
Learn to Augment Network Simulators Towards Digital

Network Twins

Yuru Zhang, Ming Zhao, Qiang Liu

University of Nebraska-Lincoln

qiang.liu@unl.edu

Nakjung Choi

Nokia Bell Labs

nakjung.choi@nokia-bell-labs.com

Abstract—Digital network twin (DNT) is a promising paradigm
to replicate real-world cellular networks toward continual as-
sessment, proactive management, and what-if analysis. Existing
discussions have been focusing on using only deep learning
techniques to build DNTs, which raises widespread concerns
regarding their generalization, explainability, and transparency.
In this paper, we explore an alternative approach to augment
network simulators with context-aware neural agents. The main
challenge lies in the non-trivial simulation-to-reality (sim-to-real)
discrepancy between offline simulators and real-world networks.
To solve the challenge, we propose a new learn-to-bridge al-
gorithm to cost-efficiently bridge the sim-to-real discrepancy in
two alternative stages. In the first stage, we select states to query
performances in real-world networks by using newly-designed
cost-aware Bayesian optimization. In the second stage, we train
the neural agent to learn the state context and bridge the prob-
abilistic discrepancy based on Bayesian neural networks (BNN).
In addition, we build a small-scale end-to-end network testbed
based on OpenAirInterface RAN and Core with USRP B210 and
a smartphone, and replicate the network in Network Simulator
3 (NS-3). The evaluation results show that, our proposed solution
substantially outperforms existing methods, with more than 92%
reduction in the sim-to-real discrepancy.

Index Terms—Digital Network Twin, Simulation-to-Reality
Discrepancy

I. INTRODUCTION

To support emerging applications and diverse scenarios, e.g.,

extended reality and Unmanned Aerial Vehicles (UAVs), mo-

bile networks are evolving towards densification, distributed,

disaggregation, and especially openness, such as O-RAN [1].

The ever-increasing mobile networks pose non-trivial chal-

lenges in network management [2], such as resource allocation

and admission control, in terms of performance estimation,

state understanding, and risk evaluation. Network simulators

(e.g., NS-3 and OMNET++) have been widely adopted to

analyze, evaluate, and test network management policies,

including both model-based and model-free, such as deep

learning (DL) and deep reinforcement learning (DRL) [3].

In common practice, the simulated network will be cre-

ated to match the real-world network, including architecture,

topology, and parameters, such as user mobility and radio

channel propagation. To maintain the feasible computation

complexity of network simulations, a variety of abstraction

mechanisms (e.g., SNR-to-BLER mapping) are developed

and used in network simulators. However, the introduced

abstraction mechanisms may fail to accurately represent the

actual behaviors in real-world networks [4]. Besides, network

simulators cannot incorporate the nature dynamics of real-

world networks, where some of them may be unknown and

unobservable, such as instantaneous channel variations and

thermal impacts on Radio frequency (RF) devices. As a result,

recent works have been increasingly revealing that the non-

trivial simulation-to-reality (sim-to-real) discrepancy [3], [4],

[2], which could substantially compromise the efficacy of

simulation results.

Digital network twin (DNT) [5] is a promising paradigm

to replicate real-world networks in offline environments, in

terms of fine granularity, synchronicity, and high fidelity. The

attribute of high fidelity requires the DNT to have a minimal

sim-to-real discrepancy with respect to real-world networks.

With the DNT, network management policies can be offline

tested in terms of performance, safety, and robustness. For

example, the network performance of a DL-based policy can

be thoroughly evaluated if its management action will violate

the service-level agreement (SLA) of user applications [4].

The concept of digital twins have been discussed for years,

however, there still lacks a concertized and detailed approach

to building a digital twin for real-world networks. DL-based

approaches have been paid great attention, where one or more

deep neural networks (DNNs) will be created and trained to

imitate the behaviors of real-world networks [6]. However,

the unresolved concerns of DNNs, including generalization,

explainability, and transparency raised, which would constrain

its deployment in practice.

In this paper, we explore an alternative approach to building

digital network twins for open radio access networks. The

fundamental idea is to augment existing network simulators

by reducing the sim-to-real discrepancy with newly-designed

context-aware neural agents. The rationale is that, network

simulators are built based on rigorous domain knowledge,

which generally achieves solid generalization and explainabil-

ity and transparency. The main challenge lies in the non-

trivial and complex sim-to-real discrepancy between offline

simulators and real-world networks. To solve the challenge,

we propose a new learn-to-bridge algorithm to cost-efficiently

bridge the sim-to-real discrepancy via two alternative stages.

In the first stage, we design a new cost-aware Bayesian

optimization to select configurable states and query their

performances in real-world networks. This is based on our

observation that, the sim-to-real discrepancy is highly state-

dependent and non-uniform. In the second stage, we create

a neural agent with Bayesian neural networks (BNN) and

train it to learn the state context and bridge the probabilistic

discrepancy. In addition, we build a small-scale end-to-end

network testbed based on OpenAirInterface RAN and Core

IEEE INFOCOM WKSHPS: NG-OPERA 2024: Next-generation Open and Programmable Radio Access Networks

979-8-3503-8447-5/24/$31.00 ©2024 IEEE

IE
EE

 IN
FO

CO
M

 2
02

4
- I

EE
E

Co
nf

er
en

ce
 o

n
Co

m
pu

te
r C

om
m

un
ic

at
io

ns
 W

or
ks

ho
ps

 (I
N

FO
CO

M
 W

KS
HP

S)
 |

 9
79

-8
-3

50
3-

84
47

-5
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IN

FO
CO

M
W

KS
HP

S6
18

80
.2

02
4.

10
62

08
40

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on September 17,2024 at 18:25:53 UTC from IEEE Xplore. Restrictions apply.

with USRP B210 and a smartphone, and replicate the network

in Network Simulator 3 (NS-3). The evaluation results show

that, our proposed solution substantially outperforms existing

methods, with more than 90% reduction in the sim-to-real

discrepancy.

II. SYSTEM MODEL

We consider the mobile network comprising multiple base

stations (BS) in the radio access network (RAN), a core

network (CN), and mobile users. Besides, an offline network

simulator (e.g., NS3 and OMNET++) replicates the real-

world network in terms of architecture, topology, and param-

eters. For example, the simulation parameters of the network

simulator, e.g., link bandwidth and operating spectrum, are

set to match that of the real-world network. In this work,

we focus on achieving a high-fidelity DNT, which imitates

the network performance in the real-world network, such as

latency, throughput, and reliability.

Denote s as the configurable state of the mobile network,

e.g., resource allocation, scheduling strategy, and user traf-

fic. Given a configurable state, we can obtain the network

performance from the network simulator at a negligible cost,

in terms of time consumption, computation complexity, and

labor efforts. In contrast, we consider the cost of querying

the real-world network to be non-trivial, which relates to

the configuration of distributed network infrastructures and

the collection of network performance over time. Hence, we

denote c(s) as the querying cost for the state s and the

cumulative cost C =
∑N

n=1
c (sn) until the n-th iteration.

Note that, each individual network performance includes a

set of values, which are collected throughout the collection

time period, e.g., 1 hour. To represent the discrepancy be-

tween two distributions, we define the sim-to-real discrepancy

as DKL(Pr(s)∥Ps(s)), where DKL is the operator of KL-

divergence. Here, we denote Dr(s) and Ds(s) as the collected

dataset of network performances (e.g., latency and throughput)

under the state s obtained from the real-world network and

network simulator, respectively. Besides, Pr(s) and Ps(s)
denote the probability function of the dataset Dr(s) and

the simulator Ds(s), respectively. Using the KL-divergence,

we can evaluate how the offline performance distribution is

different from real-world performance distribution. Therefore,

we formulate the digital network twin problem as

P0 : min
A

DKL(Pr(s)∥P̂s(s)) (1)

s.t.
∑N

n=1
c (sn) ≤ Cmax, (2)

where P̂s(s) is the augmented dataset by combining Ds(s)
and A(s), which is the generated offsets by the neural agent

under state s, and Cmax is the budget of querying cost.

Challenges. The challenge in solving the aforementioned

problem P0 primarily resides in the designing the neural agent.

To bridge the sim-to-real discrepancy, the neural agent may

need massive training dataset to be aware the high-dim state

space and generate the offset A(s). On the one hand, the

sim-to-real discrepancy is a black-box function, where no

closed-form expression to model the network performance

System Simulator

Digital Network TwinWireless Network Prototype

Query Sys & Sim

Get performance

Discrepancy Bridging

Discrepancy

Neural Agent

Learn-to-Bridge Algorithm

System Querying

Fig. 1: The overview of the proposed solution.

obtained in the real-world system Pr(s) and network simulator

Ps(s). Hence, it is difficult to cost-efficiently build the training

dataset, where random and grid selection generally lead to low

cost-efficiency. On the other hand, the sim-to-real discrepancy

is highly state-dependent, which means the neural agent should

generate contextual performance offsets under high-dim states,

which is a non-trivial challenge for existing methods, such as

linear regression.

III. THE PROPOSED SOLUTION

In this section, we describe the proposed DNT solution

(Fig. 1), which augments the network simulator with a newly-

designed neural agent. First, the simulation parameters of the

network simulator are configured and calibrated to match that

of the real-world network. Second, we evaluate the sim-to-real

discrepancy by sampling states and comparing the correspond-

ing performance collections. Third, we invoke the proposed

learn-to-bridge (L2B) algorithm (see Alg. 1) to minimize

the sim-to-real discrepancy by alternatively selecting states

from the whole state space, querying real-world performance

collections, and updating the neural agent. The learn-to-bridge

algorithm terminates when the cumulative cost reaches the

given threshold. Finally, we obtain the DNT with the trained

neural agent and the network simulator.

In particular, the proposed learn-to-bridge algorithm is com-

posed of two alternative stages, i.e., the system querying and

discrepancy bridging. In the system querying stage, we select

a batch of states and query them in the real-world network by

designing a cost-aware Bayesian optimization. In the discrep-

ancy bridging stage, we update the neural agent to approximate

the sim-to-real discrepancy by training a BNN with latest

observations. By solving these two stages alternatively, the

sim-to-real discrepancy would gradually reduced.

A. The Stage of System Querying

In the system querying stage, we need to select a batch

of states and query them in the real-world network. Here,

the objective is to find the maximum sim-to-real discrepancy

under the constraint of cumulative costs. The rationale is that,

as long as we found these states with the high sim-to-real

discrepancies, the discrepancy bridging stage will train the

neural agent to bridge the discrepancy, which maximizes the

reduction of sim-to-real discrepancy in this stage. Thus, the

IEEE INFOCOM WKSHPS: NG-OPERA 2024: Next-generation Open and Programmable Radio Access Networks

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on September 17,2024 at 18:25:53 UTC from IEEE Xplore. Restrictions apply.

system querying subproblem P1 can be expressed as

P1 : max
S

DKL(Pr(s)∥Ps(s)) (3)

s.t.
∑N

n=1
c (sn) ≤ Cmax. (4)

We considering that, conducting the system querying under

different states has non-identical costs, such as experiment

time, collection efforts, and deployment expenses. As a result,

it is impractical to use grid search based methods to select

states from high-dimensional state space (e.g., hundreds of

states, if not more) in real-world networks. In addition, we

observe that the sim-to-real discrepancy is non-uniform and

highly state-dependent (See Fig. 7). Hence, the random se-

lection based method generally leads to inefficient searching,

because the information from accumulative observations is

not fully exploited. Therefore, we design a new cost-aware

Bayesian optimization method to select states.

Cost-Aware Bayesian Optimization. Bayesian optimiza-

tion [7], [8] is the state-of-the-art framework to deal with

black-box problems, with practically proven sample efficiency

and performance. It generally consists of a surrogate model to

approximate the black-box function and an acquisition func-

tion to determine the next action to query. In each iteration,

the surrogate model will be updated with the latest obser-

vations for better approximation accuracy, which improves

the effectiveness of the action selection by the acquisition

function. Conventional Bayesian optimization mostly focused

on unconstrained black-box problems, which fail to tackle

the non-identical cost of different states in the problem P0.

To this end, our proposed cost-aware Bayesian optimization

uses Gaussian process (GP) as the surrogate model to sample-

efficient approximate the black-box function, and an improved

Expected Improvement (EI) to be the acquisition function to

cost-efficiently select states.

EI is a widely used acquisition function in a vari-

ety of scenarios. For the sake of simplicity, we de-

note f(s) = DKL(Pr(s)∥Ps(s)) as the black-box func-

tion in the problem P0. Sample from f(s) to get st =
argmax

s
EI (s | D1:t−1), t ∈ [1, T], where D1:t−1 =

{(s1, f (s1)) , . . . , (st−1, f (st−1))} is t-1 samples sampled

from f (s). Here, EI is defined as

EI(s) = E[max
(

f
(

s
+
)

− f(s), 0
)

], (5)

where s
+ = argmax

st∈s1:t
f (st), t ∈ [1, T] and f (s+)

represents the best sample value at present. At each iteration,

the acquisition function selects the point with the highest

value. To consider the cost of states during selection, we design

a new cost-aware expected improvement (cEI) as

cEI(s) =
EI(s)

c(s)α
, (6)

which evaluates the ratio between the EI value and the

cost. This would encourage the acquisition function to select

the states with high EI values and low costs. Besides, we

introduce a parameter α ∈ [0, 1] to control the impact of

costs to balance the exploration and exploitation during the

searching of Bayesian optimization. In particular, we use the

decrease of sim-to-real discrepancy as the indicator to adjust

the parameter α. When the sim-to-real discrepancy decreases

quickly in the last few iterations, we adjust the parameter α
to be large (e.g., approaching the maximum value 1), where

the cEI would become more conservative to exploit existing

observations. Otherwise, we adjust the parameter to be small

(e.g., approaching the minimum value 0), where the cEI would

tend to explore new states.

We use the sample-efficient GP as the surrogate model to

approximate the black-box function f(s). GP is an extension

of the multivariate Gaussian distribution to infinite dimensions

and it can be expressed as f(s) ∼ GP (µ(s),K (s, s′)). It

represents the distribution of functions f(s) and consists of

both mean function µ(s) and covariance function K (s, s′).
The covariance of GP can be expressed using a kernel

function. In this case, we utilize the widely used Radial

Basis Function (RBF) as the kernel function, which is de-

fined as K (s, s′) = σ2 exp

(

−
∥s−s

′∥2

2l2

)

. Here, the hyper-

parameters of the Gaussian kernel, the variance σ and the

length l, determine the average distance from the function

mean and the extent of influence on neighboring points,

respectively, and ∥s− s
′∥2 denotes the distance between two

distinct points in the continuous domain of the GP. After t

collections, we can get D1:t = {(s1, f (s1)) , . . . , (st, f (st))}.

The posterior distribution is expressed as P (f(s) | D1:t) ∝
P (D1:t | f(s))P (f(s)). Since any point f (st+1) on GP and

previous observation data follow a joint Gaussian distribution,

we can further obtain the predicted distribution as

P (f (st+1) | D1:t, st+1) = N
(

µt (st+1) , σ
2
t (st+1)

)

. (7)

B. The Stage of Discrepancy Bridging

In the discrepancy bridging stage, we aim to update the neu-

ral agent to minimize the sim-to-real discrepancy, according

to the accumulative observation of performance collections.

Note that, the sim-to-real discrepancy is calculated based on

the performance collection in both simulator and real-world

system, which are a set of values, rather than a fixed value.

For example, we can obtain the collection of end-to-end

latency of user application (e.g., hundreds of values) under

each state state. Hence, the neural agent needs to bridge the

probabilistic discrepancy under all states. Although GP is a

promising method to approximate probabilistic distributions,

it can only generate Gaussian distribution, while the sim-to-

real discrepancy is barely Gaussian under all states. To this

end, we adopt BNN to approximate the sim-to-real discrepancy

function DKL(Pr(s)∥Ps(s)).

Bayesian Neural Networks. By introducing the prior prob-

ability for weight w of BNN, the objective of training the

BNN model transforms into finding the Maximum a Posteriori

(MAP), the posterior distribution of weight w ∼ P (w | D),
where D refers to the observed dataset. According to Bayesian

theory, the calculation of the posterior probability distribution

is:

P (w | D) =
P (w,D)

P (D)
=

P (D | w)P (w)

P (D)
. (8)

Here, we need to obtain both the prior probability P (w) and

IEEE INFOCOM WKSHPS: NG-OPERA 2024: Next-generation Open and Programmable Radio Access Networks

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on September 17,2024 at 18:25:53 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: The Learn-to-Bridge (L2B) Algorithm

Input: T , Cmax

1 while True do

2 / ∗ ∗ System Querying Stage ∗ ∗/;

3 for t = 0, 1, ..., T do

4 Sample states from S except previously

observed states;

5 Estimated their costs c (s);
6 Calculate their cEI values based on Eq. 6;

7 Select the optimal state s;

8 Query both simulator and real-world system;

9 Calculate sim-to-real discrepancy

DKL(Pr(st)∥Ps(st));
10 Update GPR with all cumulative observations;

11 Store < st,DKL(Pr(st)∥Ps(st)) >;

12 Calculate cumulative cost C =
∑T

t=1
c (st);

13 / ∗ ∗ Discrepancy Bridging Stage ∗ ∗/;

14 Train BNN with < st,DKL(Pr(st)∥Ps(st)) >;

15 if Cumulative cost exceeds the threshold then

16 break;

the likelihood probability P (D | w). However, calculating

the posterior probability is intractable. Consequently, we ap-

proximate the posterior probability by defining a probability

distribution qθ(w | D), which serves as a substitute for

p(w | D). Thus, our goal is to minimize the distance between

qθ(w | D) and p(w | D), and we employ KL-divergence to

quantify this distance:

θopt = argmin
θ

DKL(qθ(w | D)∥p(w | D))

= argmin
θ

∫

qθ(w | D) log
qθ(w | D)

p(w | D)
dw.

(9)

C. The Learn-to-Bridge Algorithm

With the aforementioned analysis, we summarize the L2B

algorithm in Alg. 1.

In the system querying stage, we iteratively select and query

state. First, we sample thousands of states from the state space,

and estimate their costs c (s). Next, we calculate the cEI for

all sampled state, and choose the optimal state with highest

cEI value. Then, we query the selected state and calculate

the sim-to-real discrepancy DKL(Pr(st)∥Ps(st)), which will

be used to update the Gaussian Process Regression (GPR) in

the cost-aware Bayesian optimization. As the batch of states

are selected, we train the BNN to approximate the sim-to-

real discrepancy. When the cumulative cost surpluses the given

threshold Cmax, the algorithm terminates.

IV. SYSTEM IMPLEMENTATION

In this section, we describe the system implementation, in-

cluding the end-to-end testbed and the proposed DNT.

A. End-to-End Testbed

We implement an end-to-end network testbed in Fig. 2, includ-

ing an eNB in RAN, a CN, and a mobile user. We implement

CN based on OpenAir-CN with the separation of the control

plane and data plane (CUPS), wherer network functions (NFs),

OpenAir

CN

OpenAir

Interface

USRP B210

Core Network

eNodeBUser

RAN

APP

Fig. 2: The overview of the end-to-end network testbed.

e.g., HSS, SPGW-U and SPGW-C, are deployed using Docker

containers. We implement the RAN based on OpenAirInter-

face (OAI) on an Intel i7 desktop with Ubuntu 18.04 low-

latency kernel. The RAN host is connected to an USRP B210

serving as the RF front end. The eNB operates on frequency

band 7 with a 10MHz radio bandwidth. An Oneplus 9 Android

smartphone is connected to eNB as the UE, with 1 meter

UE-to-Antenna distance. We develop an Android application

that continuously sends video frames to edge server co-located

with the SPGW-U. These video frames are processed by the

server using a feature extraction algorithm (i.e., ORB), and the

results are subsequently fed back to the UE. The performance

metric for evaluating this application is the end-to-end latency

of frames.

The state S = {U,D,C,R,MU ,MD, F} includes 1)

U ∈ [0, 50] is the uplink bandwidth allocation; 2) D ∈ [0, 50]
is downlink bandwidth allocation; 3) C ∈ [0, 1.0] is CPU ratio;

4) R ∈ [0, 1.0] is RAM ratio; 5) Mu ∈ [0, 20] is average uplink

Modulation and Coding Scheme (MCS); 6) Md ∈ [0, 28] is

average downlink MCS; 7) F ∈ [1, 4] is user traffic. Note that,

the state space is discrete due to the intrinsic implementation

of the end-to-end testbed, such as physical resource block

(PRB) allocation in the MAC layer and the number of user

traffic. Hence, we exhaustively search the whole state space

and generate a database of network performance with nearly

2500 states.

B. Digital Network Twin

The proposed DNT is mainly composed of an offline network

simulator and a neural agent.

Simulator. We replicate the end-to-end testbed by using

NS-3, where the simulation parameters are matched corre-

spondingly. In particular, we adopt the LogDistancePropa-

gationLossModel as the pathloss model while omitting any

fading models. For the transport network, a p2p link is created

to connect RAN and CN, where the bandwidth and delay

are configured based on realistic measurements. We also

replicate the traffic generation of mobile users and the edge

computing processing by developing a FIFO service queue.

Specifically, the transmission sizes match closely with a mean

of 28.8kb and a standard deviation of 9.9kb. Besides, other

simulation parameters are calibrated with that of the end-to-

end testbed, including the MAC scheduler algorithm, antenna

specifications, frequency band, and the distance between the

eNB and smartphones. The end-to-end latency of frames is

logged and extracted as the output of network simulations.

Neural Agent. We implement the neural agent with a

BNN model with 4-layer fully connected architecture (i.e.,

IEEE INFOCOM WKSHPS: NG-OPERA 2024: Next-generation Open and Programmable Radio Access Networks

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on September 17,2024 at 18:25:53 UTC from IEEE Xplore. Restrictions apply.

128x256x256x128), in PyTorch. We use the Tanh activation

function in the BNN [9]. We utilize the Adadelta optimizer

with the initial learning rate of 0.001, where the learning rate

is decayed by using the StepLR scheduler with gamma 0.95.

Learn-to-Bridge Algorithm. We use cost-aware Bayesian

optimization in the first stage, where GP is implemented by

using scikit-learn with the GaussianProcessRegressor module.

We utilize the Matern kernel with nu = 2.5, which extends the

RBF kernel and the absolute exponential kernel by introducing

the parameter nu. The nu parameter governs the smoothness

of the learned function.

V. PERFORMANCE EVALUATION

In the performance evaluation, we compare our proposed

algorithm with the following methods:

• Baseline: The Baseline randomly selects states to query

the real-world network, and use linear regression to

bridge the sim-to-real discrepancy.

• Grid Search (GS): The GS relies on grid search to select

states to query the real-world network, and use Gaussian

process to bridge the sim-to-real discrepancy.

• L2B-Lite: The L2B-Lite is the simplified version of our

proposed L2B algorithm, while it is unaware of the cost

of different states during the system querying stage.

Fig. 3 shows the performance of different methods for bridg-

ing the sim-to-real discrepancy. Here, we show the original

sim-to-real discrepancy, which is calculated by averaging the

sim-to-real discrepancy of all states in the database. It can

be seen that, all methods can gradually reduce the sim-to-real

discrepancy as the number of queried states accumulate. This

is because, more queried states would help to continuously

improve the accuracy of approximating the discrepancy. In

particular, our proposed learn-to-bridge algorithm achieves the

fastest reduction of the discrepancy, where the sim-to-real

discrepancy is reduced by nearly 90% with only 500 queried

states. Note that, the achieved sim-to-real discrepancy between

our algorithms and GS method are almost the same, when all

the states in the database are queried. This can be attribute

to the limited size of the database, where Gaussian process

can achieve similar approximation accuracy of the sim-to-real

discrepancy with BNN. In large-scale operating network, we

expect that the Gaussian process could be insufficient to tackle

the high-dim state space.

Fig. 4 shows the accumulation of the querying cost versus

the number of queried states. It can be seen that, our proposed

learn-to-bridge algorithm achieves the lowest accumulated

querying costs, which is almost 40% less than all other

methods after 500 states are queried. Note that, all other

methods (including L2B-Lite) are unaware of the querying cost

when they select the states, hence we observe the accumulated

cost grows linearly. In particular, we show the cost efficiency

of all methods in Fig. 5, which is defined as the ratio between

the reduced sim-to-real discrepancy and the accumulated

querying cost. We can see that, our proposed learn-to-bridge

algorithm substantially outperforms all other methods (e.g.,

more than 10x than the GS method) before 1000 queried states,

which verifies its cost-efficiency in bridging the sim-to-real

discrepancy. After 1500 queried states, the cost-efficiency of

all methods are similar. This is because, the remaining state

space keeps shrinking as more states are queried and thus

unavailable to be selected at the system querying stage. As

a result, the learn-to-bridge algorithm has to select these cost

inefficient states from the ever-decreasing state space.

Next, we show the achieved performance of the learn-to-

bridge algorithm in terms of reducing the sim-to-real dis-

crepancy under different states. Fig. 6 shows the discrepancy

between sim-to-real and DNT-to-reality under different user

traffic. It can be seen that, our proposed DNT has a minimal

discrepancy with the real-world network across all different

user traffic scenarios. Besides, our proposed DNT reduces

the discrepancy between simulation and reality by 93.1%,

95.1%, 94.0%, and 91.2% for 1, 2, 3, and 4 users, respectively.

Fig. 7 shows the reduction of the sim-to-real discrepancy

under different uplink and downlink bandwidth allocation.

We observe that, the sim-to-real discrepancy is reduced on

average of 93.3%, where at least 92.1% reduction can be

achieved. From this result, we also justify that the sim-to-

real discrepancy is state-dependent, rather than uniform. Note

that, the sim-to-real discrepancy cannot be completely reduced

due to the various abstraction of network simulators and

unobservable variabilities in real-world networks.

VI. RELATED WORK

Digital Network Twin. The paradigm of digital twin has

gained extensive attention with increasing research efforts on

creation, maintenance, and update. Almeida et. al [10] pro-

posed a machine learning based propagation loss module for

NS-3, which enables accurate prediction of propagation loss

in real-world environments and replicates the experimental

conditions of a specified testbed. Consequently, it facilitates

the creation of a digital twin of the wireless network envi-

ronment within NS-3, allowing for advanced simulations and

analysis. Tuli et. al [11] leveraged the accuracy of predictive

digital twin models and simulation capabilities by developing

a coupled simulation and container orchestration framework.

This paper also creates a hybrid simulation-driven decision-

making approach to optimize network Quality of Service

(QoS) parameters. Lai et. al [12] introduced an algorithm

capable of precisely forecasting the future traffic of the target

network. This advancement contributes to the development of

the digital twin network, facilitating a greater resemblance be-

tween the twin and the ontology. However, exiting works lack

the concertized approach to achieve digital twin in networking

area. In contrast, we focus on designing a detailed approach to

achieve DNT by augmenting network simulators with context-

aware neural agents.

Sim-to-Real Discrepancy. The sim-to-real discrepancy has

been increasingly revealed in networking domain by recent

works. Shi et. al [2] proposed to adopt domain adaptation to

bridge the discrepancy between the simulator and the system,

where a DNN model has been designed to effectively transfer

the state knowledge learned from the simulator to the real-

IEEE INFOCOM WKSHPS: NG-OPERA 2024: Next-generation Open and Programmable Radio Access Networks

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on September 17,2024 at 18:25:53 UTC from IEEE Xplore. Restrictions apply.

0 500 1000 1500 2000 2500
Number of queried states

0
1
2
3
4
5
6
7

Re
m

ai
ni

ng
 G

ap
GS
L2B
L2B-Lite
Baseline
Original Gap

Fig. 3: Performance of discrepancy
reduction.

0 500 1000 1500 2000 2500
Number of queried states

0
200
400
600
800

1000
1200

Cu
m

ul
at

iv
e

Co
st

GS
L2B
L2B-Lite
Baseline

Fig. 4: Performance of cumulative cost.

0 500 1000 1500 2000 2500
Number of queried states

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Co
st

 E
ffi

cie
nc

y

GS
L2B
L2B-Lite
Baseline

Fig. 5: Performance of cost efficiency.

1 2 3 4
User traffic

0

1

2

3

4

Di
sc

re
pa

nc
y

Simulation-to-reality
DNT-to-reality

Fig. 6: Discrepancy reduction under different user traffic.

0.25 0.5 0.75 1
Uplink bandwith usage

0.
25

0.
5

0.
75

1Do
wn

lin
k

ba
nd

wi
th

 u
sa

ge 0.93 0.92 0.92 0.94

0.94 0.93 0.94 0.94

0.94 0.94 0.93 0.94

0.93 0.93 0.93 0.93
0.925

0.930

0.935

0.940

Fig. 7: Discrepancy reduction under different states.

world network. Liu et. al [4] identified the non-trivial sim-

to-real discrepancy in network slicing system, and proposed

a three-stage approach by bridging the discrepancy, training

offline DL policy, and learning online safe DL policy. To tackle

the reality gap, Zhang et. al [3] proposed a hybrid learning

algorithm and a learning aggregation mechanism to safely

and robustly deploy online DRL agents in real-world video

telephony. Tuli et. al [13] proposed a framework to bridge

the reality gap between simulated and real network QoS, by

utilizing a low-fidelity neural network-based proxy model to

optimize the parameters of a high-fidelity simulator. However,

these works mostly identified the sim-to-real discrepancy and

only focused on designing different techniques to adapt to it.

In this work, we focus on how to cost-efficiently decrease the

sim-to-real discrepancy between the proposed DNT and real-

world networks.

VII. CONCLUSION

In this paper, we presented a new approach to build DNT

by augmenting network simulators with context-aware neural

agents. To tackle the non-trivial sim-to-real discrepancy, we

proposed a new learn-to-bridge algorithm to cost-efficiently

select states in the first stage and update the neural agent

with accumulative observations in the second stage. We built

a small-scale end-to-end network testbed based on OAI RAN

and Core with USRP B210 and a smartphone, and replicate

the network in NS-3. The evaluation results shown that, our

proposed solution substantially outperforms existing methods,

with more than 90% reduction in the sim-to-real discrepancy.

ACKNOWLEDGEMENT

This work is supported by the US National Science Foundation

under Grant No. 2321699.

REFERENCES

[1] M. Polese, L. Bonati, S. D’oro, S. Basagni, and T. Melodia, “Un-
derstanding o-ran: Architecture, interfaces, algorithms, security, and
research challenges,” IEEE Communications Surveys & Tutorials, 2023.

[2] J. Shi, M. Sha, and X. Peng, “Adapting wireless mesh network con-
figuration from simulation to reality via deep learning based domain
adaptation,” in NSDI, 2021, pp. 887–901.

[3] H. Zhang, A. Zhou, J. Lu, R. Ma, Y. Hu, C. Li, X. Zhang, H. Ma,
and X. Chen, “Onrl: improving mobile video telephony via online
reinforcement learning,” in MobiCom, 2020, pp. 1–14.

[4] Q. Liu, N. Choi, and T. Han, “Atlas: automate online service configu-
ration in network slicing,” in CoNEXT, 2022, pp. 140–155.

[5] Y. Wu, K. Zhang, and Y. Zhang, “Digital twin networks: A survey,” IEEE

Internet of Things Journal, vol. 8, no. 18, pp. 13 789–13 804, 2021.
[6] X. Lin et al., “6G digital twin networks: From theory to practice,” IEEE

Communications Magazine, 2023.
[7] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas,

“Taking the human out of the loop: A review of bayesian optimization,”
Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2015.

[8] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” Advances in neural information

processing systems, vol. 25, 2012.
[9] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,

2016, http://www.deeplearningbook.org.
[10] E. N. Almeida, M. Rushad, S. R. Kota, A. Nambiar, H. L. Harti,

C. Gupta, D. Waseem, G. Santos, H. Fontes, R. Campos et al., “Machine
learning based propagation loss module for enabling digital twins of
wireless networks in ns-3,” in Proceedings of the 2022 Workshop on

ns-3, 2022, pp. 17–24.
[11] S. Tuli, S. R. Poojara, S. N. Srirama, G. Casale, and N. R. Jennings,

“Cosco: Container orchestration using co-simulation and gradient based
optimization for fog computing environments,” IEEE Transactions on

Parallel and Distributed Systems, vol. 33, no. 1, pp. 101–116, 2021.
[12] J. Lai, Z. Chen, J. Zhu, W. Ma, L. Gan, S. Xie, and G. Li, “Deep learning

based traffic prediction method for digital twin network,” Cognitive

Computation, pp. 1–19, 2023.
[13] S. Tuli, G. Casale, and N. R. Jennings, “Simtune: bridging the simu-

lator reality gap for resource management in edge-cloud computing,”
Scientific Reports, vol. 12, no. 1, p. 19158, 2022.

IEEE INFOCOM WKSHPS: NG-OPERA 2024: Next-generation Open and Programmable Radio Access Networks

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on September 17,2024 at 18:25:53 UTC from IEEE Xplore. Restrictions apply.

