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Abstract— In recent years, the development of intelligent robotic
systems capable of detecting and tracking individuals using
computer vision and artificial intelligence has gathered attention in
the field of robot-assisted applications. Such intelligent and
collaborative robots that operate in the vicinity of humans make
significant strides in various public and private sectors. This work-
in-progress paper discusses a preliminary integrated robot system
that utilizes a lightweight object detection and facial recognition
techniques, namely OpenCV Haar Cascade, VGGFace and other
navigation and tracking packages to enable a robot to search,
identify and follow a person based on real-time streaming video and
sonar sensor inputs. This study establishes a preliminary model to
enable seamless robot and human cooperation in unknown
environments.

Keywords—Robotics, Human-robot interaction, Face
Recognition, Computer vision

1. INTRODUCTION

Our world is extremely concerned about the startling increase in
the number of missing children. It is estimated that about 2,300
children go missing every day in the United States [1]. In most
cases, children can be found within hours. Some are missing
permanently. The first couple of hours following a child's
disappearance are very important. Traditional search and rescue
efforts are extremely difficult [2]. Autonomous robots have
potential to improve search efficiency by utilizing artificial
intelligence techniques, sensors and camera inputs. The motivation
behind the use of robots is their intelligent features to assist and
expedite human’s rescue efforts even in unknown environments
during the critical initial missing hours. In addition, robots can be
deployed as a team to roam a wide unknown area collaboratively
and tirelessly. Furthermore, robots are resilient to inclement
weather conditions, and can reach hazardous areas that are unsafe
for humans.

An overview of the state-of-the-art work for missing children
search is presented first. Many technical challenges of real-time
robot systems, including roaming, map building, obstacle
avoidance, perception, and decision-making are also investigated.
Additionally, the computing complexities arising from the large
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number of frames a robot has to process each second is also
considered. Although our robot is equipped with the NVidia
Graphic Processing Unit (GPU), some frame-reducing techniques
can drop some unnecessary images to save computing time. By
utilizing the Robot Operating System (ROS), some image
processing and machine learning packages, we design and test an
initial version of a trained mobile robot system to search, identify
and track a missing child. Experiments are still ongoing to tune and
optimize the performance of this robot system. In the future, we
plan to leverage the system by deploying a team of robots who can
divide the search areas and communicate with each other for faster
and more efficient search.

II. RELATED WORK

In recent years, a multitude of systems have been developed to
address the critical issue of tracking missing children. For example,
a missing child identification system, a pioneering solution
amalgamating the capabilities of deep learning and multiclass
Support Vector Machines (SVM) was introduced. Convolutional
network was implemented as a high-level feature extractor and
child recognition was done by the SVM classifier [3]. Another
study was conducted on the design, implementation, and evaluation
of Children Activity Tracking System (CATS). Operating under
the Internet of Things (IoT) paradigm, CATS was crafted to
monitor and analyze children's activities in real time. The system
offered invaluable insights for parents, caregivers, and educators,
marking a significant stride in leveraging technology for enhanced
child safety and well-being. However, tracking children's activity
through the Global System for Mobile Communications (GSM)
and Global Positioning System (GPS) in real time raised privacy
concerns. The sensitive data of the child should be secure and
consent of the parents should be made first [4]. A dedicated [oT-
based localization module was proposed to achieve a tradeoff
between accuracy and privacy for missing child searches. This
innovative module was designed to elevate safety measures and
location accuracy in dynamic and diverse environments. However,
only particular classes of the trained model can be successfully
identified. Data augmentation techniques and fine-tuning were
proposed to improve the performance of the algorithm [5].
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Regarding image processing and machine learning
techniques for missing people, the YOLOv4 (You Only Look
Once), a real time object detection algorithm was used to reduce
frames-per-second processing rate. Remotely Piloted Aircraft
System (RPAS) technology was used to collect aerial video feed in
an unmanned aircraft. The YOLOv4 algorithm created a box and
text to detect the humans. This solution was invoked to identify
human objects before any further processing. However, this
solution did not specifically recognize a human’s face [6]. Another
study [6] compared OpenCV and Matlab for face recognition and
the results concluded that OpenCV was much faster than Matlab.
OpenCV Haar Cascade Classifier and TensorFlow were utilized
with a long training process. The results also suggested that the
accuracy of face recognition using static images was higher than
using a real-time video feed. However, we have to deal with real-
time video in reality [7]. Face mesh and face landmarks were
aspects used in a study for face detection. Face landmark detection
was a computer vision task where the key points in the human face
were detected. The research used a media pipe to detect the face
key points and constructed the face mesh for feature maps. The
model identified the face by comparing the facial landmarks of the
marked face with those stored in the training database. However,
the model was unable to recognize the face because of the
database's non-availability of matching face landmarks [8]. The
failure to recognize the face occurred due to the absence of
matching facial landmarks in the training database. The lack of
available data for the specific facial features led to the unsuccessful
identification process.

A study on face detection used the WIDER FACE dataset,
which is currently the largest face detection dataset [9]. The
WIDER FACE dataset is a subset of the WIDER dataset. Although
a total of 32,203 images are included in the WIDER FACE dataset,
the dataset is challenging due to large variations in scale, occlusion,
pose, and background clutter. Multi-scale Detection Cascade was
proposed to establish a solid baseline for the WIDER FACE
dataset. A set of convolutional networks for face classification and
scale classification were joined. The average precision of the easy
dataset was over 60%, but none of them surpassed 75%. The
performance dropped 10% for all methods on the medium dataset,
and below 30% average precision for the hard dataset. The easy
data set contained images and samples that were straightforward
for classification. The images had distinct facial features that made
it less challenging for classification models. The medium data set
had a moderate level of difficulty for classification. The images in
this data set may have more complexity and variability in facial
features. Finally, the hard dataset was made of pictures that were
particularly challenging because of factors such as occlusions,
variations in lighting, or other complexities that made precise
classification more difficult. The varying data subsets seemed to
cause the unstable performance issue.

Finally, some researchers [10] incorporated a skin color model
and face recognition using an Artificial Neural Network (ANN).
The face detection and recognition algorithm was divided into four
parts: skin color model, feature extractor and training images in the
database using Zernike moments, processing of facial image of the
training database using fuzzy sets, and face recognition using
artificial neural network. ANN was used for recognizing the face

from training dataset. The proposed hybrid algorithm was
incorporated with the MATLAB simulator, but as seen from the
previous study [7], MatLab was slow despite how hyperparameters
such as MSE, Speed, recall, precision, accuracy, and elapsed time
could be tuned.

III. APPROACHES

Considering the processing and storage limitations of our robot
system, OpenCV Haar Cascade is chosen for the purpose of
detecting face objects first and then VGGFace to match the target
child. We will describe the two packages and compare them with
other similar techniques.

A.  Face Detection using OpenCV Haar Cascade

OpenCV’s Haar Cascade was proved to be a very good solution
considering our robot’s constraints on storage space and the desired
accuracy [11]. OpenCV’s Haar Cascade is an ML object detection
method that uses Haar-like features to identify certain objects from
video frames or images.

Haar Cascade is known for its fast speed in real-time applications.
The model is much smaller than most complex deep learning
models and is appropriate for deployment on robots with limited
storage. The robot has a storage limit of 64 GB and Haar Cascades
typically range from 100 to 2,000 KB in size. Haar’s Cascade is
also of low computing complexity and allows real-time face
detection even on devices with limited computing power and
battery.

B. Face Recognition Systems

There are several different face recognition models available. A
review and comparison of these models including DeepFace,
VGGFace, FaceNet and OpenFace was conducted. VGGFace was
selected due to its lightweight considering the limited storage and
processing power of a robot and satisfactory performance.

A DeepFace [12] model is a deep learning facial recognition
system from a research group at Facebook. It can have a 0.25%
greater or lower performance score compared with a human’s
performance score of 97.35%. The convolutional neural network
has 8 layers consisting of 2 convolutional layers, 1 max pooling
layer, 3 locally connected layers, and 2 fully connected layers. The
main problem is the long processing time and large storage
required to install this package.

FaceNet [13] is a model with a 99.63% accuracy rate and it is
used to generate high-quality face mapping from images. These
images are from ZF-Net and Inception Network. A method called
triplet loss is used as a loss function to train the model. The FaceNet
model can be used as part of the classifier, or used to pre-process a
face to create a face embedding which will be stored and used as
input to a classifier model.
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OpenFace [14] is an open source tool for computer vision. It
is capable of facial landmark detection, head pose estimation, facial
action unit recognition, and eye-gaze estimation. OpenFace can run
in real-time with a webcam. OpenFace allows for easy integration
with other software and devices through a lightweight messaging
system. OpenFace has an accuracy rate of 92.92%.

VGGFace [15] refers to a series of models developed for face
recognition. It was developed by the Visual Geometry Group
(VGG). VGG is structured in blocks. Each block is composed of
2D Convolution and Max Pooling layers. It is available in two
models, VGG16 (with 16 layers) and VGG19 (with 19 layers). As
the number of layers increases within a Convolutional Neural
Network (CNN), the model's ability to accommodate more
complex functions increases. It is 98.78% accurate.

OpenCV's Haar Cascade Classifier plays an important role in
identifying faces from live video feeds. It has shown good
performance even under different angles and lighting conditions.
Once a face is detected, the VGGFace Model will be invoked to
determine if the detected face matches the missing children image
or not. Once a successful match has been found, the robot will
initiate tracking action. The VGGFace model needs to be trained
with a dataset, consisting of multiple missing children images.
Image augmentation techniques, including rotation, scaling, and
brightness adjustment are also conducted.

C. System Diagram

As shown in Figure 1, the robot will begin its first stage: the
roaming stage. It will utilize its 3D depth camera and read inputs
from the unknown environment. Roaming PID (Proportional,
Integral, Derivative) will assist in precise movements in unknown
terrains. The OpenCV Haar Cascade Classifier will start identifying
objects from the real-time image frames. It will look for faces and
will drop frames without any face objects to save unnecessary
processing. As seen from Figure 2, a human face is detected by
Haar Cascade. If a face is detected by OpenCV Haar Cascade,
VGGFace model will start the matching stage. The robot will
compare key facial features from the detected image with that of
the missing child. If the detected face doesn’t match the target, the
robot will continue roaming. If a match is found, the robot will play
an alarming sound and send a message to the control center.
Officials will be alerted that the target has been spotted and the
robot will continue to the next stage: the tracking stage. To track
and follow the target, we used the built-in KCF (Kernelized
Correlation Filter) object tracking algorithm with LIDAR inputs.
Users can terminate the search by sending a mission completion
signal to the robot.

Camera Input

4

Roaming
(PID)

OpenCV Haar Cascade
Classifier Face Detection: frame
reduction since the face is
processed once it is detected

No Yes VGGFace: Face
Recognition (Model
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Lidar Tracking
input
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Figure 1. System Flowchart

Figure 2. The robot detects human object using OpenCV Haar
Cascade
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Figure 3. Yahboom x3 Jetson Nano Robot

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setup

To conduct our experiment, we utilized an Yahboom x3 Jetson
Nano robot powered by ROS, which enables effective
communication and coordination between the various components
as shown in Figure 3. The robot was equipped with LiDAR and
ultrasonic sensors to ensure adeptly detect and navigate around
obstacles in real-time. Using its depth camera, it maps its
surroundings and builds a map. The robot’s movements are
controlled by a PID written in Python to allow precise movements.
To facilitate rapid data transmission between the Jetson Nano and
the robot's control system, we chose UDP (User Datagram
Protocol) for its low overhead, ensuring the swift relay of tracking
data for real-time responsiveness. NVIDIA Jetson Nano is used for
its potent GPU and CPU capabilities to handle the demands of real-
time image processing. OpenCV, a crucial real-time image
processing tool, was also enhanced by the CUDA integration on
the Jetson Nano, ensuring accelerated image processing and
reduced latency.

The robot is already pre-equipped with several machine learning
technologies that are integral to our experiment: gesture
recognition, OpenCV, and path finding libraries are several of the
software packages that we used. With the large plethora of tools,
we were able to create an interactive human robot application by
integrating our own code with some existing Python code delivered
with the robot for our application purpose.

B. VGGFace Model Training and Parameter Tuning

In the realm of facial recognition, the VGGFace model stands as a
cornerstone, offering a comprehensive framework built upon deep
learning architectures. This study harnesses the power of transfer
learning, utilizing the pretrained VGGFace model as a foundational
base. The inherent advantage of employing transfer learning lies in
its ability to capitalize on the pre-existing knowledge of a model,
which has been trained on a vast array of facial data. This
methodology significantly truncates the training duration and data

requirements, allowing for rapid deployment in the specialized
context of missing child identification.

As seen from the pseudocode in Figure 4, the training regimen
for adapting the VGGFace model to our specific application
involves a meticulous process of fine-tuning. Initially, the
pretrained model is loaded and images are augmented. The
majority of the layers from the pre-trained model are kept in a
'frozen' state, thus preserving their learned weights. Subsequently,
the final layers of the model were methodically 'unfrozen' and
subjected to a training process, using our augmented dataset
comprising images of missing children. This nuanced approach of
selective training ensures the retention of the model's inherent
capabilities in feature detection while customizing it to recognize
the specific attributes of our target child.

# Main method
Function: Main():

m = LoadPretrainedVGGFaceModel()

ig = LoadAugmentedImages()

m = ModelTraining(m, ig)

return m
# Model training that handles the training process
Function: ModelTraining(m, ig): m
Input:

m - pretrained VGGFace model

ig - missing child augmented images
Output:

m - retrained VGGFace model
#freeze most layers except the last few

for each 6 € m.layers[:-4] do

0.trainable = False
end-for each

#Unfreeze and train the last layers

for each 6 € m.layers[:-4] do
# Set the current 0 to be trainable
0.trainable = True
train each 0 with epoch # and learning rate

end-for each

return m

Figure 4. Pseudocode code for VGGFace training

To bolster the model's proficiency in recognizing faces under
a variety of conditions, a series of image augmentation techniques
were employed. These included rotations, scaling, and brightness
adjustments, which collectively serve to enhance the model's
ability to discern facial features across a spectrum of environmental
settings. Embeddings are high-dimensional numerical vector
representations of face images and designed to capture essential
features of the face. Our experimental results on augmentation
show that the embedding distance which measures the similarity
between face images from the same child is reduced from 0.315
without augmentation to 0.212 with augmentation. The strategic
use of augmentation not only diversifies the training dataset but
also significantly improves the model's resilience and adaptability
in real-world scenarios.
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ROC Curve V. CONCLUSIONS
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In this work-in-progress experiment, we designed a robot system
that can be used to locate missing children. To begin, the robot
would roam in a specific designated area until it detects a human
object. Then face recognition is invoked to see if there is a match
with the target face. If matched, the robot will track the target
while avoiding the obstacle. We have applied the transfer
learning approach to quickly retrain a VGGFace model. We are
still in the process of fine-tuning the hyperparameter of the
model with more image augmentation techniques. It should also
be noted that the robot system is not designed to operate in
inclement weather such as rain or snow. This paper only
o — B considers the design of a robot system from the perspective of
o = = pie = 2 software and sensor integration. Outdoor weather-proof robots
Specificity (%) should be considered for this type of outdoor application. The
Figure 5. Receiver Operating Characteristic curve (ROC)  single robot we have programmed is just a prototype that may
for VGGFace model lead to more advanced systems. It is in our interests to deploy a
group of collaborative robots that can communicate and adjust
their locations and tasks dynamically to speed up the search time.
While we are still in the stage of training and testing for a good ~ Within the multi-robot approach, we also need to implement
VGGFace model, initial testing phases have shown promising efficient route planning and collision avoidance strategies that
results. The VGG-16 model using our students’ own images and ~ depend on local communication without centralized control for
some public human face images has demonstrated a high degree of ~ reduced communication overhead. Last but not least, the ethical
proficiency in recognizing and matching facial features from a  issues regarding minors’ photos and privacy should also be
specialized missing children's database. This is evidenced by the ~ considered especially when computing applications require
ROC curve depicted in Figure 5, where the model's performance is ~ intensive usage of minors’ data such as photos and location, etc.
quantified by an Area under the ROC Curve (AUC) score of
0.9443, which indicates that our model has a good overall
performance across all possible classification thresholds.

80

Sensitivity (%)

C. Autonomous Robot Roaming and Tracking

When the robot is roaming, a simple snake-like movement was
designed, namely the robot will search its left and turn to the right
in an S shape forward. If any obstacle is encountered, the robot
will avoid it. The robot's speed can be set and adjusted. In the
future, we plan to enable map building by utilizing the built-in
Simultaneous Localization and Mapping (SLAM) system. SLAM
is a robotics technique for creating a map of an unknown
environment. ORB-SLAM 2 is made up of three major parallel
threads: tracking, local mapping, and loop closure. The use of
loop closure assists the robot in recognizing that it has returned to
a previously visited location [16].

As shown in Figure 6, once the facial recognition algorithm
finds the desired target face, the robot begins object tracking. The
built-in OpenCV Kernelized Correlation Filter (KCF) object Figure 6. Robot tracks human object once detected
tracking algorithm is utilized [17]. KCF object tracking uses
positive and negative space to track the identified object. It begins
by extracting features from target objects and then uses the
features to match the template using circular matrices. KCF then VL. ACKNOWLEDGMENT
applies a kernel over the images, allowing the algorithm to detect
those hard-to-capture features. It then trains a correlation filter  Thjs work is supported in part by the National Science Foundation
that uses circular matrices to match and detect target images. The ;der Grant CNS-2117308.
training algorithm uses the Fast Fourier Transform. Its speed and
efficiency made it an ideal algorithm for our experiment.
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