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Abstract—Digital network twin (DNT) is a promising paradigm
to replicate real-world cellular networks toward continual as-
sessment, proactive management, and what-if analysis. Existing
discussions have been focusing on using only deep learning
techniques to build DNTs, which raises widespread concerns
regarding their generalization, explainability, and transparency.
In this paper, we explore an alternative approach to augment
network simulators with context-aware neural agents. The main
challenge lies in the non-trivial simulation-to-reality (sim-to-real)
discrepancy between offline simulators and real-world networks.
To solve the challenge, we propose a new learn-to-bridge al-
gorithm to cost-efficiently bridge the sim-to-real discrepancy in
two alternative stages. In the first stage, we select states to query
performances in real-world networks by using newly-designed
cost-aware Bayesian optimization. In the second stage, we train
the neural agent to learn the state context and bridge the prob-
abilistic discrepancy based on Bayesian neural networks (BNN).
In addition, we build a small-scale end-to-end network testbed
based on OpenAirInterface RAN and Core with USRP B210 and
a smartphone, and replicate the network in Network Simulator
3 (NS-3). The evaluation results show that, our proposed solution
substantially outperforms existing methods, with more than 92 %
reduction in the sim-to-real discrepancy.

Index Terms—Digital Network Twin, Simulation-to-Reality
Discrepancy

I. INTRODUCTION

To support emerging applications and diverse scenarios, e.g.,
extended reality and Unmanned Aerial Vehicles (UAVs), mo-
bile networks are evolving towards densification, distributed,
disaggregation, and especially openness, such as O-RAN [1].
The ever-increasing mobile networks pose non-trivial chal-
lenges in network management [2], such as resource allocation
and admission control, in terms of performance estimation,
state understanding, and risk evaluation. Network simulators
(e.g., NS-3 and OMNET++) have been widely adopted to
analyze, evaluate, and test network management policies,
including both model-based and model-free, such as deep
learning (DL) and deep reinforcement learning (DRL) [3].
In common practice, the simulated network will be cre-
ated to match the real-world network, including architecture,
topology, and parameters, such as user mobility and radio
channel propagation. To maintain the feasible computation
complexity of network simulations, a variety of abstraction
mechanisms (e.g., SNR-to-BLER mapping) are developed
and used in network simulators. However, the introduced
abstraction mechanisms may fail to accurately represent the
actual behaviors in real-world networks [4]. Besides, network
simulators cannot incorporate the nature dynamics of real-
world networks, where some of them may be unknown and
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unobservable, such as instantaneous channel variations and
thermal impacts on Radio frequency (RF) devices. As a result,
recent works have been increasingly revealing that the non-
trivial simulation-to-reality (sim-to-real) discrepancy [3], [4],
[2], which could substantially compromise the efficacy of
simulation results.

Digital network twin (DNT) [5] is a promising paradigm
to replicate real-world networks in offline environments, in
terms of fine granularity, synchronicity, and high fidelity. The
attribute of high fidelity requires the DNT to have a minimal
sim-to-real discrepancy with respect to real-world networks.
With the DNT, network management policies can be offline
tested in terms of performance, safety, and robustness. For
example, the network performance of a DL-based policy can
be thoroughly evaluated if its management action will violate
the service-level agreement (SLA) of user applications [4].
The concept of digital twins have been discussed for years,
however, there still lacks a concertized and detailed approach
to building a digital twin for real-world networks. DL-based
approaches have been paid great attention, where one or more
deep neural networks (DNNs) will be created and trained to
imitate the behaviors of real-world networks [6]. However,
the unresolved concerns of DNNs, including generalization,
explainability, and transparency raised, which would constrain
its deployment in practice.

In this paper, we explore an alternative approach to building
digital network twins for open radio access networks. The
fundamental idea is to augment existing network simulators
by reducing the sim-to-real discrepancy with newly-designed
context-aware neural agents. The rationale is that, network
simulators are built based on rigorous domain knowledge,
which generally achieves solid generalization and explainabil-
ity and transparency. The main challenge lies in the non-
trivial and complex sim-to-real discrepancy between offline
simulators and real-world networks. To solve the challenge,
we propose a new learn-to-bridge algorithm to cost-efficiently
bridge the sim-to-real discrepancy via two alternative stages.
In the first stage, we design a new cost-aware Bayesian
optimization to select configurable states and query their
performances in real-world networks. This is based on our
observation that, the sim-to-real discrepancy is highly state-
dependent and non-uniform. In the second stage, we create
a neural agent with Bayesian neural networks (BNN) and
train it to learn the state context and bridge the probabilistic
discrepancy. In addition, we build a small-scale end-to-end
network testbed based on OpenAirlnterface RAN and Core
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with USRP B210 and a smartphone, and replicate the network
in Network Simulator 3 (NS-3). The evaluation results show
that, our proposed solution substantially outperforms existing
methods, with more than 90% reduction in the sim-to-real
discrepancy.

II. SYSTEM MODEL

We consider the mobile network comprising multiple base
stations (BS) in the radio access network (RAN), a core
network (CN), and mobile users. Besides, an offline network
simulator (e.g., NS3 and OMNET++) replicates the real-
world network in terms of architecture, topology, and param-
eters. For example, the simulation parameters of the network
simulator, e.g., link bandwidth and operating spectrum, are
set to match that of the real-world network. In this work,
we focus on achieving a high-fidelity DNT, which imitates
the network performance in the real-world network, such as
latency, throughput, and reliability.

Denote s as the configurable state of the mobile network,
e.g., resource allocation, scheduling strategy, and user traf-
fic. Given a configurable state, we can obtain the network
performance from the network simulator at a negligible cost,
in terms of time consumption, computation complexity, and
labor efforts. In contrast, we consider the cost of querying
the real-world network to be non-trivial, which relates to
the configuration of distributed network infrastructures and
the collection of network performance over time. Hence, we
denote ¢(s) as the querying cost for the state s and the
cumulative cost C' = 22;1 ¢ (sp) until the n-th iteration.

Note that, each individual network performance includes a
set of values, which are collected throughout the collection
time period, e.g., 1 hour. To represent the discrepancy be-
tween two distributions, we define the sim-to-real discrepancy
as D (Pr(s)||Ps(s)), where Dk, is the operator of KL-
divergence. Here, we denote D,.(s) and Ds(s) as the collected
dataset of network performances (e.g., latency and throughput)
under the state s obtained from the real-world network and
network simulator, respectively. Besides, P,(s) and Ps(s)
denote the probability function of the dataset D,.(s) and
the simulator Dg(s), respectively. Using the KL-divergence,
we can evaluate how the offline performance distribution is
different from real-world performance distribution. Therefore,
we formulate the digital network twin problem as

Drcr(Pr()[|Ps(s)) Q)

N
S.t. Z 1 C(Sn) < CmaX7 2

where P,(s) is the augmented dataset by combining Dj(s)
and A(s), which is the generated offsets by the neural agent
under state s, and Ci,ax is the budget of querying cost.
Challenges. The challenge in solving the aforementioned
problem Py primarily resides in the designing the neural agent.
To bridge the sim-to-real discrepancy, the neural agent may
need massive training dataset to be aware the high-dim state
space and generate the offset A(s). On the one hand, the
sim-to-real discrepancy is a black-box function, where no
closed-form expression to model the network performance

Py: min
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Fig. 1: The overview of the proposed solution.

obtained in the real-world system P, (s) and network simulator
Ps(s). Hence, it is difficult to cost-efficiently build the training
dataset, where random and grid selection generally lead to low
cost-efficiency. On the other hand, the sim-to-real discrepancy
is highly state-dependent, which means the neural agent should
generate contextual performance offsets under high-dim states,
which is a non-trivial challenge for existing methods, such as
linear regression.

III. THE PROPOSED SOLUTION

In this section, we describe the proposed DNT solution
(Fig. 1), which augments the network simulator with a newly-
designed neural agent. First, the simulation parameters of the
network simulator are configured and calibrated to match that
of the real-world network. Second, we evaluate the sim-to-real
discrepancy by sampling states and comparing the correspond-
ing performance collections. Third, we invoke the proposed
learn-to-bridge (L2B) algorithm (see Alg. 1) to minimize
the sim-to-real discrepancy by alternatively selecting states
from the whole state space, querying real-world performance
collections, and updating the neural agent. The learn-to-bridge
algorithm terminates when the cumulative cost reaches the
given threshold. Finally, we obtain the DNT with the trained
neural agent and the network simulator.

In particular, the proposed learn-to-bridge algorithm is com-
posed of two alternative stages, i.e., the system querying and
discrepancy bridging. In the system querying stage, we select
a batch of states and query them in the real-world network by
designing a cost-aware Bayesian optimization. In the discrep-
ancy bridging stage, we update the neural agent to approximate
the sim-to-real discrepancy by training a BNN with latest
observations. By solving these two stages alternatively, the
sim-to-real discrepancy would gradually reduced.

A. The Stage of System Querying

In the system querying stage, we need to select a batch
of states and query them in the real-world network. Here,
the objective is to find the maximum sim-to-real discrepancy
under the constraint of cumulative costs. The rationale is that,
as long as we found these states with the high sim-to-real
discrepancies, the discrepancy bridging stage will train the
neural agent to bridge the discrepancy, which maximizes the
reduction of sim-to-real discrepancy in this stage. Thus, the
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system querying subproblem P; can be expressed as
Py : max Drr(Pr(8)]|Ps(s)) 3)

N

s.t. Y c(sn) < Cnax. )
We considering that, conducting the system querying under
different states has non-identical costs, such as experiment
time, collection efforts, and deployment expenses. As a result,
it is impractical to use grid search based methods to select
states from high-dimensional state space (e.g., hundreds of
states, if not more) in real-world networks. In addition, we
observe that the sim-to-real discrepancy is non-uniform and
highly state-dependent (See Fig. 7). Hence, the random se-
lection based method generally leads to inefficient searching,
because the information from accumulative observations is
not fully exploited. Therefore, we design a new cost-aware
Bayesian optimization method to select states.

Cost-Aware Bayesian Optimization. Bayesian optimiza-
tion [7], [8] is the state-of-the-art framework to deal with
black-box problems, with practically proven sample efficiency
and performance. It generally consists of a surrogate model to
approximate the black-box function and an acquisition func-
tion to determine the next action to query. In each iteration,
the surrogate model will be updated with the latest obser-
vations for better approximation accuracy, which improves
the effectiveness of the action selection by the acquisition
function. Conventional Bayesian optimization mostly focused
on unconstrained black-box problems, which fail to tackle
the non-identical cost of different states in the problem Py.
To this end, our proposed cost-aware Bayesian optimization
uses Gaussian process (GP) as the surrogate model to sample-
efficient approximate the black-box function, and an improved
Expected Improvement (EI) to be the acquisition function to
cost-efficiently select states.

El is a widely used acquisition function in a vari-
ety of scenarios. For the sake of simplicity, we de-
note f(s) = Dxr(Pr(s)||Ps(s)) as the black-box func-
tion in the problem Py. Sample from f(s) to get s, =
argmax  EI(s | Dy.4—1), t € [1,T], where Dy 1 =
{(s1,f(s1)),---,(st—1, f(st—1))} is t-1 samples sampled
from f (s). Here, EI is defined as

EI(S) = E[max (f <S+> - f(S), 0)]’ )
where st = argmax, o,  f(s¢), t € [1,T] and f(s™)
represents the best sample value at present. At each iteration,
the acquisition function selects the point with the highest
value. To consider the cost of states during selection, we design

a new cost-aware expected improvement (cEI) as
El(s)

cEI(s) = ) (6)
which evaluates the ratio between the EI value and the
cost. This would encourage the acquisition function to select
the states with high EI values and low costs. Besides, we
introduce a parameter & € [0,1] to control the impact of
costs to balance the exploration and exploitation during the
searching of Bayesian optimization. In particular, we use the
decrease of sim-to-real discrepancy as the indicator to adjust

the parameter . When the sim-to-real discrepancy decreases
quickly in the last few iterations, we adjust the parameter «
to be large (e.g., approaching the maximum value 1), where
the cEI would become more conservative to exploit existing
observations. Otherwise, we adjust the parameter to be small
(e.g., approaching the minimum value 0), where the cEI would
tend to explore new states.

We use the sample-efficient GP as the surrogate model to
approximate the black-box function f(s). GP is an extension
of the multivariate Gaussian distribution to infinite dimensions
and it can be expressed as f(s) ~ GP (u(s), K (s,s)). It
represents the distribution of functions f(s) and consists of
both mean function p(s) and covariance function K (s,s’).
The covariance of GP can be expressed using a kernel
function. In this case, we utilize the widely used Radial

Basis Function (RBF) as the kernel function, which is de-

12
fined as K (s,s’) = o2exp (—”5;2”

>. Here, the hyper-

parameters of the Gaussian kernel, the variance o and the
length [, determine the average distance from the function
mean and the extent of influence on neighboring points,
respectively, and ||s — s/||> denotes the distance between two
distinct points in the continuous domain of the GP. After t
collections, we can get Dy.; = {(s1, f (s1)),-.-,(st, f (s¢))}-
The posterior distribution is expressed as P (f(s) | D1.t) x
P (Dy.+ | f(s)) P(f(s)). Since any point f (s¢11) on GP and
previous observation data follow a joint Gaussian distribution,
we can further obtain the predicted distribution as

P(f (st41) | Ditysisr) = N (e (se41),07 (5141)) - (D)
B. The Stage of Discrepancy Bridging
In the discrepancy bridging stage, we aim to update the neu-
ral agent to minimize the sim-to-real discrepancy, according
to the accumulative observation of performance collections.
Note that, the sim-to-real discrepancy is calculated based on
the performance collection in both simulator and real-world
system, which are a set of values, rather than a fixed value.
For example, we can obtain the collection of end-to-end
latency of user application (e.g., hundreds of values) under
each state state. Hence, the neural agent needs to bridge the
probabilistic discrepancy under all states. Although GP is a
promising method to approximate probabilistic distributions,
it can only generate Gaussian distribution, while the sim-to-
real discrepancy is barely Gaussian under all states. To this
end, we adopt BNN to approximate the sim-to-real discrepancy
function D1, (Pr(s)]|Ps(s)).

Bayesian Neural Networks. By introducing the prior prob-
ability for weight w of BNN, the objective of training the
BNN model transforms into finding the Maximum a Posteriori
(MAP), the posterior distribution of weight w ~ P(w | D),
where D refers to the observed dataset. According to Bayesian
theory, the calculation of the posterior probability distribution
is:

P(w,D) P(D|w)P(w)

P | D)= g = =gy ®

Here, we need to obtain both the prior probability P(w) and

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on September 17,2024 at 18:25:53 UTC from |IEEE Xplore. Restrictions apply.



IEEE INFOCOM WKSHPS: NG-OPERA 2024: Next-generation Open and Programmable Radio Access Networks

Algorithm 1: The Learn-to-Bridge (L2B) Algorithm

Input: T, Cpax

1 while T'rue do

2 / * % System Querying Stage * */;

3 for t =0,1,...,7 do

4 Sample states from S except previously
observed states;

Estimated their costs ¢ (s);

Calculate their cEI values based on Eq. 6;

Select the optimal state s;

Query both simulator and real-world system;

Calculate sim-to-real discrepancy
Drr(Pr(se)[|Ps(se)):

10 Update GPR with all cumulative observations;

1 Store < sy, D r,(Pr(se)||Ps(se)) >;

o e N & »n

12 Calculate cumulative cost C' = Z;‘F:l c(st);

13 / * % Discrepancy Bridging Stage * */;

14 | Train BNN with < s, Drr,(Pr(s¢)||Ps(st)) >3
15 if Cumulative cost exceeds the threshold then
16 L break;

the likelihood probability P(D | w). However, calculating
the posterior probability is intractable. Consequently, we ap-
proximate the posterior probability by defining a probability
distribution ¢p(w | D), which serves as a substitute for
p(w | D). Thus, our goal is to minimize the distance between
go(w | D) and p(w | D), and we employ KL-divergence to
quantify this distance:
0 = argmin Dicr (qo(w | D) p(w | D))

7q9(w D) dw. ®

= arg min w | D)lo
o [ a0t D) 1og S

C. The Learn-to-Bridge Algorithm

With the aforementioned analysis, we summarize the L2B
algorithm in Alg. 1.

In the system querying stage, we iteratively select and query
state. First, we sample thousands of states from the state space,
and estimate their costs ¢ (s). Next, we calculate the cEI for
all sampled state, and choose the optimal state with highest
cEI value. Then, we query the selected state and calculate
the sim-to-real discrepancy Dy, (P;(s;)||Ps(s¢)), which will
be used to update the Gaussian Process Regression (GPR) in
the cost-aware Bayesian optimization. As the batch of states
are selected, we train the BNN to approximate the sim-to-
real discrepancy. When the cumulative cost surpluses the given
threshold Clyax, the algorithm terminates.

IV. SYSTEM IMPLEMENTATION
In this section, we describe the system implementation, in-
cluding the end-to-end testbed and the proposed DNT.
A. End-to-End Testbed
We implement an end-to-end network testbed in Fig. 2, includ-
ing an eNB in RAN, a CN, and a mobile user. We implement

CN based on OpenAir-CN with the separation of the control
plane and data plane (CUPS), wherer network functions (NFs),

RAN

L
-
? i USRP B210
PP

User

Core Network

eNodeB .

Fig. 2: The overview of the end-to-end network testbed.

e.g., HSS, SPGW-U and SPGW-C, are deployed using Docker
containers. We implement the RAN based on OpenAirInter-
face (OAI) on an Intel i7 desktop with Ubuntu 18.04 low-
latency kernel. The RAN host is connected to an USRP B210
serving as the RF front end. The eNB operates on frequency
band 7 with a I0MHz radio bandwidth. An Oneplus 9 Android
smartphone is connected to eNB as the UE, with 1 meter
UE-to-Antenna distance. We develop an Android application
that continuously sends video frames to edge server co-located
with the SPGW-U. These video frames are processed by the
server using a feature extraction algorithm (i.e., ORB), and the
results are subsequently fed back to the UE. The performance
metric for evaluating this application is the end-to-end latency
of frames.

The state S = {U,D,C,R,My,Mp,F} includes 1)
U € [0,50] is the uplink bandwidth allocation; 2) D € [0, 50]
is downlink bandwidth allocation; 3) C' € [0,1.0] is CPU ratio;
4) R € ]0,1.0] is RAM ratio; 5) M,, € [0, 20] is average uplink
Modulation and Coding Scheme (MCS); 6) My € [0,28] is
average downlink MCS; 7) F' € [1,4] is user traffic. Note that,
the state space is discrete due to the intrinsic implementation
of the end-to-end testbed, such as physical resource block
(PRB) allocation in the MAC layer and the number of user
traffic. Hence, we exhaustively search the whole state space
and generate a database of network performance with nearly
2500 states.

B. Digital Network Twin

The proposed DNT is mainly composed of an offline network
simulator and a neural agent.

Simulator. We replicate the end-to-end testbed by using
NS-3, where the simulation parameters are matched corre-
spondingly. In particular, we adopt the LogDistancePropa-
gationLossModel as the pathloss model while omitting any
fading models. For the transport network, a p2p link is created
to connect RAN and CN, where the bandwidth and delay
are configured based on realistic measurements. We also
replicate the traffic generation of mobile users and the edge
computing processing by developing a FIFO service queue.
Specifically, the transmission sizes match closely with a mean
of 28.8kb and a standard deviation of 9.9kb. Besides, other
simulation parameters are calibrated with that of the end-to-
end testbed, including the MAC scheduler algorithm, antenna
specifications, frequency band, and the distance between the
eNB and smartphones. The end-to-end latency of frames is
logged and extracted as the output of network simulations.

Neural Agent. We implement the neural agent with a
BNN model with 4-layer fully connected architecture (i.e.,
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128x256x256x128), in PyTorch. We use the Tanh activation
function in the BNN [9]. We utilize the Adadelta optimizer
with the initial learning rate of 0.001, where the learning rate
is decayed by using the StepLR scheduler with gamma 0.95.

Learn-to-Bridge Algorithm. We use cost-aware Bayesian
optimization in the first stage, where GP is implemented by
using scikit-learn with the GaussianProcessRegressor module.
We utilize the Matern kernel with nu = 2.5, which extends the
RBF kernel and the absolute exponential kernel by introducing
the parameter nu. The nu parameter governs the smoothness
of the learned function.

V. PERFORMANCE EVALUATION

In the performance evaluation, we compare our proposed
algorithm with the following methods:

« Baseline: The Baseline randomly selects states to query
the real-world network, and use linear regression to
bridge the sim-to-real discrepancy.

¢ Grid Search (GS): The GS relies on grid search to select
states to query the real-world network, and use Gaussian
process to bridge the sim-to-real discrepancy.

o L2B-Lite: The L2B-Lite is the simplified version of our
proposed L2B algorithm, while it is unaware of the cost
of different states during the system querying stage.

Fig. 3 shows the performance of different methods for bridg-
ing the sim-to-real discrepancy. Here, we show the original
sim-to-real discrepancy, which is calculated by averaging the
sim-to-real discrepancy of all states in the database. It can
be seen that, all methods can gradually reduce the sim-to-real
discrepancy as the number of queried states accumulate. This
is because, more queried states would help to continuously
improve the accuracy of approximating the discrepancy. In
particular, our proposed learn-to-bridge algorithm achieves the
fastest reduction of the discrepancy, where the sim-to-real
discrepancy is reduced by nearly 90% with only 500 queried
states. Note that, the achieved sim-to-real discrepancy between
our algorithms and GS method are almost the same, when all
the states in the database are queried. This can be attribute
to the limited size of the database, where Gaussian process
can achieve similar approximation accuracy of the sim-to-real
discrepancy with BNN. In large-scale operating network, we
expect that the Gaussian process could be insufficient to tackle
the high-dim state space.

Fig. 4 shows the accumulation of the querying cost versus
the number of queried states. It can be seen that, our proposed
learn-to-bridge algorithm achieves the lowest accumulated
querying costs, which is almost 40% less than all other
methods after 500 states are queried. Note that, all other
methods (including L2B-Lite) are unaware of the querying cost
when they select the states, hence we observe the accumulated
cost grows linearly. In particular, we show the cost efficiency
of all methods in Fig. 5, which is defined as the ratio between
the reduced sim-to-real discrepancy and the accumulated
querying cost. We can see that, our proposed learn-to-bridge
algorithm substantially outperforms all other methods (e.g.,
more than 10x than the GS method) before 1000 queried states,

which verifies its cost-efficiency in bridging the sim-to-real
discrepancy. After 1500 queried states, the cost-efficiency of
all methods are similar. This is because, the remaining state
space keeps shrinking as more states are queried and thus
unavailable to be selected at the system querying stage. As
a result, the learn-to-bridge algorithm has to select these cost
inefficient states from the ever-decreasing state space.

Next, we show the achieved performance of the learn-to-
bridge algorithm in terms of reducing the sim-to-real dis-
crepancy under different states. Fig. 6 shows the discrepancy
between sim-to-real and DNT-to-reality under different user
traffic. It can be seen that, our proposed DNT has a minimal
discrepancy with the real-world network across all different
user traffic scenarios. Besides, our proposed DNT reduces
the discrepancy between simulation and reality by 93.1%,
95.1%, 94.0%, and 91.2% for 1, 2, 3, and 4 users, respectively.
Fig. 7 shows the reduction of the sim-to-real discrepancy
under different uplink and downlink bandwidth allocation.
We observe that, the sim-to-real discrepancy is reduced on
average of 93.3%, where at least 92.1% reduction can be
achieved. From this result, we also justify that the sim-to-
real discrepancy is state-dependent, rather than uniform. Note
that, the sim-to-real discrepancy cannot be completely reduced
due to the various abstraction of network simulators and
unobservable variabilities in real-world networks.

VI. RELATED WORK

Digital Network Twin. The paradigm of digital twin has
gained extensive attention with increasing research efforts on
creation, maintenance, and update. Almeida et. al [10] pro-
posed a machine learning based propagation loss module for
NS-3, which enables accurate prediction of propagation loss
in real-world environments and replicates the experimental
conditions of a specified testbed. Consequently, it facilitates
the creation of a digital twin of the wireless network envi-
ronment within NS-3, allowing for advanced simulations and
analysis. Tuli et. al [11] leveraged the accuracy of predictive
digital twin models and simulation capabilities by developing
a coupled simulation and container orchestration framework.
This paper also creates a hybrid simulation-driven decision-
making approach to optimize network Quality of Service
(QoS) parameters. Lai et. al [12] introduced an algorithm
capable of precisely forecasting the future traffic of the target
network. This advancement contributes to the development of
the digital twin network, facilitating a greater resemblance be-
tween the twin and the ontology. However, exiting works lack
the concertized approach to achieve digital twin in networking
area. In contrast, we focus on designing a detailed approach to
achieve DNT by augmenting network simulators with context-
aware neural agents.

Sim-to-Real Discrepancy. The sim-to-real discrepancy has
been increasingly revealed in networking domain by recent
works. Shi et. al [2] proposed to adopt domain adaptation to
bridge the discrepancy between the simulator and the system,
where a DNN model has been designed to effectively transfer
the state knowledge learned from the simulator to the real-
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Fig. 3: Performance of discrepancy
reduction.
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Fig. 6: Discrepancy reduction under different user traffic.

world network. Liu et. al [4] identified the non-trivial sim-
to-real discrepancy in network slicing system, and proposed
a three-stage approach by bridging the discrepancy, training
offline DL policy, and learning online safe DL policy. To tackle
the reality gap, Zhang et. al [3] proposed a hybrid learning
algorithm and a learning aggregation mechanism to safely
and robustly deploy online DRL agents in real-world video
telephony. Tuli et. al [13] proposed a framework to bridge
the reality gap between simulated and real network QoS, by
utilizing a low-fidelity neural network-based proxy model to
optimize the parameters of a high-fidelity simulator. However,
these works mostly identified the sim-to-real discrepancy and
only focused on designing different techniques to adapt to it.
In this work, we focus on how to cost-efficiently decrease the
sim-to-real discrepancy between the proposed DNT and real-
world networks.

VII. CONCLUSION

In this paper, we presented a new approach to build DNT
by augmenting network simulators with context-aware neural
agents. To tackle the non-trivial sim-to-real discrepancy, we
proposed a new learn-to-bridge algorithm to cost-efficiently
select states in the first stage and update the neural agent
with accumulative observations in the second stage. We built
a small-scale end-to-end network testbed based on OAI RAN
and Core with USRP B210 and a smartphone, and replicate
the network in NS-3. The evaluation results shown that, our
proposed solution substantially outperforms existing methods,
with more than 90% reduction in the sim-to-real discrepancy.
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