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Abstract—Sharing and joint processing of camera feeds and
sensor measurements, known as Cooperative Perception (CP),
has emerged as a new technique to achieve higher perception
qualities. CP can enhance the safety of Autonomous Vehicles
(AVs) where their individual visual perception quality is compro-
mised by adverse weather conditions (haze as foggy weather),
low illumination, winding roads, and crowded traffic. While
previous CP methods have shown success in elevating perception
quality, they often assume perfect communication conditions and
unlimited transmission resources to share camera feeds, which
may not hold in real-world scenarios. Also, they make no effort
to select better helpers when multiple options are available.

To cover the limitations of former methods, in this paper,
we propose a novel approach to realize an optimized CP under
constrained communications. At the core of our approach is
recruiting the best helper from the available list of front vehicles
to augment the visual range and enhance the Object Detection
(OD) accuracy of the ego vehicle. In this two-step process, we first
select the helper vehicles that contribute the most to CP based on
their visual range and lowest motion blur. Next, we implement
a radio block optimization among the candidate vehicles to
further improve communication efficiency. We specifically focus
on pedestrian detection as an exemplary scenario. To validate our
approach, we used the CARLA simulator to create a dataset of
annotated videos for different driving scenarios where pedestrian
detection is challenging for an AV with compromised vision. Our
results demonstrate the efficacy of our two-step optimization
process in improving the overall performance of cooperative
perception in challenging scenarios, substantially improving driv-
ing safety under adverse conditions. Finally, we note that the
networking assumptions are adopted from LTE Release 14 Mode
4 side-link communication, commonly used for Vehicle-to-Vehicle
(V2V) communication. Nonetheless, our method is flexible and
applicable to arbitrary V2V communications

Index Terms—Cooperative perception, connected autonomous
vehicles, 3d object detection, intermittent connectivity, vehicular
communications.

I. INTRODUCTION

Cooperative Perception (CP) represents a new paradigm in
Autonomous Vehicles (AVs) by mitigating the limitations of
individual vehicle perception [1], [2]. CP involves sharing
and the integrative processing of camera feeds and sensor
readings by multiple AVs within a network, enabling them
to collectively enhance their situational awareness. The use of
CP stems from the fact that the reliable operation of AVs can

This material is based upon work supported by the National Science
Foundation under Grant Number CNS2204721 and MIT Lincoln Lab under
Grant Number 7000565788.

face significant challenges due to perception errors in adverse
weather conditions and complex traffic scenarios, where indi-
vidual vehicle perception systems may be compromised. CP
has recently emerged as a promising solution to enhance AV
safety by leveraging collaborative information sharing among
vehicles.

A typical CP approach employs Vehicle-to-Vehicle(V2V)
communication technology to share sensory data among vehi-
cles for collective processing [3]-[5]. To realize the collective
processing of shared visual information, there exist three
mainstream fusion methods, as illustrated in Figure 1. The
first approach is early fusion, where the raw captured images
by multiple vehicles are translated to the same field of view
through projection transformation, and then mixed to obtain
a single high-quality image to be used by the downstream
learning-based tasks such as object detection (OD), depth
estimation, reinforcement learning (RL), etc. (Fig. 1 (a)). The
main issue of this approach is the sensitivity of the fused image
to the parameters of projection transformation. The second
approach is late fusion, where each image is first processed
by the learning-based task, then the obtained results are mixed
(Fig. 1 (b)). For instance, one may execute OD on individual
images to obtain object classes and bounding boxes, to be
fused to get more precise results. The advantage of these two
methods is their easy integration with existing deep learning
(DL)-based visual processing methods [6]. The third approach
is more intricate and involves developing new DL architectures
that jointly process multiple image/video channels(Fig. 1 (c)).
This method can yield better results for specific tasks but
requires custom-designed DL architectures that can limit their
applicability. In this work, we use the late fusion method for
its simplicity and practicality.

While existing CP methods have demonstrated success in
addressing these challenges, most of them have taken the
unrealistic assumptions of perfect communication conditions
and unlimited transmission resources [3], [4], which may
not align with the real-world scenarios. To the best of our
knowledge, there exist only two works that consider imperfect
communications in CP. First is [7], where the authors present
a vision transformer, V2X-ViT, along with a CP framework
that utilizes Vehicle-to-Everything (V2X) communication to
improve AV perception in terms of 3D object detection. While
the authors try to address V2X challenges, their primary
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focus is on communication delays, overlooking other essential
communication aspects (packet drop rate, throughput, ...).
Their proposed architecture aimed to enhance robustness to
delay in the network.

Likewise, [8] intends to address the impact of imperfect
V2X communication in cooperative perception for 3D object
detection. They proposed an innovative approach with an
LC-aware Repair Network (LCRN) and a V2V Attention
Module (V2VAM) to effectively mitigate the adverse effects
of imperfect communication. They significantly improved the
detection performance demonstrated on the OPV2V dataset.
However, they only tried to adjust their method for varying
channel quality without incorporating channel quality into the
vehicle selection process.

Projection
Transformer

Object
Detection

Projection
Transformer
|

Projection

|
|
|
| Transformer

Projection
Transformer

Projection
Transformer

Object
Detection

Projection
Transformer

Custom-built
Multi-channel
Object
detection

Object
Detection

Fig. 1: Three fusion approaches used in cooperative per-
ception, including (a) early fusion, (b) late fusion, and (c)
integrative analysis.

We propose a novel approach to CP to overcome the
limitations of the previous methods by enabling selective
communication, where the helper vehicles are selected based
on their visual information as well as their channel quality. The
networking parameters are adopted from the LTE Release 14
Mode 4 side-link communication used for V2V communica-
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tion. By doing so, we achieve enhanced situational awareness
through higher CV-based detection accuracy under imperfect
and constrained communication scenarios, compared to CV
methods that blindly or randomly selected helper vehicles. In
this work, we select helper vehicles based on their contribution
to extending the visual range of the ego vehicle, considering
their geo-locations as well as their imperfect channel condi-
tions. Additionally, we take into account the vehicles’ relative
velocities, because the motion blur impacts their imaging
quality [9]-[11] and consequently the ultimate accuracy of the
developed CP-based object detection accuracy.

(b)

Fig. 2: Two scenarios that may occur on the road are: (a) in
foggy weather, helper vehicles closer to pedestrians (Green
and Purple) can share their cameras with the ego vehicle (Red
vehicle), and (b) on a curved road, a helper can detect an
accident and share its camera with the ego vehicle.+

To adopt more realistic assumptions, we note that trans-
mission errors in C-V2X mode 4 arise from different factors,
including (1) using half-duplex transmission, (2) receiving
signal strengths below the sensing threshold, (3) propagation
effects, and (4) packet collisions [12]. In addition to consid-
ering channel quality in selecting the best helper vehicles, we
also enhance the resulting communication efficiency through
radio block optimization among the selected vehicles [13].

To investigate the effectiveness of the proposed approach,
we concentrate on pedestrian detection as an exemplary sce-
nario. However, the proposed framework is generic and can be
used for other applications, such as speed estimation, lane de-
tection, vehicle classification, traffic sign detection, traffic light
interpretation, etc. Through the generation of frames using the
CARLA simulator [14], annotation of data, and compilation of
a comprehensive dataset, we conduct experiments to validate
the performance of our proposed method.

The results obtained from our two-step optimization pro-
cess, present notable improvements in CP by selecting the
best helper to increase the ego vehicle’s visual range.
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The rest of the paper is organized as follows. In section
2, a more inclusive review of related work is presented. In
section 3, the system model is presented. Finally, the proposed
method is evaluated through intensive simulations in section
4, followed by concluding remarks in section 5.

II. RELATED WORKS

A. CAVs with Imperfect Communications

V2V LTE Release 14 presents advancements in V2V com-
munication, enhancing connectivity and communication pro-
tocols for improved safety and efficiency in vehicular net-
works. However, there are limitations in V2V communications,
that that should be considered when developing networked
service provisioning systems. Authors in [12] evaluate the
communication performance of C-V2X or LTE-V Mode 4,
focusing on average Packet Delivery Ratio (PDR) and four
types of transmission errors, with validating various transmis-
sion parameters and traffic densities. Authors in [15], [16]
highlight the importance of wireless factors, such as packet
errors and limited bandwidth in Federated Learning (FL)
implementations. Li et al. [17] presents the importance of
efficient resource allocation techniques in V2V communication
networks in FL, particularly in the vehicular safety services
area, where delay and reliability requirements need optimal
utilization of limited spectrum resources. The authors state
that such resource allocation strategies are essential to mitigate
interference, support various quality-of-service requirements,
and ensure the success of emerging vehicle-related services
in dynamic and fast-changing vehicular environments. These
researches show that imperfect communication can play a
key role in CP; therefore, it should not be overlooked when
forming a network of vehicles for collective perception.

B. 3D Object Detection

Our target application, in this work, is 3D OD, which
involves identifying and locating objects in three-dimensional
space. It is an integral part of autonomous driving and crash
avoidance [8]. 3D OD can be applied to different percep-
tion domains, including visions-based (e.g., regular and IR
cameras), sensor-based (e.g., RADAR/LiDAR), and hybrid
methods, with the following notable implementations.

Reading et al. [18] proposed Categorical Depth Distribution
Network (CaDDN), as a monocular vision-based 3D OD
method. This method utilizes predicted categorical depth dis-
tributions for each pixel to enhance depth estimation accuracy
and achieve a top-ranking performance on the KITTI dataset,
showcasing its effectiveness in addressing the challenges of
monocular 3D detection. Authors of [19] introduced a multi-
camera 3D OD framework that operates directly in 3D space,
leveraging sparse 3D object queries to index 2D features from
multiple camera images. [20] proposes PointRCNN which is
a 3D OD framework, where using point cloud data directly
to generate high-quality 3D proposals instead of generating
proposals from RGB image or projecting point cloud to bird’s
view or voxels.
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An exemplary implementation of LiDAR-based OD meth-
ods is PointPillars, a highly effective point cloud encoder,
that employs PointNets to organize point clouds into vertical
columns (pillars), demonstrating superior speed and accu-
racy [21]. They outperform existing methods on the KITTI
benchmarks while achieving a higher accuracy in OD in
comparison to [22]-[24]. Finally, a hybrid camera-LiDAR
fusion detection method, called RCBEYV, is proposed in [25].
RCBEV implements a radar-camera feature fusion method
for 3D OD in autonomous driving using nuScenes and VOD
dataset through an efficient top-down feature representation
and a two-stage fusion model which bridges the view disparity
between radar and camera features.

C. Fusion Methods

The information of multiple perception systems can be
collectively processed in three different modes, namely early,
integrative, and late fusion. The authors of [26] introduce an
early fusion approach enabling cooperative perception through
the fusion of LiDAR 3D point clouds from diverse positions,
improving detection accuracy and expanding the effective
sensing area. They validated their method using KITTI and
T&J dataset, demonstrating the feasibility of transmitting point
cloud data via existing vehicular network technologies. Qiu et
al. present an infrastructure-less CP system, leveraging direct
vehicle-to-vehicle communication to efficiently share sensor
readings while optimizing transmission schedules to enhance
safety in dense traffic scenarios [27].

A late fusion machine approach is adopted in [28] to
enhance the accuracy of shared information for collaborative
automated driving. First, they employed Convolutional Neural
Networks (CNN) for OD and classification to extract positional
and dimensional information. Next, they combined extracted
information to enhance driving safety in V2V collaborative
systems. Article [29] explores CP for 3D OD using two
fusion schemes, early and late fusion, showing that early
fusion outperforms late fusion in challenging scenarios, while
authors in [30] introduce the DAIR-V2X dataset for Vehicle-
Infrastructure Cooperative Autonomous Driving (VICAD) and
formulates the Vehicle-Infrastructure Cooperative 3D OD
(VIC3D) problem, proposing the Time Compensation late
Jfusion framework as a benchmark, highlighting the impor-
tance of collaborative solutions and addressing challenges in
autonomous driving.

Both early and late fusion methods try to combine infor-
mation either before or after applying the target DL-based
application, like 3D OD. This brings the convenience of
deploying existing methods. Recently, some attempts have
been made to develop integrative processing of multi-channel
inputs to achieve elevated performance. Xu et al. [7] intro-
duced a fusion model V2X-ViT, based on the popular vision
transformer architecture equipped with heterogeneous multi-
agent and multi-scale window self-attention modules for robust
CP in autonomous vehicles, achieving state-of-the-art 3D OD
performance in challenging and noisy environments using
a large-scale V2X perception dataset. Another integrative
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end-to-end DL-based architecture is presented in [31] that
utilizes cross-vehicle perception with LiDAR data encoded
into compact point-based representations, demonstrating an
improvement in average success rate over egocentric driving
models in challenging scenarios, with a 5x smaller bandwidth
requirement compared to prior work, as evaluated in the
AUTOCASTSIM simulation framework.

III. SYSTEM MODEL

In our approach, the ego vehicle sends request-for-help
messages to front vehicles when individual perception quality
is not satisfactory. We assume that N vehicles, Vi, Vo, ...,
Vi, notify their intention to provide CP assistance through
Ack messages along with their position (z;, vy;), speed v;,
channel conditions, and sample images. Additional details,
such as the distance to the ego vehicle, approximate vision
range, motion blur, field of view, required transmission energy
budget E, and communication errors in the C-V2X mode 4,
are estimated based on the gathered information (position,
channel conditions) and refined through an examination of the
sample images. Then, various error factors, including half-
duplex transmission, received signal power below the sensing
power threshold, propagation effects, and packet collisions,
are combined into [, denoting the effective packet error
probability. Once the information is obtained, the ego vehicle
selects M out of N volunteered vehicles that collectively
achieve the highest performance under given conditions.

The main objective of selecting helpers is to maximize con-
textual information diversity through an effective and informed
choice of helpers. In our case, the key contributing factors
include the vehicle’s contribution to extending the visual range
of the ego vehicle (based on their positions), the quality of their
image based on motion blur (based on their velocities), and the
channel conditions. We develop a set of objective functions,
as elaborated below, that quantify these factors and facilitate
selecting the best helper.

Effective Visual
Range with helpers

£go Visual Range

Ego Helper 3 1 Helper 2 2 Helper 1
(S ) A ~_ R S

Voul Visual Visual
g Range Range

Fig. 3: The individual visual range for vehicles. Recruiting
helpers extend the visual range of the ego vehicle through
cooperative perception.

A. Approximate Vision Range

A key factor in selecting helpers is the collective visual
range of the ego vehicle that enables accurate object detec-
tion. The visual range of each vehicle varies with weather
conditions, light conditions, and the presence of obstacles. The
effective individual visual range of vehicles is demonstrated
in Fig. 3.

By optimizing the selection process, we ensure that the cho-
sen helpers effectively contribute to expanding the collective
visual range of the ego vehicle.

We assume that all vehicles know their location (z;, y;) and
their distance to the front obstacle, and share this information
with the ego vehicle. When calculating the total visual range,
we use function h(x) to determine individual visual ranges

hz) = ulz — (z; + L;)] — ulz — a;),

Li = Hlil’l(717 Ti4+1 — .TZ'), (1)
where z; represents the Longitudinal motion along the linear
road on x-axis. Otherwise, we substitute x < x cosf or x <
y sinf from positions if the road makes 6 with x-axis. Here,
h;(x) is a rectangular pulse of length L;, representing the
it" vehicle’s visual range until the threshold T defined by the
weather and light conditions or the distance to the front vehicle
;41 — 2, whichever is shorter. The sum of these pulses from
selected vehicles represents the augmented visual range.

In addition to expanding the visual range, we desire to
prioritize selecting closer vehicles. This is crucial because
having a clear vision for detecting closer objects is imperative
for safe driving. For instance, in Fig. 3 Helper 3 can help with
detecting both pedestrians at least partially, Helper 2 can help
only with detecting one pedestrian, and Helper 1’s contribution
is irrelevant (not useful) in detecting either of pedestrians.

To capture this effect, we use an exponential decay function
g(x) = e~ with a tuning parameter a to weigh the aug-
mented visual range to promote selecting closer helpers. If the
binary vector @ = (o, aa,- - ,ay) represents the volunteer
vehicles (a; = 1: selected, o = 0: not selected), the weighted
augmented visual range of selected vehicles can be expressed

as oo N
f1(@) = / gle)- [Z amxas)] . @)

B. Motion Blur Level

We assume that all vehicles are equipped with similar
cameras with an equal resolution and field of view. In this
paper, the only important parameter affecting motion blur is
the speed of the vehicles. Motion blur represents the concept
of the decline in image quality for higher speeds. We follow

the characterization of motion blur in [9] to obtain
N

o v T[f cos(¢) — QS sin(¢)]
F2(@) = Z i T Qsin(p) + zp

for the vehicles joining CP («o; = 1). Here, 7" is the exposure
time interval, f is the camera focal length, () is the charge-
coupled device (CCD) pixel size in the horizontal direction, S
is the starting position of the object in the image (in pixels), ¢
is the angle between the motion direction and the image plane,
d is the perpendicular distance from the starting point of the
moving object to the pinhole [10]. The effect is maximized and
becomes linear in velocity, when the image plane is parallel
to the motion direction (¢ = 0), as we get

N ’
@) =3 L @

zp

3

i=1

i=1
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C. Communications Parameters

The transmission energy budget and packet drop rate are
essential metrics in C-V2X communications, as they directly
impact the reliability and effectiveness of V2X communication
and the overall safety and efficiency of AVs by determining
the successful exchange of critical information among vehicles
and infrastructure.

For the definition of effective throughput, we absorb the
impact of all error terms in LTE C-V2X into packet error rate
(. As a result, the effective throughput (; of vehicle V; is

G = Rch/E[Ri] ﬁz)wu )

where R, is the rate of channel, and w; is the bandwidth
of the resource block assigned to vehicle i. Here, R; is the
number of re-transmissions with the following expected value

E[R;] =1/(1 - Bi). (6)

Therefore, the average throughput under selection vector o

(,h(

is

N
= Z wiCL Z R(,h L (N
i=1
N
f3(&'a 117) = Z ain Z Rrh 57 Wi 0. (8)
i=1
The transmission energy of vehicle V; is
pir
Pl RN 9
T RO p ©

where p!” denotes the average transmission power, considering
the number of re-transmissions represented by 1/(1 — ;).
Therefore, the average energy consumption for selected ve-
hicles is

Ptr
ch 1 - Bz)

One may also include then End-to-End (E2E) delay in the
optimization. In general, E2E delay accounts for sampling and
perception delays in the sender, queuing delays, channel setup
delays, congestion and re-transmissions, actual transmission
delays, as well as processing delays in the receiver [32],
We take a simplistic assumption and model DZO), the E2E
delay for one packet for vehicle V; as an exponentially
distributed continuous-valued Random Variable (RV) with
vehicle-specific mean \; following some prior work [33], and
then specifically, we define

—

Oé

—»

) 10)

e

i=1

Db(l) ~ fAz(dl)v
)\Z‘i.'i_/\idi7
a(di) = {

Here, we use capital letters for RVs and lowercase letters
for their realizations. We consider that an average delay
E[Dgl)} = 1/\; for each vehicle V; remains constant in one

dzZO»

11
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transmission slot. Here, we consider Dgl) captures all delay
terms. However, if it accounts only for queuing delay, we can
add the constant term Dy, = /R, accounting for the actual
transmission delay, where [ is the packet length (in bits). For
convenience, we exclude delay in the optimization, since CP
requires near-realtime synchronization between packets from
helper vehicles.

D. Optimization Problem

With both the visual range and the speed of each vehicle,
a selection problem arises. This process aims to select the
vehicle that not only extends the overall visual coverage for
the ego vehicle but also contributes to capturing higher-quality
images with reduced motion blur.

We formulated our problem as two optimizations, in which
first, we tried to select the best M/ vehicles out of /N and then
allocate them among the selected vehicles. Our optimization
is based on a set of transmission Key Performance Indicators
(KPIs) calculated for selected vehicles. Specifically if the
binary vector & = (aq, g, -+ ,ay) represents the selected
vehicles.

The optimization problem is

Zk:fz

o; € {O, 1}7

N

Zai < M7
i=1

M

> amw; =B,
i=1

argmaxf (&, )
aw

S.t.

(12)

where k; is a tuning factor to weigh the importance of
different objectives (and/or standardize them).

The constraints mean that the number of selected vehicles
should not exceed M and the utilized bandwidth by selected
vehicles can not exceed the total bandwidth. To simplify
this problem, we take a two-step process. We first select the
vehicles solely based on their contribution to CP visual quality
by solving

sz fi(@

Q; € {07 1}7

N
Z a; <M,
i=1

arg max fla
S.t.

13)

and then we assign the networking resources among selected
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vehicles, by solving

4
argmgxf(w) = Zkifi (w1, w2, ..., wr)
i=3
M
s.t. Zp’f = Pr,
i=1

M
E w; = B7
i=1

E[D]=—<T, (14)

1
Ai
only for selected vehicles.

In characterizing bandwidth in (14), we consider LTE-V2X,
a communication technology designed for V2V communica-
tion, which supports 10 and 20 MHz channel bandwidths.
This bandwidth is divided into sub-channels in the frequency
domain and sub-frames in the time domain. Resource Blocks
(RBs) are crucial components in the frequency domain, each
consisting of 12 sub-carriers spaced by 15 kHz. The signal
is formed by resource block pairs (RBPs), defined by 12 sub-
carriers and carrying 14 OFDM symbols. Subchannels, defined
by groups of RBPs within the same subframe, serve as the
minor units of resources allocated to vehicles for transmitting
Cooperative Awareness Messages (CAM). The RB, with a
width of 180 kHz, becomes the smallest unit of frequency re-
sources allocated to LTE users. Subchannels transmit data and
control information, with Transport Blocks (TBs) containing
complete packets, beacons, or other messages. Resource block
allocation is vital in LTE-V2X due to the need for efficient
utilization of the available spectrum. The number of RBs
per sub-channel can vary, and vehicles autonomously select
resources without cellular infrastructure assistance.

We have used Genetic Algorithm to solve optimization
problems in 13 and (14) for its power in solving binary-vector
optimization problems.

E. Fusion

In our implementation, each vehicle utilized YOLOVS for
OD. After that, the ego vehicle captures the helpers to increase
the visual range and detect objects more accurately. For the
fusion part, we select the best IoU between the ego vehicle
and the helper.

IoUs = Max(IoU,, IoU},) (15)

Consequently, we always select the best IoU, and the accuracy
of OD will increase.

IV. SIMULATION

In this section, we investigate the performance of the pro-
posed CP of the OD accuracy under foggy weather conditions
while selecting the best vehicle under imperfect communica-
tion. In our experiments, we set the number of Vehicles N = 10,
the number of selected vehicles as M = 3, channel conditions
(Bi, Ai), relative velocity (v;), vehicle position (z;, y;) are
selected randomly. We use Beta and exponential distributions
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to generate f3; and 1/);, respectively. We trained our model
using scenarios generated by the CARLA simulator. As there
is no appropriate dataset for a visual CP, we developed over
2000 images with CARLA in which there is one ego vehicle
and three helpers in foggy weather. We manually annotated
the dataset and then used the YOLOS to detect pedestrians in
foggy weather.

Fig. 4: Objects detection by YOLOVS to locate the pedestrian.
Left: ego vehicle’s view, Right: helper vehicle’s view. The
green box is the ground truth and the red box is the predicted
bounding box by YOLOVS.

Fig. 6 shows our method performs better than other selec-
tions regarding the vehicle’s visual range. We ran the selection
100 times in random selection and got the average result. Fig.
7 shows that our method can select vehicles with lower motion
blur, impacting image quality.

Fig. 8 and Fig. 9 demonstrated better performance in
allocating resource blocks to vehicles in V2V communication.
In random selection, resources are allocated randomly among
vehicles, while in uniform allocation, resources are equally
distributed among vehicles.

Table I shows that when an ego vehicle recruits a helper,
it can enhance OD accuracy more than when each vehicle
(ego vehicle and helpers) detects objects individually. In table
I, we consider the scenario in a perfect communication. The
result shows how much recruiting a helper can improve OD
accuracy. However, we observe that Helperl performs poorly
in IoU, recall and F1 score as it fails to detect objects due to
its distance from the ego vehicle, while the best results are
achieved by recruiting Helper 2.

We introduce a packet drop rate to the images and subse-
quently apply the method for OD. Fig. 4 illustrates an example
of the packet drop rate impact on the image. The experiment
result is presented in table II, with the highest accuracy for
our method. The result shows how imperfect communication
can impact the OD when we compare it with table 1.

V. CONCLUSION

Our novel approach to Cooperative Perception (CP) for
Autonomous Vehicles (AVs) addresses imperfect communi-
cation. It optimizes helper selection, which leads to signif-
icant improvements in perception quality and driving safety
under foggy weather. We had extensive experimentation and
evaluated the validation of our method via generating an
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TABLE I: OD metrics under perfect communication.

Ego | H3 H»> Hy Ego Ego | Ego
+ + +
Hj3 Hy Hy

Motion Blur

ToU 0.42 | 0.68 0.74 0.43 0.76 0.86 | 0.59

Recall || 0.224| 0.343 | 0.373 | 0.208 | 0.382 | 0.435| 0.304

w15 20 25 30 3 40 45 50
A or S8 VD o VEDISEE giore 0.36 | 0.501 | 0.533 | 0.347 | 0.544 | 0.591| 0.462

Fig. 7: Optimal selection vehicle compared to other selection
method.
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TABLE II: Comparison our method to other selections when
we add error channel to the images

Our Randomly Close-Car Far-Car

Method Selection Selection Selection
ToU 0.83 0.55 0.31 0.49 |
Recall 0.4 0.27 0.15 0.24 |
F1 Score 0.57 0.4 0.24 0.38 ‘

appropriate dataset in foggy weather in the CARLA simulator,
demonstrating notable enhancements in CP in pedestrian de-
tection scenarios. Our framework considered CP in imperfect
communications, while most of the method works in perfect
communication. Also, our method can be used for applications
in AVs.
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