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Abstract—Sharing and joint processing of camera feeds and
sensor measurements, known as Cooperative Perception (CP),
has emerged as a new technique to achieve higher perception
qualities. CP can enhance the safety of Autonomous Vehicles
(AVs) where their individual visual perception quality is compro-
mised by adverse weather conditions (haze as foggy weather),
low illumination, winding roads, and crowded traffic. While
previous CP methods have shown success in elevating perception
quality, they often assume perfect communication conditions and
unlimited transmission resources to share camera feeds, which
may not hold in real-world scenarios. Also, they make no effort
to select better helpers when multiple options are available.

To cover the limitations of former methods, in this paper,
we propose a novel approach to realize an optimized CP under
constrained communications. At the core of our approach is
recruiting the best helper from the available list of front vehicles
to augment the visual range and enhance the Object Detection
(OD) accuracy of the ego vehicle. In this two-step process, we first
select the helper vehicles that contribute the most to CP based on
their visual range and lowest motion blur. Next, we implement
a radio block optimization among the candidate vehicles to
further improve communication efficiency. We specifically focus
on pedestrian detection as an exemplary scenario. To validate our
approach, we used the CARLA simulator to create a dataset of
annotated videos for different driving scenarios where pedestrian
detection is challenging for an AV with compromised vision. Our
results demonstrate the efficacy of our two-step optimization
process in improving the overall performance of cooperative
perception in challenging scenarios, substantially improving driv-
ing safety under adverse conditions. Finally, we note that the
networking assumptions are adopted from LTE Release 14 Mode
4 side-link communication, commonly used for Vehicle-to-Vehicle
(V2V) communication. Nonetheless, our method is flexible and
applicable to arbitrary V2V communications

Index Terms—Cooperative perception, connected autonomous
vehicles, 3d object detection, intermittent connectivity, vehicular
communications.

I. INTRODUCTION

Cooperative Perception (CP) represents a new paradigm in

Autonomous Vehicles (AVs) by mitigating the limitations of

individual vehicle perception [1], [2]. CP involves sharing

and the integrative processing of camera feeds and sensor

readings by multiple AVs within a network, enabling them

to collectively enhance their situational awareness. The use of

CP stems from the fact that the reliable operation of AVs can

This material is based upon work supported by the National Science
Foundation under Grant Number CNS2204721 and MIT Lincoln Lab under
Grant Number 7000565788.

face significant challenges due to perception errors in adverse

weather conditions and complex traffic scenarios, where indi-

vidual vehicle perception systems may be compromised. CP

has recently emerged as a promising solution to enhance AV

safety by leveraging collaborative information sharing among

vehicles.

A typical CP approach employs Vehicle-to-Vehicle(V2V)

communication technology to share sensory data among vehi-

cles for collective processing [3]–[5]. To realize the collective

processing of shared visual information, there exist three

mainstream fusion methods, as illustrated in Figure 1. The

first approach is early fusion, where the raw captured images

by multiple vehicles are translated to the same field of view

through projection transformation, and then mixed to obtain

a single high-quality image to be used by the downstream

learning-based tasks such as object detection (OD), depth

estimation, reinforcement learning (RL), etc. (Fig. 1 (a)). The

main issue of this approach is the sensitivity of the fused image

to the parameters of projection transformation. The second

approach is late fusion, where each image is first processed

by the learning-based task, then the obtained results are mixed

(Fig. 1 (b)). For instance, one may execute OD on individual

images to obtain object classes and bounding boxes, to be

fused to get more precise results. The advantage of these two

methods is their easy integration with existing deep learning

(DL)-based visual processing methods [6]. The third approach

is more intricate and involves developing new DL architectures
that jointly process multiple image/video channels(Fig. 1 (c)).

This method can yield better results for specific tasks but

requires custom-designed DL architectures that can limit their

applicability. In this work, we use the late fusion method for

its simplicity and practicality.

While existing CP methods have demonstrated success in

addressing these challenges, most of them have taken the

unrealistic assumptions of perfect communication conditions

and unlimited transmission resources [3], [4], which may

not align with the real-world scenarios. To the best of our

knowledge, there exist only two works that consider imperfect

communications in CP. First is [7], where the authors present

a vision transformer, V2X-ViT, along with a CP framework

that utilizes Vehicle-to-Everything (V2X) communication to

improve AV perception in terms of 3D object detection. While

the authors try to address V2X challenges, their primary
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focus is on communication delays, overlooking other essential

communication aspects (packet drop rate, throughput, ...).

Their proposed architecture aimed to enhance robustness to

delay in the network.

Likewise, [8] intends to address the impact of imperfect

V2X communication in cooperative perception for 3D object

detection. They proposed an innovative approach with an

LC-aware Repair Network (LCRN) and a V2V Attention

Module (V2VAM) to effectively mitigate the adverse effects

of imperfect communication. They significantly improved the

detection performance demonstrated on the OPV2V dataset.

However, they only tried to adjust their method for varying

channel quality without incorporating channel quality into the

vehicle selection process.

(a)

(b)

(c)

Fig. 1: Three fusion approaches used in cooperative per-

ception, including (a) early fusion, (b) late fusion, and (c)

integrative analysis.

We propose a novel approach to CP to overcome the

limitations of the previous methods by enabling selective

communication, where the helper vehicles are selected based

on their visual information as well as their channel quality. The

networking parameters are adopted from the LTE Release 14

Mode 4 side-link communication used for V2V communica-

tion. By doing so, we achieve enhanced situational awareness

through higher CV-based detection accuracy under imperfect

and constrained communication scenarios, compared to CV

methods that blindly or randomly selected helper vehicles. In

this work, we select helper vehicles based on their contribution

to extending the visual range of the ego vehicle, considering

their geo-locations as well as their imperfect channel condi-

tions. Additionally, we take into account the vehicles’ relative

velocities, because the motion blur impacts their imaging

quality [9]–[11] and consequently the ultimate accuracy of the

developed CP-based object detection accuracy.

(a)

(b)

Fig. 2: Two scenarios that may occur on the road are: (a) in

foggy weather, helper vehicles closer to pedestrians (Green

and Purple) can share their cameras with the ego vehicle (Red

vehicle), and (b) on a curved road, a helper can detect an

accident and share its camera with the ego vehicle.+

To adopt more realistic assumptions, we note that trans-

mission errors in C-V2X mode 4 arise from different factors,

including (1) using half-duplex transmission, (2) receiving

signal strengths below the sensing threshold, (3) propagation

effects, and (4) packet collisions [12]. In addition to consid-

ering channel quality in selecting the best helper vehicles, we

also enhance the resulting communication efficiency through

radio block optimization among the selected vehicles [13].

To investigate the effectiveness of the proposed approach,

we concentrate on pedestrian detection as an exemplary sce-

nario. However, the proposed framework is generic and can be

used for other applications, such as speed estimation, lane de-

tection, vehicle classification, traffic sign detection, traffic light

interpretation, etc. Through the generation of frames using the

CARLA simulator [14], annotation of data, and compilation of

a comprehensive dataset, we conduct experiments to validate

the performance of our proposed method.

The results obtained from our two-step optimization pro-

cess, present notable improvements in CP by selecting the

best helper to increase the ego vehicle’s visual range.
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The rest of the paper is organized as follows. In section

2, a more inclusive review of related work is presented. In

section 3, the system model is presented. Finally, the proposed

method is evaluated through intensive simulations in section

4, followed by concluding remarks in section 5.

II. RELATED WORKS

A. CAVs with Imperfect Communications

V2V LTE Release 14 presents advancements in V2V com-

munication, enhancing connectivity and communication pro-

tocols for improved safety and efficiency in vehicular net-

works. However, there are limitations in V2V communications,

that that should be considered when developing networked

service provisioning systems. Authors in [12] evaluate the

communication performance of C-V2X or LTE-V Mode 4,

focusing on average Packet Delivery Ratio (PDR) and four

types of transmission errors, with validating various transmis-

sion parameters and traffic densities. Authors in [15], [16]

highlight the importance of wireless factors, such as packet

errors and limited bandwidth in Federated Learning (FL)

implementations. Li et al. [17] presents the importance of

efficient resource allocation techniques in V2V communication

networks in FL, particularly in the vehicular safety services

area, where delay and reliability requirements need optimal

utilization of limited spectrum resources. The authors state

that such resource allocation strategies are essential to mitigate

interference, support various quality-of-service requirements,

and ensure the success of emerging vehicle-related services

in dynamic and fast-changing vehicular environments. These

researches show that imperfect communication can play a

key role in CP; therefore, it should not be overlooked when

forming a network of vehicles for collective perception.

B. 3D Object Detection

Our target application, in this work, is 3D OD, which

involves identifying and locating objects in three-dimensional

space. It is an integral part of autonomous driving and crash

avoidance [8]. 3D OD can be applied to different percep-

tion domains, including visions-based (e.g., regular and IR

cameras), sensor-based (e.g., RADAR/LiDAR), and hybrid

methods, with the following notable implementations.

Reading et al. [18] proposed Categorical Depth Distribution

Network (CaDDN), as a monocular vision-based 3D OD

method. This method utilizes predicted categorical depth dis-

tributions for each pixel to enhance depth estimation accuracy

and achieve a top-ranking performance on the KITTI dataset,

showcasing its effectiveness in addressing the challenges of

monocular 3D detection. Authors of [19] introduced a multi-

camera 3D OD framework that operates directly in 3D space,

leveraging sparse 3D object queries to index 2D features from

multiple camera images. [20] proposes PointRCNN which is

a 3D OD framework, where using point cloud data directly

to generate high-quality 3D proposals instead of generating

proposals from RGB image or projecting point cloud to bird’s

view or voxels.

An exemplary implementation of LiDAR-based OD meth-

ods is PointPillars, a highly effective point cloud encoder,

that employs PointNets to organize point clouds into vertical

columns (pillars), demonstrating superior speed and accu-

racy [21]. They outperform existing methods on the KITTI

benchmarks while achieving a higher accuracy in OD in

comparison to [22]–[24]. Finally, a hybrid camera-LiDAR

fusion detection method, called RCBEV, is proposed in [25].

RCBEV implements a radar-camera feature fusion method

for 3D OD in autonomous driving using nuScenes and VOD

dataset through an efficient top-down feature representation

and a two-stage fusion model which bridges the view disparity

between radar and camera features.

C. Fusion Methods

The information of multiple perception systems can be

collectively processed in three different modes, namely early,

integrative, and late fusion. The authors of [26] introduce an

early fusion approach enabling cooperative perception through

the fusion of LiDAR 3D point clouds from diverse positions,

improving detection accuracy and expanding the effective

sensing area. They validated their method using KITTI and

T&J dataset, demonstrating the feasibility of transmitting point

cloud data via existing vehicular network technologies. Qiu et

al. present an infrastructure-less CP system, leveraging direct

vehicle-to-vehicle communication to efficiently share sensor

readings while optimizing transmission schedules to enhance

safety in dense traffic scenarios [27].

A late fusion machine approach is adopted in [28] to

enhance the accuracy of shared information for collaborative

automated driving. First, they employed Convolutional Neural

Networks (CNN) for OD and classification to extract positional

and dimensional information. Next, they combined extracted

information to enhance driving safety in V2V collaborative

systems. Article [29] explores CP for 3D OD using two

fusion schemes, early and late fusion, showing that early
fusion outperforms late fusion in challenging scenarios, while

authors in [30] introduce the DAIR-V2X dataset for Vehicle-

Infrastructure Cooperative Autonomous Driving (VICAD) and

formulates the Vehicle-Infrastructure Cooperative 3D OD

(VIC3D) problem, proposing the Time Compensation late
fusion framework as a benchmark, highlighting the impor-

tance of collaborative solutions and addressing challenges in

autonomous driving.

Both early and late fusion methods try to combine infor-

mation either before or after applying the target DL-based

application, like 3D OD. This brings the convenience of

deploying existing methods. Recently, some attempts have

been made to develop integrative processing of multi-channel

inputs to achieve elevated performance. Xu et al. [7] intro-

duced a fusion model V2X-ViT, based on the popular vision

transformer architecture equipped with heterogeneous multi-

agent and multi-scale window self-attention modules for robust

CP in autonomous vehicles, achieving state-of-the-art 3D OD

performance in challenging and noisy environments using

a large-scale V2X perception dataset. Another integrative
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end-to-end DL-based architecture is presented in [31] that

utilizes cross-vehicle perception with LiDAR data encoded

into compact point-based representations, demonstrating an

improvement in average success rate over egocentric driving

models in challenging scenarios, with a 5× smaller bandwidth

requirement compared to prior work, as evaluated in the

AUTOCASTSIM simulation framework.

III. SYSTEM MODEL

In our approach, the ego vehicle sends request-for-help

messages to front vehicles when individual perception quality

is not satisfactory. We assume that N vehicles, V1, V2, . . . ,

VN , notify their intention to provide CP assistance through

Ack messages along with their position (xi, yi), speed vi,
channel conditions, and sample images. Additional details,

such as the distance to the ego vehicle, approximate vision

range, motion blur, field of view, required transmission energy

budget E, and communication errors in the C-V2X mode 4,

are estimated based on the gathered information (position,

channel conditions) and refined through an examination of the

sample images. Then, various error factors, including half-

duplex transmission, received signal power below the sensing

power threshold, propagation effects, and packet collisions,

are combined into β, denoting the effective packet error

probability. Once the information is obtained, the ego vehicle

selects M out of N volunteered vehicles that collectively

achieve the highest performance under given conditions.

The main objective of selecting helpers is to maximize con-

textual information diversity through an effective and informed

choice of helpers. In our case, the key contributing factors

include the vehicle’s contribution to extending the visual range

of the ego vehicle (based on their positions), the quality of their

image based on motion blur (based on their velocities), and the

channel conditions. We develop a set of objective functions,

as elaborated below, that quantify these factors and facilitate

selecting the best helper.

Fig. 3: The individual visual range for vehicles. Recruiting

helpers extend the visual range of the ego vehicle through

cooperative perception.

A. Approximate Vision Range

A key factor in selecting helpers is the collective visual

range of the ego vehicle that enables accurate object detec-

tion. The visual range of each vehicle varies with weather

conditions, light conditions, and the presence of obstacles. The

effective individual visual range of vehicles is demonstrated

in Fig. 3.

By optimizing the selection process, we ensure that the cho-

sen helpers effectively contribute to expanding the collective

visual range of the ego vehicle.
We assume that all vehicles know their location (xi, yi) and

their distance to the front obstacle, and share this information

with the ego vehicle. When calculating the total visual range,

we use function h(x) to determine individual visual ranges

h(x) = u[x− (xi + Li)]− u[x− xi],

Li = min(T, xi+1 − xi), (1)

where xi represents the Longitudinal motion along the linear
road on x-axis. Otherwise, we substitute x ← x cosθ or x ←
y sinθ from positions if the road makes θ with x-axis. Here,

hi(x) is a rectangular pulse of length Li, representing the

ith vehicle’s visual range until the threshold T defined by the

weather and light conditions or the distance to the front vehicle

xi+1−xi, whichever is shorter. The sum of these pulses from

selected vehicles represents the augmented visual range.
In addition to expanding the visual range, we desire to

prioritize selecting closer vehicles. This is crucial because

having a clear vision for detecting closer objects is imperative

for safe driving. For instance, in Fig. 3 Helper 3 can help with

detecting both pedestrians at least partially, Helper 2 can help

only with detecting one pedestrian, and Helper 1’s contribution

is irrelevant (not useful) in detecting either of pedestrians.
To capture this effect, we use an exponential decay function

g(x) = e−ax with a tuning parameter a to weigh the aug-

mented visual range to promote selecting closer helpers. If the

binary vector �α = (α1, α2, · · · , αN ) represents the volunteer

vehicles (αi = 1: selected, α = 0: not selected), the weighted

augmented visual range of selected vehicles can be expressed

as

f1(�α) =

∫ ∞

x=0

g(x) ·
[

N∑
i=1

αihi(x)

]
. (2)

B. Motion Blur Level
We assume that all vehicles are equipped with similar

cameras with an equal resolution and field of view. In this

paper, the only important parameter affecting motion blur is

the speed of the vehicles. Motion blur represents the concept

of the decline in image quality for higher speeds. We follow

the characterization of motion blur in [9] to obtain

f2(�α) =

N∑
i=1

αi
v′iT [f cos(φ)−QS sin(φ)]

v′iTQ sin(ϕ) + zp
, (3)

for the vehicles joining CP (αi = 1). Here, T is the exposure

time interval, f is the camera focal length, Q is the charge-

coupled device (CCD) pixel size in the horizontal direction, S
is the starting position of the object in the image (in pixels), φ
is the angle between the motion direction and the image plane,

d is the perpendicular distance from the starting point of the

moving object to the pinhole [10]. The effect is maximized and

becomes linear in velocity, when the image plane is parallel

to the motion direction (φ = 0), as we get

f2(�α) =
N∑
i=1

αi
v′iTf
zp

. (4)
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C. Communications Parameters

The transmission energy budget and packet drop rate are

essential metrics in C-V2X communications, as they directly

impact the reliability and effectiveness of V2X communication

and the overall safety and efficiency of AVs by determining

the successful exchange of critical information among vehicles

and infrastructure.

For the definition of effective throughput, we absorb the

impact of all error terms in LTE C-V2X into packet error rate

β. As a result, the effective throughput ζi of vehicle Vi is

ζi = Rch/E[Ri] = Rch(1− βi)wi, (5)

where Rch is the rate of channel, and wi is the bandwidth

of the resource block assigned to vehicle i. Here, Ri is the

number of re-transmissions with the following expected value

E[Ri] = 1/(1− βi). (6)

Therefore, the average throughput under selection vector α
is

f3(w) =

N∑
i=1

wiζi =

N∑
i=1

Rch(1− βi)wi. (7)

f3(�α, �w) =

N∑
i=1

αiζi =

N∑
i=1

Rch(1− βi)wiαi. (8)

The transmission energy of vehicle Vi is

ei =
P tr
i

Ri · (1− βi)
αi (9)

where ptri denotes the average transmission power, considering

the number of re-transmissions represented by 1/(1 − βi).
Therefore, the average energy consumption for selected ve-

hicles is

f4(�α, �w) =
N∑

i=1

αi
P tr
i

Rch (1− βi)
, (10)

One may also include then End-to-End (E2E) delay in the

optimization. In general, E2E delay accounts for sampling and

perception delays in the sender, queuing delays, channel setup

delays, congestion and re-transmissions, actual transmission

delays, as well as processing delays in the receiver [32],

We take a simplistic assumption and model D
(1)
i , the E2E

delay for one packet for vehicle Vi as an exponentially

distributed continuous-valued Random Variable (RV) with

vehicle-specific mean λi following some prior work [33], and

then specifically, we define

D
(1)
i ∼ fλi(di),

fλi(di) =

{
λie

−λidi , di ≥ 0,

0, di < 0.
(11)

Here, we use capital letters for RVs and lowercase letters

for their realizations. We consider that an average delay

E[D
(1)
i ] = 1/λi for each vehicle Vi remains constant in one

transmission slot. Here, we consider D
(1)
i captures all delay

terms. However, if it accounts only for queuing delay, we can

add the constant term Dtr = l/Rch accounting for the actual

transmission delay, where l is the packet length (in bits). For

convenience, we exclude delay in the optimization, since CP

requires near-realtime synchronization between packets from

helper vehicles.

D. Optimization Problem

With both the visual range and the speed of each vehicle,

a selection problem arises. This process aims to select the

vehicle that not only extends the overall visual coverage for

the ego vehicle but also contributes to capturing higher-quality

images with reduced motion blur.

We formulated our problem as two optimizations, in which

first, we tried to select the best M vehicles out of N and then

allocate them among the selected vehicles. Our optimization

is based on a set of transmission Key Performance Indicators

(KPIs) calculated for selected vehicles. Specifically if the

binary vector �α = (α1, α2, · · · , αN ) represents the selected

vehicles.

The optimization problem is

argmax
�α,�w

f(�α, �w) =
4∑

i=1

kifi (�α, �w)

s.t. αi ∈ {0, 1},
N∑

i=1

αi ≤ M,

M∑
i=1

αiwi = B, (12)

where ki is a tuning factor to weigh the importance of
different objectives (and/or standardize them).

The constraints mean that the number of selected vehicles

should not exceed M and the utilized bandwidth by selected

vehicles can not exceed the total bandwidth. To simplify

this problem, we take a two-step process. We first select the

vehicles solely based on their contribution to CP visual quality

by solving

argmax
�α

f(�α) =
∑
i=1

2kifi (�α)

s.t. αi ∈ {0, 1},
N∑

i=1

αi ≤ M, (13)

and then we assign the networking resources among selected
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vehicles, by solving

argmax
w

f(w) =

4∑
i=3

kifi (w1, w2, . . . , wM )

s.t.

M∑
i=1

ptri = PT ,

M∑
i=1

wi = B,

E [Di] =
1

λi
≤ Ttr (14)

only for selected vehicles.

In characterizing bandwidth in (14), we consider LTE-V2X,

a communication technology designed for V2V communica-

tion, which supports 10 and 20 MHz channel bandwidths.

This bandwidth is divided into sub-channels in the frequency

domain and sub-frames in the time domain. Resource Blocks

(RBs) are crucial components in the frequency domain, each

consisting of 12 sub-carriers spaced by 15 kHz. The signal

is formed by resource block pairs (RBPs), defined by 12 sub-

carriers and carrying 14 OFDM symbols. Subchannels, defined

by groups of RBPs within the same subframe, serve as the

minor units of resources allocated to vehicles for transmitting

Cooperative Awareness Messages (CAM). The RB, with a

width of 180 kHz, becomes the smallest unit of frequency re-

sources allocated to LTE users. Subchannels transmit data and

control information, with Transport Blocks (TBs) containing

complete packets, beacons, or other messages. Resource block

allocation is vital in LTE-V2X due to the need for efficient

utilization of the available spectrum. The number of RBs

per sub-channel can vary, and vehicles autonomously select

resources without cellular infrastructure assistance.

We have used Genetic Algorithm to solve optimization

problems in 13 and (14) for its power in solving binary-vector

optimization problems.

E. Fusion

In our implementation, each vehicle utilized YOLOv8 for

OD. After that, the ego vehicle captures the helpers to increase

the visual range and detect objects more accurately. For the

fusion part, we select the best IoU between the ego vehicle

and the helper.

IoUs = Max(IoUe, IoUh) (15)

Consequently, we always select the best IoU, and the accuracy
of OD will increase.

IV. SIMULATION

In this section, we investigate the performance of the pro-

posed CP of the OD accuracy under foggy weather conditions

while selecting the best vehicle under imperfect communica-

tion. In our experiments, we set the number of Vehicles N = 10,

the number of selected vehicles as M = 3, channel conditions

(βi, λi), relative velocity (vi), vehicle position (xi, yi) are

selected randomly. We use Beta and exponential distributions

to generate βi and 1/λi, respectively. We trained our model

using scenarios generated by the CARLA simulator. As there

is no appropriate dataset for a visual CP, we developed over

2000 images with CARLA in which there is one ego vehicle

and three helpers in foggy weather. We manually annotated

the dataset and then used the YOLO8 to detect pedestrians in

foggy weather.

Fig. 4: Objects detection by YOLOv8 to locate the pedestrian.

Left: ego vehicle’s view, Right: helper vehicle’s view. The

green box is the ground truth and the red box is the predicted

bounding box by YOLOv8.

Fig. 6 shows our method performs better than other selec-

tions regarding the vehicle’s visual range. We ran the selection

100 times in random selection and got the average result. Fig.

7 shows that our method can select vehicles with lower motion

blur, impacting image quality.
Fig. 8 and Fig. 9 demonstrated better performance in

allocating resource blocks to vehicles in V2V communication.

In random selection, resources are allocated randomly among

vehicles, while in uniform allocation, resources are equally

distributed among vehicles.

Table I shows that when an ego vehicle recruits a helper,

it can enhance OD accuracy more than when each vehicle

(ego vehicle and helpers) detects objects individually. In table

I, we consider the scenario in a perfect communication. The

result shows how much recruiting a helper can improve OD

accuracy. However, we observe that Helper1 performs poorly

in IoU, recall and F1 score as it fails to detect objects due to

its distance from the ego vehicle, while the best results are

achieved by recruiting Helper 2.

We introduce a packet drop rate to the images and subse-

quently apply the method for OD. Fig. 4 illustrates an example

of the packet drop rate impact on the image. The experiment

result is presented in table II, with the highest accuracy for

our method. The result shows how imperfect communication

can impact the OD when we compare it with table I.

V. CONCLUSION

Our novel approach to Cooperative Perception (CP) for

Autonomous Vehicles (AVs) addresses imperfect communi-

cation. It optimizes helper selection, which leads to signif-

icant improvements in perception quality and driving safety

under foggy weather. We had extensive experimentation and

evaluated the validation of our method via generating an
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Fig. 5: Data set generated with CARLA simulator

Fig. 6: Optimal vehicle selection has been compared across

various scenarios, including random selection (averaged over

100 runs), close-car selection (choosing the closest cars),

far-car selection (choosing the farthest cars), and slow-car

selection (selecting the slowest cars), all based on visual range

considerations.

Fig. 7: Optimal selection vehicle compared to other selection

method.

Fig. 8: Optimal selection vehicle compared to random selec-

tion and Uniform selection when increasing the error versus

Throughput.

Fig. 9: Optimal selection vehicle compare to random selection

and Uniform selection when increase the error versus Energy

Consumption.

TABLE I: OD metrics under perfect communication.

Ego H3 H2 H1 Ego
+
H3

Ego
+
H2

Ego
+
H1

IoU 0.42 0.68 0.74 0.43 0.76 0.86 0.59

Recall 0.224 0.343 0.373 0.208 0.382 0.435 0.304

F1
Score

0.36 0.501 0.533 0.347 0.544 0.591 0.462
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TABLE II: Comparison our method to other selections when

we add error channel to the images

Our
Method

Randomly
Selection

Close-Car
Selection

Far-Car
Selection

IoU 0.83 0.55 0.31 0.49

Recall 0.4 0.27 0.15 0.24

F1 Score 0.57 0.4 0.24 0.38

appropriate dataset in foggy weather in the CARLA simulator,

demonstrating notable enhancements in CP in pedestrian de-

tection scenarios. Our framework considered CP in imperfect

communications, while most of the method works in perfect

communication. Also, our method can be used for applications

in AVs.

REFERENCES

[1] L. Chen, Y. Li, C. Huang, B. Li, Y. Xing, D. Tian, L. Li, Z. Hu, X. Na,
Z. Li, et al., “Milestones in autonomous driving and intelligent vehicles:
Survey of surveys,” IEEE Transactions on Intelligent Vehicles, vol. 8,
no. 2, pp. 1046–1056, 2022.

[2] S. P. H. Boroujeni, A. Razi, S. Khoshdel, F. Afghah, J. L. Coen,
L. O’Neill, P. Fule, A. Watts, N.-M. T. Kokolakis, and K. G.
Vamvoudakis, “A comprehensive survey of research towards ai-enabled
unmanned aerial systems in pre-, active-, and post-wildfire manage-
ment,” Information Fusion, p. 102369, 2024.

[3] R. Xu, H. Xiang, X. Xia, X. Han, J. Li, and J. Ma, “Opv2v: An open
benchmark dataset and fusion pipeline for perception with vehicle-to-
vehicle communication,” in 2022 International Conference on Robotics
and Automation (ICRA), pp. 2583–2589, IEEE, 2022.

[4] R. Xu, Z. Tu, H. Xiang, W. Shao, B. Zhou, and J. Ma, “Cobevt: Cooper-
ative bird’s eye view semantic segmentation with sparse transformers,”
arXiv preprint arXiv:2207.02202, 2022.

[5] A. Sarlak, A. Razi, X. Chen, and R. Amin, “Diversity maximized
scheduling in roadside units for traffic monitoring applications,” in 2023
IEEE 48th Conference on Local Computer Networks (LCN), pp. 1–4,
IEEE, 2023.

[6] S. P. H. Boroujeni and A. Razi, “Ic-gan: An improved conditional gener-
ative adversarial network for rgb-to-ir image translation with applications
to forest fire monitoring,” Expert Systems with Applications, vol. 238,
p. 121962, 2024.

[7] R. Xu, H. Xiang, Z. Tu, X. Xia, M.-H. Yang, and J. Ma, “V2x-vit:
Vehicle-to-everything cooperative perception with vision transformer,” in
European conference on computer vision, pp. 107–124, Springer, 2022.

[8] J. Li, R. Xu, X. Liu, J. Ma, Z. Chi, J. Ma, and H. Yu, “Learning for
vehicle-to-vehicle cooperative perception under lossy communication,”
IEEE Transactions on Intelligent Vehicles, 2023.

[9] H. Xiao, J. Zhao, Q. Pei, J. Feng, L. Liu, and W. Shi, “Vehicle selection
and resource optimization for federated learning in vehicular edge
computing,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 8, pp. 11073–11087, 2021.
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