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When a parent says to their child, “If you finish your home-
work, then you can play video games”, they make a statement
of the form ‘if p, then ¢’. Statements of this kind are often
called logical implications (LIs, or conditional statements),
where p and q represent the hypothesis and conclusion of the
LI, respectively. However, the parent likely intends for this
statement to be interpreted bidirectionally (p if and only if
q); otherwise, they allow for the possibility that their child
does not finish their homework but plays video games any-
way. Such presumed bidirectionality of LIs, commonly
found among college mathematics students, may be a conse-
quence of assumptions people make within the underlying
language (say, English) in which we embed logic.

To help students sort out logical statements, instructors of
introduction-to-proofs courses sometimes encourage stu-
dents to rely upon spatial representations, particularly Euler
diagrams. The truth set of a statement is the set of elements
of the universal set, U, that make the statement true; an
Euler diagram uses topological relationships to represent
logical relationships between truth sets associated with an
LI’s hypothesis and conclusion. Conventionally, the truth set
of the hypothesis is depicted as contained within the conclu-
sion’s truth set (i.e., p = g corresponds to P C Q), with both
contained within U (see Figure 1).

The purpose of this article is to introduce and exemplify
logico-spatial linked structuring (LSLS) as a theoretical per-
spective on students’ linking between spatial and non-spatial
representations when dealing with logical statements.
Although we conceptualize LSLS broadly, this article
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Figure 1. Euler Diagram for the LI ‘If you finish your home-
work, then you can play video games’.

focuses on the specific case of Euler diagrams as spatial rep-
resentations of LIs. We argue, in line with Dawkins and Roh
(2022), that Euler diagrams can be a constructive resource
for students, particularly as a medium through which to
visualize logical relationships and subsequently carry out
mental actions to establish the validity of given statements.
Euler diagrams may be especially useful to students who
treat LIs as actions but not yet objects (see our Theoretical
Perspective section). However, as our examples illustrate,
reasoning via Euler diagrams can be challenging. Because
Euler diagrams are polysemous, there is rich activity
required to reason with them in ways productive for logic.

We therefore begin with a discussion of potential affor-
dances and challenges that students may experience when
using Euler diagrams. We then discuss the broader theoreti-
cal perspective in which LSLS is grounded, followed by an
introduction to LSLS itself. Finally, we illustrate the utility
of LSLS by drawing on examples of student reasoning.

Affordances and challenges of Euler diagrams
When reasoning with an LI, students can represent the
implication using any of the representational tools at their
disposal. Dawkins has promoted an instructional approach
in which students use familiar mathematical contexts to
make sense of the hypothesis, p, and conclusion, g, and rela-
tionships between them (Dawkins & Norton, 2022; Dawkins
& Roh, 2022). Students make sense of LIs by populating
truth sets P and Q, associated with p and g (respectively),
with familiar examples or with ‘carriers’ (objects acting as
arbitrary elements of truth sets). Their approach suggests
Euler diagrams can help students not only represent LIs, but
also reason about the corresponding converse, inverse, and
contrapositive statements (Hub & Dawkins, 2018). Our
work builds on that of Dawkins and colleagues by exempli-
fying and characterizing potential challenges that can
emerge in these spatial representations—challenges that
have not yet been problematized in the literature—and by
identifying spatial mental actions that students use when rea-
soning with Euler diagrams.

One affordance of Euler diagrams is their potential to help
students identify discrepancies between a statement’s
intended meaning and its logical interpretation. For instance,
in Figure 1’s representation of the video-game LI, the exis-
tence of space inside the outer region, but outside of the
inner region, suggests a case in which one could play video
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games but not do their homework (in contrast to the state-
ment’s presumed meaning).

One challenge identified in our work, and illustrated later
in the article, comes from how students might link the state-
ment ‘if p, then ¢’ —in particular, ‘if you have p, then you
have q’—to a spatial representation. This statement could be
reasonably interpreted as suggesting that p and g are objects
that one can ‘have’—and moreover, that statement p (or
space P) includes, or carries with it, statement g (or space
Q). Spatially, then, it makes sense that a student might think
about Q as contained within P.

Additionally, an important consideration when dealing
with LIs is the universal set from which the truth set of the
hypothesis (P) is populated. Conventionally, the universe is
represented by a rectangle drawn around all other compo-
nents of the Euler diagram. In the video-game example, the
universal set might be the set of all possible cases in which
one does their homework, plays video games, neither, or
both. As mathematics educators, however, we should call
into question potential challenges of mathematical conven-
tions. In particular, why represent the universal set as a
rectangle—or, for that matter, represent Euler diagrams in
the plane? Of course, there is a certain practicality to the lat-
ter; most human experience in writing/drawing occurs on a
flat surface. However, planar representations are perhaps not
the best at illustrating the logical equivalence between an LI
and its contrapositive.

C. S. Peirce (2020/1903) was aware of this planar issue,
and he suggested an alternative: “But there is [...] no partic-
ular appropriateness in drawing the diagrams on a plane
surface rather than on a sphere” (p. 234). Indeed, as illus-
trated in Figure 2, an Euler diagram showing P C Q on a
sphere might better represent the contrapositive than the
equivalent diagram in the plane. The boundaries of P and Q
may be stretched (i.e., those regions may be enlarged) over
the surface of the sphere (while maintaining P C Q). Then,
rotating the sphere on its axis so that the opposite side is vis-
ible, the boundary of P is shown to be exterior to the
boundary of Q, which may make the relationship Q° C P,
and thus the implication ~g = ~p, more visually salient.

Euler diagrams are further complicated by the issue of
quantification. Even within symbolic representations, quanti-
fiers are often hidden to students (Shipman, 2016). Euler
diagrams may exacerbate this challenge in that they represent
only qualitative relationships between sets. Conventionally,
the size of an enclosed space within an Euler diagram is not
correlated with the cardinality of the associated truth set; in
fact, an enclosed space could represent an empty set (e.g.,
when p = ¢ is vacuously true, or when p iff g is true; see Fig-
ure 3). This is consistent with Dawkins’s (2019) claim that
“non-quantified logic presents many pragmatic barriers to
students’ learning of mathematical logic” (p. 20).
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Figure 2. Transforming an LI into its contrapositive on a
sphere.
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Figure 3. Potentially empty sets in Euler diagrams.

Theoretical Perspective
Our research is theoretically grounded in Piaget’s (1970)
genetic epistemology wherein logico-mathematical objects
arise as products of psychology; they are constructed by
coordinating mental actions within structures for reversing
and composing them. Within our Piagetian framing, we
understand challenges in reasoning with LIs as conse-
quences of students’ ways of operating, and in particular,
their means for transforming and quantifying LIs.
Following his own Piagetian approach, action-process-
object-schema (APOS) theory, Dubinsky (1991) made a
distinction between operating with LIs as actions and oper-
ating on them as objects. As actions, LIs consist of three
parts: a hypothesis (p), a conclusion (g), and the implication
connecting them. Treating LIs as actions, a student can rea-
son that, if p is given, then g follows (modus ponens).
However, they would be unlikely to conclude that if g is
false, then p is false (modus tollens, which relies on the con-
trapositive). Indeed, prior research indicates the latter form
of reasoning is much more challenging (e.g., Yopp, 2020).
As objects, LIs can be taken as wholes, be quantified, and be
transformed into their converse, contrapositive, and nega-
tion. Thus, students who treat LIs as objects can act on them
in ways that would be quite challenging for students who
treat LIs as actions. We argue that Euler diagrams can serve
as a tool, especially for students who treat LIs as actions, for
visualizing relationships between truth sets and applying
spatial actions to carry out corresponding logical actions.
In other mathematical domains, teacher-researchers have
supported students’ constructions of mathematical objects
by engaging them in tasks that involve coordinating relevant
mental actions and reflecting on that activity (Wheatley,
1992). Likewise, we might support students’ constructions
of LIs as objects by engaging students in tasks that involve
coordinating and reflecting on relevant mental actions.
Dawkins and Roh (2022) offer such an approach. Dawkins
and Norton (2022) have specified related mental actions
such as populating sets and negating (the act of “construct-
ing an opposite property or predicate to a given one”, p. 5).
In interpreting or creating an Euler diagram, how one
mentally organizes and interprets its constituent spatial
components determines the logico-mathematical meaning
that they read from the diagram. Conversely, one’s initial
assimilation of a logical statement, such as an LI, influences
one’s structuring of the corresponding Euler diagram. Spa-
tial structuring, the act of constructing an organization or
form for one or more spatial objects (Battista, Frazee &
Winer 2018), is a critical part of this process. Spatial objects,
including Euler diagrams, must be mentally constructed



through an active process of spatial organizing and inter-
relating. In its most basic form, an Euler diagram contains
one or more simple closed loops, each of which partitions
space into two regions (an inside and an outside). To make
meaning of an Euler diagram, students need to engage in
mental operations by which they organize its constituent
parts and establish logical meaning for those parts in a
coherent mental model. This establishment of logical mean-
ing, and the corresponding linking between spatial and
non-spatial representations, constitutes the major impetus of
our proposed LSLS framework.

Logico-Spatial Linked Structuring

The main contribution of this theoretical article is the intro-
duction of the LSLS framework. LSLS rests upon the
hypothesis that the use of Euler diagrams to reason about LIs
involves a conceptual linking between two distinct represen-
tational forms: logical statements (which may be
abstract/symbolic or contextualized) and spatial representa-
tions. For us, logical structuring is a term that encompasses
any act of organizing, interrelating, or transforming struc-
tures involved in logical statements, including quantifiers
(e.g., ‘for all x in the set of squares’) and open statements
(e.g., ‘x has the properties of a thombus’). Spatial structur-
ing is defined above.

We define LSLS to be conceptual linking between logical
structuring and spatial structuring. That is, LSLS entails
establishing logical meaning for a spatial representation,
building a spatial representation for one or more logical
statements, and ideally being able to flexibly switch between
representational forms. For us, linking two representational
forms means not just association, but also coherence
between the two representations, according to a student’s
conceptions of how to structure objects within each mode of
representation.

LSLS is an extension of a related construct from research
on students’ geometric measurement reasoning. Battista,
Frazee, and Winer (2018) introduced spatial-numerical
linked structuring as a form of reasoning that links spatial
structuring to numerical structuring (the latter being the
mental process of organizing a set of numerical or algebraic
symbols). For example, they report on a Grade 6 student’s
reasoning when asked to find the area of the polygon in
Figure 4a. The student spatially structured the polygon
by decomposing it into two right triangles and a rectangle
(Figure 4b); their numerical structuring, (5 x 3/2) + (5§ x 4) +
(3 x 4/2), was linked to their spatial structuring. In our
analysis of student reasoning about LIs and Euler diagrams,
we found a similar linking in students’ reasoning—not
between spatial and numerical structures, but between spa-
tial and logical structures.

LSLS helps us understand how students establish logico-
spatial meaning, but it also helps us understand why Euler
diagrams may be helpful tools for many students. Following
Dubinsky (1991), we hypothesize that students with an object
conception of LI might directly transform an implication
symbolically (e.g., using a normative system of symbolic
logic) and be able to make sense of that transformation, with-
out necessarily appealing to spatial representations (Figure 5,
top arrow). However, students with an action conception of

Figure 4. Example of area-measurement SNLS.

LI may need to work out the meaning and structure of the
transformation (e.g., negation), possibly by appealing to
Euler diagrams. We argue that LSLS provides researchers
with a way to describe and explain students’ shifts between,
and links across, representations.

When students shift from the realm of logical statements
to spatial representations, they engage in what we call a
logico-spatial mapping (left arrow). Logico-spatial map-
pings occur when students construct an initial spatial
structuring using their understanding of how Euler diagrams
are constructed. Importantly, however, this spatial structur-
ing is also linked to their understanding of the logical
situation under consideration—hence, logico-spatial
mapping. Once students shift to the domain of spatial repre-
sentations, their focus shifts to spatial operations for
interpreting and, if necessary, transforming spatial informa-
tion (bottom arrow). Our examples of student reasoning
suggest four specific spatial operations (see Figure 5),
defined below.

+ Spatial locating: drawing or imagining a point,
boundary, or region

+ Engulfing: taking a larger space as possessing all of
the characteristics (e.g., properties or elements) of
a space that it contains

+ Boundary crossing: coordinating spatial locating
and negating, focusing on a point

+ Spatial inversion: coordinating spatial locating and
negating, focusing on a region

Lastly, students use their spatial representations and rea-
soning to make a logical conclusion, a transition that we
characterize as spatial-logical mapping (right arrow).

Examples of LSLS in student reasoning

Our work focuses on the experiences and reasoning of
undergraduate students enrolled in an introduction-to-proofs
course—students with no prior experience of advanced,
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Figure 5. LSLS for transforming an Ll into its negation



proofs-based mathematics. The excerpts provided come
from clinical interviews that occurred during the third week
of the semester with two students, Carmen and Kai. Prior to
these interviews, the class had focused discussions around
the topics of mathematical statements, quantification, and
LIs, including representing statements and LIs using Euler
diagrams. These examples are intended to illustrate (1) dif-
ferences in how Carmen and Kai spatially represented LIs
using Euler diagrams, (2) the spatial operations that each
student performed in their problem-solving, and (3) the
interaction between their spatial and logical reasoning.

To prompt students to attend to and reason about the log-
ical structure itself without relying on domain-specific
mathematical knowledge, our clinical interview tasks pur-
posefully utilized some contexts unfamiliar to students (e.g.,
algebraic topology). Our examples draw on two students’
responses to the task below.

Suppose that the following statement is true: If two topo-
logical spaces are homeomorphic, then their homology
groups are isomorphic. Based on this fact alone, decide if
the following statements are true, false, or uncertain.

a. If two topological spaces have isomorphic homol-
ogy groups, then the spaces are homeomorphic.
[Converse]

b. If the homology groups of two topological spaces
are not all isomorphic, then the spaces are not
homeomorphic. [Contrapositive]

c. There is a pair of homeomorphic topological
spaces whose homology groups are not all isomor-
phic. [Negation]

As a point of comparison, conventionally, how might a
student solve this task using Euler diagrams? With the given
LI, they would likely draw a diagram depicting boundary P
within another boundary Q. They might also consider other
Euler diagrams satisfying the LI—e.g., a single boundary
labeled P and Q (biconditional case), or only labeled Q
(vacuous case where P is empty). Regarding statement (a),
then, they might use spatial locating to identify the regions
associated with the premise (Q) and the conclusion (P) and
notice that points within the former could, but need not, be
contained in the latter (likely envisioning boundary cross-
ing)—concluding an uncertain truth value. For (b), they
might engage in spatial inversion to visualize the comple-
ment of each truth set, then engage in spatial locating and
boundary crossing to reason that since P C Q, any point in
Q is also in P, concluding (b) is true. For (c), they might
spatially locate a point contained within P, think about the
spatial analog to the statement ‘whose homology groups are
not all isomorphic’ (Q), and reason that since P C Q, (c)
must be false.

Example 1

Carmen was a senior aerospace engineering student minor-
ing in mathematics. Carmen’s interviews taught us
important lessons about how students might reason about
Euler diagrams—in particular, the conception of one set
‘engulfing’ another, which we see in her response to state-

ment (b), the contrapositive. She correctly concluded (b)
would be true, without appealing to Euler diagrams, and her
LSLS (coupled with presumed bidirectionality) gave her fur-
ther confidence in her conclusion.

Carmen We’re saying that the two spaces are not
isomorphic. So that’s kind of the negative
of the part from [the original statement].
So, then we can say, in the second part, it
would have to negate the second part [of
the original] as well. So, if we have like p
and g, we would have to negate both of

these to get not p and not g.

The interviewer asked Carmen whether she could represent
her reasoning using an Euler diagram. She drew a small cir-
cle labeled P, and a larger circle, Q, containing P.

So, if I have a circle within a circle. So,
this is my circle P, and this is my circle Q.
[...] Maybe I should have flipped it
around, to go with that [reverses the label-
ing of the two circles, so that p = q was
represented as P D Q; see Figure 6a]. So,
if p, then g. The P engulfs the entire space
of Q, so that if I have the statement p, then
I’'m definitely going to have the statement
q. [...] Butif I don’t have p [draws a rec-
tangle around the Euler diagram to
represent the universe], I'm outside of this
circle in this region [points to the region
outside of the larger circle], um, then I
definitely do not have q.

Carmen

Using the LSLS framework, we infer that Carmen com-
pleted a logico-spatial mapping directly, without first
engaging in the activity of populating sets (which is under-
standable since these are unfamiliar mathematical objects).
She seemed to interpret circles P and Q as representing
statements p and g rather than truth sets associated with
those statements. Working within an Euler diagram, Carmen
seemed uncertain about how to spatially structure circles
P and Q to represent the logical relationship p = g. We
hypothesize from Carmen’s statements “P engulfs [...] Q”
and “If I have the statement p, then I’'m definitely going to
have the statement g” that she interpreted the space P (and
statement p) as containing, or possibly carrying, the space Q.
We infer Carmen spatially inverted P by negating p and
locating the region outside of P (“then I’m outside of this
circle in this region”; see Figure 6b), which necessarily
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Figure 6. (a) Carmen’s Euler diagram representation
and (b) LSLS diagram of Carmen’s logico-spatial
reasoning about statement (b).




implies moving outside of Q (“then I definitely do not have
q”). From her spatial operations, she thus concluded state-
ment (b) is true—a reasonable conclusion, given her spatial
structuring of P “engulfing” the space Q.

Example 2

Kai was a sophomore computational mathematics major. In
contrast to Carmen whose initial focus was on statements p
and g, Kai’s spatial structuring seemed to refer to their cor-
responding truth sets. He handled this spatial structuring by
considering two cases, P C Q and P = Q, correctly determin-
ing that the truth value of statement (a) is “uncertain”.

Kai It could be true, if these two statements
were equivalent. So, if they were the
same space, like truth set, then the con-
verse would hold for both implications.
But, because I don’t know what it is, um,
it’s uncertain. /... ] In this case [the lat-
ter], it would be true, and in this case, it
would be false [draws Euler diagrams
shown in Figure 7]. But because both of
these are possible, it’s uncertain.

As illustrated in Figure 8, Kai seemed to engage in LSLS
by constructing a mapping from the logical form of state-
ment (a) to two potential Euler diagrams. Given that p = ¢,
he knew that either P C Q or P = Q. We infer that, in both
cases, Kai’s attention was on the boundary of P in relation to
the boundary of Q. When P = Q, Kai recognized, through an
act of boundary crossing, that the boundary of P coincides
with the boundary of Q (shown in Figure 8a), leaving no
space for a point x outside of P but within Q (making the set
of counterexamples to g = p empty: “in this case, it would
be true”). When P C Q, Kai structured P as being engulfed
(to use Carmen’s language) within Q. He assumed that the
nonempty region between P’s boundary and Q’s boundary
implied the existence of a nonempty set of counterexamples
(suggesting spatial inversion), and thus ¢ = p would be false
(see lower right-hand diagram in Figure 8b). Thus, Kai cor-
rectly concluded that statement (a) is “uncertain”, making a
logical conclusion from his spatial reasoning.

Later in the interview, Kai was asked a follow-up question
regarding statement (a). Kai seemed to assimilate the ques-
tion as asking, “Is there any way to form an Euler diagram
that shows p = ¢ and that shows g = p, without the circles
P and Q entirely coinciding?”
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Figure 7. Kai’s Euler diagrams in reasoning about state-
ment (a).
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Figure 8. LSLS diagrams illustrating Kai’s logico-spatial
reasoning.

(V) p(x) = q(x)

Researcher Could it be the case that there’s a pair that
makes this true, and yet P and Q aren’t
the same?

Kai Right now, I'm thinking ‘a pair of topo-
logical homeomorphic’ [statement p] is
like the inner circle, and the outer circle is
‘their homology groups are isomorphic’
[statement q]. [...] So, the other condi-
tion would be if P is outside, in any way,
it could be like P and then Q on the inside
[draws Figure 9a]. And P and Q overlap
[draws Figure 9b]. Or even P and Q,
like, no relationship [draws Figure 9c],
because we know if two of them are
homeomorphic, then it has to be isomor-
phic. So, there’s no way that they don’t
have a relationship [rules out Figure 9c].
Oh! Can it be on the outside? Because it
could, if the two spaces are homeomor-
phic /pause] then their homology groups
are isomorphic. But it could also be like
other things. /... ] Well, it could be other
conditions of the homology groups. But
isomorphic would always be true. So, this
would be, on the outside here, it would
be, in this circle, it would be that the
topological spaces are homeomorphic
and their homology groups are not iso-
morphic. Which is not possible, because
this [original statement] is true. So, it
cannot be bigger either [rules out Figure
9a]. And, with regard to the, this one,
which is the intersection. It’s also outside.
So, anything—Yeah, yeah. This cannot
be true either [rules out Figure 9b]
because, once again, it cannot be homeo-
morphic and non-isomorphic homology
groups. So, I would rule that out as well.

‘ .
(@) (b)

Figure 9. Recreation of Kai’s Euler diagrams



Having ruled out these three possibilities, Kai felt confi-
dent that, if p = q is true, then there are only two spatial
possibilities: P is contained properly within Q, or P and Q
coincide exactly.

Kai seemed initially unsure whether the relationship p = g
could be represented spatially where part of P is exterior to
Q. Similar to the previous excerpt, in his initial logico-
spatial mapping, Kai engaged in case-based reasoning (see
Figure 9): “it could be like P and then Q on the inside”,
“P and Q overlap”, or “P and Q, like, no relationship”. He
then switched between logical reasoning and his spatial
structuring to rule out all alternative possibilities.

When reasoning about Figure 9a and Figure 9b, Kai
seemed to engage in a spatial locating action. Consistent with
his reasoning in the previous excerpt, he seemed to interpret
closed regions as necessarily indicating the existence of at
least one point. For instance, when reasoning about Figure
9a, he said, “It would be that the topological spaces are
homeomorphic and their homology groups are not isomor-
phic”, which he used to rule out this diagram. When
reasoning about Figure 9b, he said, “This cannot be true
either. Because, once again, it cannot be homeomorphic and
non-isomorphic homology groups”. He seemed to assume
the existence of a point inside P but outside of Q. Kai’s over-
all LSLS is depicted in Figure 10: establish a spatial
relationship given p = g, reason about whether P can be
exterior to Q in any way (by engaging in point-locating),
interpret this spatial relationship logically, and conclude that
this logical statement is in contradiction with the assumed LI

Discussion

As Hub and Dawkins (2018) and Dawkins and Roh (2022)
have suggested, Euler diagrams can be a useful tool for sup-
porting student reasoning about LIs. We hypothesize they may
be especially useful for students who treat LlIs as actions, as
they provide students with a medium through which logical
transformations may be spatially visualized. The LSLS frame-
work provides researchers with a way to capture how students
link spatial and non-spatial representations in reasoning about
logical statements, with this article focusing specifically on
Euler diagrams and LIs. This work fits within the research lit-
erature by characterizing and illustrating potential challenges
that may emerge in students’ transitions to spatial representa-
tions, including the assumptions they might make and the
mental actions they might use—contributing to Dawkins and
Norton’s (2022) prior research on students’ mental actions
when reasoning about LlIs.

(V) p(x) = q(x) (3x) p(x) and ~q(x)

—

Figure 10. Kai's transformation of an Ll into its negation via
LSLS.

The examples presented teach us that students, when
given freedom to explore their own ways of making sense of
Euler diagrams, employ different spatial structurings linked
to their logical interpretations of LIs. Both Carmen and Kai
engaged in acts of spatial locating, engulfing, boundary
crossing, and spatial inversion; however, there were impor-
tant differences in their meanings of these actions. For the
act of engulfing in particular, Carmen interpreted p = g as
saying, “if I have the statement p, then I have the statement
q”, which she represented spatially by engulfing Q within P.
For her, the truth of p necessitates the truth of ¢, and so the
space P carries with it the space Q. Kai’s acts of engulfing,
by contrast, seemed to focus more on points within regions
rather than regions as wholes. He seemed to reason that if
point x lies within P, then it must also lie within Q, meaning
Q engulfs P. Thus, Carmen and Kai established qualitatively
distinct spatial structurings of Euler diagrams. Carmen
seemed to conceptualize P and Q as singular objects,
whereas Kai seemed to conceptualize P and Q as collections
of points where statements p and q are true, respectively.

Furthermore, as seen in Euler diagrams drawn by both
Carmen and Kai, students may not always (or not immedi-
ately) include a representation of the universe in their Euler
diagrams. Carmen added a rectangle to represent the uni-
verse in her Euler diagram in Figure 6a only after she
engaged in spatial inversion to visualize the set Q°. Like-
wise, Kai did not represent the universe in any of his three
Euler diagrams in Figures 7 or 9. Future research might
investigate how students engage in Euler diagrams drawn on
the sphere, as discussed in the ‘Affordances and challenges’
section. We hypothesize that, with the universe represented
as a sphere, by stretching boundaries of P and Q to the back
of the sphere, the spatial inversion from P C Q to Q° C P¢
may be more visually salient for students—though this rep-
resentation would likely introduce new spatial operations,
like rotating and stretching.

Additionally, toward identifying potential challenges
associated with Euler diagrams, we aimed to examine what
students might assume about LIs and their transformations
from the underlying space in which Euler diagrams are con-
structed—especially with regard to quantification. The main
assumption from the examples considered in this article was
the following: If an Euler diagram contains a closed region,
then that region represents a nonempty set. This was most
apparent in Kai’s reasoning that p = ¢ can be represented
spatially in two different ways, shown in Figure 8. Kai
assumed that, since the diagram in Figure 8b shows a closed
region between the boundaries of P and Q, that region must
indicate the existence of at least one point.

Prior work has documented students’ tendency to interpret
LIs as biconditional (i.e., assuming its converse is also true).
Some of this research attributes the assumption to colloquial
uses of LI (e.g., Epp, 2003), such as our opening video-game
example. We might refer to such examples as logical
assumptions inherited from the underlying language. Repre-
senting LIs and their transformations with Euler diagrams
introduces the possibility of similar assumptions, drawn
from the underlying space in which the diagrams are embed-
ded. In Kai’s example, we see an assumption about
quantification (existence) drawn from that underlying space.



In summary, although Euler diagrams provide students
with a tool for representing LIs, and a visual medium for
working out the logical validity of statements given certain
assumptions, Euler diagrams may introduce new challenges.
To reason about Euler diagrams as spatial representations,
students need to engage in spatial reasoning and operations,
and—critically—they need to link these meanings and rep-
resentations to logical statements. Through LSLS,
researchers have a way of theoretically framing students’
logical-spatial meaning-making and students’ links between
spatial and non-spatial representations.
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How human is mathematics? One issue that keeps surfacing in this discussion is the different
value systems, the different “aesthetics”, of the two communities: math educators and profes-
sional mathematicians. At the level of communities (neglecting small minorities within each
community), these value systems are best studied not by what people say, but by how they
behave professionally. Consider for example the expected writing style in research journals or
the procedures for academic promotion. At this level, the two value systems are not only dif-
ferent—they are almost orthogonal. For in education we are always stressing the human side
of mathematics, whereas official pure mathematics has always evolved in the direction of more
objectivity, formality, “purity”—in short, away from the human, personal perspective. Building
bridges between these two cultures seems to me a task that is both important and difficult. I
believe topics like the relationship of proof to mental images and “generic” objects (or generic
arguments), and the gradual refinement of intuitive argument to formal proof, are good starting
points for such bridges. Unfortunately, because of the atrocities performed in the name of
mathematical formalism on people of all ages, math educators have largely tended to avoid this
topic. I hope we see more “human approach to formalism” in the future.

— Uri Leron (1986) Reply to a letter from Dick Tahta, 6(2), 41.

Editor’s Note: Uri Leron died in late 2023. His contributions to mathematics education and
to the FLM community were immense. The conversations I had with him early in my career
fundamentally changed how I thought about my research on proof.






