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Abstract— In recent years, the development of intelligent robotic 
systems capable of detecting and tracking individuals using 
computer vision and artificial intelligence has gathered attention in 
the field of robot-assisted applications. Such intelligent and 
collaborative robots that operate in the vicinity of humans make 
significant strides in various public and private sectors. This work-
in-progress paper discusses a preliminary integrated robot system 
that utilizes a lightweight object detection and facial recognition 
techniques, namely OpenCV Haar Cascade, VGGFace and other 
navigation and tracking packages to enable a robot to search, 
identify and follow a person based on real-time streaming video and 
sonar sensor inputs. This study establishes a preliminary model to 
enable seamless robot and human cooperation in unknown 
environments.  

Keywords—Robotics, Human-robot interaction, Face 
Recognition, Computer vision 

I. INTRODUCTION  

Our world is extremely concerned about the startling increase in 
the number of missing children. It is estimated that about 2,300 
children go missing every day in the United States [1]. In most 
cases, children can be found within hours. Some are missing 
permanently. The first couple of hours following a child's 
disappearance are very important. Traditional search and rescue 
efforts are extremely difficult [2]. Autonomous robots have 
potential to improve search efficiency by utilizing artificial 
intelligence techniques, sensors and camera inputs. The motivation 
behind the use of robots is their intelligent features to assist and 
expedite human’s rescue efforts even in unknown environments 
during the critical initial missing hours. In addition, robots can be 
deployed as a team to roam a wide unknown area collaboratively 
and tirelessly. Furthermore, robots are resilient to inclement 
weather conditions, and can reach hazardous areas that are unsafe 
for humans.  

An overview of the state-of-the-art work for missing children 
search is presented first. Many technical challenges of real-time 
robot systems, including roaming, map building, obstacle 
avoidance, perception, and decision-making are also investigated. 
Additionally, the computing complexities arising from the large  

number of frames a robot has to process each second is also 
considered. Although our robot is equipped with the NVidia 
Graphic Processing Unit (GPU), some frame-reducing techniques 
can drop some unnecessary images to save computing time. By 
utilizing the Robot Operating System (ROS), some image 
processing and machine learning packages, we design and test an 
initial version of a trained mobile robot system to search, identify 
and track a missing child. Experiments are still ongoing to tune and 
optimize the performance of this robot system. In the future, we 
plan to leverage the system by deploying a team of robots who can 
divide the search areas and communicate with each other for faster 
and more efficient search.   

II. RELATED WORK  

In recent years, a multitude of systems have been developed to 
address the critical issue of tracking missing children. For example, 
a missing child identification system, a pioneering solution 
amalgamating the capabilities of deep learning and multiclass 
Support Vector Machines (SVM) was introduced. Convolutional 
network was implemented as a high-level feature extractor and 
child recognition was done by the SVM classifier [3]. Another 
study was conducted on the design, implementation, and evaluation 
of Children Activity Tracking System (CATS). Operating under 
the Internet of Things (IoT) paradigm, CATS was crafted to 
monitor and analyze children's activities in real time. The system 
offered invaluable insights for parents, caregivers, and educators, 
marking a significant stride in leveraging technology for enhanced 
child safety and well-being. However, tracking children's activity 
through the Global System for Mobile Communications (GSM) 
and Global Positioning System (GPS)  in real time raised privacy 
concerns. The sensitive data of the child should be secure and 
consent of the parents should be made first [4]. A dedicated IoT-
based localization module was proposed to achieve a tradeoff 
between accuracy and privacy for missing child searches. This 
innovative module was designed to elevate safety measures and 
location accuracy in dynamic and diverse environments. However, 
only particular classes of the trained model can be successfully 
identified. Data augmentation techniques and fine-tuning were 
proposed to improve the performance of the algorithm [5]. 
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Regarding image processing and machine learning 
techniques for missing people, the YOLOv4 (You Only Look 
Once), a real time object detection algorithm was used to reduce  
frames-per-second processing rate.  Remotely Piloted Aircraft 
System (RPAS) technology was used to collect aerial video feed in 
an unmanned aircraft. The YOLOv4 algorithm created a box and 
text to detect the humans. This solution was invoked to identify 
human objects before any further processing. However, this 
solution did not specifically recognize a human’s face [6]. Another 
study [6] compared OpenCV and Matlab for face recognition and 
the results concluded that OpenCV was much faster than Matlab. 
OpenCV Haar Cascade Classifier and TensorFlow were utilized 
with a long training process. The results also suggested that the 
accuracy of face recognition using static images was higher than 
using a real-time video feed. However, we have to deal with real-
time video in reality [7]. Face mesh and face landmarks were 
aspects used in a study for face detection. Face landmark detection 
was a computer vision task where the key points in the human face 
were detected. The research used a media pipe to detect the face 
key points and constructed the face mesh for feature maps. The 
model identified the face by comparing the facial landmarks of the 
marked face with those stored in the training database. However, 
the model was unable to recognize the face because of the 
database's non-availability of matching face landmarks [8]. The 
failure to recognize the face occurred due to the absence of 
matching facial landmarks in the training database. The lack of 
available data for the specific facial features led to the unsuccessful 
identification process. 

A study on face detection used the WIDER FACE dataset, 
which is currently the largest face detection dataset [9]. The 
WIDER FACE dataset is a subset of the WIDER dataset. Although 
a total of 32,203 images are included in the WIDER FACE dataset, 
the dataset is challenging due to large variations in scale, occlusion, 
pose, and background clutter. Multi-scale Detection Cascade was 
proposed to establish a solid baseline for the WIDER FACE 
dataset. A set of convolutional networks for face classification and 
scale classification were joined. The average precision of the easy 
dataset was over 60%, but none of them surpassed 75%. The 
performance dropped 10% for all methods on the medium dataset, 
and below 30% average precision for the hard dataset. The easy 
data set contained images and samples that were straightforward 
for classification. The images had distinct facial features that made 
it less challenging for classification models. The medium data set 
had a moderate level of difficulty for classification. The images in 
this data set may have more complexity and variability in facial 
features. Finally, the hard dataset was made of pictures that were 
particularly challenging because of factors such as occlusions, 
variations in lighting, or other complexities that made precise 
classification more difficult. The varying data subsets seemed to 
cause the unstable performance issue. 

Finally, some researchers [10] incorporated a skin color model 
and face recognition using an Artificial Neural Network (ANN). 
The face detection and recognition algorithm was divided into four 
parts: skin color model, feature extractor and training images in the 
database using Zernike moments, processing of facial image of the 
training database using fuzzy sets, and face recognition using 
artificial neural network. ANN was used for recognizing the face 

from training dataset. The proposed hybrid algorithm was 
incorporated with the MATLAB simulator, but as seen from the 
previous study [7], MatLab was slow despite how hyperparameters 
such as MSE, Speed, recall, precision, accuracy, and elapsed time 
could be tuned. 

 

III. APPROACHES  

Considering the processing and storage limitations of our robot 
system, OpenCV Haar Cascade is chosen for the purpose of 
detecting face objects first and then VGGFace to match the target 
child. We will describe the two packages and compare them with 
other similar techniques.  

 
A. Face Detection using OpenCV Haar Cascade   

 

OpenCV’s Haar Cascade was proved to be a very good solution 
considering our robot’s constraints on storage space and the desired 
accuracy [11]. OpenCV’s Haar Cascade is an ML object detection 
method that uses Haar-like features to identify certain objects from 
video frames or images.  

Haar Cascade is known for its fast speed in real-time applications.  
The model is much smaller than most complex deep learning 
models and is appropriate for deployment on robots with limited 
storage. The robot has a storage limit of 64 GB and Haar Cascades 
typically range from 100 to 2,000 KB in size. Haar’s Cascade is 
also of low computing complexity and allows real-time face 
detection even on devices with limited computing power and 
battery. 

 
 

B. Face Recognition Systems 

There are several different face recognition models available. A 
review and comparison of these models including DeepFace, 
VGGFace, FaceNet and OpenFace was conducted. VGGFace was 
selected due to its lightweight considering the limited storage and 
processing power of a robot and satisfactory performance.  

A DeepFace [12] model is a deep learning facial recognition 
system from a research group at Facebook. It can have a 0.25% 
greater or lower performance score compared with a human’s 
performance score of 97.35%. The convolutional neural network 
has 8 layers consisting of 2 convolutional layers, 1 max pooling 
layer, 3 locally connected layers, and 2 fully connected layers. The 
main problem is the long processing time and large storage 
required to install this package.  

FaceNet [13]  is a model with a 99.63% accuracy rate and it is 
used to generate high-quality face mapping from images. These 
images are from ZF-Net and Inception Network. A method called 
triplet loss is used as a loss function to train the model. The FaceNet 
model can be used as part of the classifier, or used to pre-process a 
face to create a face embedding which will be stored and used as 
input to a classifier model.  
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OpenFace [14] is an open source tool for computer vision. It 
is capable of facial landmark detection, head pose estimation, facial 
action unit recognition, and eye-gaze estimation. OpenFace can run 
in real-time with a webcam. OpenFace allows for easy integration 
with other software and devices through a lightweight messaging 
system. OpenFace has an accuracy rate of  92.92%. 

VGGFace [15] refers to a series of models developed for face 
recognition. It was developed by the Visual Geometry Group 
(VGG). VGG is structured in blocks. Each block is composed of 
2D Convolution and Max Pooling layers. It is available in two 
models, VGG16 (with 16 layers) and VGG19 (with 19 layers). As 
the number of layers increases within a Convolutional Neural 
Network (CNN), the model's ability to accommodate more 
complex functions increases. It is 98.78% accurate.  

OpenCV's Haar Cascade Classifier plays an important role in 
identifying faces from live video feeds. It has shown good 
performance even under different angles and lighting conditions. 
Once a face is detected, the VGGFace Model will be invoked to 
determine if the detected face matches the missing children image 
or not. Once a successful match has been found, the robot will 
initiate tracking action. The VGGFace model needs to be trained 
with a dataset, consisting of multiple missing children images. 
Image augmentation techniques, including rotation, scaling, and 
brightness adjustment are also conducted.  

 
C. System Diagram  

 
As shown in Figure 1, the robot will begin its first stage: the 
roaming stage. It will utilize its 3D depth camera and read inputs 
from the unknown environment. Roaming PID (Proportional, 
Integral, Derivative) will assist in precise movements in unknown 
terrains. The OpenCV Haar Cascade Classifier will start identifying 
objects from the real-time image frames. It will look for faces and 
will drop frames without any face objects to save unnecessary 
processing. As seen from Figure 2, a human face is detected by 
Haar Cascade. If a face is detected by OpenCV Haar Cascade, 
VGGFace model will start the matching stage. The robot will 
compare key facial features from the detected image with that of 
the missing child. If the detected face doesn’t match the target, the 
robot will continue roaming. If a match is found, the robot will play 
an alarming sound and send a message to the control center. 
Officials will be alerted that the target has been spotted and the 
robot will continue to the next stage: the tracking stage. To track 
and follow the target, we used the built-in KCF (Kernelized 
Correlation Filter) object tracking algorithm with LIDAR inputs. 
Users can terminate the search by sending a mission completion 
signal to the robot.  
 

 
Figure 1. System Flowchart 
 
 
 

 
 

   Figure 2. The robot detects human object using OpenCV Haar 
Cascade  
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Figure 3. Yahboom x3 Jetson Nano Robot  
 

IV. EXPERIMENTAL RESULTS AND ANALYSIS  

A. Experimental Setup  
 
To conduct our experiment, we utilized an Yahboom x3 Jetson 
Nano robot powered by ROS, which enables effective 
communication and coordination between the various components 
as shown in Figure 3. The robot was equipped with LiDAR and 
ultrasonic sensors to ensure adeptly detect and navigate around 
obstacles in real-time. Using its depth camera, it maps its 
surroundings and builds a map. The robot’s movements are 
controlled by a PID written in Python to allow precise movements. 
To facilitate rapid data transmission between the Jetson Nano and 
the robot's control system, we chose UDP (User Datagram 
Protocol) for its low overhead, ensuring the swift relay of tracking 
data for real-time responsiveness. NVIDIA Jetson Nano is used for 
its potent GPU and CPU capabilities to handle the demands of real-
time image processing. OpenCV, a crucial real-time image 
processing tool, was also enhanced by the CUDA integration on 
the Jetson Nano, ensuring accelerated image processing and 
reduced latency. 
The robot is already pre-equipped with several machine learning 
technologies that are integral to our experiment: gesture 
recognition, OpenCV, and path finding libraries are several of the 
software packages that we used. With the large plethora of tools, 
we were able to create an interactive human robot application by 
integrating our own code with some existing Python code delivered 
with the robot  for our application purpose.  
 
B. VGGFace Model Training and Parameter Tuning 
 
In the realm of facial recognition, the VGGFace model stands as a 
cornerstone, offering a comprehensive framework built upon deep 
learning architectures. This study harnesses the power of transfer 
learning, utilizing the pretrained VGGFace model as a foundational 
base. The inherent advantage of employing transfer learning lies in 
its ability to capitalize on the pre-existing knowledge of a model, 
which has been trained on a vast array of facial data. This 
methodology significantly truncates the training duration and data 

requirements, allowing for rapid deployment in the specialized 
context of missing child identification. 

As seen from the pseudocode in Figure 4, the training regimen 
for adapting the VGGFace model to our specific application 
involves a meticulous process of fine-tuning. Initially, the 
pretrained model is loaded and images are augmented. The 
majority of the layers from the pre-trained model are kept in a 
'frozen' state, thus preserving their learned weights. Subsequently, 
the final layers of the model were methodically 'unfrozen' and 
subjected to a training process, using our augmented dataset 
comprising images of missing children. This nuanced approach of 
selective training ensures the retention of the model's inherent 
capabilities in feature detection while customizing it to recognize 
the specific attributes of our target child.  

 
# Main method 
Function: Main(): 
    m = LoadPretrainedVGGFaceModel() 
    ig = LoadAugmentedImages() 
    m = ModelTraining(m, ig) 
    return m 
# Model training that handles the training process 
Function: ModelTraining(m, ig): m 
Input:  
    m - pretrained VGGFace model 
    ig - missing child augmented images 
Output:  
    m - retrained VGGFace model 
 #freeze most layers except the last few 
    for each θ ∈ m.layers[:-4] do 
        θ.trainable = False 
    end-for each 
  #Unfreeze and train the last layers 
   for each θ ∈ m.layers[:-4] do 
 # Set the current θ to be trainable 
 θ.trainable = True 
 train each θ with epoch # and learning rate 
   end-for each 

              return m 
 

Figure 4. Pseudocode code for VGGFace training 
 

To bolster the model's proficiency in recognizing faces under 
a variety of conditions, a series of image augmentation techniques 
were employed. These included rotations, scaling, and brightness 
adjustments, which collectively serve to enhance the model's 
ability to discern facial features across a spectrum of environmental 
settings. Embeddings are high-dimensional numerical vector 
representations of face images and designed to capture essential 
features of the face. Our experimental results on augmentation 
show that the embedding distance which measures the similarity 
between face images from the same child is reduced from 0.315 
without augmentation to 0.212 with augmentation. The strategic 
use of augmentation not only diversifies the training dataset but 
also significantly improves the model's resilience and adaptability 
in real-world scenarios. 
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Figure 5. Receiver Operating Characteristic curve (ROC) 
for VGGFace model 

 
 
While we are still in the stage of training and testing for a good 
VGGFace model, initial testing phases have shown promising 
results. The VGG-16 model using our students’ own images and 
some public human face images has demonstrated a high degree of 
proficiency in recognizing and matching facial features from a 
specialized missing children's database. This is evidenced by the 
ROC curve depicted in Figure 5, where the model's performance is 
quantified by an Area under the ROC Curve (AUC) score of 
0.9443, which indicates that our model has a good overall 
performance across all possible classification thresholds. 
 
 
C. Autonomous Robot Roaming and Tracking 

When the robot is roaming, a simple snake-like movement was 
designed, namely the robot will search its left and turn to the right 
in an S shape forward.  If any obstacle is encountered, the robot 
will avoid it. The robot's speed can be set and adjusted. In the 
future, we plan to enable map building by utilizing the built-in 
Simultaneous Localization and Mapping (SLAM) system. SLAM 
is a robotics technique for creating a map of an unknown 
environment. ORB-SLAM 2 is made up of three major parallel 
threads: tracking, local mapping, and loop closure. The use of 
loop closure assists the robot in recognizing that it has returned to 
a previously visited location [16].  

As shown in Figure 6, once the facial recognition algorithm 
finds the desired target face, the robot begins object tracking. The 
built-in OpenCV Kernelized Correlation Filter (KCF) object 
tracking algorithm is utilized [17]. KCF object tracking uses 
positive and negative space to track the identified object. It begins 
by extracting features from target objects and then uses the 
features to match the template using circular matrices. KCF then 
applies a kernel over the images, allowing the algorithm to detect 
those hard-to-capture features.  It then trains a correlation filter 
that uses circular matrices to match and detect target images. The 
training algorithm uses the Fast Fourier Transform. Its speed and 
efficiency made it an ideal algorithm for our experiment.  

V. CONCLUSIONS  

In this work-in-progress experiment, we designed a robot system 
that can be used to locate missing children. To begin, the robot 
would roam in a specific designated area until it detects a human 
object. Then face recognition is invoked to see if there is a match 
with the target face. If matched, the robot will track the target 
while avoiding the obstacle. We have applied the transfer 
learning approach to quickly retrain a VGGFace model.  We are 
still in the process of fine-tuning the hyperparameter of the 
model with more image augmentation techniques. It should also 
be noted that the robot system is not designed to operate in 
inclement weather such as rain or snow. This paper only 
considers the design of a robot system from the perspective of 
software and sensor integration. Outdoor weather-proof robots 
should be considered for this type of outdoor application. The 
single robot we have programmed is just a prototype that may 
lead to more advanced systems. It is in our interests to deploy a 
group of collaborative robots that can communicate and adjust 
their locations and tasks dynamically to speed up the search time. 
Within the multi-robot approach, we also need to implement 
efficient route planning and collision avoidance strategies that 
depend on local communication without centralized control for 
reduced communication overhead. Last but not least, the ethical 
issues regarding minors’ photos and privacy should also be 
considered especially when computing applications require 
intensive usage of minors’ data such as photos and location, etc.  

 

 
 

Figure 6. Robot tracks human object once detected 
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