
979-8-3503-0413-8/23/$31.00 ©2023 IEEE 

Development of A Multimodal Trust Database in Human-
Robot Collaborative Contexts 

 
Abstract—Robots are gradually being incorporated into the 

workforce to assist with labor-intensive and repetitive tasks, 
especially in smart manufacturing contexts. This leads to increased 
human-robot collaboration, which may be an unfamiliar, 
distrustful, and uncomfortable situation for inexperienced people 
to navigate. Motivated by these issues and aiming to have a 
comprehensive understanding of the factors that affect people’s 
trust in robots, we developed a new trust database by investigating 
the trust between human collaborators wearing four biological 
sensors and a robot performing collaborative tasks. Using these 
sensors, we collected trust-related physiological human factors 
from the brain (EEG), heart (ECG), forearm (EMG), and eyes 
during human-robot collaborative tasks. As well as a trust rating 
through a questionnaire, this allows for the creation of a 
multimodal human-robot trust database (TrustBase). TrustBase 
provides insightful guidance to optimize and improve the 
environment deployment and robot configuration in human-robot 
partnerships within smart manufacturing contexts. 

Keywords—Trust, robotics, human factors, physiological signals, 
database. 

I. INTRODUCTION 
The rapid development of technology and the exponential 

growth of data in recent years has led to monumental 
breakthroughs in manufacturing, robotics, and artificial 
intelligence. Robotics is a rapidly expanding field that is on the 
horizon of being incorporated into more common workspaces 
for various applications. Grau et al. and Garcia et al. both 
conducted studies indicating the progression of robotic 
evolution into new industries and its incorporation into 
numerous fields. They have also pioneered and pushed the 
boundaries of Human-Robot Interaction (HRI) [1, 2]. In the past, 
robots were primarily utilized in the military, large-scale 
manufacturing plants, healthcare, and various other industries. 
In the military, robots were deployed with tactical approaches 
and advancements in tasks like bomb diffusion, reconnaissance, 
and air defense [3], with the aim of preventing casualties and 
providing assistance in these areas. Manufacturing, a vast 
industry offering many physically demanding jobs, has seen a 
transformation with the introduction of robotic assistance. These 
robots help alleviate monotonous tasks, and grueling work hours 
by utilizing the proficient assistance of artificial intelligence [4, 
5]. According to Sherwani et al., collaborative robots can 
perform a wide range of tasks such as “picking, packing and 
palletizing, welding, assembling items, handling materials, 
product inspection, and much more” [6]. These robots have the 

ability to increase the production of these tasks by working 
alongside their human counterparts. 

As artificial intelligence and technology continue to evolve, 
it is becoming increasingly likely that robots will become more 
commonplace in daily life. The advancing involvement in 
robotics leads to an increase in human-robot collaboration 
(HRC) [7]. HRC is a conjoined effort between humans and 
robots working together efficiently to complete tasks. To 
successfully integrate human-robot collaboration into everyday 
life, it is crucial to establish a substantial level of trust in robots 
among people. People often feel comfortable working alongside 
others because they can build a foundation of trust by observing 
each other’s character and capabilities. However, the new 
introduction of robots in the workspace may lead to skepticism 
due to the absence of a biological and physiological connection, 
making it challenging to gauge their trust when working with a 
robot. On the other hand, robots must assess their human 
coworkers’ capabilities to determine if they can establish trust 
and successfully perform tasks. Trust is a fundamental aspect of 
human-robot collaboration [8]. Studying people’s trust levels 
when they work with robots can provide valuable insight into 
how we can integrate robotics into new settings, optimize 
workplace deployment, and improve robot configuration.  

In this study we employed a collaborative robot, with 7 
degrees of freedom, to conduct user studies in which subjects 
collaborated with the robot in a manufacturing task. The subjects 
wore four types of sensors to track and detect various 
physiological information during the human-robot collaboration 
process. These sensors tracked electroencephalography (EEG), 
electromyography (EMG), electrocardiography (ECG), and 
ocular data. While wearing these sensors, the robot would pick 
a part of the product and hand it to the human subject. The 
participant would then retrieve the part from the robot and rate 
their trust on a Likert scale questionnaire placed beside them. 
All multimodal physiological data and ratings were collected to 
develop our TrustBase. The physiological data allows us to 
visualize fluctuations in human trust towards the robot and any 
patterns, anomalies, or distinctions between participants and the 
robot throughout the collaboration process. 

II. THE TRUSTBASE 
In this study, we refer to our database management system 

(DBMS) as TrustBase, which is structured with a three-tier DBMS 
architecture comprising the User Layer, the Trust Logical Layer, 
and the Trust Physical Layer. As shown in Fig. 1. 

Jesse Parron 
School of Computing 

Montclair State University 
Montclair, USA 

parronj1@montclair.edu 

Thai Thao Nguyen 
School of Computing 

Montclair State University 
Montclair, USA 

nguyent10@montclair.edu 

Weitian Wang 
School of Computing 

Montclair State University 
Montclair, USA 

wangw@montclair.edu 

0601

20
23

 IE
EE

 1
4t

h 
A

nn
ua

l U
bi

qu
ito

us
 C

om
pu

tin
g,

 E
le

ct
ro

ni
cs

 &
 M

ob
ile

 C
om

m
un

ic
at

io
n 

C
on

fe
re

nc
e 

(U
EM

C
O

N
) |

 9
79

-8
-3

50
3-

04
13

-8
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
U

EM
C

O
N

59
03

5.
20

23
.1

03
16

01
4

Authorized licensed use limited to: Montclair State University. Downloaded on September 17,2024 at 16:00:13 UTC from IEEE Xplore.  Restrictions apply. 



The User Layer in TrustBase allows users to access 
information about HRC participants, questionnaire responses, 
and the collected physiological data. This layer is also essential 
during HRC sessions, both for users to submit their trust ratings 
on the questionnaire and for sensors to acquire the physiological 
data. Next, we have the Trust Logical Layer, which ensures that 
all collected data is appropriately organized within the 
database’s corresponding tables. Lastly, TrustBase also features 
a Trust Physical Layer where questionnaire responses are stored 
as integers in the QuestResponse table. For each set of data 
collected from the sensors, they are stored as BLOBs within 
each of their respective tables. Currently, TrustBase includes 
data from 65 user studies involving HRC trust. These studies 
encompass participants of different ages, genders, and education 
levels, and the number of participants continues to grow. 

 
Fig. 1. The Architecture of TrustBase. 

III. HUMAN-ROBOT COLLABORATION EXPERIMENTS 

A. Experimental Platform 
In this work, the Franka Emika collaborative robot is utilized 

through user studies as one of the main components of the HRC. 
As shown in Fig. 2, the robot has 7 degrees of freedom, which 
gives the arm the freedom to move more fluidly compared to 
arms with fewer degrees of freedom. The robot is designed to 
collaborate safely and seamlessly with humans in various tasks, 
akin to human-human collaboration [9]. During the user studies, 
a human-robot collaborative task was employed to examine the 
interaction between a human subject and the robot. More 
specifically, the task involved the robotic arm retrieving a 
segment of a model car and handing it to the human subject, who 
would then retrieve it from the parallel grippers. This task was 
iterated 27 times, with each iteration featuring variations of the 
robot performance factors such as velocity and position during 
the HRC. The positioning of the robot arm encompassed a range 
of heights including low, medium, and high. Furthermore, 
different distances — close, medium, and far — were 
incorporated into the task. The robot’s speed was also 
manipulated during the experiment, with three different settings: 
slow, medium, and fast.  

B. Sensors for TrustBase Data Collection 
The human-robot collaboration experiment involves a 

participant wearing four physiological sensors and answering a 
seven-point Likert scale questionnaire that ranks trustworthiness 

on a scale from very untrustworthy to very trustworthy during 
the interactive task. All physiological data is recorded during 
each interaction. Between interactions, the robot returns to its 
home position for four seconds while the user rates their trust 
level on the questionnaire. The robot then proceeds to its next 
sequence of joint states for another handoff. The data collected 
from the sensors includes Electroencephalography (EEG), which 
records electrical activity within the brain; Electromyography 
(EMG), which records electrical activity from muscles in the 
dominant arm used during the interaction; Electrocardiography 
(ECG), which records electrical activity produced by the heart 
(heartbeat); and ocular senses data.  

We utilized the Emotiv Epoc+ EEG helmet to collect 
electrical activity data from 14 regions of the brain. 
Additionally, we employed the MYO armband, equipped with 8 
metal plates to capture EMG data from the user’s upper forearm 
when activated. Along with the EMG data, we gathered the 
information on forearm motion using an inertial measurement 
unit (IMU). To collect ECG data, we implemented a wearable 
chest strap known as the Polar H10. We chose this heart strap 
due to its superior accuracy. Furthermore, we collected ocular 
data by deploying the Vive virtual reality headset to track users’ 
eye data. During the study, the headset was calibrated using the 
eye-tracking API and then switched to augmented reality mode. 
Participants wore the headset while performing the collaborative 
tasks in augmented reality, allowing us to collect nine distinct 
types of eye-related data, including gaze origin left eye, gaze 
origin right eye, left gaze, right gaze, eye openness, left eye pupil 
diameter, right eye pupil diameter, left eye pupil position, and 
right eye pupil position. An example of a configured participant 
can be seen in Fig. 2. 

 
Fig. 2. Experimental platform and subject configuration. 

IV. TRUSTBASE DATA COLLECTION 

A. Ocular Senses Data Collection 
The Vive headset is a virtual reality (VR) headset with the 

capability to track a user’s eyes when worn, allowing us to. 
utilize this feature and transform the virtual reality world into 
augmented reality (AR). In this context, we use augmented 
reality to track and store information of where the user is looking 
in the real world during the experiment. The headset requires a 
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program called SteamVR to create the virtual reality world. 
Using an API called Super Reality Runtime (SR_Runtime), the 
headset can calibrate and track eye information. We developed 
a program to parse the information from the SR_Runtime API 
to store all eye information related to the subject. During the 
hand-over interactivity, the augmented Vive headset tracks nine 
data points: time, gaze origin left eye (X, Y, Z), gaze origin right 
eye (X, Y, Z), gaze normalized direction left (X, Y, Z),  gaze 
normalized direction right (X, Y, Z), eye openness left and right, 
left eye pupil diameter, right eye pupil diameter, left eye pupil 
position (X and Y), and right eye pupil position (X and Y).  

B. Human Operation Motion Data Collection 
The MYO EMG armband utilizes eight metal plates, which 

read electrical impulse data from a user’s muscle contractions in 
the upper forearm. As a user performs the car-building tasks 
with the collaborative robot, the armband will record data as the 
user contracts their muscles, including the brachioradialis, flexor 
carpi radialis, palmaris longus, flexor carpi ulnaris, flexor 
digitorum superficialis, and pronator teres. Additionally, the 
MYO armband contains an inertial measurement unit (IMU). 
The IMU consists of an accelerometer, gyroscope, and 
magnetometer [10, 11]. This allows for the collection of the roll, 
pitch, and yaw of the user’s arm when moving around in free 
space.  

C. Electroencephalography Data Collection 
The Emotiv Epoc+ headset, an electroencephalography 

(EEG) helmet, utilizes fourteen nodes that are to be placed on 
corresponding regions of a subject’s scalp as shown in Fig. 3, to 
collect electrical impulses from the brain. These electrical 
impulses collect data from regions: AF3, AF4, F7, F8, F3, F4, 
FC5, FC6, T7, T8, P7, P8, O1, and O2, as depicted in Fig. 3. 

 
Fig. 3. Emotiv Epoc+ headset markings [12]. 

D. Heartbeat Data Collection 
To collect electrocardiograms, we used the Polar H10 heart 

strap (Fig. 4). Users wear the strap around their chest snugly to 
maintain consistent skin contact with the electrodes. This 
ensures the collection and transmission of electrical activity 
from the heart to the H10 node on the front of the strap. 

 
Fig. 4. Polar H10 strap and node reference model. 

E. Trust Rating Questionnaire  
To facilitate the acquisition of participants' responses during 

the human-robot collaborative task, we implemented a locally 
hosted questionnaire. The questionnaire solicited information 
such as compliance, gender, age range, education level, and trust 
level for each task with the robot. Collecting these demographics 
allows us to categorize and conduct further analysis, potentially 
revealing trends or distinctions between these categories. During 
the human-robot collaborative task, after receiving the part of 
the car model from the robot users rate their trust level utilizing 
a Likert scale, as shown in Fig. 5. After completing the human-
robot interaction, participants submit the questionnaire and 
demographic information to the database. Within the database, 
a participant’s responses would be recorded between 0 to 6, 
where 0 being very untrustworthy and 6 being very trustworthy. 

 
Fig. 5. The Likert scale for trust level rating.   

V. DATA ANALYSIS 
To present this data in a concise and meaningful manner, we 

grouped the data points about time. We chose to use 5-second 
intervals for grouping since each interaction occurred at 
different times during the experiment. However, each group still 
consisted of hundreds to thousands of lines of data, which made 
it challenging to visualize the data effectively. To address this 
issue, we calculated the mean of the data for each group. This 
consolidation allows us to create meaningful plots that depict the 
physiological features throughout the experimental process. All 
the data visualized and explained in the following sections is 
from one of our 65 participants.  

A. Human Eye Data Analysis  
Fig. 6. displays the degree of eye openness during the HRC. 

In this visualization, a closed eye is represented by a value of 0, 
while an open eye is represented by a value of 1, with any value 
in between indicating partial eye openness. According to a study 
conducted by Urasaki et al., “the frequency of blinking is not 
only due to dryness of the eyes but also due to several other 
factors, including mental fatigue” [13]. This indicates that the 
user’s blink rate has a potential connection into a theory known 
as cognitive load theory (CLT). To better comprehend the user’s 
eye data, we resampled the data into 3-second intervals and used 
an aggregation mode, which refers to the most frequently 
occurring values in a dataset. Since we resampled our dataset 
into subsets, this aggregation technique was applied to each, 
helping us to identify the most frequent variables. Upon 
reviewing the data, we observed a higher rate of the eye(s) being 
slightly, or fully closed at the beginning of the interaction. This 
may indicate an increased trust-related cognitive load, as users 
engage in cognitive functions such as memory processing.  

Very 
Untrustworthy

Untrustworthy
Somewhat 

Untrustworthy
Neutral

Somewhat 
Trustworthy

Trustworthy
Very 

Trustworthy
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Fig. 6. The subject’s eye openness for left and right eyes. 

B. Human Operation Motion Data Analysis 
The MYO armband has the capability to record 8 channels 

of EMG information in a person’s upper forearm. To visualize 
the data, we resampled the data into subsets, by grouping the 
data in relation to a 5-second time interval. We then calculated 
the mean of each group as shown in Fig. 7. Upon examining the 
data, it becomes evident that EMG 4 consistently exhibits the 
most spikes. This particular node is positioned near the flexor 
digitorum superficialis on the participant’s arm. These findings 
suggest that the user primarily engages the flexor digitorum 
superficialis and profundus when performing the human-robot 
collaborative task, indicating significant muscular activity when 
receiving the car model part. Additionally, we observed that the 
muscle activation increases as the user receives the part, with 
only three instances approaching a value of 600. These 
occurrences may represent higher-stress tasks, resulting in 
increased muscle usage.  

 
Fig. 7. The subject’s EMG signals in HRC. 

C. EEG Data Analysis 
The Emotiv Epoc+ headset collects EEG information from 

the subject, which is crucial for understanding brain activity in 
various regions during the HRC. Since the Epoc+ headset 
collected approximately 73,000 lines of data for each user, we 

resampled the data by grouping it into 5-second intervals and 
calculated the mean of each group. This analysis resulted in Fig. 
8, which illustrated six significant spikes in data during the first 
three minutes of the experiment. These spikes could be 
attributed to the user’s lack of trust and discomfort with the 
robot’s action, triggering a cognitive response and creating these 
spikes. This interpretation is supported by a comparison with the 
user’s questionnaire responses in Fig. 10. During the initial nine 
interactions that span approximately five minutes, questions 
four, five, and eight received significantly lower ratings 
compared to the others.  

 
Fig. 8. The subject’s EEG information in HRC. 

D. Heartbeat Data Analysis 
After visualizing the user’s heartbeat data collected from the 

Polar H10 Heartbeat monitor, we observe that initially, the user 
experienced a higher heart rate, peaking at around 108 beats per 
minute.  This increase in heart rate may be attributed to the novel 
experience of working with their new robot partner. As shown 
in Fig. 9, the user’s heart rate occasionally dropped to as low as 
76 beats per minute, possibly during moments when the robot 
was returning to its home position, and the participant was 
responding to the questionnaire. Subsequently, the heart rate 
would rise again.  Notably, the user’s heart rate got progressively 
calmer during the second half of the experiment, which occurred 
after the four-minute mark. During this period, the heart rate 
consistently remained below 100 beats per minute anymore. 
This could indicate an increase in trust and a reduction in 
participant anxiety. 

 
Fig. 9. The subject’s heartbeat information in HRC.   

E. Trust Ratings 
To identify factors contributing to low levels of human trust 

during the HRC, in Fig. 10, we can see that the first instance was 
the first interaction where the speed increased. This potentially 
made the user feel uneasy, as the robot suddenly shifted from a 
slow speed to a medium speed. The user may not have been 
expecting the transition, therefore producing a lower trust level. 
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Furthermore, the subsequent interaction was also a continuation 
of the medium-speed interactions, where the user was still 
potentially uneasy from the previous interaction. We can see the 
user regains some trust, but not as much as when the robot was 
interacting at a slower speed. As the user advances through the 
HRC, we can see around question 18 the user starts to lose a bit 
of trust, as the robot progresses at a faster speed. Although the 
user gained a bit of trust from the lower height interactions, the 
user again may have felt uneasy as it increased in height and had 
a far distance. Afterwards, the user gained more trust as the robot 
gained distance and was closer, and the height was easier for the 
user to adjust to. 

 
Fig. 10. The subject’s trust levels for 27 robot performance factors in HRC. 

VI. CONCLUSIONS AND FUTURE WORK 
In this work, we have created a multimodal TrustBase 

through user studies in human-robot real-world collaborative 
contexts. This database will help both researchers and industrial 
workers have a comprehensive understanding of what factors 
may affect people’s trust in robots during collaborative tasks. 
The data of the TrustBase includes EEG, EMG, ECG, and ocular 
senses are collected from four types of physiological sensors. As 
a user performs the human-robot collaborative task, the user’s 
physical information is recorded, as well as the completion of a 
seven-point trust rating Likert scale. With this information, we 
were able to visualize the user’s physical and cognitive 
intentions and correlate them to their trust rating. This 
information gave further insight into whether the participants 
were truthful in their trust rating or were pressured by social 
constructs around them. Future work would involve a dynamic 
approach to our human-robot collaboration experiments, 
allowing for new motions and a different experience for every 
user. In addition, more participants will be recruited to enrich 
the data of our TrustBase. To view the data in a better way for 
TrustBase users, we will investigate and develop new metrics, 
data features, and visualization methods. 
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