


man-in-the-middle (MITM) adversary. From there, they can

manipulate fronthaul packets to cause service degradation or

connection disruption (e.g., denial of service to attached UEs).

To protect against MITM attacks, integrity protection of

fronthaul packets via solutions like MACsec and IPSec would

be a natural approach. However, integrity protection of fron-

thaul traffic is currently optional in the protocol standards,

due to concerns of increased processing delay incurred by

potential security mechanisms, which could break the strin-

gent performance requirements of the eCPRI protocol [38,

§5.4.1.2, §5.5]. According to the O-RAN Security Work

Group, the standardization body responsible for formulating

security specifications for fronthaul [11, 12], lack of integrity

protection over fronthaul is acceptable for three perceived

reasons [38, §7.4: T-UPLANE-01]:

R1 Low likelihood for MITM attacks over fronthaul

R2 Costly sophistication required on the part of an adversary

to launch attacks

R3 Low severity of potential attacks

In this work, we show for the first time that the above

perspective on optional fronthaul integrity protection is

flawed. Leveraging an enterprise-scale 5G testbed built on

our premises with commercial-grade, standards-compliant

RAN functions and RUs, we performed an extensive study,

complete with both novel and traditional attacks. We make

the following observations, which directly challenge the com-

monly accepted security stance:

O1 MITM fronthaul attacks are practical and feasible to

launch, in a manner that bypasses the port-based net-

work access control of IEEE 802.1X [3], on which the

standards rely for their security stance (§3.2)

O2 Adversaries do not need to be overly sophisticated to

launch meaningful attacks, and can directly manipu-

late vulnerable fronthaul traffic that is left unsecured

by higher-layer protection mechanisms such as Packet

Data Convergence Protocol (PDCP) (§3.3)

O3 Attacks exploiting the lack of fronthaul integrity can be

severe, impacting RAN processes at a higher layer than

that of the targeted DU, expanding over vast geographi-

cal regions, and affecting mobile users in cells that are

not even directly under attack (§3.3)

To fully support our above observations, we introduce

FRONTSTORM, a new, highly severe class of availability at-

tacks that can impact higher layers of the RAN through sig-

naling storms (O3) [25, 45]. We demonstrate that by care-

fully modifying and routing fronthaul packets, we can initiate

higher layer processes (e.g., cell reselection, handover) at a

massive scale, equal to the number of the UEs attached to

the cells, and at a very high rate. This leads to signaling

storms at the CU that cover extensive geographical regions,

impacting many DUs and all associated RUs and UEs. Such

high-severity attacks can affect UEs not even associated with

the targeted cells. Additionally, we present FRONTSTRIKE, a

family of traditional attacks that breaks the fronthaul physical

layer (in a similar manner to fake base station attacks, radio

link jamming, and signal overshadowing) [31, 49, 71], but

without requiring high levels of sophistication and hardware

overheads from adversaries, who can directly modify fron-

thaul packets at line rate (O2). Unlike previous methods for

launching these attacks, which require the use of transmitters

(e.g., a physical radio presence) and only target one cell at

a time, our attacks operate at the packet level, making them

much harder to detect and scalable to several cells at a time,

since several RUs can be linked to the same affected DU.

Based on our findings, we conclude that integrity protection

of the fronthaul traffic should be mandatory in the standards.

Given the standardization bodies’ concerns regarding the po-

tential overhead of integrity protection on eCPRI traffic, we

study the impact of the MACsec protocol to fronthaul perfor-

mance. Our study demonstrates that, due to recent software

and hardware advances, it is possible to achieve the necessary

integrity protection at low cost and with minimal overhead,

making it a practical solution. Finally, and to cover scenarios

where integrity protection is absent, we present lightweight

countermeasures leveraging real-time RAN analytics.

Responsible disclosure. We believe that knowledge of the

vulnerabilities of an unprotected eCPRI-based fronthaul and

the concrete high-impact attacks exposed in our study will

be highly valuable to the broader 5G community and to the

standards bodies. Thus, we have shared our report with the

vendors of the equipment we worked with, and also disclosed

our results to the standards bodies (ETSI [8] and O-RAN [10]),

to bring awareness towards addressing these issues.

2 Background

In this section, we provide a brief background with relevant

details on the 5G RAN architecture and 5G RAN fronthaul.

2.1 5G RAN Architecture

The O-RAN architecture is a widely accepted reference 5G

architecture driven by the O-RAN Alliance [10] and 3rd

Generation Partnership Project (3GPP) [6] standards bod-

ies, which provide specifications for interfaces and protocols.

O-RAN is globally supported by many major network opera-

tors, adopted by the European Telecommunications Standards

Institute (ETSI) [8], recognized by hundreds of other opera-

tors, vendors, research and academic institutions, and is being

deployed in many large-scale networks around the world to-

day [29, 50, 55, 57, 69].

This subsection briefly provides relevant background on

O-RAN principles of the 5G architecture.
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because the adversary corrupted its PRACH symbols.

6.4 Amplifying Impact via Multi-Cell Attacks

According to the 5G O-RAN deployment principles [54],

an O-RAN edge data center typically deploys a cluster of

DU servers to serve a group of neighboring cells, improving

energy- and cost-efficiency. As a result, FRONTSTRIKE has

the advantage of amplifying the attack impact by attacking

multiple cells served by the same DU together or employing

multiple rogue machines to attack multiple DUs and their

associated cells. This could allow FRONTSTRIKE adversaries

to disrupt cellular network services for a large geographical

region, such as an entire campus or small town. Moreover,

adversaries could also attack multiple cells by employing

different attack vectors, e.g., targeting some cells using SSB

modification while using PRACH modification for others.

This would expand the impact area and increase the complex-

ity of diagnosing and mitigating the attacks.

Validation. We validated the feasibility of multi-cell attacks

by deploying four cells across two floors within our build-

ing, with two cells per floor and two UEs per cell. Figure 8c

illustrates the positioning of the cells and UEs on one floor,

and the location of FRONTSTRIKE adversaries is shown in

Figure 7. We comprehensively tested FRONTSTRIKE attacks

(A3-A5) in this setup, confirming they exhibit the same effec-

tiveness, but with their impact area extending to all four cells.

In addition, we conducted testing of targeted attacks A3-A5 to

subsets of the cells and verified that only the UEs of the cells

under attack were affected, while the rest of the cells operated

normally.

7 Countermeasures

As discussed at the outset, the analysis and attacks presented

in §3–§6 demonstrate that MITM fronthaul attacks are prac-

tical, require low levels of sophistication, and can introduce

severe availability issues, impacting higher layers of the RAN

and large regions. In this section, we discuss countermeasures

that could address and combat the demonstrated attacks.

7.1 Protection via MACsec

The most obvious and effective way of securing the fronthaul

network from our proposed attacks is to make integrity pro-

tection of the fronthaul packets mandatory in the standards.

To this end, Media Access Control Security (MACsec) [1]

is a widely adopted security protocol that provides frame

data integrity and data origin authenticity at the data link

layer. MACsec computes an Integrity Check Value (ICV) and

attaches it to each packet, enabling devices to identify and

discard modified packets with incorrect ICVs.

As explained in §1, the standardization bodies have raised

several concerns regarding the implications of MACsec per-

formance, which has led to the decision to make integrity

protection an optional feature. Motivated by this claim, we

performed benchmarks for MACsec encoding/decoding on

jumbo-sized Ethernet frames that resemble the fronthaul pack-

ets of the 5G RAN. For our benchmarks, we considered two

options: (i) basic software-based encoding/decoding on an

Intel Xeon 6338N CPU, and (ii) encoding after enabling Ad-

vanced Encryption Standard Instructions (AES-NI), which

accelerate the AES algorithm (i.e., AES128-GCM) execution

on Intel CPUs [58].

Our results show that the MACsec computation can take

up to 80 µs on average for the basic software-based encod-

ing/decoding, making integrity protection prohibitively costly

for the fronthaul traffic, since it cannot meet the real-time re-

quirements of the 5G standards, as discussed in §2.2.2. How-

ever, in the case of AES-NI, the MACsec computation time

drops down to approximately 2.4 µs, which, according to the

experiments we performed in our testbed, is acceptable.

A more effective way to overcome the aforementioned

performance concerns with even lower overhead could be

to add MACsec protection to selected parts of the fronthaul

packets, which would be enough to mitigate the most critical

attacks discussed in §5, but with much lower overhead, which

would be important for larger scale scenarios (e.g., Massive

MIMO cells with 32 or 64 antennas). For example, by adding

MACsec protection to the parts of the packets that are not

integrity protected by the higher layers (e.g., eCPRI headers,

the MIB/SIB and the radio resources carrying signal quality

measurements), one could mitigate the most severe attacks,

like A1 and A2, by integrity-protecting a few tens of bytes

per fronthaul packet. According to our measurements, this

can reduce the latency overhead per integrity-protection op-

eration to less than 0.3 µs on average, which makes integrity

protection practical for all scenarios of interest.

Furthermore, MACsec provides two protection modes: in-

tegrity only, and integrity with confidentiality. Our measure-

ments were conducted using the latter mode to assess the

maximum overhead. Using the integrity-only mode could

further reduce computation time. These observations align

with recent works [23, 37], which discuss the potential use of

MACsec to protect fronthaul.

7.2 Real-time RAN Anomaly Detection

While MACsec is an effective proactive countermeasure, man-

dating its inclusion in the standards and upgrading O-RAN’s

software and hardware for its implementation will take time.

In the meantime, more focus can be placed on reactive coun-

termeasures (i.e., detection and mitigation of MITM attacks).

With the recent advances in RAN telemetry tools, real-

time RAN anomaly detection has become a compelling, cost-

efficient alternative [41, 42, 66]. For instance, the state-of-

USENIX Association 33rd USENIX Security Symposium    4475





3GPP 5G architectures and interfaces. They do not discuss the

fronthaul protocol specifically. The O-RAN Security Work-

ing Group is actively defining the security requirements [39]

for O-RAN, including the fronthaul. However, the current

security mechanisms are insufficient to defend against our

attacks. Meanwhile, several recent works, including those of

major vendors, have outlined the security landscape of the

fronthaul [7, 16, 17, 22, 23, 66], and have theorized the pos-

sibility of attacks exploiting the lack of fronthaul integrity

protection. However, these works have remained at a high

level and have not studied the details, implications, and sever-

ity of any potential attack. Our work is the first to exploit

concrete vulnerabilities, present practical high-impact attacks,

and propose specific countermeasures for O-RAN fronthaul.

10 Conclusion

The fronthaul network of modern 5G RANs suffers from in-

sufficient protection of critical messages. In this work, for

the first time, we study the vulnerabilities of the lack of

mandatory integrity protection and present two classes of

attacks (FRONTSTORM and FRONTSTRIKE). Our attacks can

be launched remotely from software, do not require a physical

radio presence, and can impact vast regions. We evaluate our

attacks using a commercial-grade 5G O-RAN testbed, show-

ing that our attacks can significantly degrade the network

performance or cause denial of service to UEs with negligible

latency added to the fronthaul traffic. We shared our results

and recommendations for mandatory integrity protection with

the relevant vendors and security standardization bodies, en-

couraging a reassessment of the criticality of fronthaul in-

tegrity protection. We believe that this work is the first step

in the emerging and important, but as yet fully unexplored,

space of modern RAN security.
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