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Abstract

Sections

The generation of molecular complexity is a primary goal in the field
of synthetic chemistry. In the context of retrosynthetic analysis, the
concept of molecular complexity is central to identifying productive
disconnections and the development of efficient total syntheses.
However, this field-defining conceptis frequently invoked on an
intuitive basis without precise definition or appreciation of its
subtleties. Methods for quantifying molecular complexity could prove
useful for characterizing the state of synthesis in a more rigorous,
reliable and reproducible fashion. As afirst step to evaluating the
importance of these methods to the state of the field, here we present
our perspective on the development of molecular complexity
quantification and its implications for chemical synthesis. The
extension and application of these methods beyond computer-aided
synthesis planning and medicinal chemistry to the traditional practice
of ‘complex molecule’ synthesis could have the potential to unearth
new opportunities and more efficient approaches for synthesis.
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Perspective

Introduction

Synthetic chemists are fascinated by complex molecules. Densely
packaged carbon skeletons decorated with oxygen, nitrogen or other
heteroatoms evoke a sense of awe and intense interest from those
steepedintheartand science of organic synthesis. Generating molecu-
lar complexity, whether in the context of a useful synthetic method
or the strategy of a total synthesis, is arguably a focal point for many
synthetic chemists at some level. Synthesis is, after all, the enterprise of
building new molecules. Many naturally occurring compounds, often
isolated in unsustainably small quantities, contain unusual structural
motifsthat challenge the field to advance new strategies and methods
for their preparation. Access to novel structural motifs may lead to
desirable biological properties or applications as functional materials.
The construction of complex molecules is, therefore, a primary goal
of the field of synthetic chemistry.

For as often as the term complexity is discussed colloquially within
the field, one must consider: what exactly do we mean when we call
amolecule complex? For example, one could argue that molecular
complexityisapurely subjective concept which chiefly reliesonhuman
perception, much like ananalysis of a piece of art or work of literature'.
Conversely, one might also consider that molecular complexity bears a
certain mathematical objectivity, describinginherent features or rela-
tionships that render a particular system ‘complex’. The complexity of
systems is certainly not limited to chemistry, and many have applied
this concept in other fields such as in physics?, biology*®, climate
science’ or engineering®. However, in particular, the subjective and
objective measures of complexity are often held in tension in organic
synthesis, a field which cultivates appreciation for both the elegance
of a synthetic strategy and the quantitative description of a reaction
mechanism. Woodward was awarded the Nobel Prize in Chemistry
in1965 “for his outstanding achievementsin the art of organic synthe-
sis”’, officially recognizing organic synthesis as a field whichisbothan
artand ascience. So, too, is molecular complexity.

The concept of molecular complexity was central to Corey’s devel-
opment of retrosynthetic analysis, the systematic method for planning
syntheses'. In a retrosynthetic analysis, one works backwards from
a synthetic target by considering all possible disconnections which
correspond to synthetic transformations in the forward direction. At
each stage in the analysis, desirable disconnections are selected and
carried onwards, a process which “receives direction and selectiv-

ity from the all-important goal of reducing molecular complexity”’°.
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Fig.1|Relationship between structural and synthetic complexity. A plot
of structural and synthetic complexity space with selected targets and their
respective syntheses.

Guided by this singular goal, Corey argues that one can reduce any
complextarget molecule into simpler and simpler fragments which can
be accessed either commercially or according to previously reported
methods. Thisretrosynthesis logic was codified into aseries of discrete
rules” and eventually programmed as a retrosynthesis software named
Logicand Heuristics Applied to Synthetic Analysis (LHASA)'*', laying
the groundwork for the development of many additional automated
and semi-automated synthesis planning programs which have recently
emerged®. Inmany of these algorithms, a ‘scoring function’ evaluates
whichdisconnectionyields the greatest decrease in complexity and is
critical to the success of the algorithm in identifying full-length syn-
thetic pathways. Although there areinstancesin which briefincreasesin
complexity —such asinstallation of a protecting group or ageneration
ofamorereactiveintermediate — canenable efficient overall syntheses,
reducing molecular complexity, the ‘all-important goal™, occupies
acentral place in retrosynthetic analysis.

Taken more broadly, molecular complexity can also serve as an
aspirational goal for synthetic chemistry as it advances new methods
and more efficient synthetic strategies. According to Corey, “Molecular
complexity can be used as an indicator of the frontiers of synthesis,
since it often causes failures which expose gaps in existing methodol-
ogy. The realization of such limitations can stimulate the discovery
of new chemistry and new ways of thinking about synthesis”". In the
context of total synthesis, attempts to construct highly complex mol-
eculesreveal the current limitations of existing synthetic methods and
pose opportunities to develop new chemistry. In this light, molecular
complexity canbe best understood in two distinct dimensions: struc-
tural complexity and synthetic complexity. Structural complexity
refers to inherent structural features of a molecule which contribute
to its overall complexity. Factors such as number of rings, stereo-
centres or heteroatoms, which describe the structural composition
of acompound, are often invoked. Synthetic complexity, as defined
previously by others'*", describes how easily a particular target could
be synthesized, for example, the number of steps required to access
the molecule. As Eastgate and Li propose', this aspect of complexity
isextrinsic to the target and largely dependent on currently available
methodology. Structural complexity, conversely, is intrinsic to the
target,immutable.

These two facets of complexity are distinct, yet related, and the
interplay betweenthem provides a useful framework for understand-
ing the progress of the field in synthesizing complex molecular scaf-
folds over the past two centuries. On a conceptual level, as similarly
illustrated by Wender', one might consider structural and synthetic
complexity as plotted along two axes (Fig. 1). Navigating this ‘complex-
ity space’ has allowed synthetic chemists to approach increasingly
complex molecular architectures in shorter sequences of steps. For
example, tropinone (1), a target of medium-low structural complex-
ity, was first synthesized by Willstétter in 1901 in a reported 21 steps”.
Notably, the work of Willstétter on tropine synthesis led to the struc-
ture elucidation of cocaine and other tropane alkaloids'®"’. Despite
thebroaderimpact of this work, tropinone (1) remained synthetically
complex —thatis, until 1917, when Robinson reported aone-step synthe-
sisof tropinone featuring a decarboxylative double-Mannich transfor-
mationtoefficiently construct the 8-azabicyclo[3.2.1]octane core™. The
precipitous drop in the synthetic complexity of tropinoneillustrated
the power of the thenrecently reported (though later named) Mannich
reaction to the synthetic community and rendered the approach of
Robinsonaninstant classic. Nevertheless, targets of greater structural
complexity than1remained largely out of reach until newly developed
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synthetic methods enabled the synthesis of increasingly complex
molecules.

Because structurally complex molecules often demand numer-
ous synthetic transformations to complete their synthesis, structural
complexity is, naturally, often correlated with synthetic complexity.
Diterpenoids such as ryanodol (2) have attracted significant attention
for their complex architectures and intriguing insecticidal functions.
As one might expect for a target of high structural complexity, two of
thefirst completed syntheses of ryanodol by Delongchamps (37 steps)”
and Inoue (35 steps)* reflect its similarly high synthetic complexity.
Informed by these previous syntheses, arecent 15-step synthesis from
Reisman and coworkers* rendered 2 synthetically much less complex,
illustrating how cumulative advancesinstrategy and methodology can
tame structurally complex molecules down toamuch more reasonable
level of synthetic complexity as measured by step count. Inthe so-called
age of feasibility**, when total synthesis was first pushed toits limits by
tackling targets such as Taxol* %, calicheamicin®**, halichondrin B***
or palytoxin*®"*, the goal was demonstrating that organic synthesis
could produce afew milligrams of any target at any cost. High structural
complexity was tethered to high synthetic complexity. Inthe modern
‘age of scalability™’, however, the field is steadily transitioning towards
anew phase of innovation wherein structurally complex targets can
be easily accessed in short step sequences and with highly efficient
transformations (Fig. 1, indicated by blue arrow). Indeed, the most
powerful synthetic methods and strategies are those which minimize
the synthetic complexity of structurally complex molecules.

Together, structural and synthetic complexity are useful concepts
through which the state of organic synthesis can be evaluated and the
field can be drivenforward. Given the various applications of molecular
complexity within medicinal chemistry, total synthesis and retrosyn-
thetic planning, a more quantitative treatment of this key concept is
necessary. In a time when quantitative tools such as machine learn-
ing**"* and statistical modelling and parametrization***° are being
applied toreaction prediction’*, catalyst design®>*° or retrosynthesis
planning™’, the realm of complex molecule synthesis could benefit
from even more of afocus on quantitative metrics for guiding synthetic
strategy. This Perspective will survey several pivotal contributions use-
ful for measuring structural and synthetic molecular complexity and
will then examine how these efforts relate to a series of applications
inorganic chemistry.

Quantifying structural complexity

Frameworks for measuring complexity

The structural complexity of molecules can be assessed according to
two branches of mathematics: graph theory and information theory.
First, a brief examination of these fields of study is necessary to fully
appreciate the underlying framework behind existing complexity met-
rics. Broadly speaking, graph theory deals with the way objects are con-
nected. Adapted to chemistry, chemical graph theory models chemical
structuresas molecular graphs, which are abstract representations of
‘objects’ that are ‘related’ in a network®’. Instead of atoms and bonds
in a chemical structure, chemical graphs feature vertices and edges,
respectively (Fig. 2a). Ignoring most chemical or physical considera-
tions, chemical graph theory primarily treats the connectivity of a
molecule as an adequate representation of its structure. The consid-
eration of molecular connectivity in the context of retrosynthesis, for
example, isreflected in several of the retrosynthetic rules of Corey for
choosing disconnectionsinacomplex molecule based on a“‘topologi-
calstrategy’™. Disconnections that best reduce molecular complexity,
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Fig.2|Measurements of complexity. a, Graph theory methods for measuring
complexity rely on substructures and properties of molecular graphs.
b, Information theory methods draw from features of atomic microenvironments.

accordingto Corey, are those that simplify the topology of amolecule
by a number of means: reduction in the overall number of rings, divi-
sion into fragments of equal size, or cleavage of maximally bridged
rings. As it relates to methods development®®%, any given reaction
can be analysed with chemical graph theory by looking at changes to
the respective molecular graph. In this way, chemical graph theory
can be used to examine molecular connectivity as arepresentation of
structural complexity.

Information theory deals with the way information and uncertainty
are quantified, manipulated and represented. Rooted in Shannon’s
formula®, information theory states that uncertainty, or information
entropy, is related to the sum of all possible states of individual vari-
ables. Chemicalinformation theory, by analogy, treats molecules as a
series of variables or features that encode informationin a particular
state®* (Fig. 2b). A string of binary digits (0 or 1) can contain informa-
tioninterpreted by acomputer. Likewise, stereocentres onamolecule
(RorS) canencode molecular properties or molecular shapes that are
recognized by cellular machinery or manifested as chemical reactiv-
ity. Unlike chemical graph theory, which approximates molecules as
aset of nodes and connections, chemical information theory focuses
on factors, such as atom identity, atom microenvironment or other
molecular features. In an era of ‘Big Data’, when key relationships can
be unearthed by way of large-scale data science, information theory
hasbeen aframework for the development of quantitative structure—
activity relationship (QSAR) parameters in medicinal chemistry
programs®. In our view, the basic challenge of selectivity in organic
synthesis — as seen through enantioselective catalysis or site-selective
functionalization — can be understood fundamentally as a challenge
in molecular information encoding®. In the context of drug-protein
interactions, the chiral information present in small molecules can
trigger vastly different biochemical signalling pathways®’. As such,
the installation of stereogenic centres is, essentially, an information-
encoding event. In general, chemical information theory assesses
structural complexity by accounting for all the variables presentina
molecule which, together, constitute its overall structure.

Methods based on chemical graph theory

Structural complexity metrics frequently draw from graph theory and
information theory inattempts to capture theinherent complexity of a
molecule. One of the most influential methods for evaluating structural
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complexity was developed by Bertzin1981 (ref. 68). Termed a ‘general
index’ for molecular complexity, the method s built on principles from
both chemical graphtheory (inits analysis of molecular connectivity)
and chemical information theory (in its analysis of heteroatom con-
tent). Bertz proposes that by considering graph theoretical invariants,
which are features of the molecular graph solely based on the compo-
sition and structure of the graph, a reasonable measure of molecular
complexity owing to connectivity C(n) can be obtained. Borrowing
from the mathematical form of Shannon’s formula®®, Bertz defines
C(n) asthe sum of connections (pairs of edges joined by avertex) inan
all-carbon molecular graphwhen corrected for symmetry by factoring
outequivalent connections (Fig. 3a). The term C(17) counts the number
of nonequivalent ‘propane’ subgraphs within the parent molecular
graph structure. To capture aspects of molecular complexity owing
to heteroatom content, the function C(E) is introduced, approaching
zero for molecules with little atom diversity such as hydrocarbons and
maximized for molecules with alarge variety of heteroatoms present
(hydrogen atoms are generally ignored in complexity metrics). The
total complexity, C;, is thus a function of both complexity owing to
connectivity and heteroatom diversity (Fig. 3b). Overall, the Bertz C;
indexaccountsformolecularsize, degree of branching, local symmetry,
bond and ring count, and the presence of heteroatoms through these
graph theory-based and information theory-based methods.

Since the seminal work of Bertzonageneral approach to assessing
molecular complexity, anumber of additional methods have emerged.
Hendrickson proposed a variant of the connectivity-based analysis of
Bertz by counting the number of hydrogens appended to each car-
bonin the structure (thatis, methyls, methylenes, methines and qua-
ternary centres)®. Instead of enumerating the number of two-bond
connections, as in the approach of Bertz, molecular topology could
be described by simply accounting for how hydrogen atoms are dis-
tributed on the carbon skeleton. Because of the challenge associated
with manually performing the complexity analysis of Bertz, modern
computer algorithms have automated and operationally simplified
many of these calculations®*’°. Expanding on his initial work, in which
propane subgraphs are counted to capture molecular complexity
owing to connectivity, Bertz later proposed considering all possi-
ble subgraphs within a given structure” (Fig. 3c). These novel graph
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Fig.3| Computational representations of molecular structure and their use
in complexity analysis. a, Representation of molecular structures as all-carbon
molecular graphs, wherein atoms are points, bonds are lines, and connections
two-bond units onthe graph. b, Bertz’s C; score incorporating complexity

theoretical invariants, N (number of kinds of subgraphs) and N; (total
number of subgraphs), account for subgraphs containing heteroatoms
while maintaining an approach fundamentally based in graph theory.
Total walk count (twc) has also been proposed by Riicker as an effec-
tive index for characterizing molecular connectivity’”. Beyond these
reports,awhole host of approaches to measuring molecular complex-
ity based on chemical graph theory have been reported: Randic and
coworkers proposes assessing molecular branching and self-avoiding
paths in the molecular graph””; the chemically intuitive metric of
Whitlock counts molecular features such as rings, chiral centres heter-
oatoms’®; Barone and Chanon have expanded on the work of Whitlock
by factoring in ring size”’; Bonchev and coworkers have elaborated
the Wiener index to include subgraph considerations’”’; Proudfoot
considers the pathsin the molecular graph emanating from the micro-
environment of each atom®*®', Together, these applications of graph
theory to organic chemistry attempt to represent the extent to which
connectivity is an essential component of molecular complexity.

Methods based on chemical information theory

Many complexity metricsinfluenced by information theory still retain
astrong bias towards using molecular graphs to represent chemical
structures. Calculating the information content of amolecular graph
has led to the development of similarity indices® for differentiating
molecules on the basis of these graph-theoretical representations®”.
Asadeparture fromsolely characterizing molecular graphs, Bonchev
proposed anatom-by-atom method for measuring information content
based on individual features of atomic microenvironments®. This
approach by Bonchev advanced the key assumption that atomic micro-
environments are independent fromone another and, therefore, should
be represented as additive information-bearing variables. Recently,
this application of information theory was extended by Bottcher to a
novel molecular complexity index®. In Béttcher’smethod, eachatom
inamoleculeis characterized by its valency, isomeric possibilities, and
diversity of chemical groups or elements in its immediate microenvi-
ronment (Fig. 3d).Just like information in a string of binary digits can
be measured by the number of bits, the sum of these individual atomic
features gives rise to the total information content of the molecule
measured in ‘molecular complexity bits’. As such, significant weight
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is assigned to factors such as stereochemistry and symmetry, which
are often underappreciated elements of many graph theory-based
methods. Interestingly, this complexity metric (C,,) scales with the
number of peaks presentin NMR spectra of alkane isomers. As a prac-
ticing synthetic chemist might intuit, symmetry-breaking features in
amolecule which give rise to diastereotopicity can wildly complicate
structural analysis by NMR spectroscopy — the method of Béttcher
aptly captures this phenomenon.

Additive methods such as that of Béttcher quantify larger mol-
ecules asmore complex than smaller ones. Interms of structural com-
plexity, this principleis fairly intuitive: bimolecular coupling reactions
generally increase overall molecular complexity; macromolecules bear
more complexity than small molecules. However, for complex small
molecules such as natural products, which pose unique synthetic chal-
lenges and often have biological signalling capabilities, the ‘proximity’
of structural featuresis a key aspect of its overall complexity and syn-
thetic challenge. Shenviand coworkersrecently extended the method
of Bottcher for measuring total information content to the concept of
information ‘density’ by factoring in molecular volume®*. Many biologi-
cally relevant natural products are densely functionalized and feature
unusual structural motifs, and the manner in which these functional
groups are packed inspace gives rise to unforeseen emergent proper-
ties which complicate their synthesis (that is, increase their synthetic
complexity)®. Biologically active natural products often engage pro-
tein receptors with exquisite selectivity owing to the high informa-
tion content encoded in their complex structures, and indeed, many
natural product analogues have led to approved drugs®*®. Therefore,
toadvance thefield of synthetic methodology and facilitate access to
biologically active molecular scaffolds, the construction of targets
with high information density from fragments with low information
density is afundamental aim of total synthesis.

Building off the substructure analysis of the C,, score of Béttcher,
Krzyzanowski, Waldmann and coworkers have recently reported the
development of spacial score (SPS)®, which aims to be more focused
ontopological complexity as it relates to biological function. In their
analysis, although Bottcher’s score has generated noteworthy interest
in the organic synthesis community for scoring the complexity of
chemical transformations, it has proven less useful as adescriptor for
predicting biological selectivity and potency, as has been previously
shown forscoressuch as Fop3 and Fgeeo (ref. 89). Inthe SPS metric, the
microenvironment and local complexity of each atom are evaluated
foratomic hybridization (penalizing unsaturation), stereoisomerism,
presence of non-aromatic rings (rewarding connectivity) and number
of heavy atom neighbours (prioritizing branching). These substructure
scores are thensummed across allatoms to arrive at the total complex-
ity, which can be optionally normalized (nSPS) by number of heavy
atomstoallow comparison of molecules of different molecular weights.
In addition to using SPS to correlate structural complexity with biologi-
calactivity and selectivity, the authors illustrate the intuitive nature of
the SPS metric by illustrating Shenvi’s bilobalide synthesis using an
accompanying Python package available for automated scoring®**°.
Compared to the ‘first-principles’ approach of Bottcher with C,,,, SPS
ismoreintentionally tailored to the kinds of structural features (thatis,
saturation, rings and so on) which might be relevant for assessing
complexity as it relates to biological activity or total synthesis.

Quantifying synthetic complexity
Synthetic complexity captures how easily a particular target could
be synthesized. As many synthetic chemists can surely attest,

estimating the synthetic complexity of a molecule can be far from
trivial. Although the number of synthetic steps required to access a
targetis oftenrelated toits structural features, determining synthetic
complexity fromstructure alone canbeincomplete. For example, ster-
oid derivatives, which are structurally complex by virtue of containing
severalrings, stereocentres and heteroatoms, can often be preparedin
asingle step fromreadily available commercial material and, therefore,
aresynthetically less complex. In any retrosynthetic analysis, one must
enumerate possible disconnections and synthetic precursors until
either commercially available or previously reported starting materi-
alsareidentified. Intheory, the synthetic complexity of agiven target
is essentially a function of its retrosynthesis, representing the path
length from starting material to final target. Of course, in practice, this
estimated synthetic complexity is only validated upon completion of a
synthesis when final step count and reaction efficiencies are experimen-
tally determined. Although the exact definitions of a ‘synthetic step’,
such as those described by Guerrero and coworkers’ and Johnson??,
have varied historically, step count remains an important (albeit an
imperfect) parameter for understanding synthetic complexity. There
are, of course, many ‘soft’ practical considerations for encompassing
the ease of synthesis of a compound: reaction efficiency (and overall
yield), cost of materials, purification of intermediates or supply of
starting materials or reagents. In the context of process chemistry,
these become essential considerations when approaching manufac-
turing scales. The synthetic complexity of a target is also subject to
change: as the field develops new synthetic methods and awider range
of starting materials and reagents, more efficient synthetic strategies
can be realized, making this concept somewhat of a moving target.
Of course, the rigorous evaluation of synthetic complexity requires
proper experimental validation by completion of a synthetic route,
making assessment of the synthetic complexity of a potential target
somewhat of acircular task. Therefore, in this Perspective, we estimate
synthetic complexity using acombination of existing metrics such as
step count or synthetically challenging structural features as simplified
approximations for this hard-to-measure concept.

Despite the many challenges associated with definitively measur-
ing synthetic complexity, several methods have been reported which
aimto estimate this useful property. In the context of medicinal chem-
istry, synthetic complexity scores can sort lead candidates by their
ease of synthesis, highlighting promising targets which can be quickly
prepared while discounting those whose synthesis would require
considerable resources. To that end, Ertl and Schuffenhauer devel-
oped an approach at Novartis for estimating synthetic accessibility
(SAscore) by accounting for structural motifs which have the greatest
impact onthe synthesizability of atarget®. A fraction of the PubChem
database was analysed to identify common structural features which
are well-established in the literature, and these fragments contribute
to synthetic accessibility. The method also accounts for structural
features —such as rings, stereocentres or macrocycles —which gener-
ally complicate synthetic accessibility and are counted as penaltiesin
the SAscore. Whereas estimating synthetic complexity based purely
on structural features can overlook certain subtleties, this SAscore
not only accounts for literature-precedented substructures but also
comes at a considerably lower computational cost than enumerating
retrosynthesis for each molecule.

Although assessing synthetic complexity by generating an exhaus-
tiveretrosynthesis tree for every targetisacomputationally demand-
ing task, modern machinelearning methods offer a cheaper alternative
for measuring these properties. In the context of retrosynthesis
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algorithms, which are guided from target to starting material through
productive reductions in complexity, arapid method for quickly scor-
ing many intermediates is needed. Coley and coworkers disclosed a
learned synthetic complexity metric, SCScore, trained on 12 million
reactions from the Reaxys database®. In contrast to many previous
approaches, which measure structural or synthetic complexity using
principles from domain expertise, SCScore modelsreported literature
datatoformulate aconception of synthetic complexity. The neural net-
work was trained on reaction datawith the key constraint that products
have higher scores than reactants, and thus molecules are ranked in a
pairwise fashion to maintain this requirement when assigned a score
between1and 5. Notably, this approach does not contain an explicit
database of commercially available compounds such as many retrosyn-
thesis algorithms™; instead, SCScore learns from reaction data, implic-
itly, the types of molecules that tend to be starting materials and those
whichtendtobe products. WhenSCScoreis mapped onto existing drug
syntheses, the tool appropriately characterizes each target compound
as more synthetically complex than its precursor, amarked improve-
mentover heuristic methods (such as SAscore” or length of SMILES")
that do not appropriately show synthetic complexity monotonically
increasing over the course of a synthesis. Because SCScore is trained
on the kinds of compounds published in the Reaxys database, evalu-
ating infrequently appearing structures such as natural productsis a
fundamental challenge of this approach, and highly complex substrates
often ‘saturate’ the function with scores approaching 5. Nevertheless,
SCScorerepresents anovel method for evaluating synthetic complexity
atlow computational cost while maintaining high fidelity to the body
of published synthetic transformations.

Synthetic complexity is a function of the relative ease of obtain-
ing starting materials and the synthetic tools available at any point
in time, evolving as the field advances and various bonds or struc-
tural motifs become easier to assemble. Eastgate and Li developed a
metric for ‘current complexity’, a function of intrinsic factors related
to structural complexity and extrinsic parameters which vary over
time'. The authors’ recognition that many aspects of complexity,
bothstructuraland synthetic, are often intuitively perceived by expert
chemists prompted asmall-scale survey for assessing human-perceived
complexity ranking of aset of molecules. From these data, aregression
model was developed using parameters such as Randi¢’s molecular
topology index”, Baran’s synthetic ‘ideality’ definition®, and a series
of heuristic factors such as number of stereocentres constructed and
overall step count. Whereas intrinsic parameters such as molecular
topology remain constant, extrinsic parameters suchas step countare
subject to change as the field advances. These principal factors iden-
tified by regression analysis were refitted with a probabilistic model
which represents the current complexity as a distribution of scores,
much like how a panel of chemists might collectively rank molecular
complexity with differences in individual perception and biases.

Although measures of complexity —bothsyntheticand structural —
have traditionally been built on the theoretical foundation of graph
theory and information theory, another mode for evaluating these
properties is human chemical intuition. Of course, an individual’s
assessment of complexity-defining molecular features is subject to
their own perceptionand humanbiases, and complexity rankings can
vary wildly from chemist to chemist. However, large aggregations of
chemist rankings can suppress these biases by averaging individual
scores, thereby yielding a ‘crowdsourced’ definition of complexity
which might be more general than individual perception”. Sheridan
and coworkers applied this crowdsourcing model to a collection of

386 chemists at Merck across several subdivisions within the com-
pany’®. Users of a voting module were tasked with ranking groups
of five molecules by their complexity, which was left intentionally
undefined to capture unbiased conceptions of complexity. These
datawere then averaged to generate ameanComplexity score for each
molecule, whichyielded aseries of notable findings: first, the manner
inwhich molecules were drawn or represented (that is, explicit wedges
or dashes, molecular orientation and so on) had ameasurable, though
not overwhelming, impact on the assigned score; second, individual
chemists did not agree based on their assigned scores, but averaging
over many voters yielded a self-consistent QSAR-based model; last,
meanComplexity correlates reasonably well (R*= 0.89) with Ertl and
Schuffenhauer’s SAscore”, revealing that the chemists polled under-
stood complexity in a way that closely resembles synthetic complex-
ity. Although this crowdsourcing approach hasits limitations (that is,
appropriate molecular representations and ambiguous definitions
of complexity), it reveals the degree to which human intuition aligns
with many of the theory-based definitions of molecular complexity.

Applications of molecular complexity analysis
Retrosynthesis and computer-aided synthesis planning
Because retrosynthesis is ultimately guided, as Corey states, by “the
all-important goal of reducing molecular complexity”’°, the way
in which chemists think about complexity has a substantial impact
on which disconnections are favoured and which synthetic strategies
arepursuedinthelaboratory. The “rules of retrosynthesis”, codified by
Corey and coworkers in the LHASA program®~'°%, attempts to capture
the many facets of molecular complexity with a series of heuristics
derived fromyears of experiencein organic synthesis rather than froma
first-principles approach. Corey’s ‘Logic™ has prompted further analy-
sis from a graph-theoretical standpoint to validate the now-accepted
wisdom of organic synthesis. Bertzand Sommer”, and later Bertz and
Riicker"°, questioned whether these retrosynthesis principles hold true
under a mathematical lens according to a set of previously discussed
structural complexity metrics (Ns, Ny and twc)™. Re-examining a set of
polycyclicsynthetic targets once analysed by Corey'?, the authors rank
eachbondinthestructure by greatestreductioninstructural complex-
ity according to the chosen metrics (Fig. 4). Compared to the heuristic-
derived rules, many of the top-ranked bonds by the aforementioned
complexity metrics arein agreement: bonds that are directly attached
to (thatis, are exoto) another ring or are contained within the maximally
bridged ring generally result in the greatest reduction in complexity.
The strategy of identifying maximally bridged rings has been used by
Sarpong and coworkers to complete the synthesis of several complex
diterpenoid alkaloids"*"*. One notable exception in which the LHASA
heuristicis, infact, contramathematical is the consideration of central
fusion bonds which, when disconnected, generate macrocyclic inter-
mediates (ring size > 7). According to Bertz and Sommer”’, breaking
these transannular bonds often resultin the most complexity-reducing
disconnections to the molecular graph (Fig. 4), but owing to the his-
torical paucity of efficient methods to construct carbocyclic macrocy-
cles, transannular disconnections are explicitly discouraged by Corey.
Newer developments in synthetic methodology that enable the rapid
construction of precursor macrocycles™ ' reveal new strategic pos-
sibilities which, in alignment with the mathematical analysis of Bertz
and Riicker, ought to be considered for the efficient construction of
complex, polycyclic targets by transannular bond formation.

In the Digital Age, the adaptation of retrosynthesis logic to com-
puter programs and the automation of synthesis planning has been
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alongstanding effort at the interface of chemistry and computer sci-
ence™?°, The LHASA program developed by Corey set the stage for the
development of countless additional programs aimed at streamlining
computer-aided synthesis planning (CASP): Chematica/SYNTHIA®,
ASKCOS™¥, ICSYNTH", IBM RXN'%, AiZynthFinder'”>, WODCA', and
many others. Retrosynthesis algorithms typically follow a similar form
to human-performedretrosynthetic analysis (Fig. 5a). Currently used ret-
rosynthesis programs make use of expert-coded reaction templates® or
machinelearning techniques'®**tolearn possible chemical transforma-
tions and, by recognizing relevant structural motifs or functional groups
present in the target molecule, propose a series of disconnections. The
number of possible disconnections at any given stage can be extremely
large owing to the ‘combinatorial explosion* of recursive multistep ret-
rosynthesis searches; efficient navigation of thisimmense search spaceis
handled by scoring functions, which rank disconnections and highlight
those which lead to the shortest achievable path accordingly (Fig. 5b).
With SYNTHIA, for example, proposed routes can also be ranked by
user-defined criteriasuchas use of protecting groups, number of steps,
orthepossibility of reactivity conflicts (forexample, a Grignard reaction
inthe presence of anadditional carbonyl functional group). Often, in this
structure search, the most ‘downhill’ disconnections lead to precursor
compoundswhichare structurally dissimilar from the parent molecule.
Therefore, one might envision that measures of molecular similarity'>'2
such as Tanimoto coefficients™” could be used in cheminformatics and
indirectly capture some aspects of this analysis. However, structural
complexity has a higher tendency to guide a retrosynthesis back to
simple building blocks, which are commercially available. Currently,
programs such as SYNTHIA use oversimplified complexity measures
based on the length of the SMILES string". However, insofar as reducing
structural complexity is a primary goal of retrosynthesis, there is signifi-
cant opportunity to use more sophisticated measures of complexity in
these synthesis planning programs to potentially improve algorithm
performance. The growing field of machine learning has made ample
use of mathematical optimization methods for multidimensional func-
tions™°, butin order for these powerful tools to take hold in the realm of
CASP, the complexity landscape must first be quantitatively well-defined.
Therefore, metrics for complexity — the ‘distance’ in both synthetic
and chemical space™""* from readily available starting materials —
are particularly significant in the context of CASP and merit further
development from both synthetic and computational chemists.

Recently, Cernak and coworkers applied this concept of ‘graph edit
distance’ to the enantioselective synthesis of the alkaloid stemoam-
ide™. Although there are over 30 previous approaches to stemoamide,
application of SYNTHIA to the natural product highlighted anovel Man-
nich transformation which had notbeen previously reported. However,
inefficienciesin the rest of the route made the SYNTHIA proposal less
competitive compared to previous reports, and human intervention
wasrequired toshortenthe sequence. Ultimately, Cernak and cowork-
ers leveraged graph edit distance as a way to prioritize high-impact
stepsinamachine-readable format and synergize with programs such
as SYNTHIA which contain a vast database of known reactions. After
developingafirst-generation approachto stemoamide via an organo-
catalyzed Mannich reaction, graph edit analysis highlighted which part
oftheroute could be furtherimproved by cutting out functional group
interconversions, resulting in athree-step second-generation approach
featuring two key steps: an auxiliary-directed Michael addition and a
final Aubé-Schmidt rearrangement.

Analysis and evaluation of total syntheses

If one of the goals of total synthesis is to navigate complexity space
from starting material to a target compound through the most effi-
cient path, then measures of structural complexity can be useful in
describing how various syntheses traverse this landscape. Inaddition
to the frameworks of ‘redox economy’,** ‘atom economy’* or ‘step
economy’,”*which have beenused in retrosynthetic analysis, ‘complex-
ity economy’ has also been used as the basis for comparing synthetic
strategies to classic complex molecules such as Taxol, strychnine and
longifolene’ 7%, Plotting the structural complexity of each inter-
mediate in a synthetic route illustrates in two dimensions how each
step contributes to reaching the final target. In general, this kind of
analysis can provide valuable insight into how molecular complexity is
navigated in the total synthesis of natural products. These analyses also
raise intriguing fundamental questions about synthetic strategy: for
example, inan ‘ideal synthesis’, should structural complexity be gener-
ated at the beginning or end of aroute? Can strategies for complexity
generation be tailored to the purpose of the synthesis (for example,
late-stage diversification for preparing libraries of analogues)? Are
there special considerations for ‘overbred’ intermediates, which con-
tain excess structural complexity relative to the target? Molecular
complexity, when quantified, can be a useful analytical framework
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editdistance by Cernak and coworkers' led to the development of a three-step
synthesis of the alkaloid stemoamide.

for addressing these kinds of issues. To this end, we examined three
paradigms for navigating structural complexity (late-stage, early-stage
and ‘excess’ complexity generation) and applied the SPS complexity
score of Krzyzanowskiand Waldmann® to evaluate the paths traversed
by total syntheses within these categories. Discussion of how these
synthetic efforts take distinct approaches to the target is illustrated
by complexity plots, which depict the complexity analysis for each
synthetic intermediate.

Building complexity at alate stage

Interms of retrosynthetic analysis, achieving rapid reductioninmolecu-
lar complexity when working backwards from a molecular target is a
primary goal of synthetic planning. This type of approach often entails,
inthe forward sense, alate-stage introduction of stereocentres, rings or
key structural motifs by powerful complexity-building transformations.
Strategically, one might opt for this late-stage complexity paradigm to
buildup the necessary fragmentsin areliable fashion (without emergent
properties® thwarting standard transformations) and attempt a final
multi-bond forming process. There is, however, asignificant degree of
riskinplanning the most ambitious transformation for theend of aroute,
and synthetic flexibility is often a consideration at the outset of a total
synthesis. Nevertheless, many such strategies aim to model proposed
biosynthetic pathways andinvolve nature-inspired cascades to assemble
polycyclicarchitectures fromlinear precursors. Forinstance, inthelate
1960s,Johnsoninvestigated the proposed cationic polyene cyclization
for the biosynthesis of steroids such as (+)-16,17-dehydroprogesterone
(3)"*8 (Fig. 6a). Treatment of tertiary alcohol 4 with tin(IV) chloride as a
Lewis acid resulted inthe stereospecific cationic cascade to forge three
bonds andthreerings and set five stereogenic centres (+106% increase
in SPS score®® in going, for example, from 4 to 5; Fig. 6a, right). Follow-
ing ozonolytic C-C double bond cleavage on 5 and subsequent aldol
cyclization, the final steroid target (3) was assembled. Since these pio-
neering studies in cationic polyene cyclizations, others have extended
this approach to additional terpene scaffolds™'* and demonstrated
analogous radical-mediated cyclizations**'* to access high-complexity
sp>-richintermediates fromsimpler linear precursors, asillustrated in
the complexity analysis (Fig. 6a, right).

This late-stage complexity logic s also evident in Nicolaou’s syn-
thesis of the endiandric acids'**™*, in which polyene-yne 6 (Fig. 6b) is
subjected to Lindlar reduction conditions followed by a remarkable
cascade of thermally promoted pericyclic reactions to access both
endiandricacid B (7) and C (8) in their respective methyl ester forms.
This series of pericyclic processes —an 8melectrocyclization followed
by a 6melectrocyclization and final [4 + 2] Diels-Alder cycloaddition —
notonly validates aproposed biosynthesis but also constitutes arapid
risein molecular complexity (+238% increase in SPS score ingoing, for
example, from 6 to 7; Fig. 6b, right) as appreciated by the newly forged
rings and stereocentres.

In this same vein, Heathcock and Piettre conducted a series of
studies on the proposed biosynthesis for the Daphniphyllum family
of alkaloids"™**' (Fig. 6¢). Starting from polyene 9 (prepared in six
steps), treatment with methylamine followed by acetic acid facilitated
amine condensation, two aza-Prins-type cyclizations, and amine-
mediated hydride transfer toyield dihydro-proto-daphniphylline (10)
in 65% yield. These studies have since served as the foundation for
understanding the biosynthesis of newly isolated Daphniphyllum
alkaloidsinthe yuzurimine, calyciphylline and daphnilactone subfami-
lies™. Similar to the work of Johnson**® and Nicolaou***°, as shown
inthe accompanying complexity analysis plot, Heathcock’s synthesis
generates significantly more structural complexity (+233% increasein
SPSscore) in the final biomimetic polycyclization step (thatis, 910,
Fig. 6¢, right).

As another paradigm for late-stage generation of structural
complexity, transannular bond-forming processes have emerged
as powerful transformations for the efficient synthesis of polycyclic
natural products. Construction of macrocyclic intermediates from
linear precursors can enable the concomitant formation of several
bonds in a transannular fashion, providing access to complex scaf-
folds that otherwise might be challenging to assemble by discrete
ring-forming operations. One notable example of this strategy is the
parallel efforts of Evans™’ and Sorensen™* towards (+)-FR-182877 (11)
and (-)-FR-182877 (12) (Fig. 6d), in which 13, constructed through a
series of palladium-mediated cross couplings and alkylation steps by
Evans, is allowed to undergo cyclization to macrocycle 14. Arriving at
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the desired pattern of unsaturation, both approachesreportatandem
transannular Diels-Alder and hetero-Diels-Alder cycloadditions from
macrocycle 14 to forge all four ring fusion bonds and afford the pen-
tacyclic core of the natural product, representing a significant spike
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in calculated structural complexity (Fig. 6d, right). A short sequence
of steps from pentacycle 15 achieved the transannular lactonization
to complete the synthesis of both enantiomers of FR-182877 ((+),
Sorensen; (-), Evans). As shown in the complexity analysis in Fig. 6d,
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(+)-16,17-dehydroprogesterone (3). b, Nicolaou’s late-stage pericyclic cascade to
access endiandric acids B (7) and C (8). ¢, Heathcock’s evaluation of a biomimetic
cascade to establish the dihydro-proto-daphnphylline (10) scaffold. d, Evans’and
Sorenson’s parallel approaches to FR-12877 (11, 12) through macrocyclization
and transannular [4+2] cycloadditions. cat., catalyst.
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both the macrocyclization step (+102% increase) and transannular
[4 +2] cycloadditions (+43% increase) contribute significantly to overall
SPS score. However, 11 steps (LLS) were required to build the precur-
sor for macrocyclization, highlighting the need for more expedient
approaches to macrocyclic precursors if such approaches are to be
more widely adopted.

Building complexity at an early stage

The second paradigm for understanding the role of molecular complex-
ity in synthesis planning features a rapid rise in structural complexity
inthe early stages of asynthetic route. Carefully planned couplings of
easily accessible building blocks can give rise to aremarkable degree
of structural complexity in a very short sequence of steps. One of the
inherent challenges of this strategy is that, uponachieving a high level
of complexity, emergent properties and unusual reactivity can arise®.
These unforeseen factors can significantly complicate the rest of the
synthesis and generally require additional steps to circumvent unpro-
ductive or deleterious reactivity'>. One notable demonstration of this
early-stage paradigm is Crimmins’ synthesis of ginkgolide B (16)", in
whichaseven-step sequence from 3-furaldehyde to17 (Fig. 7a) enabled
a[2 +2] photocycloadditiontoyield tetracycle 18, which contains the
four quaternary centres presentin the natural product. After this rapid
rise in complexity, 14 additional steps were required — comprising a
series of ring expansions, redox manipulations, and installation of the
finalgammalactone —to complete the 22-step synthesis of ginkgolide B
(16). Interestingly, plotting the SPS score of this route reveals several
insights. First, setting the stage for the key step requires some up-front
investment; however, modest gainsin complexity inthe first seven steps
(+371SPS) are rewarded with a significant spike in complexity (+730
SPS) at the [2 + 2] stage (that is, 17 to 18). Second, although there is a
clear jump in skeletal complexity at this stage, many redox manipula-
tions are necessary to traverse the complexity landscape from 18 to
the target (16), highlighting the challenge of late-stage oxidations on
scaffolds which are already densely functionalized.

More recently, highly complex taxoids such as canataxpropellane
(19, Fig. 7b) have been targeted by Gaich and coworkers™. In their
synthetic strategy, furan dienophile 20 was treated with dienone 21to
initiate athermal Diels-Alder cycloaddition followed by UVirradiation
topromote anintramolecular[2 + 2] cycloadditiontoyield highly caged
[4.4.2] propellane 22 in an efficient two-step sequence. This extremely
rapid generation of molecular complexity asreflected in the SPS score
plot (seeFig. 7b, right) sets the requisite cyclobutene core and provides
a platform for a series of scaffold rearrangements, oxidations and
functional group manipulations that advanced 22 to canataxpropellane
(19) inanadditional 24 steps. However, although the rapid generation
of complexity (+687% increase for 2022, Fig. 7b, right) to access the
rigid, densely functionalized cyclobutaneisimpressive, this strategic
move probably added an extra constraint for navigating downstream
reactivity and performing the necessary rearrangements, oxidations
and functional group manipulations over the ensuing 24 steps, wherein
thereisamore modest +51% complexity increase (an average of 2% per
step). Nonetheless, the early entry into the cantaxpropellane scaffold
nicely demonstrates how sequential cycloadditions can give rise to
remarkable levels of structural complexity.

In many syntheses, mimicry of synthetic strategy of nature (that s,
biosynthesis) can provide inspiration for an early-complexity strategy.
Thetwo-phaseapproachofBarantoseveralterpenoids®* ' isdesigned
to model the synthetic strategy of nature, in which the topologically
complex carbonskeletonis first rapidly assembledina‘cyclase phase’

andthe oxidation patternisintroducedin a subsequent ‘oxidase phase’.
Thistwo-phase logic was notably applied to ingenol (sold commercially
as the mebutate ester, Picato; 22, Fig. 7¢c), an especially challenging
diterpene withahigh degree of both structural and synthetic complex-
ity. Starting from enantiomerically enriched (+)-carene (23), a seven-
step sequence of alkylations and an allenyl-Pauson-Khand reaction
produced tetracycle 24 — a net increase of six C-C bonds formed in
the cyclase phase. Inthe subsequent oxidase phase, peripheral oxida-
tion of the five-membered and seven-membered rings, along with
the key vinylogous pinacol rearrangement, yielded ingenol (22) in
14 total steps. As depicted in the complexity analysis (Fig. 7c, right),
the ‘cyclase phase’ clearly contributes skeletal complexity, as scored
by the SPS metric (an average +26% increase per C-C bond-forming
step, highlighted in blue). In the oxidase phase, redox manipulations
(highlighted in pink), have a measurable but attenuated impact on SPS
complexity (average +8.8% complexity per oxidation step), with several
steps in this phase accompanied by functional group manipulations,
which are often necessary for managing complex oxidation patterns.

Many molecules which containa highlevel of structural complex-
ity may, in fact, have very low synthetic complexity or are commer-
cially available. The so-called chiral pool — the collection of naturally
occurring building blocks which already contain one or more stereo-
genic centres — has long been arich source of purchasable molecular
complexity and, thus, a convenient starting point for many synthetic
routes’®*. One notable use of the chiral pool as a source of struc-
tural complexity is Maimone’s synthesis of /llicium sesquiterpenes
(-)-majucin (25, Fig. 7d) and (-)-jiadifenoxolane A (26) from terpene
feedstock (+)-cedrol (27)'*>'°, Making use of the existing complexity
in the carbon framework of 27, site-selective C(sp®)-H oxidations and
ring fragmentations enabled the synthesis of enol lactone 28, from
whichthe majucinand anisatin frameworks were established. Not only
did lactone transpositions and late-stage oxidations completed the
syntheses of (—)-majucin (25) and (-)-jiadifenoxolane A (26), but also
thereported oxidative sequence constituted aformal synthesis of three
additional /llicium sesquiterpenes. Given the growing development
of the field and the application of site-selective C-H functionaliza-
tion'"'*% readily available compounds such as (+)-cedrol (27), which
contain high levels of structural complexity (SPS =939, see plot at
Fig. 7d, right), can serve as synthetic platforms for accessing a wide
array of highly oxidized terpenoids.

Leveraging excess complexity

Chemical transformations that enable the rapid generation of com-
plexity are prized in the synthetic toolkit. In many cases, the amount
of complexity generated can exceed that of the synthetic target, that
is, the intermediate produced is ‘more complex’ than the final goal.
In many cases, this is observed with the use of protecting groups,
wherein the fully protected penultimate intermediate is structurally
more complex than the final target. Although this excess complexity
can be seen as somewhat misleading (because protecting groups are
nottarget-relevant complexity'), this can be important to considerin
the context of retrosynthesis planning algorithms, wherein allowing for
temporary hikesin complexity canlead to two-step disconnections that
are overall simplifying”’°. Other instances are more nuanced: such com-
pounds, termed ‘overbred intermediates’ by Hoffmann'" and others'’?,
often contain excess C-C bonds, rings or stereocentres relative to
the target and require bond cleavage processes to complete the syn-
thesis. Insofar as additional synthetic steps are required to achieve
this ‘excess complexity’, more direct routes through complexity space
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photocycloaddition sequence to rapidly build structural complexity en route
to canataxpropellane (19). ¢, Baran’s two-phase approach to ingenol (22),
where C-Cbonds are first constructed to build structural complexity (cyclase
phase) before redox manipulations complete the synthesis (oxidase phase).

d, Maimone’s approach to (-)-majucin (25) and (-)-jiadifenoxolane (26) starting
from (+)-cedrol (27).r.t., room temperature.

areseen asideal®®. However, if high-complexity structures can be eas-
ily prepared, C-C bond cleavage strategies'” that proceed downhill
from a point of maximum complexity can be used advantageously in
accessing challenging structural motif's.

Wender’s synthesis of a-cedrene'™ (29, Fig. 8a) is an example in
which generation of excess complexity sets the stage for an exceed-
ingly short synthesis. It is also a synthesis that illustrates the power

of photochemical reactions: an arene-olefin cycloaddition was per-
formed from anisole 30 to yield an equimolar mixture of isomers (31
and 32), each containing the endo-fused cyclopropane motif. Treat-
ment of this mixture with bromine selectively cleaved the desired C-C
bond (Fig. 8a, red) in both isomers to complete the cedrene carbon
framework. Reductive dehalogenation and Wolff-Kishner reduction
afforded a-cedrene (29) in aremarkable five steps from previously
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Fig. 8| Excess complexity generation and the utility of C-C cleavage steps. oflongifolene (33) involving several C-C bond-breaking transformations.
Selected examples of excess complexity and C-C cleavage in total synthesis with ¢, Total synthesis of scabrolide A (39) from Stoltz featuring alate-stage [2+2]-C-C
accompanying complexity analysis with SPS score (ignoring protecting groups). cleavage sequence. d, Pronin’s route to pleuromutilin (44) involving the strategic
Inthe graphs (right), bond-forming steps are highlighted in blue and bond- formation of cyclobutanol intermediates for subsequent C-C cleavage. LED,
cleaving steps in pink. a, Wender’s synthesis of a-cedrene (29) with an arene- light-emitting diode.

olefin photocycloaddition followed by C-C cleavage. b, Oppolzer’s total synthesis
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reported materials. As modelled with the complexity analysis (Fig. 8a,
right), the arene-olefin cycloaddition from30to 31represents a mas-
sive increase in structural complexity (blue, +406% increase), after
which a series of bond-cleaving steps (pink, 35% decrease over three
steps) establish a concise path to 29.

The approach of Oppolzer to longifolene (33, Fig. 8b) similarly
couples photochemical bond-forming steps with subsequent bond-
breaking events to access complex bicyclic scaffolds'. Photoirra-
diation of enone 34 yielded cyclobutane 35, a complex tetracyclic
intermediate which contains the bicyclo[2.2.1]heptane core presentin
longifolene and, according to complexity analysis (+145% SPSincrease),
is the point of maximum complexity in this approach (Fig. 8b, right).
Palladium-mediated hydrogenolytic removal of the Cbz group resulted
in spontaneous cleavage of the endocyclic C-C bond in 35 (Fig. 7b,
red), resultingin the characteristic seven-membered ring found in 36
afteranaccompanying reductionin SPS complexity (28% decrease). To
install the gem-dimethyl unit, Wittig olefination and Simmons-Smith
cyclopropanation afforded spirocyclopropane 37.In asecond C-C
cleavage transformation, hydrogenolysis of the cyclopropane with
Adams’ catalyst furnished the gem-dimethyl group in 38, enabling
completion of the synthesis of 33 in an additional three steps.

More recently, Stoltz and coworkers reported a total synthesis
of (-)-scabrolide A (39, Fig. 8c), anorcembranoid diterpenoid, with a
key photocycloaddition/C-C cleavage sequence'. Intheir approach,
irradiation of enone 40, followed by reductive epoxide opening, gave
cyclobutane 41asasingleisomer. At this stage, oxidation of the tertiary
alkylsilane withHg(OAc),/AcOOH and elimination of the hydroxy group
totheisopropenylunitafforded cyclobutanol 42, setting the stage for a
transannular C-C cleavage. Treatment of cyclobutanol 42 with Cul/NIS
facilitated in situ formation of the corresponding hypoiodite, which
underwent homolytic fragmentation, recombination and elimination
oftheintermediate tertiaryiodide (see 43) togive (-)-scabrolide A (39),
thus, completing the total synthesis. Interestingly, complexity analysis
(Fig. 8¢, right) illustrates how intermediate 40 is at the same level of
structural complexity as the target, 39, and yet traversing through a
photocycloaddition/C-Cbond-cleaving sequence (+49% SPSincrease,
then 27% decrease) was necessary to access the natural product.

The Pronin synthesis of pleuromutilin (44, Fig. 8d), a terpenoid
with promising antibacterial properties, stands as a powerful final
example of how navigating excess complexity can enable the assembly
of highly complex natural product scaffolds'’. Alkyne 45, prepared
in a rapid six-step sequence, was subjected to Ti-mediated reductive
cyclization conditions to afford cyclobutanol 46. Fragmentation of the
endocyclic C-Cbond by treatment with excess strong base allowed for
tandem functionalization of the resulting extended enolate, giving 47
after methylation. Remarkably, fluoride-mediated cleavage of the silyl
ketene acetal re-established the cyclobutanol motiftoyield 48, allow-
ing for further C-C functionalization at that position in a subsequent
oxidation. Complexity analysis shows this phase of the route (Fig. 8d,
right) as aniterative complexity generation-reorganization sequence,
wherein formation of the strained cyclobutanol provided opportu-
nities for key bond-forming events in subsequent steps, ultimately
enabling the synthesis of pleuromutilin (44) in a total of 12 steps.

Ingeneral, because of the requirement for subsequent C-Cbond
cleavingreactions after introducing excess complexity, the majority of
approachesthat have used this strategy rely on forming strained rings
(three-membered and four-membered). In these cases, C-Cbonds are
much more easily cleaved using existing technology. It is anticipated
that with advances in methods for C-C bond cleavage in less strained

systems, there will be significantly more opportunitiesto use the excess
complexity generation strategy in synthesis, especially of terpenoids.

Cheminformatics and medicinal chemistry

In the realm of medicinal chemistry, molecular complexity has been
proposed as akey metric for understanding drug-targetinteractions®.
Developing chemical descriptors and molecular representations for
small molecules in large virtual libraries has been proposed as a use-
ful data-driven approach for predicting drug success or filtering out
intractable compounds that possess undesirable properties for drug
development77%° In the era of Big Data, cheminformatics and QSAR
analysis have emerged as some of the primary pillars of moderndrug
discovery, and the descriptor of molecular complexity — defined
according to anumber of previously described methods — has found
its place in these disciplines™"'®*,

Simple proxies for molecular complexity have driven powerful
observations in drug development. Notably, Lovering and coworkers
proposed that more complex small molecule clinical candidates —
those with higher numbers of sp*-hybridized carbons and stereogenic
centres —tend to advance further in the drug approval process'’. Much
inthe same way as Lipinski proposed the ‘rule of five’ for characterizing
the physical properties of successful drug candidates'™, Lovering
claims that Fsps(number of sp*-hybridized carbons/total carbon count)
and stereocentre contentare directly correlated with clinical success.
The central hypothesis for this relationship is the ability of sp*-rich
compounds to access more diverse chemical space, better position
functional groups forimproved receptor-drug complementarity, and
yield more favourable solubility profiles. Furthermore, high sp* carbon
and chiral centre count can impart greater selectivity to drugs owing
tothe three-dimensionality and high information content. Inasubse-
quentreport, Lovering further interrogated this selectivity hypothesis
by examining assay datafor roughly 7,000 compounds against a panel
of proteins (Cerep) and cytochrome P450 (CYP) enzymes routinely
screened in discovery chemistry at Pfizer'®. Sorting these compounds
according to their molecular complexity (Fspa and number of chiral
centres) revealed aninverse relationship between complexity and assay
promiscuity. This confirmed the original hypothesis that more complex
molecules, as approximated by Fops and stereocentre count, have
greater specificity and selectivity in their interactions with biological
targets and even higher tendency to evade CYP enzymes, which can
facilitate metabolic degradation.

The proposed relationship between molecular complexity and
biological function has also found relevance in diversity-oriented syn-
thesis (DOS) and combinatorial chemistry for generating performance-
diverse compound libraries'®*'¥”, To further probe the promiscuity of
various subcollections of molecules (natural products, DOS-generated
compounds and commercial compounds), Clemons and coworkers
systematically carried out a 100-protein assay on a large compound
collection™®. By comparing molecular complexity (fraction of stereo-
genic carbons) to biological data, the authors described how natural
products exhibit high selectivity but have less tendency to yield hits;
conversely, commercial compounds display high promiscuity but
have higher tendency to result in hits, that is, show activity against
several proteins. Designed to have low synthetic complexity, DOS-
derived compounds showed reasonable selectivity and activity, mak-
ing them a potentially attractive alternative to ‘simple’ commercial
compounds or synthetically complex natural products. Indeed, many
groups havereported diversity-oriented synthetic strategies to struc-
turally complex ‘natural product-like’ compounds in a modular and
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concise number of steps, some of which show promising biological
activity%1 In medicinal chemistry, molecular structure determines
biologicalfunction.Inthiscontext,theconceptofstructuralcomplexity —
asaparticularlyimportant structural descriptor — can prove useful as
an indicator of small molecule clinical success or biological target
selectivity.

Conclusion and outlook

The generation and manipulation of molecular complexityisaprimary
goal of the field of synthetic chemistry. However, this field-defining
concept is frequently invoked on an intuitive basis without precise
definition or appreciation of its subtleties. Although humanintuition
about complexity can be roughly useful for retrosynthetic analysis,
intuition among groups of chemists can remain highly variable and is
oftenriddled with biases and imprecisions’®. However, current objec-
tiveimplementations of complexity scores in retrosynthesis programs,
such as the length of a SMILES string', remain somewhat crude, over-
looking many subtletiesin planning efficient disconnections. Although
programs such as SYNTHIA have demonstrated proficiency in planning
routes to natural products', there is much room for growth for tack-
ling more complex targets. If computer-assisted synthesis planning
istoreach greater maturity in the near future, analysing molecular
structures and developing synthetic routes much in the same way as
expert-trained chemists will require further refinement of this corner-
stone conceptinto arigorous analytical tool. In this process, complexity
analysis might highlight new desirable disconnections that are not yet
achievable with the current synthetic toolkit, inspiring the community
to develop new methods to close the gap.

In this Perspective, the definitions, methods for quantification
and applications of molecular complexity were reviewed. Despite the
multitude of analytical methods that attempt to rigorously quantify
and measure molecular complexity, however, it remains a somewhat
elusive subject. One might reasonably wonder if these complexity
analyses — with their own subjective formulations and approaches —
are any different than mere humanintuition. Each method, withits own
assumptions, theoretical bases and computational tradeoffs, invariably
fails to capture the whole picture with asingle lens. However, complex-
ity analyses do not seek to be holistic or objective for all scenarios.
The ‘ideal’ complexity metric is context-dependent, and their value
isdemonstrated intheir ability to aid in planning successful synthetic
routes or inspire new innovationsin the field, as shown by Cernak and
coworkers. Although each approach indeed bears its own assump-
tions, they draw from conceptual frameworks such as graph theory or
information theory whichindividually crystallize our understanding of
molecular structure, with each analytical framework being a different
way to model the ensemble of molecular features. These metrics are,
inaggregate, useful for characterizing the state of synthesisinamore
rigorous, reliable and reproducible fashion, and they can teach the
community how to navigate this landscape more efficiently.

Where do new opportunities remain? Many previous methods
for quantifying complexity start with well-understood variables or
theoretical frameworks to define complexity from the bottom up.
However, with large datasets of composite or crowdsourced complex-
ity scores, such as that from Sheridan and coworkers®®, one might
envision machine learning workflows capturing subtle elements of
complexity that no single method could report. Such methods could
aid in proposing new disconnections that break conventional heuris-
tics butresultin efficient syntheses. Furthermore, analysis of human-
defined complexity, resulting fromyears of organic chemistry training,

experience and time-tested intuition, might uncover new discrete prin-
ciplesor ‘rules’ that could simplify retrosynthetic analysis beyond the
original LHASA work of Corey. Re-training retrosynthesis algorithms
with these data-driven heuristics, in turn, has the potential to render
computer-assisted synthesis planning even more powerful. Finally,
the development of standardized benchmarks for complexity metrics
(forexample, by evaluation of astandard set of total syntheses or test
compounds) can be used to assess the value of new approaches and
allow for more rigorous comparison of these molecular descriptors
for future applications.

Synthetic chemists are drawn to building complexity through
synthesis: canwe be more rigorous with how we measure our progress?
Quantifying and characterizing molecular complexity with analytical
methods will not only bring needed clarity to an oft-nebulous term,
but this can also point the field in new directions for improving how
complexstructures are assembled. For total synthesis, characterizing
the complexity landscape canaid in understanding the successes (and
failures) of various synthetic strategies, leading to a better grasp of
how one might maximize structural complexity at every step while
minimizing the synthetic complexity of medicinally valuable targets.
The advent of computer-assisted synthesis planning invites more
systematic, reproducible methods for the analysis of complex mol-
ecules.]Just as the development of LHASA prompted Corey to codify a
setof general rules for retrosynthetic analysis, developing new ways to
describe molecular complexity has the potential toyield similarly use-
fulapplications. Perhaps there are new rules for synthesis that are yet
tobeformulated, alogic based on algorithm-calculated complexity as
the guiding principle. Further development of molecular complexity
analysisandits applications canrefine the synthetic organic chemist’s
understanding of their craft and scout new directions for advancing
thefield.
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