implications

Mocking frameworks are widely used in real-life projects,
i.e. in 67% of Apache projects and in 23% of GitHub
projects. This indicates that it is important for software
practitioners to learn and get familiarized with how to use
mocking frameworks to overcome the challenge of test
dependency isolation in unit testing. In particular, Mockito
and EasyMock are the most popular mocking frameworks.
Thus, it is most beneficial for software engineering educators
to develop related curriculum materials regarding the usage
of mocking frameworks based off Mockito and EasyMock.

As suggested in our study, the adoption of mocking
frameworks in a software project may be impacted by the
project’s characteristics, such as project size and problem
domain. For example, large projects are more likely to in
need of a mocking framework than a small project. In
addition, projects related to web-applications tend to use
SpringFramework for mocking HTTP requests/responses to
facilitate unit testing. Our study shed light on the factors,
such as project size and domain, that may impact the adop-
tion of a mocking framework. However, more in-depth and
quantitative investigation still requires future research to
guide practitioners in the adoption of a proper mocking
framework for their projects.

In both Mockito and EasyMock, we identified most
frequently used APIs. For example, in Mockito, mock is
most frequently used for creating mock objects, when is most
frequently used for method stubbing, and verify is frequently
used for verifying mock object behavior. Practitioners can
benefit from the common API sequences for the mock object

Lu Xiao et al.: Preprint submitted to Elsevier

Page 8 of 11

An Empirical Study on the Usage of Mocking Frameworks in Apache Software Foundation

creation, manipulation, and verification. It is still open to
future research to extract the most common API sequences
to facilitate the learning and usage of popular mocking
frameworks.

As suggested in the RQ4, sub-classing seems to be
a common mechanism for mocking without relying on a
mocking framework. In some cases, the sub-classing could
be easily replaced by using a mocking framework to benefit
the quality and maintainability of test cases. Automated
refactoring tools to replace sub-classing by a mocking frame-
work, especially based on Mockito or EasyMock, could
provide great value for practitioners to facilitate the usage
of mocking frameworks.

While, in some cases, sub-classing for mocking seems
to be more convenient and tangible than using a mocking
framework, especially for developers who lacks in-depth
experience of using a mocking framework. For example,
creating a sub-class as a mock object can be easily reused
in different test cases. While, it requires advanced design
to create a reusable mock object using a mocking frame-
work. That is, developers could create a dedicated class,
which aggregates a mock object created using a mocking
framework. As such the aggregating class can be reused in
different test cases in the same way as a sub-class. However,
there is currently little empirical knowledge regarding the
advanced design solutions for mock objects using mocking
frameworks.

Finally, in some cases, sub-classing cannot be replaced
by using a mocking framework, due to the limitations of
existing frameworks. It is open to future research to sys-
tematically investigate the limitations of existing mocking
frameworks. Practitioners should be aware of related scenar-
ios and limitations with existing mocking frameworks. Also,
designers and developers of existing mocking frameworks
should think of ways to address the limitations.

6. Limitations and Threat to Validity

We cannot guarantee that the scripts we created for
extracting and analyzing the usage of mocking frameworks
are free of bugs. To mitigate this threat, we conducted
manual verification of the experiment results based on sam-
pled projects in each of the study steps. We were able
to identify and fix several minor issues in the scripts that
lead to inaccuracy of our results. Thus, we believe that the
study results presented in this paper are reliable. We have
publicized our scripts and intermediate data here https://
github.com/RedRoach51/MockResearch.

It is a limitation that we were not able to analyze 16
projects due to issues in the project configuration. As men-
tioned earlier, our analysis scripts are based on Eclipse JDT
libraries. We were not able to successfully import these
projects to proceed with our analysis. We admit that our
study results would be more comprehensive if these projects
were successfully analyzed. However, we believe that this
would not affect the overall findings of this study, since the
193 projects are already great representation.

Another limitation is that this study only focuses on
projects implemented in Java. Therefore, the mocking frame-
works and their APIs are also based on Java. We cannot
guarantee that similar results would hold for projects im-
plemented in a different programming language. There are
frameworks that dedicated to other languages such as Python
and JavaScript, which are out of the scope of this study.
We believe that the programming language may have an
impact on the convention of how mocking is done. We plan
to explore this further in future studies.

Our analysis is based on the current code base of the
Apache java projects. Since Apache is a quite active commu-
nity, their projects are under-going continuous changes. That
means, if, in the future, other researchers try to replicate our
study, we cannot guarantee that the same conclusions will be
found. In addition, this study does not reveal the evolution
of how mocking frameworks are being used in a project
between when it is initially created to when it is developed
in a more stable stage. Our hypothesis is that the usage of
mocking frameworks may be impacted by the evolution and
maturity of the projects. We think that this is a worthwhile
hypothesis to be evaluated in future research.

Finally, we cannot guarantee that the same observations
will hold for projects from a different platform. As we
have shown in Section 5.5, how developers use mocking
frameworks may be impacted by project characteristics, such
as size and domain. If the study is replicated on a different
dataset, the observations may vary depending on the charac-
teristics of the projects.

7. Related Work

In the past decade, research related to mocking in soft-
ware testing has drawn increasing interests. Freeman et
al.[30] was one of the first to propose the basic idea of mock-
ing in unit testing. They contributed a mocking framework
named jMock for Java [31].

In following years, researchers start to expand the usage
of mocking in the unit testing of new domains, such as em-
bedded systems, cloud computing, and mobile applications.
Karlesky et al.[32] introduced mocking in testing embedded
software systems. They proposed a holistic set of practices,
tools, and a new design pattern to apply the Test-Driven
Development with mocking frameworks in embedded soft-
ware systems. Their methodology can reduce the software
flaws and improve the progress in data-driven project man-
agement in embedding software development. Kim et al.[33]
explored the challenges of mocking framework in the unit
testing of embedded systems as well. The study pointed
out that embedded software was tightly coupled with target
hardware. They showed how mocking frameworks could
help to improve the design process, the architecture of the
software components, and protect the system against regres-
sion defects. Svensgard et al.[34] proposed the idea of using
mocking frameworks in testing SaaS cloud platform. The
study leverages mock objects for replacing the dependency
to cloud data instance in unit testing. The study showed

Lu Xiao et al.: Preprint submitted to Elsevier

Page 9 of 11

An Empirical Study on the Usage of Mocking Frameworks in Apache Software Foundation

that testing based on mocking can find the same faults as
testing against the real cloud, and at the same time keep the
same code coverage. Fazzini et al.[35] proposed an improved
mocking framework MOKA, which is specialised in gener-
ating reusable mock objects for mobile apps unit testing. It
uses component-based program synthesis to leverage exist-
ing test executions to generate mock objects automatically.
The study shows that this helps developers to repair the tests
that have external data dependency.

With the prevalent usage of mocking framework, re-
searchers also started to focus on improving the education
and design of mock objects. Nandigam et al.[36] shared
the teaching experience of implementing mock objects in a
interface-based system. The study showed that implement-
ing mock objects can helps students to test their system
as units in isolation and develop code that adheres to the
critical principles of reusable object-oriented objects. Solms
et al.[37] proposed a contract-based design to reuse the
mock objects in the services-oriented development. Mock
objects were tested against the component contracts, which
improved the re-usability of the mock objects in both the
unit test and integration test. However, this also required
more code to be developed for specifying mocking behavior.
Pereira et al.[38] investigated the design of hand-coded
mocking objects in modern projects. The study pointed out
the over creation of private mock classes is widespread.
Marri et al.[22] investigated the benefits of using mock
objects when testing the file-system-dependent software.
The study identified two benefits: mock objects enable unit
testing of the code that interacts with external APIs, and
improve the code coverage in unit testing.

In recent years, automated tools for enforcing the usage
of mocking frameworks started to emerge. Arcuri et al.[39]
incorporated a mocking framework to automated unit test
generation. Their study confirmed the anticipated improve-
ments in code coverage and bug detection. Zhu et al.[40]
introduced a new machine learning based tool to identify
and recommend mocks for unit tests. The tool requires only
the class under test and the class’s dependency information
as the input. It outperformed three baseline approaches:
existing heuristics, EvoSuite mock list, and Empirical rules.
Wang et al. [10] contributed an approach to automatically
identify and refactor the test cases using inheritance with
mock objects using Mockito. The refactoring tool reduced
code complexity, provided efficient run-time performance in
real-life projects, and was applicable to general datasets.

As mentioned earlier, Mostafa et al.[11] was the first
to study the usage of the mocking frameworks in practice.
They conducted an empirical study on more than 5000
open source projects from Github, analyzing the quantity
of projects using mocking framework and which Mocking
framework was most used. Their result shows that 23% of the
projects use at least one mocking framework, and Mockito
is the most popular mocking framework. Spadini et al.[7, 8]
investigated the usage and evolving process of mock objects
in three OSS projects and one industrial system. The study

proposed a mocking data mining tool MOCKEXTRAC-
TOR. They also conducted a structured survey with more
than 100 professionals. The result revealed that developers
frequently mock dependencies that make testing difficult
and prefer not to mock classes that encapsulate domain
concepts/rules of the system. This indicates that the usage
of mock objects could depend on the responsibility and the
architectural concern of the classes.

8. Conclusion

Mocking frameworks are used in 129 (67%) out of the
193 Apache projects. We found that larger projects are more
likely to use a mocking framework—the median size of
projects with a mocking framework is 122k LOC compared
to the 77k LOC for those without a mocking framework.
Mockito, EasyMock and PowerMock are the top three most
popular mocking frameworks used in 71%, 27%, and 12%
projects. Developers leverage advanced mocking APIs, such
as when, expect, and verify in Mockito, to manipulate and
verifying the behavior of mock objects for the purpose of
testing. In Apache projects, the majority (61.1%) of the
mocked objects are for isolating dependencies to external
library classes rather than classes that are internal to the
projects. Finally, up to 11.5% files in a project associate with
the concept of “mocking" without relying on any mocking
framework. Some of these cases can be improved by us-
ing a mocking framework, while the others cases contain
complicated mocking logic that are currently not supported
by existing mocking frameworks. Practitioners who are in-
terested in adopting mocking frameworks can gain insights
regarding when and how mocking frameworks are used in
Apache projects.

ACKNOWLEDGMENTS

This work was supported in part by the U.S. National
Science Foundation (NSF) under grants CCF-1909085 and
CCF-1909763.

References

[1] P. Runeson, A survey of unit testing practices, IEEE software 23
(2006) 22-29.

[2] Ieee standard glossary of software engineering terminology, IEEE
Std 610.12-1990 (1990) 1-84.

[3] C. Kaner, J. Falk, H. Q. Nguyen, Testing computer software, John
Wiley & Sons, 1999.

[4] E.Daka, G. Fraser, A survey on unit testing practices and problems,
in: 2014 IEEE 25th International Symposium on Software Reliability
Engineering, IEEE, 2014, pp. 201-211. doi:10.1109/ISSRE. 2014.11.

[S]1 V. Garousi, J. Zhi, A survey of software testing practices in canada,
Journal of Systems and Software 86 (2013) 1354—1376.

[6] A. Bertolino, Software testing research: Achievements, challenges,
dreams, in: Future of Software Engineering (FOSE’07), IEEE, 2007,
pp- 85-103. doi:10.1109/FOSE . 2007 . 25.

[7] D. Spadini, M. Aniche, M. Bruntink, A. Bacchelli, To mock
or not to mock? an empirical study on mocking practices, in:
2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR), IEEE, 2017, pp. 402-412. doi:10.1109/MSR. 2017.
61.

Lu Xiao et al.: Preprint submitted to Elsevier

Page 10 of 11

[8]

[9]

(10]

(11]

[12]
[13]
[14]
[15]
[16]

(17]
(18]
[19]
(20]
(21]

(22]

[23]
(24]
[25]
[26]

[27]
(28]
[29]
(30]

[31]

[32]

[33]

[34]
(35]

(36]

An Empirical Study on the Usage of Mocking Frameworks in Apache Software Foundation

D. Spadini, M. Aniche, M. Bruntink, A. Bacchelli, Mock objects
for testing java systems, Empirical Software Engineering 24 (2019)
1461-1498.

K. Taneja, Y. Zhang, T. Xie, Moda: Automated test generation
for database applications via mock objects, in: Proceedings of the
IEEE/ACM international conference on Automated software engi-
neering, 2010, pp. 289-292.

X. Wang, L. Xiao, T. Yu, A. Woepse, S. Wong, An automatic
refactoring framework for replacing test-production inheritance by
mocking mechanism, in: Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, 2021, pp. 540-552.

S. Mostafa, X. Wang, An empirical study on the usage of mocking
frameworks in software testing, in: 2014 14th international conference
on quality software, IEEE, 2014, pp. 127-132. doi:10.1109/QSIC.2014.
19.

https://www.apache.org/, .

https://site.mockito.org/, .

https://easymock.org/, 777?

https://powermock.github.io/, ?27?7?
https://mvnrepository.com/artifact/org.springframework/
spring-mock, .
https://docs.python.org/3/1library/unittest.mock.html#
module-unittest.mock, 2?7?77
http://nmock.sourceforge.net/, 7777
https://github.com/mog/moq4, 7???

F. Henderson, Software engineering at google,
arXiv:1702.01715 (2017).

A. Hunt, D. Thomas, Pragmatic unit testing in c# with nunit, The
Pragmatic Programmers, 2004.

M. R. Marri, T. Xie, N. Tillmann, J. De Halleux, W. Schulte,
An empirical study of testing file-system-dependent software with
mock objects, in: 2009 ICSE Workshop on Automation of Soft-
ware Test, IEEE, 2009, pp. 149-153. doi:https://doi.org/10.1007/
s10664-018-9663-0.

arXiv preprint

https://projects.eclipse.org/projects/eclipse. jdt, .
https://junit.org/junit5/, 7277

https://pdfbox.apache.org/, ?77?

X. Wang, Understanding and Facilitating the Usage of Mocking
Frameworks for Test Dependency Isolation, Ph.D. thesis, Stevens
Institute of Technology, 2021.

https://spring.io/, .

http://wink.apache.org/, .

https://struts.apache.org/, .

S. Freeman, T. Mackinnon, N. Pryce, J. Walnes, Mock roles, not
objects, in: Companion to the 19th annual ACM SIGPLAN confer-
ence on Object-oriented programming systems, languages, and ap-
plications, 2004, pp. 236-246. doi:https://doi.org/10.1145/1028664.
1028765.

S. Freeman, T. Mackinnon, N. Pryce, J. Walnes, jmock: supporting
responsibility-based design with mock objects, in: Companion to the
19th annual ACM SIGPLAN conference on Object-oriented program-
ming systems, languages, and applications, 2004, pp. 4-5.

M. Karlesky, G. Williams, W. Bereza, M. Fletcher, Mocking the
embedded world: Test-driven development, continuous integration,
and design patterns, in: Proc. Emb. Systems Conf, CA, USA, 2007,
pp. 1518-1532.

S. S. Kim, Mocking embedded hardware for software validation,
Ph.D. thesis, 2016.

S. Svensgard, J. Henriksson, Mocking saas cloud for testing, 2017.
M. Fazzini, A. Gorla, A. Orso, A framework for automated test
mocking of mobile apps, in: 2020 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE), IEEE, 2020,
pp- 1204-1208.

J. Nandigam, V. N. Gudivada, A. Hamou-Lhadj, Y. Tao, Interface-
based object-oriented design with mock objects, in: 2009 Sixth Inter-
national Conference on Information Technology: New Generations,
IEEE, 2009, pp. 713-718. doi:16.1109/ITNG. 2009. 268.

[37]

[38]

[39]

[40]

F. Solms, L. Marshall, Contract-based mocking for services-oriented
development, in: Proceedings of the Annual Conference of the South
African Institute of Computer Scientists and Information Technolo-
gists, 2016, pp. 1-8.

G. Pereira, A. Hora, Assessing mock classes: An empirical study,
in: 2020 IEEE International Conference on Software Maintenance
and Evolution (ICSME), IEEE, 2020, pp. 453-463. doi:10.1109/
ICSME46990.2020.00050.

A. Arcuri, G. Fraser, R. Just, Private api access and functional mock-
ing in automated unit test generation, in: 2017 IEEE international
conference on software testing, verification and validation (ICST),
IEEE, 2017, pp. 126-137.

H. Zhu, L. Wei, M. Wen, Y. Liu, S.-C. Cheung, Q. Sheng, C. Zhou,
Mocksniffer: Characterizing and recommending mocking decisions
for unit tests, in: Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, 2020, pp. 436-447.

Lu Xiao et al.: Preprint submitted to Elsevier

Page 11 of 11

