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When a parent says to their child, “If you finish your home-
work, then you can play video games”, they make a statement 
of the form ‘if p, then q’. Statements of this kind are often 
called logical implications (LIs, or conditional statements), 
where p and q represent the hypothesis and conclusion of the 
LI, respectively. However, the parent likely intends for this 
statement to be interpreted bidirectionally (p if and only if 
q); otherwise, they allow for the possibility that their child 
does not finish their homework but plays video games any-
way. Such presumed bidirectionality of LIs, commonly 
found among college mathematics students, may be a conse-
quence of assumptions people make within the underlying 
language (say, English) in which we embed logic. 

To help students sort out logical statements, instructors of 
introduction-to-proofs courses sometimes encourage stu-
dents to rely upon spatial representations, particularly Euler 
diagrams. The truth set of a statement is the set of elements 
of the universal set, U, that make the statement true; an 
Euler diagram uses topological relationships to represent 
logical relationships between truth sets associated with an 
LI’s hypothesis and conclusion. Conventionally, the truth set 
of the hypothesis is depicted as contained within the conclu-
sion’s truth set (i.e., p → q corresponds to P ⊆ Q), with both 
contained within U (see Figure 1). 

The purpose of this article is to introduce and exemplify 
logico-spatial linked structuring (LSLS) as a theoretical per-
spective on students’ linking between spatial and non-spatial 
representations when dealing with logical statements. 
Although we conceptualize LSLS broadly, this article 

focuses on the specific case of Euler diagrams as spatial rep-
resentations of LIs. We argue, in line with Dawkins and Roh 
(2022), that Euler diagrams can be a constructive resource 
for students, particularly as a medium through which to 
visualize logical relationships and subsequently carry out 
mental actions to establish the validity of given statements. 
Euler diagrams may be especially useful to students who 
treat LIs as actions but not yet objects (see our Theoretical 
Perspective section). However, as our examples illustrate, 
reasoning via Euler diagrams can be challenging. Because 
Euler diagrams are polysemous, there is rich activity 
required to reason with them in ways productive for logic. 

We therefore begin with a discussion of potential affor-
dances and challenges that students may experience when 
using Euler diagrams. We then discuss the broader theoreti-
cal perspective in which LSLS is grounded, followed by an 
introduction to LSLS itself. Finally, we illustrate the utility 
of LSLS by drawing on examples of student reasoning. 

 
Affordances and challenges of Euler diagrams 
When reasoning with an LI, students can represent the 
implication using any of the representational tools at their 
disposal. Dawkins has promoted an instructional approach 
in which students use familiar mathematical contexts to 
make sense of the hypothesis, p, and conclusion, q, and rela-
tionships between them (Dawkins & Norton, 2022; Dawkins 
& Roh, 2022). Students make sense of LIs by populating 
truth sets P and Q, associated with p and q (respectively), 
with familiar examples or with ‘carriers’ (objects acting as 
arbitrary elements of truth sets). Their approach suggests 
Euler diagrams can help students not only represent LIs, but 
also reason about the corresponding converse, inverse, and 
contrapositive statements (Hub & Dawkins, 2018). Our 
work builds on that of Dawkins and colleagues by exempli-
fying and characterizing potential challenges that can 
emerge in these spatial representations—challenges that 
have not yet been problematized in the literature—and by 
identifying spatial mental actions that students use when rea-
soning with Euler diagrams. 

One affordance of Euler diagrams is their potential to help 
students identify discrepancies between a statement’s 
intended meaning and its logical interpretation. For instance, 
in Figure 1’s representation of the video-game LI, the exis-
tence of space inside the outer region, but outside of the 
inner region, suggests a case in which one could play video 

Figure 1. Euler Diagram for the LI ‘If you finish your home-
work, then you can play video games’.
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games but not do their homework (in contrast to the state-
ment’s presumed meaning). 

One challenge identified in our work, and illustrated later 
in the article, comes from how students might link the state-
ment ‘if p, then q’—in particular, ‘if you have p, then you 
have q’—to a spatial representation. This statement could be 
reasonably interpreted as suggesting that p and q are objects 
that one can ‘have’—and moreover, that statement p (or 
space P) includes, or carries with it, statement q (or space 
Q). Spatially, then, it makes sense that a student might think 
about Q as contained within P. 

Additionally, an important consideration when dealing 
with LIs is the universal set from which the truth set of the 
hypothesis (P) is populated. Conventionally, the universe is 
represented by a rectangle drawn around all other compo-
nents of the Euler diagram. In the video-game example, the 
universal set might be the set of all possible cases in which 
one does their homework, plays video games, neither, or 
both. As mathematics educators, however, we should call 
into question potential challenges of mathematical conven-
tions. In particular, why represent the universal set as a 
rectangle—or, for that matter, represent Euler diagrams in 
the plane? Of course, there is a certain practicality to the lat-
ter; most human experience in writing/drawing occurs on a 
flat surface. However, planar representations are perhaps not 
the best at illustrating the logical equivalence between an LI 
and its contrapositive. 

C. S. Peirce (2020/1903) was aware of this planar issue, 
and he suggested an alternative: “But there is […] no partic-
ular appropriateness in drawing the diagrams on a plane 
surface rather than on a sphere” (p. 234). Indeed, as illus-
trated in Figure 2, an Euler diagram showing P ⊆ Q on a 
sphere might better represent the contrapositive than the 
equivalent diagram in the plane. The boundaries of P and Q 
may be stretched (i.e., those regions may be enlarged) over 
the surface of the sphere (while maintaining P ⊆ Q). Then, 
rotating the sphere on its axis so that the opposite side is vis-
ible, the boundary of P is shown to be exterior to the 
boundary of Q, which may make the relationship Qc ⊆ Pc, 
and thus the implication ~q → ~p, more visually salient. 

Euler diagrams are further complicated by the issue of 
quantification. Even within symbolic representations, quanti-
fiers are often hidden to students (Shipman, 2016). Euler 
diagrams may exacerbate this challenge in that they represent 
only qualitative relationships between sets. Conventionally, 
the size of an enclosed space within an Euler diagram is not 
correlated with the cardinality of the associated truth set; in 
fact, an enclosed space could represent an empty set (e.g., 
when p → q is vacuously true, or when p iff q is true; see Fig-
ure 3). This is consistent with Dawkins’s (2019) claim that 
“non-quantified logic presents many pragmatic barriers to 
students’ learning of mathematical logic” (p. 20). 

Theoretical Perspective 
Our research is theoretically grounded in Piaget’s (1970) 
genetic epistemology wherein logico-mathematical objects 
arise as products of psychology; they are constructed by 
coordinating mental actions within structures for reversing 
and composing them. Within our Piagetian framing, we 
understand challenges in reasoning with LIs as conse-
quences of students’ ways of operating, and in particular, 
their means for transforming and quantifying LIs. 

Following his own Piagetian approach, action-process-
object-schema (APOS) theory, Dubinsky (1991) made a 
distinction between operating with LIs as actions and oper-
ating on them as objects. As actions, LIs consist of three 
parts: a hypothesis (p), a conclusion (q), and the implication 
connecting them. Treating LIs as actions, a student can rea-
son that, if p is given, then q follows (modus ponens). 
However, they would be unlikely to conclude that if q is 
false, then p is false (modus tollens, which relies on the con-
trapositive). Indeed, prior research indicates the latter form 
of reasoning is much more challenging (e.g., Yopp, 2020). 
As objects, LIs can be taken as wholes, be quantified, and be 
transformed into their converse, contrapositive, and nega-
tion. Thus, students who treat LIs as objects can act on them 
in ways that would be quite challenging for students who 
treat LIs as actions. We argue that Euler diagrams can serve 
as a tool, especially for students who treat LIs as actions, for 
visualizing relationships between truth sets and applying 
spatial actions to carry out corresponding logical actions. 

In other mathematical domains, teacher-researchers have 
supported students’ constructions of mathematical objects 
by engaging them in tasks that involve coordinating relevant 
mental actions and reflecting on that activity (Wheatley, 
1992). Likewise, we might support students’ constructions 
of LIs as objects by engaging students in tasks that involve 
coordinating and reflecting on relevant mental actions. 
Dawkins and Roh (2022) offer such an approach. Dawkins 
and Norton (2022) have specified related mental actions 
such as populating sets and negating (the act of “construct-
ing an opposite property or predicate to a given one”, p. 5). 

In interpreting or creating an Euler diagram, how one 
mentally organizes and interprets its constituent spatial 
components determines the logico-mathematical meaning 
that they read from the diagram. Conversely, one’s initial 
assimilation of a logical statement, such as an LI, influences 
one’s structuring of the corresponding Euler diagram. Spa-
tial structuring, the act of constructing an organization or 
form for one or more spatial objects (Battista, Frazee & 
Winer 2018), is a critical part of this process. Spatial objects, 
including Euler diagrams, must be mentally constructed 

Figure 2. Transforming an LI into its contrapositive on a 
sphere.

Figure 3. Potentially empty sets in Euler diagrams.

(a) (b)
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through an active process of spatial organizing and inter-
relating. In its most basic form, an Euler diagram contains 
one or more simple closed loops, each of which partitions 
space into two regions (an inside and an outside). To make 
meaning of an Euler diagram, students need to engage in 
mental operations by which they organize its constituent 
parts and establish logical meaning for those parts in a 
coherent mental model. This establishment of logical mean-
ing, and the corresponding linking between spatial and 
non-spatial representations, constitutes the major impetus of 
our proposed LSLS framework. 

 
Logico-Spatial Linked Structuring 
The main contribution of this theoretical article is the intro-
duction of the LSLS framework. LSLS rests upon the 
hypothesis that the use of Euler diagrams to reason about LIs 
involves a conceptual linking between two distinct represen-
tational forms: logical statements (which may be 
abstract/symbolic or contextualized) and spatial representa-
tions. For us, logical structuring is a term that encompasses 
any act of organizing, interrelating, or transforming struc-
tures involved in logical statements, including quantifiers 
(e.g., ‘for all x in the set of squares’) and open statements 
(e.g., ‘x has the properties of a rhombus’). Spatial structur-
ing is defined above. 

We define LSLS to be conceptual linking between logical 
structuring and spatial structuring. That is, LSLS entails 
establishing logical meaning for a spatial representation, 
building a spatial representation for one or more logical 
statements, and ideally being able to flexibly switch between 
representational forms. For us, linking two representational 
forms means not just association, but also coherence 
between the two representations, according to a student’s 
conceptions of how to structure objects within each mode of 
representation. 

LSLS is an extension of a related construct from research 
on students’ geometric measurement reasoning. Battista, 
Frazee, and Winer (2018) introduced spatial-numerical 
linked structuring as a form of reasoning that links spatial 
structuring to numerical structuring (the latter being the 
mental process of organizing a set of numerical or algebraic 
symbols). For example, they report on a Grade 6 student’s 
reasoning when asked to find the area of the polygon in 
Figure 4a. The student spatially structured the polygon 
by decomposing it into two right triangles and a rectangle 
(Figure 4b); their numerical structuring, (5 × 3/2) + (5 × 4) + 
(3 × 4/2), was linked to their spatial structuring. In our 
analysis of student reasoning about LIs and Euler diagrams, 
we found a similar linking in students’ reasoning—not 
between spatial and numerical structures, but between spa-
tial and logical structures. 

LSLS helps us understand how students establish logico-
spatial meaning, but it also helps us understand why Euler 
diagrams may be helpful tools for many students. Following 
Dubinsky (1991), we hypothesize that students with an object 
conception of LI might directly transform an implication 
symbolically (e.g., using a normative system of symbolic 
logic) and be able to make sense of that transformation, with-
out necessarily appealing to spatial representations (Figure 5, 
top arrow). However, students with an action conception of 

LI may need to work out the meaning and structure of the 
transformation (e.g., negation), possibly by appealing to 
Euler diagrams. We argue that LSLS provides researchers 
with a way to describe and explain students’ shifts between, 
and links across, representations. 

When students shift from the realm of logical statements 
to spatial representations, they engage in what we call a 
logico-spatial mapping (left arrow). Logico-spatial map-
pings occur when students construct an initial spatial 
structuring using their understanding of how Euler diagrams 
are constructed. Importantly, however, this spatial structur-
ing is also linked to their understanding of the logical 
situation under consideration—hence, logico-spatial 
mapping. Once students shift to the domain of spatial repre-
sentations, their focus shifts to spatial operations for 
interpreting and, if necessary, transforming spatial informa-
tion (bottom arrow). Our examples of student reasoning 
suggest four specific spatial operations (see Figure 5), 
defined below. 

• Spatial locating: drawing or imagining a point, 
boundary, or region 

• Engulfing: taking a larger space as possessing all of 
the characteristics (e.g., properties or elements) of 
a space that it contains 

• Boundary crossing: coordinating spatial locating 
and negating, focusing on a point 

• Spatial inversion: coordinating spatial locating and 
negating, focusing on a region 

Lastly, students use their spatial representations and rea-
soning to make a logical conclusion, a transition that we 
characterize as spatial-logical mapping (right arrow). 

 
Examples of LSLS in student reasoning 
Our work focuses on the experiences and reasoning of 
undergraduate students enrolled in an introduction-to-proofs 
course—students with no prior experience of advanced, 

Figure 4. Example of area-measurement SNLS.

(a) (b)

Figure 5. LSLS for transforming an LI into its negation
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proofs-based mathematics. The excerpts provided come 
from clinical interviews that occurred during the third week 
of the semester with two students, Carmen and Kai. Prior to 
these interviews, the class had focused discussions around 
the topics of mathematical statements, quantification, and 
LIs, including representing statements and LIs using Euler 
diagrams. These examples are intended to illustrate (1) dif-
ferences in how Carmen and Kai spatially represented LIs 
using Euler diagrams, (2) the spatial operations that each 
student performed in their problem-solving, and (3) the 
interaction between their spatial and logical reasoning. 

To prompt students to attend to and reason about the log-
ical structure itself without relying on domain-specific 
mathematical knowledge, our clinical interview tasks pur-
posefully utilized some contexts unfamiliar to students (e.g., 
algebraic topology). Our examples draw on two students’ 
responses to the task below. 

Suppose that the following statement is true: If two topo-
logical spaces are homeomorphic, then their homology 
groups are isomorphic. Based on this fact alone, decide if 
the following statements are true, false, or uncertain. 

a. If two topological spaces have isomorphic homol-
ogy groups, then the spaces are homeomorphic. 
[Converse] 

b. If the homology groups of two topological spaces 
are not all isomorphic, then the spaces are not 
homeomorphic. [Contrapositive] 

c. There is a pair of homeomorphic topological 
spaces whose homology groups are not all isomor-
phic. [Negation] 

As a point of comparison, conventionally, how might a 
student solve this task using Euler diagrams? With the given 
LI, they would likely draw a diagram depicting boundary P 
within another boundary Q. They might also consider other 
Euler diagrams satisfying the LI—e.g., a single boundary 
labeled P and Q (biconditional case), or only labeled Q 
(vacuous case where P is empty). Regarding statement (a), 
then, they might use spatial locating to identify the regions 
associated with the premise (Q) and the conclusion (P) and 
notice that points within the former could, but need not, be 
contained in the latter (likely envisioning boundary cross-
ing)—concluding an uncertain truth value. For (b), they 
might engage in spatial inversion to visualize the comple-
ment of each truth set, then engage in spatial locating and 
boundary crossing to reason that since P ⊆ Q, any point in 
Qc is also in Pc, concluding (b) is true. For (c), they might 
spatially locate a point contained within P, think about the 
spatial analog to the statement ‘whose homology groups are 
not all isomorphic’ (Qc), and reason that since P ⊆ Q, (c) 
must be false. 

Example 1 

Carmen was a senior aerospace engineering student minor-
ing in mathematics. Carmen’s interviews taught us 
important lessons about how students might reason about 
Euler diagrams—in particular, the conception of one set 
‘engulfing’ another, which we see in her response to state-

ment (b), the contrapositive. She correctly concluded (b) 
would be true, without appealing to Euler diagrams, and her 
LSLS (coupled with presumed bidirectionality) gave her fur-
ther confidence in her conclusion. 

Carmen We’re saying that the two spaces are not 
isomorphic. So that’s kind of the negative 
of the part from [the original statement]. 
So, then we can say, in the second part, it 
would have to negate the second part [of 
the original] as well. So, if we have like p 
and q, we would have to negate both of 
these to get not p and not q. 

The interviewer asked Carmen whether she could represent 
her reasoning using an Euler diagram. She drew a small cir-
cle labeled P, and a larger circle, Q, containing P. 

Carmen So, if I have a circle within a circle. So, 
this is my circle P, and this is my circle Q. 
[…] Maybe I should have flipped it 
around, to go with that [reverses the label-
ing of the two circles, so that p → q was 
represented as P ⊇ Q; see Figure 6a]. So, 
if p, then q. The P engulfs the entire space 
of Q, so that if I have the statement p, then 
I’m definitely going to have the statement 
q. […] But if I don’t have p [draws a rec-
tangle around the Euler diagram to 
represent the universe], I’m outside of this 
circle in this region [points to the region 
outside of the larger circle], um, then I 
definitely do not have q. 

Using the LSLS framework, we infer that Carmen com-
pleted a logico-spatial mapping directly, without first 
engaging in the activity of populating sets (which is under-
standable since these are unfamiliar mathematical objects). 
She seemed to interpret circles P and Q as representing 
statements p and q rather than truth sets associated with 
those statements. Working within an Euler diagram, Carmen 
seemed uncertain about how to spatially structure circles 
P and Q to represent the logical relationship p → q. We 
hypothesize from Carmen’s statements “P engulfs […] Q” 
and “If I have the statement p, then I’m definitely going to 
have the statement q” that she interpreted the space P (and 
statement p) as containing, or possibly carrying, the space Q. 
We infer Carmen spatially inverted P by negating p and 
locating the region outside of P (“then I’m outside of this 
circle in this region”; see Figure 6b), which necessarily 

Figure 6. (a) Carmen’s Euler diagram representation 
and (b) LSLS diagram of Carmen’s logico-spatial 
reasoning about statement (b).

(a) (b)
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implies moving outside of Q (“then I definitely do not have 
q”). From her spatial operations, she thus concluded state-
ment (b) is true—a reasonable conclusion, given her spatial 
structuring of P “engulfing” the space Q. 

Example 2 

Kai was a sophomore computational mathematics major. In 
contrast to Carmen whose initial focus was on statements p 
and q, Kai’s spatial structuring seemed to refer to their cor-
responding truth sets. He handled this spatial structuring by 
considering two cases, P ⊂ Q and P = Q, correctly determin-
ing that the truth value of statement (a) is “uncertain”. 

Kai It could be true, if these two statements 
were equivalent. So, if they were the 
same space, like truth set, then the con-
verse would hold for both implications. 
But, because I don’t know what it is, um, 
it’s uncertain. […] In this case [the lat-
ter], it would be true, and in this case, it 
would be false [draws Euler diagrams 
shown in Figure 7]. But because both of 
these are possible, it’s uncertain. 

As illustrated in Figure 8, Kai seemed to engage in LSLS 
by constructing a mapping from the logical form of state-
ment (a) to two potential Euler diagrams. Given that p → q, 
he knew that either P ⊂ Q or P = Q. We infer that, in both 
cases, Kai’s attention was on the boundary of P in relation to 
the boundary of Q. When P = Q, Kai recognized, through an 
act of boundary crossing, that the boundary of P coincides 
with the boundary of Q (shown in Figure 8a), leaving no 
space for a point x outside of P but within Q (making the set 
of counterexamples to q → p empty: “in this case, it would 
be true”). When P ⊂ Q, Kai structured P as being engulfed 
(to use Carmen’s language) within Q. He assumed that the 
nonempty region between P’s boundary and Q’s boundary 
implied the existence of a nonempty set of counterexamples 
(suggesting spatial inversion), and thus q → p would be false 
(see lower right-hand diagram in Figure 8b). Thus, Kai cor-
rectly concluded that statement (a) is “uncertain”, making a 
logical conclusion from his spatial reasoning.   

Later in the interview, Kai was asked a follow-up question 
regarding statement (a). Kai seemed to assimilate the ques-
tion as asking, “Is there any way to form an Euler diagram 
that shows p → q and that shows q → p, without the circles 
P and Q entirely coinciding?”

Researcher Could it be the case that there’s a pair that 
makes this true, and yet P and Q aren’t 
the same? 

Kai Right now, I’m thinking ‘a pair of topo-
logical homeomorphic’ [statement p] is 
like the inner circle, and the outer circle is 
‘their homology groups are isomorphic’ 
[statement q]. […] So, the other condi-
tion would be if P is outside, in any way, 
it could be like P and then Q on the inside 
[draws Figure 9a]. And P and Q overlap 
[draws Figure 9b]. Or even P and Q, 
like, no relationship [draws Figure 9c], 
because we know if two of them are 
homeomorphic, then it has to be isomor-
phic. So, there’s no way that they don’t 
have a relationship [rules out Figure 9c]. 
Oh! Can it be on the outside? Because it 
could, if the two spaces are homeomor-
phic [pause] then their homology groups 
are isomorphic. But it could also be like 
other things. […] Well, it could be other 
conditions of the homology groups. But 
isomorphic would always be true. So, this 
would be, on the outside here, it would 
be, in this circle, it would be that the 
topological spaces are homeomorphic 
and their homology groups are not iso-
morphic. Which is not possible, because 
this [original statement] is true. So, it 
cannot be bigger either [rules out Figure 
9a]. And, with regard to the, this one, 
which is the intersection. It’s also outside. 
So, anything—Yeah, yeah. This cannot 
be true either [rules out Figure 9b] 
because, once again, it cannot be homeo-
morphic and non-isomorphic homology 
groups. So, I would rule that out as well. 

Figure 7. Kai’s Euler diagrams in reasoning about state-
ment (a).

Figure 8. LSLS diagrams illustrating Kai’s logico-spatial 
reasoning.

(a) (b)

Figure 9. Recreation of Kai’s Euler diagrams

(a) (b)
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Having ruled out these three possibilities, Kai felt confi-
dent that, if p → q is true, then there are only two spatial 
possibilities: P is contained properly within Q, or P and Q 
coincide exactly. 

Kai seemed initially unsure whether the relationship p → q 
could be represented spatially where part of P is exterior to 
Q. Similar to the previous excerpt, in his initial logico- 
spatial mapping, Kai engaged in case-based reasoning (see 
Figure 9): “it could be like P and then Q on the inside”, 
“P and Q overlap”, or “P and Q, like, no relationship”. He 
then switched between logical reasoning and his spatial 
structuring to rule out all alternative possibilities. 

When reasoning about Figure 9a and Figure 9b, Kai 
seemed to engage in a spatial locating action. Consistent with 
his reasoning in the previous excerpt, he seemed to interpret 
closed regions as necessarily indicating the existence of at 
least one point. For instance, when reasoning about Figure 
9a, he said, “It would be that the topological spaces are 
homeomorphic and their homology groups are not isomor-
phic”, which he used to rule out this diagram. When 
reasoning about Figure 9b, he said, “This cannot be true 
either. Because, once again, it cannot be homeomorphic and 
non-isomorphic homology groups”. He seemed to assume 
the existence of a point inside P but outside of Q. Kai’s over-
all LSLS is depicted in Figure 10: establish a spatial 
relationship given p → q, reason about whether P can be 
exterior to Q in any way (by engaging in point-locating), 
interpret this spatial relationship logically, and conclude that 
this logical statement is in contradiction with the assumed LI. 

 
Discussion 
As Hub and Dawkins (2018) and Dawkins and Roh (2022) 
have suggested, Euler diagrams can be a useful tool for sup-
porting student reasoning about LIs. We hypothesize they may 
be especially useful for students who treat LIs as actions, as 
they provide students with a medium through which logical 
transformations may be spatially visualized. The LSLS frame-
work provides researchers with a way to capture how students 
link spatial and non-spatial representations in reasoning about 
logical statements, with this article focusing specifically on 
Euler diagrams and LIs. This work fits within the research lit-
erature by characterizing and illustrating potential challenges 
that may emerge in students’ transitions to spatial representa-
tions, including the assumptions they might make and the 
mental actions they might use—contributing to Dawkins and 
Norton’s (2022) prior research on students’ mental actions 
when reasoning about LIs. 

The examples presented teach us that students, when 
given freedom to explore their own ways of making sense of 
Euler diagrams, employ different spatial structurings linked 
to their logical interpretations of LIs. Both Carmen and Kai 
engaged in acts of spatial locating, engulfing, boundary 
crossing, and spatial inversion; however, there were impor-
tant differences in their meanings of these actions. For the 
act of engulfing in particular, Carmen interpreted p → q as 
saying, “if I have the statement p, then I have the statement 
q”, which she represented spatially by engulfing Q within P. 
For her, the truth of p necessitates the truth of q, and so the 
space P carries with it the space Q. Kai’s acts of engulfing, 
by contrast, seemed to focus more on points within regions 
rather than regions as wholes. He seemed to reason that if 
point x lies within P, then it must also lie within Q, meaning 
Q engulfs P. Thus, Carmen and Kai established qualitatively 
distinct spatial structurings of Euler diagrams. Carmen 
seemed to conceptualize P and Q as singular objects, 
whereas Kai seemed to conceptualize P and Q as collections 
of points where statements p and q are true, respectively. 

Furthermore, as seen in Euler diagrams drawn by both 
Carmen and Kai, students may not always (or not immedi-
ately) include a representation of the universe in their Euler 
diagrams. Carmen added a rectangle to represent the uni-
verse in her Euler diagram in Figure 6a only after she 
engaged in spatial inversion to visualize the set Qc. Like-
wise, Kai did not represent the universe in any of his three 
Euler diagrams in Figures 7 or 9. Future research might 
investigate how students engage in Euler diagrams drawn on 
the sphere, as discussed in the ‘Affordances and challenges’ 
section. We hypothesize that, with the universe represented 
as a sphere, by stretching boundaries of P and Q to the back 
of the sphere, the spatial inversion from P ⊆ Q to Qc ⊆ Pc 
may be more visually salient for students—though this rep-
resentation would likely introduce new spatial operations, 
like rotating and stretching. 

Additionally, toward identifying potential challenges 
associated with Euler diagrams, we aimed to examine what 
students might assume about LIs and their transformations 
from the underlying space in which Euler diagrams are con-
structed—especially with regard to quantification. The main 
assumption from the examples considered in this article was 
the following: If an Euler diagram contains a closed region, 
then that region represents a nonempty set. This was most 
apparent in Kai’s reasoning that p → q can be represented 
spatially in two different ways, shown in Figure 8. Kai 
assumed that, since the diagram in Figure 8b shows a closed 
region between the boundaries of P and Q, that region must 
indicate the existence of at least one point. 

Prior work has documented students’ tendency to interpret 
LIs as biconditional (i.e., assuming its converse is also true). 
Some of this research attributes the assumption to colloquial 
uses of LI (e.g., Epp, 2003), such as our opening video-game 
example. We might refer to such examples as logical 
assumptions inherited from the underlying language. Repre-
senting LIs and their transformations with Euler diagrams 
introduces the possibility of similar assumptions, drawn 
from the underlying space in which the diagrams are embed-
ded. In Kai’s example, we see an assumption about 
quantification (existence) drawn from that underlying space. 

Figure 10. Kai’s transformation of an LI into its negation via 
LSLS.
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In summary, although Euler diagrams provide students 
with a tool for representing LIs, and a visual medium for 
working out the logical validity of statements given certain 
assumptions, Euler diagrams may introduce new challenges. 
To reason about Euler diagrams as spatial representations, 
students need to engage in spatial reasoning and operations, 
and—critically—they need to link these meanings and rep-
resentations to logical statements. Through LSLS, 
researchers have a way of theoretically framing students’ 
logical-spatial meaning-making and students’ links between 
spatial and non-spatial representations. 
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How human is mathematics? One issue that keeps surfacing in this discussion is the different 
value systems, the different “aesthetics”, of the two communities: math educators and profes-
sional mathematicians. At the level of communities (neglecting small minorities within each 
community), these value systems are best studied not by what people say, but by how they 
behave professionally. Consider for example the expected writing style in research journals or 
the procedures for academic promotion. At this level, the two value systems are not only dif-
ferent—they are almost orthogonal. For in education we are always stressing the human side 
of mathematics, whereas official pure mathematics has always evolved in the direction of more 
objectivity, formality, “purity”—in short, away from the human, personal perspective. Building 
bridges between these two cultures seems to me a task that is both important and difficult. I 
believe topics like the relationship of proof to mental images and “generic” objects (or generic 
arguments), and the gradual refinement of intuitive argument to formal proof, are good starting 
points for such bridges. Unfortunately, because of the atrocities performed in the name of 
mathematical formalism on people of all ages, math educators have largely tended to avoid this 
topic. I hope we see more “human approach to formalism” in the future. 

— Uri Leron (1986) Reply to a letter from Dick Tahta, 6(2), 41. 
 
Editor’s Note: Uri Leron died in late 2023. His contributions to mathematics education and 
to the FLM community were immense. The conversations I had with him early in my career 
fundamentally changed how I thought about my research on proof.
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