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Abstract

The generation of molecular complexity is a primary goal in the field 
of synthetic chemistry. In the context of retrosynthetic analysis, the 
concept of molecular complexity is central to identifying productive 
disconnections and the development of efficient total syntheses. 
However, this field-defining concept is frequently invoked on an 
intuitive basis without precise definition or appreciation of its 
subtleties. Methods for quantifying molecular complexity could prove 
useful for characterizing the state of synthesis in a more rigorous, 
reliable and reproducible fashion. As a first step to evaluating the 
importance of these methods to the state of the field, here we present 
our perspective on the development of molecular complexity 
quantification and its implications for chemical synthesis. The 
extension and application of these methods beyond computer-aided 
synthesis planning and medicinal chemistry to the traditional practice 
of ‘complex molecule’ synthesis could have the potential to unearth 
new opportunities and more efficient approaches for synthesis.
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Guided by this singular goal, Corey argues that one can reduce any 
complex target molecule into simpler and simpler fragments which can 
be accessed either commercially or according to previously reported 
methods. This retrosynthesis logic was codified into a series of discrete 
rules11 and eventually programmed as a retrosynthesis software named 
Logic and Heuristics Applied to Synthetic Analysis (LHASA)10,12, laying 
the groundwork for the development of many additional automated 
and semi-automated synthesis planning programs which have recently 
emerged13. In many of these algorithms, a ‘scoring function’ evaluates 
which disconnection yields the greatest decrease in complexity and is 
critical to the success of the algorithm in identifying full-length syn-
thetic pathways. Although there are instances in which brief increases in 
complexity — such as installation of a protecting group or a generation 
of a more reactive intermediate — can enable efficient overall syntheses, 
reducing molecular complexity, the ‘all-important goal’10, occupies 
a central place in retrosynthetic analysis.

Taken more broadly, molecular complexity can also serve as an 
aspirational goal for synthetic chemistry as it advances new methods 
and more efficient synthetic strategies. According to Corey, “Molecular 
complexity can be used as an indicator of the frontiers of synthesis, 
since it often causes failures which expose gaps in existing methodol-
ogy. The realization of such limitations can stimulate the discovery 
of new chemistry and new ways of thinking about synthesis”11. In the 
context of total synthesis, attempts to construct highly complex mol-
ecules reveal the current limitations of existing synthetic methods and 
pose opportunities to develop new chemistry. In this light, molecular 
complexity can be best understood in two distinct dimensions: struc-
tural complexity and synthetic complexity. Structural complexity 
refers to inherent structural features of a molecule which contribute 
to its overall complexity. Factors such as number of rings, stereo-
centres or heteroatoms, which describe the structural composition 
of a compound, are often invoked. Synthetic complexity, as defined 
previously by others14,15, describes how easily a particular target could 
be synthesized, for example, the number of steps required to access 
the molecule. As Eastgate and Li propose14, this aspect of complexity 
is extrinsic to the target and largely dependent on currently available 
methodology. Structural complexity, conversely, is intrinsic to the 
target, immutable.

These two facets of complexity are distinct, yet related, and the 
interplay between them provides a useful framework for understand-
ing the progress of the field in synthesizing complex molecular scaf-
folds over the past two centuries. On a conceptual level, as similarly 
illustrated by Wender16, one might consider structural and synthetic 
complexity as plotted along two axes (Fig. 1). Navigating this ‘complex-
ity space’ has allowed synthetic chemists to approach increasingly 
complex molecular architectures in shorter sequences of steps. For 
example, tropinone (1), a target of medium–low structural complex-
ity, was first synthesized by Willstätter in 1901 in a reported 21 steps17. 
Notably, the work of Willstätter on tropine synthesis led to the struc-
ture elucidation of cocaine and other tropane alkaloids18,19. Despite 
the broader impact of this work, tropinone (1) remained synthetically  
complex — that is, until 1917, when Robinson reported a one-step synthe-
sis of tropinone featuring a decarboxylative double-Mannich transfor-
mation to efficiently construct the 8-azabicyclo[3.2.1]octane core20. The 
precipitous drop in the synthetic complexity of tropinone illustrated 
the power of the then recently reported (though later named) Mannich 
reaction to the synthetic community and rendered the approach of 
Robinson an instant classic. Nevertheless, targets of greater structural  
complexity than 1 remained largely out of reach until newly developed 

Introduction
Synthetic chemists are fascinated by complex molecules. Densely 
packaged carbon skeletons decorated with oxygen, nitrogen or other 
heteroatoms evoke a sense of awe and intense interest from those 
steeped in the art and science of organic synthesis. Generating molecu-
lar complexity, whether in the context of a useful synthetic method 
or the strategy of a total synthesis, is arguably a focal point for many 
synthetic chemists at some level. Synthesis is, after all, the enterprise of 
building new molecules. Many naturally occurring compounds, often 
isolated in unsustainably small quantities, contain unusual structural 
motifs that challenge the field to advance new strategies and methods 
for their preparation. Access to novel structural motifs may lead to 
desirable biological properties or applications as functional materials. 
The construction of complex molecules is, therefore, a primary goal 
of the field of synthetic chemistry.

For as often as the term complexity is discussed colloquially within 
the field, one must consider: what exactly do we mean when we call 
a molecule complex? For example, one could argue that molecular 
complexity is a purely subjective concept which chiefly relies on human 
perception, much like an analysis of a piece of art or work of literature1. 
Conversely, one might also consider that molecular complexity bears a 
certain mathematical objectivity, describing inherent features or rela-
tionships that render a particular system ‘complex’2. The complexity of 
systems is certainly not limited to chemistry, and many have applied 
this concept in other fields such as in physics3, biology4–6, climate 
science7 or engineering8. However, in particular, the subjective and 
objective measures of complexity are often held in tension in organic 
synthesis, a field which cultivates appreciation for both the elegance 
of a synthetic strategy and the quantitative description of a reaction 
mechanism. Woodward was awarded the Nobel Prize in Chemistry 
in 1965 “for his outstanding achievements in the art of organic synthe-
sis”9, officially recognizing organic synthesis as a field which is both an 
art and a science. So, too, is molecular complexity.

The concept of molecular complexity was central to Corey’s devel-
opment of retrosynthetic analysis, the systematic method for planning 
syntheses10. In a retrosynthetic analysis, one works backwards from 
a synthetic target by considering all possible disconnections which 
correspond to synthetic transformations in the forward direction. At 
each stage in the analysis, desirable disconnections are selected and 
carried onwards, a process which “receives direction and selectiv-
ity from the all-important goal of reducing molecular complexity”10. 
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Fig. 1 | Relationship between structural and synthetic complexity. A plot 
of structural and synthetic complexity space with selected targets and their 
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synthetic methods enabled the synthesis of increasingly complex 
molecules.

Because structurally complex molecules often demand numer-
ous synthetic transformations to complete their synthesis, structural 
complexity is, naturally, often correlated with synthetic complexity. 
Diterpenoids such as ryanodol (2) have attracted significant attention 
for their complex architectures and intriguing insecticidal functions. 
As one might expect for a target of high structural complexity, two of 
the first completed syntheses of ryanodol by Delongchamps (37 steps)21 
and Inoue (35 steps)22 reflect its similarly high synthetic complexity. 
Informed by these previous syntheses, a recent 15-step synthesis from 
Reisman and coworkers23 rendered 2 synthetically much less complex, 
illustrating how cumulative advances in strategy and methodology can 
tame structurally complex molecules down to a much more reasonable 
level of synthetic complexity as measured by step count. In the so-called 
age of feasibility24, when total synthesis was first pushed to its limits by 
tackling targets such as Taxol25–33, calicheamicin34–37, halichondrin B38,39 
or palytoxin40–42, the goal was demonstrating that organic synthesis 
could produce a few milligrams of any target at any cost. High structural 
complexity was tethered to high synthetic complexity. In the modern 
‘age of scalability’43, however, the field is steadily transitioning towards 
a new phase of innovation wherein structurally complex targets can 
be easily accessed in short step sequences and with highly efficient 
transformations (Fig. 1, indicated by blue arrow). Indeed, the most 
powerful synthetic methods and strategies are those which minimize 
the synthetic complexity of structurally complex molecules.

Together, structural and synthetic complexity are useful concepts 
through which the state of organic synthesis can be evaluated and the 
field can be driven forward. Given the various applications of molecular 
complexity within medicinal chemistry, total synthesis and retrosyn-
thetic planning, a more quantitative treatment of this key concept is 
necessary. In a time when quantitative tools such as machine learn-
ing44–47 and statistical modelling and parametrization48–50 are being 
applied to reaction prediction51–54, catalyst design55,56 or retrosynthesis 
planning57–59, the realm of complex molecule synthesis could benefit 
from even more of a focus on quantitative metrics for guiding synthetic 
strategy. This Perspective will survey several pivotal contributions use-
ful for measuring structural and synthetic molecular complexity and 
will then examine how these efforts relate to a series of applications 
in organic chemistry.

Quantifying structural complexity
Frameworks for measuring complexity
The structural complexity of molecules can be assessed according to 
two branches of mathematics: graph theory and information theory. 
First, a brief examination of these fields of study is necessary to fully 
appreciate the underlying framework behind existing complexity met-
rics. Broadly speaking, graph theory deals with the way objects are con-
nected. Adapted to chemistry, chemical graph theory models chemical 
structures as molecular graphs, which are abstract representations of 
‘objects’ that are ‘related’ in a network60. Instead of atoms and bonds 
in a chemical structure, chemical graphs feature vertices and edges, 
respectively (Fig. 2a). Ignoring most chemical or physical considera-
tions, chemical graph theory primarily treats the connectivity of a 
molecule as an adequate representation of its structure. The consid-
eration of molecular connectivity in the context of retrosynthesis, for 
example, is reflected in several of the retrosynthetic rules of Corey for 
choosing disconnections in a complex molecule based on a ‘topologi-
cal strategy’11. Disconnections that best reduce molecular complexity, 

according to Corey, are those that simplify the topology of a molecule 
by a number of means: reduction in the overall number of rings, divi-
sion into fragments of equal size, or cleavage of maximally bridged 
rings. As it relates to methods development61,62, any given reaction 
can be analysed with chemical graph theory by looking at changes to 
the respective molecular graph. In this way, chemical graph theory 
can be used to examine molecular connectivity as a representation of 
structural complexity.

Information theory deals with the way information and uncertainty 
are quantified, manipulated and represented. Rooted in Shannon’s 
formula63, information theory states that uncertainty, or information 
entropy, is related to the sum of all possible states of individual vari-
ables. Chemical information theory, by analogy, treats molecules as a 
series of variables or features that encode information in a particular 
state64 (Fig. 2b). A string of binary digits (0 or 1) can contain informa-
tion interpreted by a computer. Likewise, stereocentres on a molecule 
(R or S) can encode molecular properties or molecular shapes that are 
recognized by cellular machinery or manifested as chemical reactiv-
ity. Unlike chemical graph theory, which approximates molecules as 
a set of nodes and connections, chemical information theory focuses 
on factors, such as atom identity, atom microenvironment or other 
molecular features. In an era of ‘Big Data’, when key relationships can 
be unearthed by way of large-scale data science, information theory 
has been a framework for the development of quantitative structure– 
activity relationship (QSAR) parameters in medicinal chemistry 
programs65. In our view, the basic challenge of selectivity in organic 
synthesis — as seen through enantioselective catalysis or site-selective 
functionalization — can be understood fundamentally as a challenge 
in molecular information encoding66. In the context of drug–protein 
interactions, the chiral information present in small molecules can 
trigger vastly different biochemical signalling pathways67. As such, 
the installation of stereogenic centres is, essentially, an information-
encoding event. In general, chemical information theory assesses 
structural complexity by accounting for all the variables present in a 
molecule which, together, constitute its overall structure.

Methods based on chemical graph theory
Structural complexity metrics frequently draw from graph theory and 
information theory in attempts to capture the inherent complexity of a 
molecule. One of the most influential methods for evaluating structural 
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complexity was developed by Bertz in 1981 (ref. 68). Termed a ‘general 
index’ for molecular complexity, the method is built on principles from 
both chemical graph theory (in its analysis of molecular connectivity) 
and chemical information theory (in its analysis of heteroatom con-
tent). Bertz proposes that by considering graph theoretical invariants, 
which are features of the molecular graph solely based on the compo-
sition and structure of the graph, a reasonable measure of molecular 
complexity owing to connectivity C(η) can be obtained. Borrowing 
from the mathematical form of Shannon’s formula63, Bertz defines 
C(η) as the sum of connections (pairs of edges joined by a vertex) in an 
all-carbon molecular graph when corrected for symmetry by factoring 
out equivalent connections (Fig. 3a). The term C(η) counts the number 
of nonequivalent ‘propane’ subgraphs within the parent molecular 
graph structure. To capture aspects of molecular complexity owing 
to heteroatom content, the function C(E) is introduced, approaching 
zero for molecules with little atom diversity such as hydrocarbons and 
maximized for molecules with a large variety of heteroatoms present 
(hydrogen atoms are generally ignored in complexity metrics). The 
total complexity, CT, is thus a function of both complexity owing to 
connectivity and heteroatom diversity (Fig. 3b). Overall, the Bertz CT 
index accounts for molecular size, degree of branching, local symmetry, 
bond and ring count, and the presence of heteroatoms through these 
graph theory-based and information theory-based methods.

Since the seminal work of Bertz on a general approach to assessing 
molecular complexity, a number of additional methods have emerged. 
Hendrickson proposed a variant of the connectivity-based analysis of 
Bertz by counting the number of hydrogens appended to each car-
bon in the structure (that is, methyls, methylenes, methines and qua-
ternary centres)69. Instead of enumerating the number of two-bond 
connections, as in the approach of Bertz, molecular topology could 
be described by simply accounting for how hydrogen atoms are dis-
tributed on the carbon skeleton. Because of the challenge associated 
with manually performing the complexity analysis of Bertz, modern 
computer algorithms have automated and operationally simplified 
many of these calculations69,70. Expanding on his initial work, in which 
propane subgraphs are counted to capture molecular complexity 
owing to connectivity, Bertz later proposed considering all possi-
ble subgraphs within a given structure71 (Fig. 3c). These novel graph 

theoretical invariants, NS (number of kinds of subgraphs) and NT (total 
number of subgraphs), account for subgraphs containing heteroatoms 
while maintaining an approach fundamentally based in graph theory. 
Total walk count (twc) has also been proposed by Rücker as an effec-
tive index for characterizing molecular connectivity72. Beyond these 
reports, a whole host of approaches to measuring molecular complex-
ity based on chemical graph theory have been reported: Randíc and 
coworkers proposes assessing molecular branching and self-avoiding 
paths in the molecular graph73–75; the chemically intuitive metric of 
Whitlock counts molecular features such as rings, chiral centres heter-
oatoms76; Barone and Chanon have expanded on the work of Whitlock 
by factoring in ring size77; Bonchev and coworkers have elaborated 
the Wiener index to include subgraph considerations78,79; Proudfoot 
considers the paths in the molecular graph emanating from the micro-
environment of each atom80,81. Together, these applications of graph 
theory to organic chemistry attempt to represent the extent to which 
connectivity is an essential component of molecular complexity.

Methods based on chemical information theory
Many complexity metrics influenced by information theory still retain 
a strong bias towards using molecular graphs to represent chemical 
structures. Calculating the information content of a molecular graph 
has led to the development of similarity indices82 for differentiating 
molecules on the basis of these graph-theoretical representations64. 
As a departure from solely characterizing molecular graphs, Bonchev 
proposed an atom-by-atom method for measuring information content 
based on individual features of atomic microenvironments83. This 
approach by Bonchev advanced the key assumption that atomic micro-
environments are independent from one another and, therefore, should 
be represented as additive information-bearing variables. Recently, 
this application of information theory was extended by Böttcher to a 
novel molecular complexity index66. In Böttcher’s method, each atom 
in a molecule is characterized by its valency, isomeric possibilities, and 
diversity of chemical groups or elements in its immediate microenvi-
ronment (Fig. 3d). Just like information in a string of binary digits can 
be measured by the number of bits, the sum of these individual atomic 
features gives rise to the total information content of the molecule 
measured in ‘molecular complexity bits’. As such, significant weight 
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is assigned to factors such as stereochemistry and symmetry, which 
are often underappreciated elements of many graph theory-based 
methods. Interestingly, this complexity metric (Cm) scales with the 
number of peaks present in NMR spectra of alkane isomers. As a prac-
ticing synthetic chemist might intuit, symmetry-breaking features in 
a molecule which give rise to diastereotopicity can wildly complicate 
structural analysis by NMR spectroscopy — the method of Böttcher 
aptly captures this phenomenon.

Additive methods such as that of Böttcher quantify larger mol-
ecules as more complex than smaller ones. In terms of structural com-
plexity, this principle is fairly intuitive: bimolecular coupling reactions 
generally increase overall molecular complexity; macromolecules bear 
more complexity than small molecules. However, for complex small 
molecules such as natural products, which pose unique synthetic chal-
lenges and often have biological signalling capabilities, the ‘proximity’ 
of structural features is a key aspect of its overall complexity and syn-
thetic challenge. Shenvi and coworkers recently extended the method 
of Böttcher for measuring total information content to the concept of 
information ‘density’ by factoring in molecular volume84. Many biologi-
cally relevant natural products are densely functionalized and feature 
unusual structural motifs, and the manner in which these functional 
groups are packed in space gives rise to unforeseen emergent proper-
ties which complicate their synthesis (that is, increase their synthetic 
complexity)85. Biologically active natural products often engage pro-
tein receptors with exquisite selectivity owing to the high informa-
tion content encoded in their complex structures, and indeed, many 
natural product analogues have led to approved drugs86,87. Therefore, 
to advance the field of synthetic methodology and facilitate access to 
biologically active molecular scaffolds, the construction of targets 
with high information density from fragments with low information 
density is a fundamental aim of total synthesis.

Building off the substructure analysis of the Cm score of Böttcher, 
Krzyzanowski, Waldmann and coworkers have recently reported the 
development of spacial score (SPS)88, which aims to be more focused 
on topological complexity as it relates to biological function. In their 
analysis, although Böttcher’s score has generated noteworthy interest 
in the organic synthesis community for scoring the complexity of 
chemical transformations, it has proven less useful as a descriptor for 
predicting biological selectivity and potency, as has been previously 
shown for scores such as Fsp3 and FCstereo (ref. 89). In the SPS metric, the 
microenvironment and local complexity of each atom are evaluated 
for atomic hybridization (penalizing unsaturation), stereoisomerism, 
presence of non-aromatic rings (rewarding connectivity) and number 
of heavy atom neighbours (prioritizing branching). These substructure 
scores are then summed across all atoms to arrive at the total complex-
ity, which can be optionally normalized (nSPS) by number of heavy 
atoms to allow comparison of molecules of different molecular weights. 
In addition to using SPS to correlate structural complexity with biologi-
cal activity and selectivity, the authors illustrate the intuitive nature of 
the SPS metric by illustrating Shenvi’s bilobalide synthesis using an 
accompanying Python package available for automated scoring84,90. 
Compared to the ‘first-principles’ approach of Böttcher with Cm, SPS 
is more intentionally tailored to the kinds of structural features (that is, 
saturation, rings and so on) which might be relevant for assessing 
complexity as it relates to biological activity or total synthesis.

Quantifying synthetic complexity
Synthetic complexity captures how easily a particular target could 
be synthesized. As many synthetic chemists can surely attest, 

estimating the synthetic complexity of a molecule can be far from 
trivial. Although the number of synthetic steps required to access a 
target is often related to its structural features, determining synthetic 
complexity from structure alone can be incomplete. For example, ster-
oid derivatives, which are structurally complex by virtue of containing 
several rings, stereocentres and heteroatoms, can often be prepared in 
a single step from readily available commercial material and, therefore, 
are synthetically less complex. In any retrosynthetic analysis, one must 
enumerate possible disconnections and synthetic precursors until 
either commercially available or previously reported starting materi-
als are identified. In theory, the synthetic complexity of a given target 
is essentially a function of its retrosynthesis, representing the path 
length from starting material to final target. Of course, in practice, this 
estimated synthetic complexity is only validated upon completion of a 
synthesis when final step count and reaction efficiencies are experimen-
tally determined. Although the exact definitions of a ‘synthetic step’, 
such as those described by Guerrero and coworkers91 and Johnson92, 
have varied historically, step count remains an important (albeit an 
imperfect) parameter for understanding synthetic complexity. There 
are, of course, many ‘soft’ practical considerations for encompassing 
the ease of synthesis of a compound: reaction efficiency (and overall 
yield), cost of materials, purification of intermediates or supply of 
starting materials or reagents. In the context of process chemistry, 
these become essential considerations when approaching manufac-
turing scales. The synthetic complexity of a target is also subject to 
change: as the field develops new synthetic methods and a wider range 
of starting materials and reagents, more efficient synthetic strategies 
can be realized, making this concept somewhat of a moving target. 
Of course, the rigorous evaluation of synthetic complexity requires 
proper experimental validation by completion of a synthetic route, 
making assessment of the synthetic complexity of a potential target 
somewhat of a circular task. Therefore, in this Perspective, we estimate 
synthetic complexity using a combination of existing metrics such as 
step count or synthetically challenging structural features as simplified 
approximations for this hard-to-measure concept.

Despite the many challenges associated with definitively measur-
ing synthetic complexity, several methods have been reported which 
aim to estimate this useful property. In the context of medicinal chem-
istry, synthetic complexity scores can sort lead candidates by their 
ease of synthesis, highlighting promising targets which can be quickly 
prepared while discounting those whose synthesis would require 
considerable resources. To that end, Ertl and Schuffenhauer devel-
oped an approach at Novartis for estimating synthetic accessibility 
(SAscore) by accounting for structural motifs which have the greatest 
impact on the synthesizability of a target93. A fraction of the PubChem 
database was analysed to identify common structural features which 
are well-established in the literature, and these fragments contribute 
to synthetic accessibility. The method also accounts for structural 
features — such as rings, stereocentres or macrocycles — which gener-
ally complicate synthetic accessibility and are counted as penalties in 
the SAscore. Whereas estimating synthetic complexity based purely 
on structural features can overlook certain subtleties, this SAscore 
not only accounts for literature-precedented substructures but also 
comes at a considerably lower computational cost than enumerating 
retrosynthesis for each molecule.

Although assessing synthetic complexity by generating an exhaus-
tive retrosynthesis tree for every target is a computationally demand-
ing task, modern machine learning methods offer a cheaper alternative 
for measuring these properties. In the context of retrosynthesis 

http://www.nature.com/natrevchem


Nature Reviews Chemistry

Perspective

algorithms, which are guided from target to starting material through 
productive reductions in complexity, a rapid method for quickly scor-
ing many intermediates is needed. Coley and coworkers disclosed a 
learned synthetic complexity metric, SCScore, trained on 12 million 
reactions from the Reaxys database94. In contrast to many previous 
approaches, which measure structural or synthetic complexity using 
principles from domain expertise, SCScore models reported literature 
data to formulate a conception of synthetic complexity. The neural net-
work was trained on reaction data with the key constraint that products 
have higher scores than reactants, and thus molecules are ranked in a 
pairwise fashion to maintain this requirement when assigned a score 
between 1 and 5. Notably, this approach does not contain an explicit 
database of commercially available compounds such as many retrosyn-
thesis algorithms95; instead, SCScore learns from reaction data, implic-
itly, the types of molecules that tend to be starting materials and those 
which tend to be products. When SCScore is mapped onto existing drug 
syntheses, the tool appropriately characterizes each target compound 
as more synthetically complex than its precursor, a marked improve-
ment over heuristic methods (such as SAscore93 or length of SMILES13) 
that do not appropriately show synthetic complexity monotonically 
increasing over the course of a synthesis. Because SCScore is trained 
on the kinds of compounds published in the Reaxys database, evalu-
ating infrequently appearing structures such as natural products is a 
fundamental challenge of this approach, and highly complex substrates 
often ‘saturate’ the function with scores approaching 5. Nevertheless, 
SCScore represents a novel method for evaluating synthetic complexity 
at low computational cost while maintaining high fidelity to the body 
of published synthetic transformations.

Synthetic complexity is a function of the relative ease of obtain-
ing starting materials and the synthetic tools available at any point 
in time, evolving as the field advances and various bonds or struc-
tural motifs become easier to assemble. Eastgate and Li developed a 
metric for ‘current complexity’, a function of intrinsic factors related 
to structural complexity and extrinsic parameters which vary over 
time14. The authors’ recognition that many aspects of complexity, 
both structural and synthetic, are often intuitively perceived by expert 
chemists prompted a small-scale survey for assessing human-perceived 
complexity ranking of a set of molecules. From these data, a regression 
model was developed using parameters such as Randić’s molecular 
topology index73, Baran’s synthetic ‘ideality’ definition96, and a series 
of heuristic factors such as number of stereocentres constructed and 
overall step count. Whereas intrinsic parameters such as molecular 
topology remain constant, extrinsic parameters such as step count are 
subject to change as the field advances. These principal factors iden-
tified by regression analysis were refitted with a probabilistic model 
which represents the current complexity as a distribution of scores, 
much like how a panel of chemists might collectively rank molecular 
complexity with differences in individual perception and biases.

Although measures of complexity — both synthetic and structural —  
have traditionally been built on the theoretical foundation of graph 
theory and information theory, another mode for evaluating these 
properties is human chemical intuition. Of course, an individual’s 
assessment of complexity-defining molecular features is subject to 
their own perception and human biases, and complexity rankings can 
vary wildly from chemist to chemist. However, large aggregations of 
chemist rankings can suppress these biases by averaging individual 
scores, thereby yielding a ‘crowdsourced’ definition of complexity 
which might be more general than individual perception97. Sheridan 
and coworkers applied this crowdsourcing model to a collection of 

386 chemists at Merck across several subdivisions within the com-
pany98. Users of a voting module were tasked with ranking groups 
of five molecules by their complexity, which was left intentionally 
undefined to capture unbiased conceptions of complexity. These 
data were then averaged to generate a meanComplexity score for each 
molecule, which yielded a series of notable findings: first, the manner 
in which molecules were drawn or represented (that is, explicit wedges 
or dashes, molecular orientation and so on) had a measurable, though 
not overwhelming, impact on the assigned score; second, individual 
chemists did not agree based on their assigned scores, but averaging 
over many voters yielded a self-consistent QSAR-based model; last, 
meanComplexity correlates reasonably well (R2 = 0.89) with Ertl and 
Schuffenhauer’s SAscore93, revealing that the chemists polled under-
stood complexity in a way that closely resembles synthetic complex-
ity. Although this crowdsourcing approach has its limitations (that is, 
appropriate molecular representations and ambiguous definitions 
of complexity), it reveals the degree to which human intuition aligns 
with many of the theory-based definitions of molecular complexity.

Applications of molecular complexity analysis
Retrosynthesis and computer-aided synthesis planning
Because retrosynthesis is ultimately guided, as Corey states, by “the 
all-important goal of reducing molecular complexity”10, the way 
in which chemists think about complexity has a substantial impact 
on which disconnections are favoured and which synthetic strategies 
are pursued in the laboratory. The “rules of retrosynthesis”, codified by 
Corey and coworkers in the LHASA program99–109, attempts to capture 
the many facets of molecular complexity with a series of heuristics 
derived from years of experience in organic synthesis rather than from a 
first-principles approach. Corey’s ‘Logic’11 has prompted further analy-
sis from a graph-theoretical standpoint to validate the now-accepted 
wisdom of organic synthesis. Bertz and Sommer71, and later Bertz and 
Rücker1,110, questioned whether these retrosynthesis principles hold true 
under a mathematical lens according to a set of previously discussed 
structural complexity metrics (NS, NT and twc)111. Re-examining a set of 
polycyclic synthetic targets once analysed by Corey112, the authors rank 
each bond in the structure by greatest reduction in structural complex-
ity according to the chosen metrics (Fig. 4). Compared to the heuristic-
derived rules, many of the top-ranked bonds by the aforementioned 
complexity metrics are in agreement: bonds that are directly attached 
to (that is, are exo to) another ring or are contained within the maximally 
bridged ring generally result in the greatest reduction in complexity. 
The strategy of identifying maximally bridged rings has been used by 
Sarpong and coworkers to complete the synthesis of several complex 
diterpenoid alkaloids113,114. One notable exception in which the LHASA 
heuristic is, in fact, contramathematical is the consideration of central 
fusion bonds which, when disconnected, generate macrocyclic inter-
mediates (ring size > 7). According to Bertz and Sommer71, breaking 
these transannular bonds often result in the most complexity-reducing 
disconnections to the molecular graph (Fig. 4), but owing to the his-
torical paucity of efficient methods to construct carbocyclic macrocy-
cles, transannular disconnections are explicitly discouraged by Corey. 
Newer developments in synthetic methodology that enable the rapid 
construction of precursor macrocycles115–119 reveal new strategic pos-
sibilities which, in alignment with the mathematical analysis of Bertz 
and Rücker, ought to be considered for the efficient construction of 
complex, polycyclic targets by transannular bond formation.

In the Digital Age, the adaptation of retrosynthesis logic to com-
puter programs and the automation of synthesis planning has been 
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a longstanding effort at the interface of chemistry and computer sci-
ence13,120. The LHASA program developed by Corey set the stage for the 
development of countless additional programs aimed at streamlining 
computer-aided synthesis planning (CASP): Chematica/SYNTHIA95, 
ASKCOS59, ICSYNTH121, IBM RXN122, AiZynthFinder123, WODCA124, and 
many others. Retrosynthesis algorithms typically follow a similar form 
to human-performed retrosynthetic analysis (Fig. 5a). Currently used ret-
rosynthesis programs make use of expert-coded reaction templates95 or 
machine learning techniques46,57,125 to learn possible chemical transforma-
tions and, by recognizing relevant structural motifs or functional groups 
present in the target molecule, propose a series of disconnections. The 
number of possible disconnections at any given stage can be extremely 
large owing to the ‘combinatorial explosion’126 of recursive multistep ret-
rosynthesis searches; efficient navigation of this immense search space is 
handled by scoring functions, which rank disconnections and highlight 
those which lead to the shortest achievable path accordingly (Fig. 5b). 
With SYNTHIA, for example, proposed routes can also be ranked by 
user-defined criteria such as use of protecting groups, number of steps, 
or the possibility of reactivity conflicts (for example, a Grignard reaction 
in the presence of an additional carbonyl functional group). Often, in this 
structure search, the most ‘downhill’ disconnections lead to precursor 
compounds which are structurally dissimilar from the parent molecule. 
Therefore, one might envision that measures of molecular similarity127,128 
such as Tanimoto coefficients129 could be used in cheminformatics and 
indirectly capture some aspects of this analysis. However, structural 
complexity has a higher tendency to guide a retrosynthesis back to 
simple building blocks, which are commercially available. Currently, 
programs such as SYNTHIA use oversimplified complexity measures 
based on the length of the SMILES string13. However, insofar as reducing 
structural complexity is a primary goal of retrosynthesis, there is signifi-
cant opportunity to use more sophisticated measures of complexity in 
these synthesis planning programs to potentially improve algorithm 
performance. The growing field of machine learning has made ample 
use of mathematical optimization methods for multidimensional func-
tions130, but in order for these powerful tools to take hold in the realm of 
CASP, the complexity landscape must first be quantitatively well-defined. 
Therefore, metrics for complexity — the ‘distance’ in both synthetic 
and chemical space131,132 from readily available starting materials —  
are particularly significant in the context of CASP and merit further 
development from both synthetic and computational chemists.

Recently, Cernak and coworkers applied this concept of ‘graph edit 
distance’ to the enantioselective synthesis of the alkaloid stemoam-
ide133. Although there are over 30 previous approaches to stemoamide, 
application of SYNTHIA to the natural product highlighted a novel Man-
nich transformation which had not been previously reported. However, 
inefficiencies in the rest of the route made the SYNTHIA proposal less 
competitive compared to previous reports, and human intervention 
was required to shorten the sequence. Ultimately, Cernak and cowork-
ers leveraged graph edit distance as a way to prioritize high-impact 
steps in a machine-readable format and synergize with programs such 
as SYNTHIA which contain a vast database of known reactions. After 
developing a first-generation approach to stemoamide via an organo-
catalyzed Mannich reaction, graph edit analysis highlighted which part 
of the route could be further improved by cutting out functional group 
interconversions, resulting in a three-step second-generation approach 
featuring two key steps: an auxiliary-directed Michael addition and a 
final Aubé–Schmidt rearrangement.

Analysis and evaluation of total syntheses
If one of the goals of total synthesis is to navigate complexity space 
from starting material to a target compound through the most effi-
cient path, then measures of structural complexity can be useful in 
describing how various syntheses traverse this landscape. In addition 
to the frameworks of ‘redox economy’,134 ‘atom economy’135 or ‘step 
economy’,136 which have been used in retrosynthetic analysis, ‘complex-
ity economy’ has also been used as the basis for comparing synthetic 
strategies to classic complex molecules such as Taxol, strychnine and 
longifolene76,77,81,137. Plotting the structural complexity of each inter-
mediate in a synthetic route illustrates in two dimensions how each 
step contributes to reaching the final target. In general, this kind of 
analysis can provide valuable insight into how molecular complexity is 
navigated in the total synthesis of natural products. These analyses also 
raise intriguing fundamental questions about synthetic strategy: for 
example, in an ‘ideal synthesis’, should structural complexity be gener-
ated at the beginning or end of a route? Can strategies for complexity 
generation be tailored to the purpose of the synthesis (for example, 
late-stage diversification for preparing libraries of analogues)? Are 
there special considerations for ‘overbred’ intermediates, which con-
tain excess structural complexity relative to the target? Molecular 
complexity, when quantified, can be a useful analytical framework 
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for addressing these kinds of issues. To this end, we examined three 
paradigms for navigating structural complexity (late-stage, early-stage 
and ‘excess’ complexity generation) and applied the SPS complexity 
score of Krzyzanowski and Waldmann88 to evaluate the paths traversed 
by total syntheses within these categories. Discussion of how these 
synthetic efforts take distinct approaches to the target is illustrated 
by complexity plots, which depict the complexity analysis for each 
synthetic intermediate.

Building complexity at a late stage
In terms of retrosynthetic analysis, achieving rapid reduction in molecu-
lar complexity when working backwards from a molecular target is a 
primary goal of synthetic planning. This type of approach often entails, 
in the forward sense, a late-stage introduction of stereocentres, rings or 
key structural motifs by powerful complexity-building transformations. 
Strategically, one might opt for this late-stage complexity paradigm to 
build up the necessary fragments in a reliable fashion (without emergent 
properties85 thwarting standard transformations) and attempt a final 
multi-bond forming process. There is, however, a significant degree of 
risk in planning the most ambitious transformation for the end of a route, 
and synthetic flexibility is often a consideration at the outset of a total 
synthesis. Nevertheless, many such strategies aim to model proposed 
biosynthetic pathways and involve nature-inspired cascades to assemble 
polycyclic architectures from linear precursors. For instance, in the late 
1960s, Johnson investigated the proposed cationic polyene cyclization 
for the biosynthesis of steroids such as (±)-16,17-dehydroprogesterone 
(3)138 (Fig. 6a). Treatment of tertiary alcohol 4 with tin(IV) chloride as a 
Lewis acid resulted in the stereospecific cationic cascade to forge three 
bonds and three rings and set five stereogenic centres (+106% increase 
in SPS score88 in going, for example, from 4 to 5; Fig. 6a, right). Follow-
ing ozonolytic C–C double bond cleavage on 5 and subsequent aldol 
cyclization, the final steroid target (3) was assembled. Since these pio-
neering studies in cationic polyene cyclizations, others have extended 
this approach to additional terpene scaffolds139–141 and demonstrated 
analogous radical-mediated cyclizations142–145 to access high-complexity 
sp3-rich intermediates from simpler linear precursors, as illustrated in 
the complexity analysis (Fig. 6a, right).

This late-stage complexity logic is also evident in Nicolaou’s syn-
thesis of the endiandric acids146–149, in which polyene-yne 6 (Fig. 6b) is 
subjected to Lindlar reduction conditions followed by a remarkable 
cascade of thermally promoted pericyclic reactions to access both 
endiandric acid B (7) and C (8) in their respective methyl ester forms. 
This series of pericyclic processes — an 8π electrocyclization followed 
by a 6π electrocyclization and final [4 + 2] Diels–Alder cycloaddition — 
not only validates a proposed biosynthesis but also constitutes a rapid 
rise in molecular complexity (+238% increase in SPS score in going, for 
example, from 6 to 7; Fig. 6b, right) as appreciated by the newly forged 
rings and stereocentres.

In this same vein, Heathcock and Piettre conducted a series of 
studies on the proposed biosynthesis for the Daphniphyllum family  
of alkaloids150,151 (Fig. 6c). Starting from polyene 9 (prepared in six 
steps), treatment with methylamine followed by acetic acid facilitated 
amine condensation, two aza-Prins-type cyclizations, and amine-
mediated hydride transfer to yield dihydro-proto-daphniphylline (10)  
in 65% yield. These studies have since served as the foundation for 
understanding the biosynthesis of newly isolated Daphniphyllum 
alkaloids in the yuzurimine, calyciphylline and daphnilactone subfami-
lies152. Similar to the work of Johnson138 and Nicolaou146–149, as shown 
in the accompanying complexity analysis plot, Heathcock’s synthesis 
generates significantly more structural complexity (+233% increase in 
SPS score) in the final biomimetic polycyclization step (that is, 9→10, 
Fig. 6c, right).

As another paradigm for late-stage generation of structural 
complexity, transannular bond-forming processes have emerged 
as powerful transformations for the efficient synthesis of polycyclic 
natural products. Construction of macrocyclic intermediates from 
linear precursors can enable the concomitant formation of several 
bonds in a transannular fashion, providing access to complex scaf-
folds that otherwise might be challenging to assemble by discrete 
ring-forming operations. One notable example of this strategy is the 
parallel efforts of Evans153 and Sorensen154 towards (+)-FR-182877 (11) 
and (−)-FR-182877 (12) (Fig. 6d), in which 13, constructed through a 
series of palladium-mediated cross couplings and alkylation steps by 
Evans, is allowed to undergo cyclization to macrocycle 14. Arriving at 
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the desired pattern of unsaturation, both approaches report a tandem 
transannular Diels–Alder and hetero-Diels–Alder cycloadditions from 
macrocycle 14 to forge all four ring fusion bonds and afford the pen-
tacyclic core of the natural product, representing a significant spike 

in calculated structural complexity (Fig. 6d, right). A short sequence 
of steps from pentacycle 15 achieved the transannular lactonization 
to complete the synthesis of both enantiomers of FR-182877 ((+), 
Sorensen; (−), Evans). As shown in the complexity analysis in Fig. 6d, 
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both the macrocyclization step (+102% increase) and transannular 
[4 + 2] cycloadditions (+43% increase) contribute significantly to overall 
SPS score. However, 11 steps (LLS) were required to build the precur-
sor for macrocyclization, highlighting the need for more expedient 
approaches to macrocyclic precursors if such approaches are to be 
more widely adopted.

Building complexity at an early stage
The second paradigm for understanding the role of molecular complex-
ity in synthesis planning features a rapid rise in structural complexity 
in the early stages of a synthetic route. Carefully planned couplings of 
easily accessible building blocks can give rise to a remarkable degree 
of structural complexity in a very short sequence of steps. One of the 
inherent challenges of this strategy is that, upon achieving a high level 
of complexity, emergent properties and unusual reactivity can arise85. 
These unforeseen factors can significantly complicate the rest of the 
synthesis and generally require additional steps to circumvent unpro-
ductive or deleterious reactivity155. One notable demonstration of this 
early-stage paradigm is Crimmins’ synthesis of ginkgolide B (16)156, in 
which a seven-step sequence from 3-furaldehyde to 17 (Fig. 7a) enabled 
a [2 + 2] photocycloaddition to yield tetracycle 18, which contains the 
four quaternary centres present in the natural product. After this rapid 
rise in complexity, 14 additional steps were required — comprising a 
series of ring expansions, redox manipulations, and installation of the 
final gamma lactone — to complete the 22-step synthesis of ginkgolide B  
(16). Interestingly, plotting the SPS score of this route reveals several 
insights. First, setting the stage for the key step requires some up-front 
investment; however, modest gains in complexity in the first seven steps 
(+371 SPS) are rewarded with a significant spike in complexity (+730 
SPS) at the [2 + 2] stage (that is, 17 to 18). Second, although there is a 
clear jump in skeletal complexity at this stage, many redox manipula-
tions are necessary to traverse the complexity landscape from 18 to 
the target (16), highlighting the challenge of late-stage oxidations on 
scaffolds which are already densely functionalized.

More recently, highly complex taxoids such as canataxpropellane 
(19, Fig. 7b) have been targeted by Gaich and coworkers157. In their 
synthetic strategy, furan dienophile 20 was treated with dienone 21 to 
initiate a thermal Diels–Alder cycloaddition followed by UV irradiation 
to promote an intramolecular [2 + 2] cycloaddition to yield highly caged 
[4.4.2] propellane 22 in an efficient two-step sequence. This extremely 
rapid generation of molecular complexity as reflected in the SPS score 
plot (see Fig. 7b, right) sets the requisite cyclobutene core and provides 
a platform for a series of scaffold rearrangements, oxidations and 
functional group manipulations that advanced 22 to canataxpropellane 
(19) in an additional 24 steps. However, although the rapid generation 
of complexity (+687% increase for 20→22, Fig. 7b, right) to access the 
rigid, densely functionalized cyclobutane is impressive, this strategic 
move probably added an extra constraint for navigating downstream 
reactivity and performing the necessary rearrangements, oxidations 
and functional group manipulations over the ensuing 24 steps, wherein 
there is a more modest +51% complexity increase (an average of 2% per 
step). Nonetheless, the early entry into the cantaxpropellane scaffold 
nicely demonstrates how sequential cycloadditions can give rise to 
remarkable levels of structural complexity.

In many syntheses, mimicry of synthetic strategy of nature (that is, 
biosynthesis) can provide inspiration for an early-complexity strategy. 
The two-phase approach of Baran to several terpenoids33,158–163 is designed 
to model the synthetic strategy of nature, in which the topologically 
complex carbon skeleton is first rapidly assembled in a ‘cyclase phase’  

and the oxidation pattern is introduced in a subsequent ‘oxidase phase’. 
This two-phase logic was notably applied to ingenol (sold commercially 
as the mebutate ester, Picato; 22, Fig. 7c), an especially challenging 
diterpene with a high degree of both structural and synthetic complex-
ity. Starting from enantiomerically enriched (+)-carene (23), a seven-
step sequence of alkylations and an allenyl-Pauson–Khand reaction 
produced tetracycle 24 — a net increase of six C–C bonds formed in 
the cyclase phase. In the subsequent oxidase phase, peripheral oxida-
tion of the five-membered and seven-membered rings, along with 
the key vinylogous pinacol rearrangement, yielded ingenol (22) in 
14 total steps. As depicted in the complexity analysis (Fig. 7c, right), 
the ‘cyclase phase’ clearly contributes skeletal complexity, as scored 
by the SPS metric (an average +26% increase per C–C bond-forming 
step, highlighted in blue). In the oxidase phase, redox manipulations 
(highlighted in pink), have a measurable but attenuated impact on SPS 
complexity (average +8.8% complexity per oxidation step), with several 
steps in this phase accompanied by functional group manipulations, 
which are often necessary for managing complex oxidation patterns.

Many molecules which contain a high level of structural complex-
ity may, in fact, have very low synthetic complexity or are commer-
cially available. The so-called chiral pool — the collection of naturally 
occurring building blocks which already contain one or more stereo-
genic centres — has long been a rich source of purchasable molecular 
complexity and, thus, a convenient starting point for many synthetic 
routes164. One notable use of the chiral pool as a source of struc-
tural complexity is Maimone’s synthesis of Illicium sesquiterpenes 
(−)-majucin (25, Fig. 7d) and (−)-jiadifenoxolane A (26) from terpene 
feedstock (+)-cedrol (27)165,166. Making use of the existing complexity 
in the carbon framework of 27, site-selective C(sp3)–H oxidations and 
ring fragmentations enabled the synthesis of enol lactone 28, from 
which the majucin and anisatin frameworks were established. Not only 
did lactone transpositions and late-stage oxidations completed the 
syntheses of (−)-majucin (25) and (−)-jiadifenoxolane A (26), but also 
the reported oxidative sequence constituted a formal synthesis of three 
additional Illicium sesquiterpenes. Given the growing development 
of the field and the application of site-selective C–H functionaliza-
tion167,168, readily available compounds such as (+)-cedrol (27), which 
contain high levels of structural complexity (SPS = 939, see plot at 
Fig. 7d, right), can serve as synthetic platforms for accessing a wide 
array of highly oxidized terpenoids.

Leveraging excess complexity
Chemical transformations that enable the rapid generation of com-
plexity are prized in the synthetic toolkit. In many cases, the amount 
of complexity generated can exceed that of the synthetic target, that 
is, the intermediate produced is ‘more complex’ than the final goal. 
In many cases, this is observed with the use of protecting groups, 
wherein the fully protected penultimate intermediate is structurally 
more complex than the final target. Although this excess complexity 
can be seen as somewhat misleading (because protecting groups are 
not target-relevant complexity169), this can be important to consider in 
the context of retrosynthesis planning algorithms, wherein allowing for 
temporary hikes in complexity can lead to two-step disconnections that 
are overall simplifying170. Other instances are more nuanced: such com-
pounds, termed ‘overbred intermediates’ by Hoffmann171 and others172,  
often contain excess C–C bonds, rings or stereocentres relative to  
the target and require bond cleavage processes to complete the syn-
thesis. Insofar as additional synthetic steps are required to achieve 
this ‘excess complexity’, more direct routes through complexity space 
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are seen as ideal96. However, if high-complexity structures can be eas-
ily prepared, C–C bond cleavage strategies173 that proceed downhill 
from a point of maximum complexity can be used advantageously in 
accessing challenging structural motifs.

Wender’s synthesis of α-cedrene174 (29, Fig. 8a) is an example in 
which generation of excess complexity sets the stage for an exceed-
ingly short synthesis. It is also a synthesis that illustrates the power 

of photochemical reactions: an arene–olefin cycloaddition was per-
formed from anisole 30 to yield an equimolar mixture of isomers (31 
and 32), each containing the endo-fused cyclopropane motif. Treat-
ment of this mixture with bromine selectively cleaved the desired C–C 
bond (Fig. 8a, red) in both isomers to complete the cedrene carbon 
framework. Reductive dehalogenation and Wolff–Kishner reduction 
afforded α-cedrene (29) in a remarkable five steps from previously 
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Fig. 7 | Analysing the early-stage generation of molecular complexity. 
Selected examples of early-stage complexity generation in total synthesis with 
accompanying complexity analysis, as scored by SPS (ignoring protecting 
groups). In the graphs (right), key bond-forming steps are highlighted in blue 
and redox manipulations in pink. a, Early-stage [2+2] photocycloaddition 
in Crimmins’ synthesis of ginkgolide B (16). b, Gaich’s Diels–Alder-[2+2] 

photocycloaddition sequence to rapidly build structural complexity en route 
to canataxpropellane (19). c, Baran’s two-phase approach to ingenol (22), 
where C–C bonds are first constructed to build structural complexity (cyclase 
phase) before redox manipulations complete the synthesis (oxidase phase). 
d, Maimone’s approach to (–)-majucin (25) and (–)-jiadifenoxolane (26) starting 
from (+)-cedrol (27). r.t., room temperature.
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reported materials. As modelled with the complexity analysis (Fig. 8a, 
right), the arene–olefin cycloaddition from 30 to 31 represents a mas-
sive increase in structural complexity (blue, +406% increase), after 
which a series of bond-cleaving steps (pink, 35% decrease over three 
steps) establish a concise path to 29.

The approach of Oppolzer to longifolene (33, Fig. 8b) similarly 
couples photochemical bond-forming steps with subsequent bond-
breaking events to access complex bicyclic scaffolds175. Photoirra-
diation of enone 34 yielded cyclobutane 35, a complex tetracyclic 
intermediate which contains the bicyclo[2.2.1]heptane core present in 
longifolene and, according to complexity analysis (+145% SPS increase), 
is the point of maximum complexity in this approach (Fig. 8b, right). 
Palladium-mediated hydrogenolytic removal of the Cbz group resulted 
in spontaneous cleavage of the endocyclic C–C bond in 35 (Fig. 7b, 
red), resulting in the characteristic seven-membered ring found in 36 
after an accompanying reduction in SPS complexity (28% decrease). To 
install the gem-dimethyl unit, Wittig olefination and Simmons–Smith 
cyclopropanation afforded spirocyclopropane 37. In a second C–C 
cleavage transformation, hydrogenolysis of the cyclopropane with 
Adams’ catalyst furnished the gem-dimethyl group in 38, enabling 
completion of the synthesis of 33 in an additional three steps.

More recently, Stoltz and coworkers reported a total synthesis 
of (−)-scabrolide A (39, Fig. 8c), a norcembranoid diterpenoid, with a 
key photocycloaddition/C–C cleavage sequence176. In their approach, 
irradiation of enone 40, followed by reductive epoxide opening, gave 
cyclobutane 41 as a single isomer. At this stage, oxidation of the tertiary 
alkyl silane with Hg(OAc)2/AcOOH and elimination of the hydroxy group 
to the isopropenyl unit afforded cyclobutanol 42, setting the stage for a 
transannular C–C cleavage. Treatment of cyclobutanol 42 with CuI/NIS  
facilitated in situ formation of the corresponding hypoiodite, which 
underwent homolytic fragmentation, recombination and elimination 
of the intermediate tertiary iodide (see 43) to give (−)-scabrolide A (39), 
thus, completing the total synthesis. Interestingly, complexity analysis 
(Fig. 8c, right) illustrates how intermediate 40 is at the same level of 
structural complexity as the target, 39, and yet traversing through a 
photocycloaddition/C–C bond-cleaving sequence (+49% SPS increase, 
then 27% decrease) was necessary to access the natural product.

The Pronin synthesis of pleuromutilin (44, Fig. 8d), a terpenoid 
with promising antibacterial properties, stands as a powerful final 
example of how navigating excess complexity can enable the assembly 
of highly complex natural product scaffolds177. Alkyne 45, prepared 
in a rapid six-step sequence, was subjected to Ti-mediated reductive 
cyclization conditions to afford cyclobutanol 46. Fragmentation of the 
endocyclic C–C bond by treatment with excess strong base allowed for 
tandem functionalization of the resulting extended enolate, giving 47 
after methylation. Remarkably, fluoride-mediated cleavage of the silyl 
ketene acetal re-established the cyclobutanol motif to yield 48, allow-
ing for further C–C functionalization at that position in a subsequent 
oxidation. Complexity analysis shows this phase of the route (Fig. 8d, 
right) as an iterative complexity generation–reorganization sequence, 
wherein formation of the strained cyclobutanol provided opportu-
nities for key bond-forming events in subsequent steps, ultimately 
enabling the synthesis of pleuromutilin (44) in a total of 12 steps.

In general, because of the requirement for subsequent C–C bond 
cleaving reactions after introducing excess complexity, the majority of 
approaches that have used this strategy rely on forming strained rings 
(three-membered and four-membered). In these cases, C–C bonds are 
much more easily cleaved using existing technology. It is anticipated 
that with advances in methods for C–C bond cleavage in less strained 

systems, there will be significantly more opportunities to use the excess 
complexity generation strategy in synthesis, especially of terpenoids.

Cheminformatics and medicinal chemistry
In the realm of medicinal chemistry, molecular complexity has been 
proposed as a key metric for understanding drug–target interactions89. 
Developing chemical descriptors and molecular representations for 
small molecules in large virtual libraries has been proposed as a use-
ful data-driven approach for predicting drug success or filtering out 
intractable compounds that possess undesirable properties for drug 
development178–180. In the era of Big Data, cheminformatics and QSAR 
analysis have emerged as some of the primary pillars of modern drug 
discovery, and the descriptor of molecular complexity — defined 
according to a number of previously described methods — has found 
its place in these disciplines181,182.

Simple proxies for molecular complexity have driven powerful 
observations in drug development. Notably, Lovering and coworkers 
proposed that more complex small molecule clinical candidates — 
those with higher numbers of sp3-hybridized carbons and stereogenic 
centres — tend to advance further in the drug approval process183. Much 
in the same way as Lipinski proposed the ‘rule of five’ for characterizing 
the physical properties of successful drug candidates184, Lovering 
claims that Fsp3 (number of sp3-hybridized carbons/total carbon count) 
and stereocentre content are directly correlated with clinical success. 
The central hypothesis for this relationship is the ability of sp3-rich 
compounds to access more diverse chemical space, better position 
functional groups for improved receptor–drug complementarity, and 
yield more favourable solubility profiles. Furthermore, high sp3 carbon 
and chiral centre count can impart greater selectivity to drugs owing 
to the three-dimensionality and high information content. In a subse-
quent report, Lovering further interrogated this selectivity hypothesis 
by examining assay data for roughly 7,000 compounds against a panel 
of proteins (Cerep) and cytochrome P450 (CYP) enzymes routinely 
screened in discovery chemistry at Pfizer185. Sorting these compounds 
according to their molecular complexity (Fsp3 and number of chiral 
centres) revealed an inverse relationship between complexity and assay 
promiscuity. This confirmed the original hypothesis that more complex 
molecules, as approximated by Fsp3 and stereocentre count, have 
greater specificity and selectivity in their interactions with biological 
targets and even higher tendency to evade CYP enzymes, which can 
facilitate metabolic degradation.

The proposed relationship between molecular complexity and 
biological function has also found relevance in diversity-oriented syn-
thesis (DOS) and combinatorial chemistry for generating performance-
diverse compound libraries186,187. To further probe the promiscuity of 
various subcollections of molecules (natural products, DOS-generated 
compounds and commercial compounds), Clemons and coworkers 
systematically carried out a 100-protein assay on a large compound 
collection188. By comparing molecular complexity (fraction of stereo-
genic carbons) to biological data, the authors described how natural 
products exhibit high selectivity but have less tendency to yield hits; 
conversely, commercial compounds display high promiscuity but 
have higher tendency to result in hits, that is, show activity against 
several proteins. Designed to have low synthetic complexity, DOS-
derived compounds showed reasonable selectivity and activity, mak-
ing them a potentially attractive alternative to ‘simple’ commercial 
compounds or synthetically complex natural products. Indeed, many 
groups have reported diversity-oriented synthetic strategies to struc-
turally complex ‘natural product-like’ compounds in a modular and 
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concise number of steps, some of which show promising biological  
activity117,189,190. In medicinal chemistry, molecular structure determines 
biological function. In this context, the concept of structural complexity —  
as a particularly important structural descriptor — can prove useful as  
an indicator of small molecule clinical success or biological target 
selectivity.

Conclusion and outlook
The generation and manipulation of molecular complexity is a primary 
goal of the field of synthetic chemistry. However, this field-defining 
concept is frequently invoked on an intuitive basis without precise 
definition or appreciation of its subtleties. Although human intuition 
about complexity can be roughly useful for retrosynthetic analysis, 
intuition among groups of chemists can remain highly variable and is 
often riddled with biases and imprecisions98. However, current objec-
tive implementations of complexity scores in retrosynthesis programs, 
such as the length of a SMILES string13, remain somewhat crude, over-
looking many subtleties in planning efficient disconnections. Although 
programs such as SYNTHIA have demonstrated proficiency in planning 
routes to natural products170, there is much room for growth for tack-
ling more complex targets. If computer-assisted synthesis planning 
is to reach greater maturity in the near future, analysing molecular 
structures and developing synthetic routes much in the same way as 
expert-trained chemists will require further refinement of this corner-
stone concept into a rigorous analytical tool. In this process, complexity 
analysis might highlight new desirable disconnections that are not yet 
achievable with the current synthetic toolkit, inspiring the community 
to develop new methods to close the gap.

In this Perspective, the definitions, methods for quantification 
and applications of molecular complexity were reviewed. Despite the 
multitude of analytical methods that attempt to rigorously quantify 
and measure molecular complexity, however, it remains a somewhat 
elusive subject. One might reasonably wonder if these complexity 
analyses — with their own subjective formulations and approaches — 
are any different than mere human intuition. Each method, with its own 
assumptions, theoretical bases and computational tradeoffs, invariably 
fails to capture the whole picture with a single lens. However, complex-
ity analyses do not seek to be holistic or objective for all scenarios. 
The ‘ideal’ complexity metric is context-dependent, and their value 
is demonstrated in their ability to aid in planning successful synthetic 
routes or inspire new innovations in the field, as shown by Cernak and 
coworkers. Although each approach indeed bears its own assump-
tions, they draw from conceptual frameworks such as graph theory or 
information theory which individually crystallize our understanding of 
molecular structure, with each analytical framework being a different 
way to model the ensemble of molecular features. These metrics are, 
in aggregate, useful for characterizing the state of synthesis in a more 
rigorous, reliable and reproducible fashion, and they can teach the 
community how to navigate this landscape more efficiently.

Where do new opportunities remain? Many previous methods 
for quantifying complexity start with well-understood variables or 
theoretical frameworks to define complexity from the bottom up. 
However, with large datasets of composite or crowdsourced complex-
ity scores, such as that from Sheridan and coworkers98, one might 
envision machine learning workflows capturing subtle elements of 
complexity that no single method could report. Such methods could 
aid in proposing new disconnections that break conventional heuris-
tics but result in efficient syntheses. Furthermore, analysis of human-
defined complexity, resulting from years of organic chemistry training, 

experience and time-tested intuition, might uncover new discrete prin-
ciples or ‘rules’ that could simplify retrosynthetic analysis beyond the 
original LHASA work of Corey. Re-training retrosynthesis algorithms 
with these data-driven heuristics, in turn, has the potential to render 
computer-assisted synthesis planning even more powerful. Finally, 
the development of standardized benchmarks for complexity metrics 
(for example, by evaluation of a standard set of total syntheses or test 
compounds) can be used to assess the value of new approaches and 
allow for more rigorous comparison of these molecular descriptors 
for future applications.

Synthetic chemists are drawn to building complexity through 
synthesis: can we be more rigorous with how we measure our progress? 
Quantifying and characterizing molecular complexity with analytical 
methods will not only bring needed clarity to an oft-nebulous term, 
but this can also point the field in new directions for improving how 
complex structures are assembled. For total synthesis, characterizing 
the complexity landscape can aid in understanding the successes (and 
failures) of various synthetic strategies, leading to a better grasp of 
how one might maximize structural complexity at every step while 
minimizing the synthetic complexity of medicinally valuable targets. 
The advent of computer-assisted synthesis planning invites more 
systematic, reproducible methods for the analysis of complex mol-
ecules. Just as the development of LHASA prompted Corey to codify a 
set of general rules for retrosynthetic analysis, developing new ways to 
describe molecular complexity has the potential to yield similarly use-
ful applications. Perhaps there are new rules for synthesis that are yet 
to be formulated, a logic based on algorithm-calculated complexity as 
the guiding principle. Further development of molecular complexity 
analysis and its applications can refine the synthetic organic chemist’s 
understanding of their craft and scout new directions for advancing 
the field.

Published online: xx xx xxxx
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