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Abstract—Robots are gradually being incorporated into the
workforce to assist with labor-intensive and repetitive tasks,
especially in smart manufacturing contexts. This leads to increased
human-robot collaboration, which may be an unfamiliar,
distrustful, and uncomfortable situation for inexperienced people
to navigate. Motivated by these issues and aiming to have a
comprehensive understanding of the factors that affect people’s
trust in robots, we developed a new trust database by investigating
the trust between human collaborators wearing four biological
sensors and a robot performing collaborative tasks. Using these
sensors, we collected trust-related physiological human factors
from the brain (EEG), heart (ECG), forearm (EMG), and eyes
during human-robot collaborative tasks. As well as a trust rating
through a questionnaire, this allows for the creation of a
multimodal human-robot trust database (TrustBase). TrustBase
provides insightful guidance to optimize and improve the
environment deployment and robot configuration in human-robot
partnerships within smart manufacturing contexts.

Keywords—Trust, robotics, human factors, physiological signals,
database.

I INTRODUCTION

The rapid development of technology and the exponential
growth of data in recent years has led to monumental
breakthroughs in manufacturing, robotics, and artificial
intelligence. Robotics is a rapidly expanding field that is on the
horizon of being incorporated into more common workspaces
for various applications. Grau et al. and Garcia et al. both
conducted studies indicating the progression of robotic
evolution into new industries and its incorporation into
numerous fields. They have also pioneered and pushed the
boundaries of Human-Robot Interaction (HRI) [1, 2]. In the past,
robots were primarily utilized in the military, large-scale
manufacturing plants, healthcare, and various other industries.
In the military, robots were deployed with tactical approaches
and advancements in tasks like bomb diffusion, reconnaissance,
and air defense [3], with the aim of preventing casualties and
providing assistance in these areas. Manufacturing, a vast
industry offering many physically demanding jobs, has seen a
transformation with the introduction of robotic assistance. These
robots help alleviate monotonous tasks, and grueling work hours
by utilizing the proficient assistance of artificial intelligence [4,
5]. According to Sherwani et al., collaborative robots can
perform a wide range of tasks such as “picking, packing and
palletizing, welding, assembling items, handling materials,
product inspection, and much more” [6]. These robots have the

979-8-3503-0413-8/23/$31.00 ©2023 IEEE

Thai Thao Nguyen
School of Computing
Montclair State University
Montclair, USA
nguyent! 0@montclair.edu

Weitian Wang
School of Computing
Montclair State University
Montclair, USA
wangw(@montclair.edu

ability to increase the production of these tasks by working
alongside their human counterparts.

As artificial intelligence and technology continue to evolve,
it is becoming increasingly likely that robots will become more
commonplace in daily life. The advancing involvement in
robotics leads to an increase in human-robot collaboration
(HRC) [7]. HRC is a conjoined effort between humans and
robots working together efficiently to complete tasks. To
successfully integrate human-robot collaboration into everyday
life, it is crucial to establish a substantial level of trust in robots
among people. People often feel comfortable working alongside
others because they can build a foundation of trust by observing
each other’s character and capabilities. However, the new
introduction of robots in the workspace may lead to skepticism
due to the absence of a biological and physiological connection,
making it challenging to gauge their trust when working with a
robot. On the other hand, robots must assess their human
coworkers’ capabilities to determine if they can establish trust
and successfully perform tasks. Trust is a fundamental aspect of
human-robot collaboration [8]. Studying people’s trust levels
when they work with robots can provide valuable insight into
how we can integrate robotics into new settings, optimize
workplace deployment, and improve robot configuration.

In this study we employed a collaborative robot, with 7
degrees of freedom, to conduct user studies in which subjects
collaborated with the robot in a manufacturing task. The subjects
wore four types of sensors to track and detect various
physiological information during the human-robot collaboration
process. These sensors tracked electroencephalography (EEG),
electromyography (EMGQG), electrocardiography (ECG), and
ocular data. While wearing these sensors, the robot would pick
a part of the product and hand it to the human subject. The
participant would then retrieve the part from the robot and rate
their trust on a Likert scale questionnaire placed beside them.
All multimodal physiological data and ratings were collected to
develop our TrustBase. The physiological data allows us to
visualize fluctuations in human trust towards the robot and any
patterns, anomalies, or distinctions between participants and the
robot throughout the collaboration process.

II.  THE TRUSTBASE

In this study, we refer to our database management system
(DBMY) as TrustBase, which is structured with a three-tier DBMS
architecture comprising the User Layer, the Trust Logical Layer,
and the Trust Physical Layer. As shown in Fig. 1.
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The User Layer in TrustBase allows users to access
information about HRC participants, questionnaire responses,
and the collected physiological data. This layer is also essential
during HRC sessions, both for users to submit their trust ratings
on the questionnaire and for sensors to acquire the physiological
data. Next, we have the Trust Logical Layer, which ensures that
all collected data is appropriately organized within the
database’s corresponding tables. Lastly, TrustBase also features
a Trust Physical Layer where questionnaire responses are stored
as integers in the QuestResponse table. For each set of data
collected from the sensors, they are stored as BLOBs within
each of their respective tables. Currently, TrustBase includes
data from 65 user studies involving HRC trust. These studies
encompass participants of different ages, genders, and education
levels, and the number of participants continues to grow.
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Fig. 1. The Architecture of TrustBase.

III. HUMAN-ROBOT COLLABORATION EXPERIMENTS

A. Experimental Platform

In this work, the Franka Emika collaborative robot is utilized
through user studies as one of the main components of the HRC.
As shown in Fig. 2, the robot has 7 degrees of freedom, which
gives the arm the freedom to move more fluidly compared to
arms with fewer degrees of freedom. The robot is designed to
collaborate safely and seamlessly with humans in various tasks,
akin to human-human collaboration [9]. During the user studies,
a human-robot collaborative task was employed to examine the
interaction between a human subject and the robot. More
specifically, the task involved the robotic arm retrieving a
segment of a model car and handing it to the human subject, who
would then retrieve it from the parallel grippers. This task was
iterated 27 times, with each iteration featuring variations of the
robot performance factors such as velocity and position during
the HRC. The positioning of the robot arm encompassed a range
of heights including low, medium, and high. Furthermore,
different distances — close, medium, and far — were
incorporated into the task. The robot’s speed was also
manipulated during the experiment, with three different settings:
slow, medium, and fast.

B. Sensors for TrustBase Data Collection

The human-robot collaboration experiment involves a
participant wearing four physiological sensors and answering a
seven-point Likert scale questionnaire that ranks trustworthiness

on a scale from very untrustworthy to very trustworthy during
the interactive task. All physiological data is recorded during
each interaction. Between interactions, the robot returns to its
home position for four seconds while the user rates their trust
level on the questionnaire. The robot then proceeds to its next
sequence of joint states for another handoff. The data collected
from the sensors includes Electroencephalography (EEG), which
records electrical activity within the brain; Electromyography
(EMG), which records electrical activity from muscles in the
dominant arm used during the interaction; Electrocardiography
(ECG), which records electrical activity produced by the heart
(heartbeat); and ocular senses data.

We utilized the Emotiv Epoc+ EEG helmet to collect
electrical activity data from 14 regions of the brain.
Additionally, we employed the MYO armband, equipped with 8
metal plates to capture EMG data from the user’s upper forearm
when activated. Along with the EMG data, we gathered the
information on forearm motion using an inertial measurement
unit (IMU). To collect ECG data, we implemented a wearable
chest strap known as the Polar H10. We chose this heart strap
due to its superior accuracy. Furthermore, we collected ocular
data by deploying the Vive virtual reality headset to track users’
eye data. During the study, the headset was calibrated using the
eye-tracking API and then switched to augmented reality mode.
Participants wore the headset while performing the collaborative
tasks in augmented reality, allowing us to collect nine distinct
types of eye-related data, including gaze origin left eye, gaze
origin right eye, left gaze, right gaze, eye openness, left eye pupil
diameter, right eye pupil diameter, left eye pupil position, and
right eye pupil position. An example of a configured participant
can be seen in Fig. 2.
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Fig. 2. Experimental platform and subject configuration.

IV. TRUSTBASE DATA COLLECTION

A. Ocular Senses Data Collection

The Vive headset is a virtual reality (VR) headset with the
capability to track a user’s eyes when worn, allowing us to.
utilize this feature and transform the virtual reality world into
augmented reality (AR). In this context, we use augmented
reality to track and store information of where the user is looking
in the real world during the experiment. The headset requires a
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program called SteamVR to create the virtual reality world.
Using an API called Super Reality Runtime (SR_Runtime), the
headset can calibrate and track eye information. We developed
a program to parse the information from the SR _Runtime API
to store all eye information related to the subject. During the
hand-over interactivity, the augmented Vive headset tracks nine
data points: time, gaze origin left eye (X, Y, Z), gaze origin right
eye (X, Y, Z), gaze normalized direction left (X, Y, Z), gaze
normalized direction right (X, Y, Z), eye openness left and right,
left eye pupil diameter, right eye pupil diameter, left eye pupil
position (X and Y), and right eye pupil position (X and Y).

B. Human Operation Motion Data Collection

The MYO EMG armband utilizes eight metal plates, which
read electrical impulse data from a user’s muscle contractions in
the upper forearm. As a user performs the car-building tasks
with the collaborative robot, the armband will record data as the
user contracts their muscles, including the brachioradialis, flexor
carpi radialis, palmaris longus, flexor carpi ulnaris, flexor
digitorum superficialis, and pronator teres. Additionally, the
MYO armband contains an inertial measurement unit (IMU).
The IMU consists of an accelerometer, gyroscope, and
magnetometer [10, 11]. This allows for the collection of the roll,
pitch, and yaw of the user’s arm when moving around in free
space.

C. Electroencephalography Data Collection

The Emotiv Epoct+ headset, an electroencephalography
(EEG) helmet, utilizes fourteen nodes that are to be placed on
corresponding regions of a subject’s scalp as shown in Fig. 3, to
collect electrical impulses from the brain. These electrical
impulses collect data from regions: AF3, AF4, F7, F§, F3, F4,
FCS5, FC6, T7, T8, P7, P8, O1, and 02, as depicted in Fig. 3.

Fig. 3. Emotiv Epoc+ headset markings [12].

D. Heartbeat Data Collection

To collect electrocardiograms, we used the Polar H10 heart
strap (Fig. 4). Users wear the strap around their chest snugly to
maintain consistent skin contact with the electrodes. This
ensures the collection and transmission of electrical activity
from the heart to the H10 node on the front of the strap.

Fig. 4. Polar H10 strap and node reference model.

E. Trust Rating Questionnaire

To facilitate the acquisition of participants' responses during
the human-robot collaborative task, we implemented a locally
hosted questionnaire. The questionnaire solicited information
such as compliance, gender, age range, education level, and trust
level for each task with the robot. Collecting these demographics
allows us to categorize and conduct further analysis, potentially
revealing trends or distinctions between these categories. During
the human-robot collaborative task, after receiving the part of
the car model from the robot users rate their trust level utilizing
a Likert scale, as shown in Fig. 5. After completing the human-
robot interaction, participants submit the questionnaire and
demographic information to the database. Within the database,
a participant’s responses would be recorded between 0 to 6,
where 0 being very untrustworthy and 6 being very trustworthy.

Very Somewhat

Somewhat Very
tworth
Untrustworthy pRastworthy Untrustworthy

Neutral Trustworth
3 Trustworthy e Trustworthy

Fig. 5. The Likert scale for trust level rating.

V. DATA ANALYSIS

To present this data in a concise and meaningful manner, we
grouped the data points about time. We chose to use 5-second
intervals for grouping since each interaction occurred at
different times during the experiment. However, each group still
consisted of hundreds to thousands of lines of data, which made
it challenging to visualize the data effectively. To address this
issue, we calculated the mean of the data for each group. This
consolidation allows us to create meaningful plots that depict the
physiological features throughout the experimental process. All
the data visualized and explained in the following sections is
from one of our 65 participants.

A. Human Eye Data Analysis

Fig. 6. displays the degree of eye openness during the HRC.
In this visualization, a closed eye is represented by a value of 0,
while an open eye is represented by a value of 1, with any value
in between indicating partial eye openness. According to a study
conducted by Urasaki et al., “the frequency of blinking is not
only due to dryness of the eyes but also due to several other
factors, including mental fatigue” [13]. This indicates that the
user’s blink rate has a potential connection into a theory known
as cognitive load theory (CLT). To better comprehend the user’s
eye data, we resampled the data into 3-second intervals and used
an aggregation mode, which refers to the most frequently
occurring values in a dataset. Since we resampled our dataset
into subsets, this aggregation technique was applied to each,
helping us to identify the most frequent variables. Upon
reviewing the data, we observed a higher rate of the eye(s) being
slightly, or fully closed at the beginning of the interaction. This
may indicate an increased trust-related cognitive load, as users
engage in cognitive functions such as memory processing.
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Fig. 6. The subject’s eye openness for left and right eyes.

B. Human Operation Motion Data Analysis

The MYO armband has the capability to record 8 channels
of EMG information in a person’s upper forearm. To visualize
the data, we resampled the data into subsets, by grouping the
data in relation to a 5-second time interval. We then calculated
the mean of each group as shown in Fig. 7. Upon examining the
data, it becomes evident that EMG 4 consistently exhibits the
most spikes. This particular node is positioned near the flexor
digitorum superficialis on the participant’s arm. These findings
suggest that the user primarily engages the flexor digitorum
superficialis and profundus when performing the human-robot
collaborative task, indicating significant muscular activity when
receiving the car model part. Additionally, we observed that the
muscle activation increases as the user receives the part, with
only three instances approaching a value of 600. These
occurrences may represent higher-stress tasks, resulting in
increased muscle usage.
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Fig. 7. The subject’s EMG signals in HRC.

C. EEG Data Analysis

The Emotiv Epoct+ headset collects EEG information from
the subject, which is crucial for understanding brain activity in
various regions during the HRC. Since the Epoc+ headset
collected approximately 73,000 lines of data for each user, we

resampled the data by grouping it into 5-second intervals and
calculated the mean of each group. This analysis resulted in Fig.
8, which illustrated six significant spikes in data during the first
three minutes of the experiment. These spikes could be
attributed to the user’s lack of trust and discomfort with the
robot’s action, triggering a cognitive response and creating these
spikes. This interpretation is supported by a comparison with the
user’s questionnaire responses in Fig. 10. During the initial nine
interactions that span approximately five minutes, questions
four, five, and eight received significantly lower ratings
compared to the others.
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Fig. 8. The subject’s EEG information in HRC.

D. Heartbeat Data Analysis

After visualizing the user’s heartbeat data collected from the
Polar H10 Heartbeat monitor, we observe that initially, the user
experienced a higher heart rate, peaking at around 108 beats per
minute. This increase in heart rate may be attributed to the novel
experience of working with their new robot partner. As shown
in Fig. 9, the user’s heart rate occasionally dropped to as low as
76 beats per minute, possibly during moments when the robot
was returning to its home position, and the participant was
responding to the questionnaire. Subsequently, the heart rate
would rise again. Notably, the user’s heart rate got progressively
calmer during the second half of the experiment, which occurred
after the four-minute mark. During this period, the heart rate
consistently remained below 100 beats per minute anymore.
This could indicate an increase in trust and a reduction in
participant anxiety.
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Fig. 9. The subject’s heartbeat information in HRC.

E. Trust Ratings

To identify factors contributing to low levels of human trust
during the HRC, in Fig. 10, we can see that the first instance was
the first interaction where the speed increased. This potentially
made the user feel uneasy, as the robot suddenly shifted from a
slow speed to a medium speed. The user may not have been
expecting the transition, therefore producing a lower trust level.
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Furthermore, the subsequent interaction was also a continuation
of the medium-speed interactions, where the user was still
potentially uneasy from the previous interaction. We can see the
user regains some trust, but not as much as when the robot was
interacting at a slower speed. As the user advances through the
HRC, we can see around question 18 the user starts to lose a bit
of trust, as the robot progresses at a faster speed. Although the
user gained a bit of trust from the lower height interactions, the
user again may have felt uneasy as it increased in height and had
a far distance. Afterwards, the user gained more trust as the robot
gained distance and was closer, and the height was easier for the
user to adjust to.
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Fig. 10. The subject’s trust levels for 27 robot performance factors in HRC.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we have created a multimodal TrustBase
through user studies in human-robot real-world collaborative
contexts. This database will help both researchers and industrial
workers have a comprehensive understanding of what factors
may affect people’s trust in robots during collaborative tasks.
The data of the TrustBase includes EEG, EMG, ECG, and ocular
senses are collected from four types of physiological sensors. As
a user performs the human-robot collaborative task, the user’s
physical information is recorded, as well as the completion of a
seven-point trust rating Likert scale. With this information, we
were able to visualize the user’s physical and cognitive
intentions and correlate them to their trust rating. This
information gave further insight into whether the participants
were truthful in their trust rating or were pressured by social
constructs around them. Future work would involve a dynamic
approach to our human-robot collaboration experiments,
allowing for new motions and a different experience for every
user. In addition, more participants will be recruited to enrich
the data of our TrustBase. To view the data in a better way for
TrustBase users, we will investigate and develop new metrics,
data features, and visualization methods.
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