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Abstract—Many Al platforms, including traffic monitoring
systems, use Federated Learning (FL) for decentralized sensor
data processing for learning-based applications while preserving
privacy and ensuring secured information transfer. On the other
hand, applying supervised learning to large data samples, like
high-resolution images requires intensive human labor to label
different parts of a data sample. Multiple Instance Learning (MIL)
alleviates this challenge by operating over labels assigned to the
’bag’ of instances. In this paper, we introduce Federated Multiple-
Instance Learning (FedMIL). This framework applies federated
learning to boost the training performance in video-based MIL
tasks such as vehicle accident detection using distributed CCTV
networks. However, data sources in decentralized settings are
not typically Independently and Identically Distributed (IID),
making client selection imperative to collectively represent the
entire dataset with minimal clients. To address this challenge, we
propose DPPQ, a framework based on the Determinantal Point
Process (DPP) with a quality-based kernel to select clients with the
most diverse datasets that achieve better performance compared
to both random selection and current DPP-based client selection
methods even with less data utilization in the majority of non-IID
cases. This offers a significant advantage for deployment on edge
devices with limited computational resources, providing a reliable
?olution for training AI models in massive smart sensor networks.

Index Terms—Federated Learning, Multiple Instance Learning,
Determinantal Point Process, Non-IID Distribution, Traffic Anal-
ysis, Crash Detection, Smart Transportation.

I. INTRODUCTION

In recent years, video-based Al platforms have seen prolific
growth and unprecedented applications across diverse sectors.
Smart transportation systems, by using Autonomous Vehicles
(AVs) and Al-based traffic control platforms, are revolution-
izing mobility with enhanced efficiency and safety[1, 4, 5, 6,
9, 27]. Specifically, accident detection plays a significant role
in ensuring safety during unforeseen circumstances. Prompt
detection of accidents enables emergency services to respond
on time, while also alerting ongoing traffic to prevent further
catastrophic incidents. However, even with millions of decen-
tralized CCTV cameras across the US infrastructures, accident
detection remains an often overlooked area [29, 31].
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This paper focuses on developing data selection strategies
to construct generalizable learning-based models for traffic
analysis that require access to a minimal number of roadside
units (RSUs) that collectively best represent the entire traffic.
Building learning-based inference and control models typically
requires access to a sheer number of data sources (roadside
cameras, in our case) to collect a massive amount of data to
represent various situations. Our approach of selective access to
the best set of data sources not only minimizes the processing
and communication costs but also facilitates the development
of reliable models with limited access to a handful of roadside
infrastructures.

Centralized data storage and processing usually face several
privacy challenges. While training foundational models neces-
sitates extensive data collection of these sensitive data, it is
almost impossible to gather this volume of data without po-
tentially infringing upon user privacy with current technologies
[21, 32]. The risk of data breaches and unauthorized access is a
constant threat in such situations [11, 30]. Secondly, centralized
processing can be inefficient due to the high computational and
storage demands placed on central servers, also an issue of
latency in data transfer when exchanging a massive amount
of data, which prevents the updating capabilities of these
systems|[18].

For these reasons, most Al platforms depart from central
learning and bare minimum learning on edge servers towards
Federated Learning (FL), with the core idea of sharing local
model parameters to implement a global model instead of di-
rectly sharing raw data. Using this system, each client performs
training on its own dataset, and then shares model parameters
to build an inclusive global model that can operate in wide
geographic areas with varying types, rates, and frequency of
crash types.

On the other hand, Multiple Instance Learning (MIL) is a
weakly supervised learning paradigm that trains models on bags
of data samples that share the same label, which can be applied
to various fields such as medical image classification and
anomaly detection [28, 36, 37]. It also has gained widespread
use in video-based incident detection applications by treating
each video frame as an individual instance and the entire video
as a bag of such instances [3, 26]. Furthermore, efforts have
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Fig. 1. The architecture of FedMIL. Compared to classical central learning, the training process is broken down to the client level to prevent massive data

exchange. In advance, with a pre-trained CNN model to extract the video feature and a lightweight MIL model for bag-level classification, the computational

cost for edge devices is greatly reduced.

been made to enhance these models by focusing on multi-scale
continuity [13]. This enhancement is based on the understand-
ing that anomalous events in real-world videos typically unfold
continuously, necessitating their evaluation across the entire bag
of instances. The use of multiple instance learning significantly
reduces the need for extensive data preprocessing and feature
engineering, which reduces both the labor cost and the demand
for computational resources to train Al models on edge devices.

To combine both advantages, we propose FedMIL, the
federated version of MIL, as a technical contribution. As
shown in Figure 1, MIL provides the benefit of developing
weakly supervised models to reduce the computation cost
on the client side, and FL provides the benefit of avoiding
massive data exchange. Different than another federated MIL
setting that deploys models on only a few sites for weakly-
supervised image classification in [24], our study focuses on
the video-based analysis among hundreds of data nodes, where
the total data flow and computational cost is thousands of
times than image-based tasks. Furthermore, compared to image
classification tasks, our proposed framework can be extended
to other tasks that are more practical, such as video anomaly
detection, traffic volume analysis, human action recognition,
and deepfake detection [6, 23, 26].

Although the combination of FL and MIL eliminates the
need for massive data exchange and reduces computation power
requirements for edge devices for complex tasks, orchestrating
model parameter exchange among a sheer number of clients
might not be feasible for practical reasons. For instance, the
FL scheduler system only allows a limited number of com-
munication ports at one time, and the network bandwidth is
highly constrained. Meanwhile, due to the inherent diversity of
data across different clients [35], the rate and types of crashes
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can be extremely different across different cameras in the real
world. For instance, an RSU located in a less crowded area or a
safe zone might not witness frequent accidents, thus the locally
trained model may fail to detect accidents if one occurs [6].
Thus, these non-IID data distributions may greatly impact the
model’s performance due to weight divergence issues [7, 25].

Therefore, developing client selection strategies to reduce the
negative impact of uneven data distribution, and improve the
performance under constrained communication or limited local
processing power becomes a key challenge in this research area.

Intuitively, selecting RSUs with more diversity in terms of
data and label distributions is more desirable. In recent studies,
the Determinantal Point Process (DPP) achieved significant
gains in federated learning applications for capturing diversity
[19]. DPP enforces repulsion to alike items and prioritizes
selecting clients whose data distributions are varied, aiming
to reduce redundancy in the training process. With classical
DPP-based client selection, the central model tends to collect
model parameters from clients with more diverse data, avoiding
convergence at lower accuracy [34].

We take this step further by proposing a power-of-choice [8]
version of DPP embedded as a quality matrix to achieve the best
of both diversity and loss gradients, which makes the selection
even more robust[8]. Thus, the second contribution of this work
is the demonstration of the efficacy of selecting a diverse subset
of clients that accurately represent the overall dataset, which
ensures the results are robust and broadly applicable across
various clients in real-world settings.

II. PROBLEM FORMULATION

The key aspect of the problem in this study is the data
distribution among clients. While IID sampling offers a baseline
approach where each client receives equitable and balanced
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representative samples, non-1ID sampling models the skewness
in data distribution, which aligns more closely with real-world
data distribution scenarios[20, 26]

To simulate non-IID distribution, we introduce class and
feature-space-based imbalance, as illustrated in Figure 2. For
the first type, we use power-law to assign imbalanced crash
labels to each client [2, 16, 22]. This mirrors the situations
where some RSUs may observe crashes or specific types of
crashes more frequently than others. For the second type, we
introduce an underlying distribution-based imbalance such that
each client receives a subset whose data type is imbalanced
according to a Dirichlet distribution [20]. For instance, the
traffic compositing on a highway contains more trucks than
at a city intersection. Therefore, their features extracted from
video frames may follow statistically different distributions.

Specifically, if labeled video pairs are shown by (V;,y;) =
([F;(1), Fi(2),- -, Fi(M)],y;) with V; being a video clip,
F;(j) being its jth frame, and v;, being the class label, then
we impose imbalance to both V; and y;.We apply power-law
to class labels y; and Dirichlet distribution to samples V; as
detailed next, to divide the data into non-IID subsets among
clients.

A. Label-based Imbalance (Type I Non-1ID)

We follow the imbalance strategy for the binary distribution
by changing the ratio of class labels for each client. We vary
the ratio of class labels client-wise by tuning the power-law.

Specifically, we use:

n,=V-(p+H)" (1)

where n,, is the proportion of class 1 counts for client p, V and
H denote the vertical and horizontal scaling, respectively, and
the exponent /3 is a tuning factor to control the the ratio of class
labels. We fix the horizontal and vertical scaling parameters to
certain values to account for the unequal count of either of
the classes before beginning the distribution, then vary 3 to
generate different levels of disparity. To add non-uniformity in
label assignment, we select a hold-out set from both classes in
the two selected distributions of /3, so some clients are assigned
only one label type. Here, we assume binary labels for crash
detection, but it easily extends to multi-level cases.

B. Distribution-based Imbalance (Type Il Non-1ID)

While class-based imbalance provides disparity of labels,
the distribution-based imbalance better captures the disparity
among the attributes of video frames that represent real-world
factors, such as climate conditions (sunny, snowy, and cloudy),
road features (off-road, highway, or regular), environment (ur-
ban and rural), light conditions, etc.

The process includes the following steps. Assume a dataset
offers video clips V; and a set of feature vectors ¢y (F}) for
each frame F} extracted using a pre-trained VGG network.
These feature vectors are clustered using k-means [14] to
identify C' = 10 different underlying classes as shown in Fig.
2. Then, we perform majority voting on the obtained feature
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vectors to label the sample (aka video clip V;). Finally, we
apply Dirichlet distribution to create the imbalance correspond-
ing to these cluster labels. We follow the strength variation
of this distribution as followed by [20], where we sample
i, = [ng,n2, -, nS] ~ Dir(ii; @) using

C
o 1 1
Dir(; @) = 5@ 1:[1 ny 2
and allocate n;, proportion of the instances of class ¢ to client
p, where Dir(-) denotes the Dirichlet distribution and &
[a1, o, -, a¢] denotes the concentration parameter (o, > 0).
Here, B(&) is the multinomial beta function given by:

C
F c
B(@) = Hc:1c (ce) 3)
r <Zc:l ac)
where L is the gamma function given by I'(a.) = (a. — 1)

The major advantage of this approach is that we can change
the imbalance level by varying the concentration parameter c.
The smaller the «, the more unbalanced the partition.

III. ALGORITHM DESIGN

Our contribution can be divided into two folds. First, we
optimized the existing FL framework to better serve the MIL
specification. In our case, the FL architecture is specifically
designed for video analysis, where each frame (instance) has
multiple features. Second, we propose the client selection
algorithm based on the DPPQ method. Proposed by [19], the
quality-diversity decomposition is the special reparameteriza-
tion of the normal DPP-based method. This method has been
proven to achieve a significant gain in video summarization
applications [12]. We show that it can be applied to similar
tasks, such as the video classification in this work.

A. Federated Learning Framework

1) Individual Client Model and Training: Each client p
trains the model on their local data D,, by minimizing the local
loss function L,(w) using stochastic gradient descent:

Dy
1 2\ -
Ly = 5= > Li(gu(Z), §x) “
|Dy| =

where L, is the loss function for each client p. g, is the label,
Zk is the bag level representation(vector in our case) and Ly, is
the loss for each sample k, and g,, is the model parameterized
by weights w.

2) Global Aggregation: After local training, clients send
their model weights w, to the central server. The server
performs a weighted average to update the global model:

P

t+1
Wy *Z

p=1

Np ¢

— 5
) (%)
where, w!*! is the aggregated global model ready for ¢ + 1-th
round, n, is the number of samples at client p, n is the total
number of samples, and ¢ denotes the current round.
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Fig. 2. Simulating real-world data distribution: (a) the data distribution of different clients is imbalanced directly at the class level; (b) data imbalance based on
Dirichlet distribution over underlying data clusters, and (c) K-means clustering on VGG features to identify underlying clusters, where (i) represents the video
condition under snow day, (ii) represents the night snippets, (iii) is the urban recording, and (iv) represent other scenarios.

B. Model Design for FedMIL

We apply AttentionMIL [15], A multi-instance learning
model that processes bags of instances. It assigns attention
weights to instances, enabling the model to focus on the most
informative instances in each bag.

Thus, for the weighted average of instances where the
image feature determines the weights, the extracted embeddings
H = {hy,...,hg} are the bag of K embeddings for K
samples(which have n instances each) that are the output of
the feature extractor (which is a Fully connected layer). Thus,
as proposed by [10, 15], the MIL Pooling or the bag-level
aggregation to form the bag representation for the kth sample
is given by:

= amhm (©)
m=1

where a,, is the gated attention with tanh(-) non-linearity given

by,

exp {wT (tanh (Vi_i;) ® sigm (Uﬁ;)) }
> 1 exp {WT (tanh <Vﬁ;r) © sigm (Uﬁ;—)) }

where U € REXM are parameters, ® is an element-wise
multiplication and sigm(-) is the sigmoid non-linearity. The
gating mechanism introduces a learnable non-linearity that
potentially removes the troublesome linearity in tanh(-).

The Attention-based MIL handles the multi-instance nature
of the video data. We utilize the stochastic gradient descent
(SGD) optimizer with a Lookahead mechanism for robust
optimization [33]. The model was trained using a cross-entropy
loss function suitable for the binary classification task (accident
vs. non-accident). Thus, the global loss function is given by:

O

Am =

- n
S L . )
! p=1 ZPEP np .
where P is the total number of selected clients, L,, is the loss
for p-th client defined in 4 (however Z;, now is the attention-
based bag-level aggregation defined in 6 for k-th bag). Based

®
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on this, we formulate the Federated learning architecture to
train multiple clients in a decentralized fashion.

C. Client Profiling

Assume each sample of the dataset is represented as an
image feature. Considering the p-th client, let the k-th sam-
ple be represented as zj. Each sample contains 50 features
corresponding to the image frame. Then, the i-th feature
corresponding to i-th frame undergoes the following feature
extraction /; = ReLU(Wx; + b). Note that this intermediary
feature extractor helps further ensure security, which makes
them robust to inference-based attacks. Thus, for the k-th
sample, we have hy = Hl, .. .,ﬁn where n = 50 is the
total number of frames in a single video sample. Since we
employ SGD, the batch size is the total number of samples for
each client after the distribution. Thus for each pth client with
dataset D,,, we compute the average feature profile hy given
by:

1 |Dp|
hy = —— > hg ®
SURPY

Further, we profile the average loss of each client as follows,

1 |Dp|
Ly =157 > L (10)
Dol =

where L,, is the loss profile for the p-th client and Ly, is the
loss value computed for each sample k.

D. Client Selection via Quality-Diversity Decomposition

Let Y = {1,2,--- , N} be the ground set of N clients. We
then profile each p-th client C, using the average output of their
feature representation given by Eq. 9 and their average loss
given by Eq. 10, which are the only data shared to the central
server as their representative information and only during the
initialization phase.

With this information, the central server first computes the
similarity matrix S = {s,:}cxc as implemented in [19, 34]
using the following:
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5%, — min(SY) ) an

sre=1- (maX(SO) — min(S°)
where, 57, = ||h, — h[, with h,., h,Vr,teC, and S is the
full difference matrix of every client combination defined by
{s)ioxe.
Similarly, the quality matrix is defined as the diagonal matrix
of loss values Ly, pertaining to each client C), € ) i.e.

@ 0 - 0
0 g -+ 0

Q=1. . . . (12
0 0 - aqv

where, ¢, for p € {1,2,--- , N} is the min-max scaled quality

value of the p-th client with lowerbound e given by eq 13. This
is important to prevent a loss value of O that ruins the positive
semidefinite property of the kernel matrix.

L _Lmin
G =c+ (7];;% % (1- e)) (13)

We finally calculate the kernel matrix given by L =

QSTSQ. And following [19], we can express the probability
of selecting subset GG from ) as,

Pr(G CY) x det(La), (14)

Thus, from Eq. 14, we can infer the select clients with higher
diversity-quality score. i.e. the loss value of the client L, and
the diversity of the extracted features hy. Thus our method
incorporates a selection of clients with higher loss values and
are similarly highly diverse. Here, we sample P clients and
denote their index set as G. The more detailed working of the
algorithm is mentioned in Algorithm 1.

Algorithm 1 FL-DPPQ: Federated Learning with DPP-based
Quality Diversity Decomposition

Input: Clients with global model parameters wém having their own
data distributed using some non-IID distributions defined in Eq. 3
and 1
for each client ¢ € ) do

Calculate the average loss and average of extracted features using
Egs. 10 and 9 and upload it to the server.
end for
The Central Server calculates the similarity matrix S according to
Eq. 11 and quality matrix Q according to 12 and constructs k-DPPQ
and selects G of ) clients with probability given by Eq. 14.
fortin 1: 7T do
for each client ¢ € G do
for each local epoch ' € 1: T do
Update wi using back prop. while minimizing the local
objective function given by Eq. 4.
end for
Send updated weight w to the server.
end for
Central server performs the weight aggregation using Eq. 5 and
distributes the updated global model to all the clients.
end for
Output: The trained Global Model wf,T).

TABLE 1
MODEL COMPARISON IN MINIST

Category  Test Accuracy
Random 0.7869

DPP 0.8370

DPPQ 0.9084 (+8.5%)
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Fig. 3. Training comparison in MNIST dataset with Type I Non-IID distribu-
tion of strength (o = 0.5) and 100% data utilization

IV. EXPERIMENTS

We show the proposed work on CCD, a typical multi-
instance annotated dataset, and we compare the model per-
formance under different settings (e.g., data utilization rate,
strength of data imbalance, and non-IID type). The results are
averaged over 20 runs. The model was evaluated on a test set
with performance metrics including loss, accuracy, F1 score,
and Area Under the Receiver Operating Characteristic Curve
(AUC-ROC) [17]. The result shows that model performance
varies in terms of data distribution type. Moreover, our im-
plementation of FedMIL improved the model performance by
selecting quality clients via the proposed DPPQ, especially
when the data utilization decreased.

a) Car Crash Dataset (CCD) for Traffic Accident Analy-
sis: The Car Crash Dataset (CCD) is a specialized collection
for traffic accident analysis. It comprises 1,500 dashcam-
captured accident videos and 3,000 normal videos from
YouTube and the BDD100K dataset, each containing 50 frames
at 10 fps [3]. Advanced feature extraction is employed for all
videos using VGG-16 for frames and bounding boxes, detected
via Cascade R-CNN with a ResNeXt-101 backbone. Thus, each
video is annotated with frame-level binary labels (crash, no
crash)

b) Evaluation on MNIST Dataset: To validate the perfor-
mance of the proposed DPPQ method in general, we test our
method on the MNIST dataset that has 10 different classes. We
perform an average of 10 runs for extreme non-IID data distri-
bution with Type I Non-IID distribution of strength (o = 0.5)
and full data utilization (A = 1.0). As shown in table I, the
proposed DPPQ outperforms both random selection and DPP
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Fig. 4. Model performance comparison in terms of data imbalance based on class labels.

TABLE II
TYPE I NON-IID MODEL COMPARISON

| Strength = 0.2 |

Strength = 0.5 |

Strength = 0.8 | Strength = 1.0

Data Utilization  Method | aucs f1 test acc | aucs f1 test acc | aucs f1 test acc | aucs f1 test acc
0.5 DPPQ 0.9443  0.8689 0.8703 0.9411  0.8675 0.8700 0.9425  0.8645 0.8658 0.9353  0.8614 0.8621

DPP 0.9394  0.8619 0.8632 0.9425 0.8660 0.8676 | 0.9425 0.8638  0.8624 0.9382  0.8581 0.8589

Random | 0.9404 0.8649 0.8657 0.9386  0.8626  0.8632 0.9277  0.8473 0.8485 0.9335 0.8507 0.8463

0.8 DPPQ 0.9449  0.8738 0.8773 0.9535 0.8794 0.8812 0.9505 0.8799 0.8791 0.9511 0.8777 0.8765

DPP 0.9432  0.8684  0.8720 0.9524  0.8770 0.8778 0.9576  0.8730 0.8712 0.9462  0.8700 0.8695

Random | 0.9503 0.8736  0.8735 0.9578 0.8884  0.8880 | 0.9441 0.8652  0.8652 0.9488  0.8755 0.8754

1.0 DPPQ 0.9564  0.8859  0.8835 0.9568  0.8851 0.8854 | 0.9508 0.8806  0.8791 0.9508 0.8779  0.8773

DPP 0.9579  0.8843  0.8829 0.9585 0.8848 0.8861 0.9562  0.8833 0.8831 0.9523  0.8784  0.8768

Random | 0.9562 0.8829  0.8822 0.9584 0.8918  0.8935 0.9518  0.8733 0.8717 09517 0.8756  0.8726

with a considerable gain. Furthermore, Figure 3 shows that
DPPQ can reach a higher accuracy in the training process,
which demonstrates the benefit of client selection with quality
consideration.

A. Type I Non-1ID Evaluation

Figure 4 shows the comparison between simple DPP-based
sampling as presented in [34], random and our DPPQ-based
sampling in the CCD dataset. The different strength values in
this case are the tuning parameter for 3 as defined in Eq. 1 with
the data utilization of 50%. From the results, we can infer that
DPPQ achieved faster convergence than DPP when analyzed
over a strength value of 0.2. We also see random performs
faster but fails to maintain the same accuracy as DPPQ after the
15th epoch. We observed similar faster convergence in strength
value of 0.8, achieving nearly 2% accuracy gain compared to
random selection.

B. Type Il Non-IID Evaluation

Figure 5 shows the comparison between random selection,
DPP, and the proposed DPPQ method in the CCD dataset
under the Dirichlet distribution with a data utilization rate of
50%, where the strength represents the data imbalance ratio. In
advance, o = 0.2 represents extremely imbalanced, a = 0.5
represents moderately imbalanced, o = 0.8 represents almost
balanced, and o = 1.0 indicates the data volume for each client
is almost even.

As a result, the overall performances of all models are
dropped due to the lower data utilization. Nevertheless, DPPQ
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outperforms DPP and random selection regardless of the data
imbalance ratio. This is a significant advantage when the
client’s device is busy or has limited computation resources.

Tablelll on the other hand, shows the complete results
of all experiments. As the data utilization is controlled to
100%, DPPQ shows identical performance to the DPP and
random selection when Dirichlet strength « is 0.5 and 1.0,
this is because the full-utilized client data enhanced the overall
diversity, and the reduction of data imbalance (increase of
«) will improve all model performance, especially the ran-
dom selection. However, when data become more imbalanced
(a = 0.2), the proposed DPPQ shows better performance than
DPP and random selection. This is because the proposed DPPQ
not only considered the data volume but also the data quality
of each client. With the data utilization dropped to 80%, the
overall performances of all models are dropped due to the lower
data utilization. Nevertheless, the proposed DPPQ and DPP still
retain a better performance than the random selection.

C. Data Utilization Analysis

Figure 6, on the other hand, shows the model performance
in terms of data utilization ratio. The result is using type-II
non-IID (Dirichlet distribution) with strength o« = 0.5. Since
the proposed DPPQ is optimized for Dirichlet distribution, its
performance is better and more stable than DPP and random
selection. As the data utilization keeps dropping, the proposed
DPP still outperforms random selection, proving its ability for
low data-flow scenarios.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on September 17,2024 at 16:11:28 UTC from IEEE Xplore. Restrictions apply.



Type Il Non-IID, strength=0.2 Type Il Non-IID, strength=0.5

Type Il Non-IID, strength=0.8 Type Il Non-IID, strength=1.0

0.90
0.88 4

0.88

0.86 4

|
@
3

0.84 1 0.84

Test Accuracy
Test Accuracy

=== Random, A =0.5

Random, A =0.5

Test Accuracy

0.88 0.88

o
@
o
e
@
o

Test Accuracy

0.84

o
®
by

0.82 —-==- Random, A=0.5 Random, A =0.5

DPPQ, A=0.5 DPPO, A=0.5 DPPQ, A=0.5 DPPQ,A=0.5
—— DPP,A=0.5 —— DPP,A=05 —— DPP,A=0.5 —— DPP,A=0.5
0.80 T T o ™ 0.80 o T T o 0.80 T ™ ™ ™ 0.80 T g T T
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Global Rounds Global Rounds Global Rounds Global Rounds
Fig. 5. Model performance comparison in terms of data imbalance based on Dirichlet distribution.

TABLE III
TYPE II NON-IID MODEL COMPARISON

Strength = 0.2 |

Strength = 0.5 |

Strength = 0.8 | Strength = 1.0

Data Utilization  Method | aucs f1 test acc | aucs f1 test acc | aucs fl test acc | aucs fl test acc
0.5 DPPQ | 0.9389 0.8630 0.8660 | 0.9411 0.8676 0.8713 | 0.9439 0.8669 0.8683 | 0.9444 0.8703 0.8710
DPP | 09316 0.8538 0.8561 | 0.9378 0.8604 0.8596 | 0.9465 0.8538  0.8643 | 0.9437 0.8683 0.8693
Random | 0.9276 0.8531 0.8563 | 09378 0.8579 0.8630 | 0.9436 0.8685 0.8670 | 0.9374 0.8628 0.8658
0.8 DPPQ | 0.9475 08719 08733 | 09532 0.8789 0.8782 | 0.9563 0.8837  0.8855 | 0.9525 0.8782 0.8792
DPP | 09485 0.8705 0.8705 | 0.9534 0.8786 0.8776 | 0.9574 0.8802 0.8809 | 0.9525 0.8779 0.8785
Random | 0.9413  0.8603 0.8589 | 0.9510 0.8753 0.8761 | 09539 0.8825 0.8820 | 09511 0.8751 0.8765
1.0 DPPQ | 0.9581 0.8857 0.8860 | 0.9564 0.8870 0.8870 | 0.9527 08815 0.8842 | 0.9575 0.8871  0.8880
DPP | 09531 0.8816 0.8830 | 0.9568 0.8851  0.8858 | 0.9586 0.8853  0.8856 | 0.9602 0.8878  0.8880
Random | 0.9465 0.8710 0.8694 | 0.9543 0.8844 0.8856 | 0.9560 0.8869  0.8874 | 0.9544 0.8825 0.8844
S retains identical performance even though the data become
0:88 extremely imbalanced. More importantly, the proposed DPPQ
0.86 model performs better than classical DPP and random selection
S o even with less data utilization. Our implementation addresses
333 0.82 the challenges of both non-IID data distributions and limited
% 080 computation power in practical applications in the real world.
" T In advance, the proposed FedMIL framework can be easily
_— extended to more practical video-based tasks such as video
= anomaly detection, traffic volume analysis, human action recog-
10% 20% 30% 40% 50% 60% 70% 80% 90% 100% nition, and even deepfake detection, with ensured privacy and
Data Utilization Ratio security.
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